THE FORMAL DESIGN AND ANALYSIS OF
DISTRIBUTED DATA PROCESSING SYSTEMS
by
D. R. Fitzwater
Special Report-Preliminary Design Analysis

Computer Sciences Technical Report #279

October 1976

University of Wisconsin - Madison

Computer Sciences Department

THE FORMAL DESIGN AND ANALYSIS OF
DISTRIBUTED DATA PROCESSING SYSTEMS

BY

D. R. FITZWATER
Special Report-Preliminary Design Analysis

Computer Sciences Technical Report #279

Abstract

This research proposal is to support the development of the "science"
behind software engineering in order to ensure required system properties,
to compare current software engineering techniques, to develop specifica-
tion for new designs and analysis tools, and to demonstrate the practicality
of the "science".

A hierarchical design schema will be developed within which formal
representations and analyses can be defined and the required solutions
can be found. Since "worst case" problems are generally impossible to
solve, sufficient design laws or constraints will be developed to ensure

solvability of the critical problems.

Sponsored by the United States Army under Contract No. DASG60-76-C-0080

TABLE OF CONTENTS

T. INTRODUCTION ¢ o . o o v v o v v v v e e
2. OBJECTIVES o v o v o o i s s e s e e e
3. RESEARCH PLAN o o oo oo o v v o ..
4. SPECIAL REPORT v . v v o vt v vt e e e e e

REQUIREMENTS SPECIFICATION o
1. INTRODUCTION o v v v v v v v v e e e e e e e
2. INFORMAL DECOMPOSITION/INTEGRATION
3. FORMAL DECOMPOSITION/INTEGRATION
4. SYSTEM PARTITIONING « . . o o o oo ..
5. PRIMITIVE ELABORATION o

FUNCTIONAL PROCESS SPECIFICATIONS
T. INTRODUCTION+« v v v v v v v vt e e e e e e
2. SYSTEM SPECIFICATIONS« o o o o . o o o o . ..

REAL-TIME SYSTEMS o . . o o o v o v v v v
1. DEFINITIONS o o v o v v b v v v v e e
2. PATHBOUNDS« o o o o o o v o v v e e
3. NON-REAL-TIME TESTING« .« . o o o« ..
4. SUMMARY oo Lo e s e e e e e e

DISTRIBUTED DATA-PROCESSING SYSTEMS - -« « « « « - « . o+ . .
T. INTRODUCTION o o o o o v v v v v v e e
2. SYSTEM DECOMPOSITION/INTEGRATION
3. BRIEF OVERVIEW OF THE NETWORK DESIGN
4. GENERALITY o v o o v v v v v e e
5. SUMMARY Lo oo s s s e e e e

THE DESIGN SCHEMA o . o o o o v v v v v v v v
1. INTRODUCTION e e e e e e e e e e
2. DESIGN PROCESSES o o o o o v v v oo
3. DESIGN STEPS o o v v v v o v v v s
4. DECOMPOSITION, OPTIMIZATION, INTEGRATION
DESIGN PROCESS SUMMARY

(&2

CONCLUSIONS .« . v v v v v v e s e v e s e v e e e e e e e
T. SUMMARY . . .« o o oo e e e e s e
2. EVALUATION v v v v v v v v d v h s e e
3. FINAL REPORT o v v v v v v v v it b v e e e
4. ACKNOWLEDGEMENTS o o v v o o v v v v oo

APPENDIX B -- CONDITIONS ON EXCHANGES 104
APPENDIX C -- VIRTUAL NETWORKS AND OPERATING SYSTEMS 107
APPENDIX D -- EXAMPLE OF A FUNCTIONAL SPECIFICATION 151

The Formal Design and Analysis of

Distributed Data Processing Systems

1. INTRODUCTION

This special report presents a summary of the current status of
work under Contract DASG60-76-C-0080 with the Department of Defense,
Army, Huntsville, Alabama. The intent of this report is to document
the results of the review of the current state-of-the-art critical
problems, development of a "top down" approach, and proposals for more
detailed solutions.

A1l of the results here must be considered as preliminary and sub-
ject to change and elaboration as this work proceeds. The problems
are complex and certainty of results comes (if then) only when the

study is completed with respect to a set of properties.

1.7 Introduction

Experience has shown that the specification, design, implementation,
and development of complex real-time weapons systems, such as ballistic
missile defense systems, are very expensive, difficult to test adequately,
slow to develop and deploy, and difficult to adapt to changing require-

ments.[Da 76] The introduction of distributed data processing concepts po-

tentially complicates these problems even more. No development of

[Da 76] Davis, C. G., and Vick, C. R. "The Software Development System,"
Progeed1pgs of the 2nd International Conference on Software
Engineering, San Francisco, California (October 1976), p. 60.

science or design and testing tools will make such development auto-
matic or simple. The engineering decisions will remain complex and

dependent on experience and analysis. As in all other engineering fields,

the development of a science of design, however incomplete, can be very
valuable in guiding engineering decisions, analyzing consequences, pro-
viding design laws sufficient to guarantee some desirable system invar-
iancies, and in avoiding "worst case" type designs thus making possible

more powerful analysis tools.

Sponsored by The United States Army under Contract No. DASG60-76-C-0080

-5-

1.1.1 Critical Issues

There are many critical issues in the process of developing and
deploying a major system. We cannot hope to address directly most of
them. We must address some of them in a way that minimally constrains
potential solutions to the others. If we can't solve all of the prob-
lems (and we can't), we mustn't prevent others from doing their best on
unsolved problems while expoiting our results on those problems we have
attacked. We will Took first at the problems of making and testing
engineering decisions with the goal of making the development process
more manageable and engineering decisions more testable at earlier
stages of development. We believe that such results could have a
major (but indirect) impact on many other critical issues. Even if
this were not the case, we believe that a relatively minor investment
in better models, design laws, and testing tools will have a large pay-
off in both the resources involved in development, in speeding up the
deployment, and in improving the adaptability of the resulting sys-
tem[Dr 76]. The final validation of this belief will rest on use of the

processes developed in this work.

We will first give an informal characterization of a developmental
process. A formal specification of a particular set of desirable develop-
mental processes is one of the intermediate goals of this work. We will
start with a very general concept and gradually develop it into a formal

and practical scheme for system development.

If the development is to be formalized, the current state of the
development must be well defined at the beginning and at least at the
end. The passage from one well-defined state to the next will be called

a step of the process. Most useful developmental processes will proceed

[Dr 76] Dreyfus, J. M., and Karacsony, P. J. "The Preliminary Design as a
Key to Successful Software Development," Proceedings of the 2nd
International Conference of Software Development," San Francisco,
California (October 1976), p. 206.

-6-

via many successive intermediate well-defined states. Of course there may
exist any algorithm for carrying out a given process step, and most develop-
mental processes are not guaranteed to succeed, given arbitrary originating
requirements. Thus the developmental process is similar to ordinary digital
processes, except that its steps may not be effective (i.e. there is no
automatic way to carry out a given step) as is shown in Figure 1. De-
velopmental processes may be decomposed into independent or interacting
processes, just as can digital processes. Indeed the most general model
of developmental processes is just that of digital processes. The notion
of "interaction" must be formalized as well as that of well-defined state.
Of course many digital processes do not model a desirable (or even
feasible) developmental process; we must still sort through our models to

find those with desirable properties.

=
ju]
w
=
[wo)
(2]

>N

w .
O<TZ I
=
=
w
P
w g

W.D.S. W.D.S.
STEP S
STEP _INTERACTION 0.0,
< SEENY W.D.S. STEP
W.D.S. W.D.S. STEP
INTERACTION
slep STEP << > | INTERACTION |
W.D.S
WY s W.D.S. W.D.S.
N [Sép

FIG. 1: An interacting set of digital processes
with interacting and non-interacting
steps. The process is effective if each
step is effective. W.D.S. represents
"well-defined state".

We can identify at Teast the following processes involved in a system
development process:
Requirement (of the designed system)
Design (of the specification of the system)
Implementation (of the specified system)
Evolution (changes in design during operation)
Operation (of the implemented system).
Each process has its own unique requirements for kinds of engineering de-
cisions, of analysis, and of testability. However, all of these processes
have much in common, and a general model with properties useful to all of
them can be developed. At that high level of abstraction, all such results
can be used for any of the above processes. In developing such an abstrac-
tion, we must find requirements for all such processes. Finding these be- -
comes a "meta-process" itself.
We will address the relevant critical issues arising from the processes
above in the order given. Thus this preliminary report will be most concerned
with the top two processes and the “"meta-process".

1.1.2 Requirements Process

The requirements process starts with some (possibly incomplete, vague,
and informal) originating requirements for a system that approximate the
desired system, and finishes when the modified and elaborated requirements
have been encoded (in a form suitable for the subsequent design process)
and tested (to the satisfaction of the system engineers and the “"customer").
The steps in the requirements process are of three types: the elaboration
of requirements for an approximating system, the modification of requirements
to those for a better approximation of the desired system, and the decompo-

sition of the overall desired system into more manageable sub-systems.

There are critical issues involved with both the starting point and the
ending point as well as for each type of step in the process.
1.1.2.1 At least the following critical issues are involved in the start-

and ending points of the requirements process:
What should be required?

e.g., Behavior in real world being affected by system,
Behavior at interface of real world and system
Functional structure of system
What attributes should be constrained?
e.g., Which are bound by requirements?
Which are strongly coupled (engineering decisions
cannot be factored)?
Which are loosely coupled (engineering decisions can
be made independently within a parametric range)?
How should requirements be encoded?
e.g., To make possible the testing of the requirements
To make possible the design of the required system
To maximize applicability of tools and analysis
To check for consistency, completeness, etc.
To ensure that designed system is testable with re-
spect to requirements.
Under worst case conditions, none of the above questions have satisfactory
answers, so we must find design laws for requirements that make satisfactory
answers possible.
1.1.2.2 At least the following are involved in a decomposition step:
Decompose into what parts?
e.g., Abstractions
Sub-systems

Levels

How can requirements be allocated and tested?
e.g., Testable in part
Testable only on collection of parts
Coupling between engineering decisions between parts
How can parts be integrated?
e.g., At completion of which process (requirements, design,
implementation, etc.)
At which stage of elaboration
With minimal testing during integration
The decomposition must consider the subsequent integration and must make
integration possible while maximizing the probability that requirements
will be met.

1.1.2.3 At Teast the following are involved in a "better approximation" steps

How good an approximation is it? (It should satisfy customer.)
e.g., How to test behavior of required system
How to compare with desired behaviors
How to compare two approximating systems
How can deficiences of approximation be corrected?
e.g., Given analysis data, what are the deficiencies?
Should we change requirements or the desired system?
What can we change to correct deficiency?
What is impact of change on other requirements?
How can the impact of change be determined?
e.g., Either desired system or approximating system may change
What other requirements are impacted?
Which need to be changed?
Which need to be retested?

What is the traceability of requirements and interactions?

=10~

Since the question of "...better approximation to what?" must remain
formally unanswered (or we would just change our starting point to an
earlier form of requirement), we can not hope to use formal correctness
proof techniques on originating requirements. Consequently we can only
maximize the analysis information available to the customer and system
engineers.
1.1.2.4 At least the following are involved in an elaboration of require-
ments step:
Which process is constrained by the requirement?
e.g., Requirements
Design
Implementation
Etc.
What type of testing is required?
e.g., Stochastic
Analytical
Simulation
Operational
Etc.
How can requirements be elaborated to a testable Tevel?
e.g., Which parts to elaborate
How to elaborate only part
Minimal design exploration
It is clear that, for a system enaineer, the nature of this type of step is
essentially the same as for later design steps on the resulting require-
ment specification. Thus there can be no qualitative dividing 1ine be-
tween requirements specification and design specification processes. If
possible, the requirements process must be carried far enough in design

-11-

to satisfy the system engineers (and the customer) that requirements are
satisfactory and can be met.

The issues involved in requirement specifications are here addressed
in quite general and imprecise terms just to indicate the scope of the
problems. We will elaborate on many of these issues in a more formal
way after we introduce the appropriate models and tools.

1.1.3 Design Process

The design process "starts" with some encoding of the requirements
(satisfactory to the customer and systems engineer) and completes with the
production of some encoding which meets design requirements and is suitable
for implementation designers. Requirements may have been decomposed into
relatively independent design requirements. There are six types of design
steps: change of requirements, the elaboration of design decisions, the
optimization of the specification, the decomposition into more manage-
able parts, the integration of the decomposed parts, and the interaction
with other design processes. There are critical issues associated with
both the initial design requirements and the resulting implementation
specifications, as well as the design steps.
1.1.3.1 At least the following critical issues are involved in the start-

ing and ending points of the design process:

Is the state of design well defined?
e.g., Is it consistent, complete, unambiguous and testable?
Is it suitable as input to subsequent development processes?
e.g., Can we decode information needed for development step?
Can the development process steps be carried out?
Can we decide if they have been carried out?
We can not hope to give algorithms for developmental processes, but we can
at least insist that the current state of a developmental process is well

defined and that we can decide when a given step has been carried out.
-12-

1.1.3.2 At least the following are involved in the interaction between de-
composed design processes:
Is the interaction well defined?
e.g., Is it consistent, complete, unambiguous, and testable?
When should interaction occur?
e.g., What independence of design decisions is allowed with
lToosely coupled design processes?
How to test for and when to synchronize interaction
What should interaction be?
e.g., What information should be exchanged?
When is interaction completed?
The decomposition of the system requirements leads to semi-independent
design processes, but some loosely coupled attributes may require inter-
design process interactions.
1.1.3.3 At Teast the following are involved in an integration process step:
How can decomposed system be integrated into one system?
e.g., Are both simply connected by interactions?
Does one interpretively simulate the other?
Is one translated into processes of the other?
Is the integrated system well defined?
e.g. Is it consistent, complete, unambiguous, and testable?
Does integration preserve designed properties?
e.g. If separate systems are "correct", is the integration
"correct"?
Is it at least probable that individual design decisions

remain valid?

-13-

Since we will control, as part of our formal methods, the types of decom-
positions, we can hope to resolve these issues with algorithms for integra-
tion.
1.1.3.4 At least the following are involved in a decomposition step:

Are the decomposed systems well defined?

e.g. Are they consistent, complete, unambiguous, and testable?

Can they be integrated?

e.g. Can issues above be resolved?

Can associated non-decomposable requirements be tested?

e.g. For consistency during decomposed design processes

For satisfaction after integration step.

There may exist some requirements that can not be decomposed and can
only be tested at system integration time.
1.1.3.5 At Teast the following are involved in an optimization step:

What are invariancies characterizing an equivalence class?

e.g. What must be preserved?

What property of members of the equivalence class is to be

optimized?
e.g. Given two equivalent members, which is prefered?
Is it decidable if a proposed member is better than the
currently designed member?

e.g. Can we quit an optimization step because we are ahead?
We may be able to require more of some specific optimization steps. In
general, we can not require less and know when the steps can be con-
sidered completed.

1.1.3.6 At Teast the following are involved in a design elaboration step:

-14-

Is the result a well-defined sytem?
e.g. Is it consistent, complete, unambiguous and testable?
Does it preserve validity of previous tests?
e.g. Does validity of this system imply validity of previous
system?
What design decisions are made ?
e.g. Elaboration encodes design decision in more detailed
structures.
To what requirements are design decisions traced?
e.g. What tests must be carried out on result of step to
verify and validate decisions?
How can the design by elaborated to a testable level?
e.g. Which parts to elaborate
How to elaborate only part
Minimal implementation
Ideally, all design decisions should be testable at the completion of the
design step.
1.1.3.7 At least the following are involved in a "change in requirements"
step:
What originates the change?
e.g. Design decisions
Changes in an originating requirement
Correction of error
What is the change?
e.g. How defined?
How testable?
What is impact of change?

e.g. Local to step
-15-

Local to design
Local to subsystem
Should change be made?
e.g. Is cure worse than disease?
Are there alternatives?
How can change be made ?
e.g. With minimal impact on current and completed design
processes
Changes will occur. We must deal with them effectively and with minimal
impact.

The design process ends when the designer has produced well defined
specifications for the systems that will collectively meet design process
requirements and that can plausibly be implemented. This may require ex-
ploratory development beyond the design process prior to producing the
final design. Thus we can not hope to draw neat formal lines between
the various parts of the development processes. We can, however, hope
to characterize the steps of the entire developmental process, leaving
decisions such as where dividing lines should be drawn for a given project
to the manager who should make them.

1.1.4 Computer Sciences

[t is clear that the computer sciences are potentially as useful to
system developers as physics and mathematics are to engineers. Little of
this potentiality has been realized in practice because of the complexity
of current systems and because of some unique problems in justifying scien-
tific systems research.

The areas in computer sciences have developed only recently from

application efforts in many disciplines. As a result computer sciences

-16-

departments in each university have been created in differing administra-
tive frameworks and with a wide variety of emphasis on areas of speciali-
zation. This is not surprising for a science that is so new and so
potentially useful to society, as well as to the university community
itself. Although there is general agreement that the area, as an aca-

demic discipline, exists quite apart from the many applications of computers
to problem solving, it is only beginning to justify the use of "sciences"

in its title.

There seems to be general agreement that the area of "systems" is at
the heart of computer sciences. There is little agreement on what con-
stitutes the systems area and what the university effort should contrib-
ute to this area. It is clear that a substantial body of knowledge con-
cerning the design, specification, implementation, measurement, and con-
trol of digital systems has been developed. Such knowledge is potentially
useful in providing tools and application systems for all users of com-
puters.

Because of the current lack of a consensus on the nature and standards
of this new area of "systems", some special problems have arisen in ex-
ploiting research contributions by professors in this area. The major
problem in systems research evaluation is intrinsic to the area. Perhaps
an analogy will clarify the problem. A mathematician may study artificial
universes with a formal rigor that carries its own justification. A
physicist may study our real universe without hope of formal rigor, and may
justify his studies by the insights and control of natural phenomena. An
engineer may use both mathematical and physical tools in designing applica-

tions useful to society, and may justify them by that usefulness. Com-

-17-

puter sciences has analogs to each of the above areas. For the mathematician
we have the "foundations" area, which is concerned with problems of formal
systems. For the physicist we have a developing science of the design

of artificial systems, which is concerned with technology-independent sys-
tem universes too complex to have been formalized. For the engineer we

have the implementation of systems in given technologies. We can distinguish
both hardware and software engineering as subfields of systems engineering.

The justification of the foundations area is much the same as for math-
ematics, and the justification of the engineering areas is as usual. The
system area, however, suffers from a serious problem in finding its justi-
fication. Because the system universes are artificial, we can not say (as
does physics) that any insight or control into that universe is Justified.
Physics has a unique, self-justifying universe. The system research does
not. Neither can such work be justified as mathematics, since the artifi-
cial system universes being studied are too complex (so far) to be formalized.
The system researcher has a double burden. He must not only justify his
solution to a problem, he must also justify the universe within which it
is a solution.

Most of the contemporary systems research has been carried out in the
context of different, local, universes--the locally available computer sys-
tem. Each such system defines a set of constraints which creates many problems
Tocal to that system. This Tocalization has fragmented system research into
rather isolated user groups. The problems and solutions of one group are of
lTittle direct use or interest to other such groups. The informed, interested
peer group to such system researchers may be very small indeed, perhaps in-

cluding only Tocal co-workers. With time, these isolated efforts will sig-

-18-

nificantly contribute to the contribution of more abstract (machine-indepen-
dent) system universes within which a substantial community of workers

may produce broadly applicable results. A universe is neither created

nor justified in a day or by a few applications.

The complexity of requirements for contemporary and future system
developments is so great that there is serious question of how to deal
with it. Indeed, the principle result of computer sciences today is to
demonstrate how impossible worst-case developmental processes are to
specify and carry out. That is not much help. We can not deal with
worst-case complexity. Thus we must accept as a primary postulate that
if something can't be done, then we must accept sufficient effective
design laws so that we don't have to do it. There are a number of
corollaries to this postulate, such as:

Never work with arbitrary systems

Encode so that required decoding is possible

Never accept unconstrained design decisions

Generate only well-behaved structures

Only replace a restrictive design law by another that is
still sufficient.

Satisfaction of design law must be practically testable

If an algorithm is too computationally complex, then it can't
be carried out.

We must constrain the system being required, not just the
form or its description.

Detection of arbitrary cases is usually not possible. Pre-

vention is then the only cure.

-19-

One of the major reasons contemporary system engineers have not resolved
the critical issues mentioned previously is that, in terms of arbitrary
systems requirements, they have no solution.

We resolve these issues if we accept the above postulate, but at the
risk of restricting the system domain to trivial systems. A major goal
of this work is to show that we don't really lose anything essential
from our systems domain by accepting that postulate. Unfortunately,
much work remains to be done before we reach this goal. Surprisingly,
our major hope of reaching this goal rests on the complexity of the
applications. We can not hope to analyze value manipulations in any
general way, and so we must encode most requirements and design deci-
sions in a structural way. Even so, the intrinsic problems are so com-
plex that unless we can make the development steps formally trivial,
they will be at least computationally impossible, even algorithms are
not enough for us.

Thus our major problems are extrinsic (that of how to define the
problem structures and processes) rather than intrinsic (that of
finding a solution to the defined problems). We can't possibly use
most of the sophisticated analysis techniques because of combinatoric
computational complexities in Targe complex systems. If we define our
problems correctly, the solutions are not hard. We may balk a bit at
some of the resulting design laws, but this will serve as a motivation
for developing better design laws and developmental processes.

In effect, we must approach the developmental process not as a

-20-

mathmatician (the complexity is too great for analytic solutions) but

as a physical scientist interested in system invariancies. We can

develop a hierarchical approach that will ensure the most basic and
essential design properties and provide the foundation for future elabora-
tion.

The formulation of such design laws provides a common basis for sur-
veying, comparing, and evaluating current and proposed methodologies.
Indeed, the most immediate impact of this study will 1ie in such criti-
cal evaluation and identification of potential improvements of high
payoff. Ultimately, the system restrictions should make possible the
creation of new developmental processes and tools applicable within that

restricted domain.

1.2 Objectives
The objectives of this proposal are to develop the following hier-
archical approaches:
to the "science" of design behind software engineering,
to demonstrate the practicality of the science,
to compare current software engineering approaches,
to develop specifications for new design and analysis toois.

In order to reach these objectives, it is necessary to develop
design schemata, required system properties, and formal models. Each
of these areas will, of course, require cycles of study and elaboration
into hierarchies of greater depth. No one area could be completed without
commensurate studies on the others. A significant amount of work in at

least the following areas will be required to meet the objectives above.

-21-

1.2.1 Design Schemata

The design process itself must be formalized to provide a frame-
work within which problems can be studied and solved. The goal is to
allow maximum factorization of the design process itself into indepen-
dent designs, while providing a suitable level in the design schema for
making all required decisions. For each design, a suitable design
schema should encompass the functional, process, and implementation
design problems. The formalization of such a schema requires the
creation of system universe models within which decisions and laws

may be defined.

1.2.2 Required Properties

Some properties of a particular system are valid only for that
system and must be ensured by means appropriate to that system. Many
required properties seriously impacting the possibility of achieving
performance, integrity, evolution, and design automation can be identi-
fied and used to drive the creation of design laws and models. The
hierarchical classification of these properties is essential for de-
signers to select the level of the design laws appropriate to each
design step. The certification of real time systems alone, requires
a substantial number of required properties to be present. Debugging

can only display errors, rather than show that there are no errors.

1.2.3 Formal Models
Each hierarchical design schema applied to a factored design

problem will require an appropriate model and formal system for

representing design laws and decisions.

-22-

It is clear that the design problems are insoluble in terms of
unconstrained models. We must find the reasons for such impossible
solutions and "pass" effective design laws sufficient to make them
solvable. Ultimately, such Taws will be incorporated in high Tevel
design and analysis languages to free the designer from unnecessary
details, and to ensure consistency.

The models and design laws should be sufficient to allow
algorithmic analysis of design to show presence of required properties,
to allow creation of useful tools and techniques for design otimization
at each Tevel and for translation to the next Tevel, and to reduce
computational complexity of design, analysis, and transformation

tools to practicality.

1.3 RESEARCH PLAN
There are five major problems that must be addressed as a set:
What are developmental process requirements in general?
What hierarchy of system properties should be established?
What sufficient design laws are needed to support the hierarchy?
What developmental process can best incorporate the design laws?
What encoding of the state of a developmental process should
be used?
To Timit the scope of the current work in a "top down" fashion, we will
restrict the hierarchy of system properties to be studied here to only
a few, most basic ones relevant to critical issues of real-time, dis-

tributed data processing systems. We will treat the developmental pro-

-23-

cess by first considering requirements specification and then design
processes. After completion of this restricted study of the above

set of problems, we will have a basis from which to address the remain-
ing objectives. At that point we will develop a research plan to ex-
tend the relevant hierarchy of properties, to extend study to Tater
stages of the developmental processes, to compare potential system
engineering approaches, to develop specifications for new design and
analysis tools, and to assess potential payoff for the results.

Because of the tight coupling between the potential solutions to
the above problems, we can not solve them in order. We will instead
develop approximate solutions to each and iterate until all are con-
sistent. This iteration is not completed as yet and so current results
must be tentative. We will do this first for the requirement specifi-
cation process. Even so, we must less formally explore subsequent
developmental process stages to assess the validity of requirements
methodology. In effect we are in a developmental process for developing

developmental processes.

1.4 SPECIAL REPORT

The purpose of this special report is to document the current
status of the research in order to consolidate and form a firmer basis
for the future work, and to facilitate the decomposition of this work
into more manageable sub-problems. Up to this point, the concepts and

results have been changing too rapidly to document. This report con-

-24-

tains an overall framework and enough detail to identify and factor the
problem into relatively independent parts.

We will develop a model for the requirements process in section 2,
and a model with a detailed instance of a formal specification of the
state of a developmental process will be presented in section 3. A
brief characterization of real-time data-processing systems from the point
of view of requirements specifications and relevant properties will be
given in section 4. A similar treatment of distributed data processing
systems is given in section 5.

With the previous results in hand, we will then turn our attention
to the design process in section 6. OQOur current conclusions and plans
for remaining work on this current contract will be discussed in section 7.

Of course, results from these later sections will have to be fed back
into the requirements methodology and used to critically compare current
methodologies. This has not been carried out as yet because we first

needed the firmer foundation provided by this report.

-25-

2. REQUIREMENT SPECIFICATIONS

We will develop, in this section, a model for the requirements speci-
fication process based on general principles applicable to any system.
Subsequent sections will extend the model to real-time and distributed

data-processing systems.

2.1 Introduction

The starting point for a requirements process must inevitably be some
informal, incomplete, and possibly inconsistent desired behavior for a
system. The requirements process must produce a well-defined, complete,
consistent, unambiguous, and testable set of system requirements ensuring
that system behavior will be satisfactory to the customer and that the
required system can plausibly be designed and implemented. The resulting
requirements specification must also be suitable for the remainder of the

developmental process.

2.1.1 Formal Approximations

Clearly we can do nothing formally with the originating informal re-
quirements; we face the "worst-case" problems. After development of
requirements design laws from our later study of developmental processes
we can hope to improve the suitability of originating requirements.
After all, there is no unique set of requirements for a given system and
if we understand what makes one set better than another, we could use
the better set to avoid some problems. In any case, the following
arguments remain valid.

Clearly we must develop an approximate set of requirements which we

then refine by elaboration and testing until the requirements process is

-26-

completed. If we interpret "approximate set" as a vague, informal set, we
can offer 1ittle or no formal assistance in carrying out the process. We
can, however, require that the "approximation set" precisely and formally
specify a system whose behavior approximates the desired behavior. In this
case we can offer substantial formal assistance to the process since the
approximating system is well defined. The resulting process is described
by Figure 2. We can thus proceed from one well-defined requirement set

to another, using formal analysis tools at each step, until the desired

requirements have been produced.

FORMAL FORMAL SPECIFICATION
APPROXIMATION /////////Jﬂ \L
ggﬁgsggR IMPROVE ELABORATE SPECIFICATION
APPROXIMAT ION UNTIL DESIRED BEHAVIOR

(Informal) IS TESTABLE

YES NO N
IS DESIRED BEHAVIOR
CHANGE NO OBTAINED?
DESIRED
BEHAVIOR ? J/ YES

FORMAL SPECIFICATION

FIG. 2: REQUIREMENTS SPECIFICATIONS PROCESS
We do not hope to deal formally with all attributes of a system. Only some
will be constrained by our formal requirements specification. The remain-
der are not formally treated, and any desired methodology can be utilized
for their elaboration and testing. Our formal tools will not replace all
other methods. In fact, their role will be supplemental and optional. They
may very likely become the framework within which an arbitrary methodology

can be embedded.

-27-

2.1.2 Required Properties
We can immediately derive a number of properties our formal require-

ments specification must have if this process is to be carried out. Some
of these are clearly the following:

Well-defined: we must be able to decide if proposed

approximation is suitable for our analysis tools.

Consistent: behavior must be well-defined.

Unambiguous: which behavior must be specified.

Complete: all behavior, at a given level of detail,

must be specified for those attributes to be formally

treated.

Effective: it must be possible to determine if a specified

behavior is possessed by the required system.

High Tevel: the primitives of the specification must be

as complex as desired since level of detail is an impor-

tant management and analysis parameter.

Traceable: changes must be traceable in their impact on

current "approximate" specification.

General: system engineers should not be unnecessarily con-

strained in the systems they can require. Some constraints

will be necessary to avoid worst-case problems.

We can provide automated analysis tools to decide if a proposed approx-

imation does indeed have these properties. We will accept the need for

these tools as a constraint in developing our formal specifications.

-28-

2.1.3 Elaborating Specifications

We may use combinations of any of the process steps described in
section 1.1.2 to elaborate the requirements until the desired behavior
can be tested. Clearly this could be a complex and lengthy process.
It is, however, simply the developmental process we are producing.
Potentially, each approximate requirements specification may have to
be carried arbitrarily far through the developmental process prior to
testing. We would like to develop design laws and developmental pro-
cesses that minimize such effort. The primary attack will be to factor
and only elaborate to the level of detail specifically required for testing.
Details of this approach are developed in later sections, and some forms of -
decomposition and partitioning will be discussed in this section.

We will be able to exploit our entire formal design process results

in assisting in this part of the requirements specification process.

2.1.4 Testable Reauirements

The requirement that the specification must be effective has signif-
icant impact on both the form of the specification and the form of the
informal requirements. There is no problem with simple requirements
which can be tested in an ad hoc analytic fashion, but most requirements
will be too complex to be tested without simulation. "Effective" is thus
equivalent to a simulation specification. Ideally, all types of simulation
should be applicable to our formal specification, and our requirement speci-
fication is equivalent to a simulation model. This equivalence must
either be an identity or there must exist a practical algorithm for de-

riving the simulation model from the requirements specification.

-29-

Because of our data processing background, we view the simulation
model as a digital simulation. The extreme versatility of digital simulation
techniques made this hypothesis plausible even if some suspicion remained
that it was not a satisfactory decision for non-data-processing systems.
A closer look at contemporary requirements processes, however, substantiates
the validity of the hypothesis. Even radar designers frequently prefer
to start with (and elaborate) a digital simulation that encodes the require-
ments in an effective way. Digital simulation is the most common tool used
in developing requirements.

It is also worth noting that the testability requirement applies
to all stages of the developmental process. Thus we have not, as yet,
developed any reason for using different formal specifications at each
stage. The difference from stage to stage lies in the level of specified
detail rather thanin a qualitative difference.

The originating requirements may be for an open or for a closed
system. The specification of a closed system includes the "environment"
in which all interactions take place. An open system may include an
interface specification to the "environment" but does not include that
"environment". An open system is not testable without a specification
of an environmental driver.

The requirements specification must be closed to be testable. This
may be done either by specifying system, interface, and driver or by
simply specifying the closed system that includes the environment. Both

options must be possible. However, we can maximize the scope of our

-30-

formal techniques if the formal requirements approximation is the closed
system. The partitioning of the closed system into system, interface,
and "driver" could be done subsequently in a formal way if desired. Such
a partitioning may not always be feasible or desirable, particularly
at the initial informal level. The closed system specification is a com-
plete and consistent specification whereas the open system, interface,
and driver specification (informally arrived at) need be neither com-
plete nor consistent and undetectably so in the worst case. We will,
therefore, start our formal specification as that of a closed system.
Requirements elaboration can thus take place jointly in the environ-
ment and system models with a homogeneous technique. We can "design"
and test the detailed environment at the same time and in the same
manner as the system interacting with the environment.
Thus we can provide substantial and automated assistance in verifying
behavior of the required system. Indeed the requirements process does not

end before the customer is satisfied with displayed behavior.

2.2 Informal Decomposition/Integration

A Targe system development will have many attributes that are only
very loosely coupled, for example, the physical site design and the data
processing design. Design decisions local to different design processes are
not sensitively coupled and, within predesignated limits, may be made quite
independently. Thus some forms of decomposition can be carried out at the
earliest stages, thus factoring the development process into independent

processes until the corresponding system integration occurs.

-31-

The earliest possible point of decomposition is in the informal
originating requirements as shown in Figure 3a. Following the arguments
of section 2.1.4, we will decompose into closed systems by identifying
tightly coupled subsets of attributes that are only loosely coupled with
other subsets. Then by partitioning the attributes we can specify a
closed system approximation for each attribute subset. The decomposition:
of a closed system is thus into a set of closed systems, each representing
the original system from a different viewpoint.

The number of such decomposed systems is clearly application-depen-
dent and sensitive to the identification of loosely coupled subsets of
- attributes. Some, such as physical site systems, logistic systems,
logical systems, etc. are clearly loosely coupled since, within pre-
determined limits, design decisions are essentially independent. Those
Timits can be built into the requirements for each decomposed system. The
application of our developmental process may now be made independently
(and tested independently as well).

There may be some originating requirements that can not be analyzed
for attribute coupling that prevent such decompositions. Since the orig-
inating requirements are not usually unique expressions, perhaps one
can find a better set of requirements which can be decomposed. In any
case, some non-decomposable requirements may still remain. These require-
ments thus can only be tested on the resulting integrated system. If such
a requirement is tightly coupled to attributes scattered across the decom-
posed system, then the decomposition itself is probably ill-advised since

system integration may produce expensive test failures. Perhaps one can

-32-

— — .

, ORIGINATING®

‘REQUIREMENTS\
\ (Informal) /
N -
e .o ~
© g INFORMAL DECOMPOSITION ™ K
T - . — T
/ ORIGINATING , "ORIGINATING >
REQUIREMENTS ‘ REQUIREMENTS \
‘ THIS SYSTEM THIS SYSTEM)
\ \EInfotTa1l Y \ \fI?fozwal) v
| |
| ... |
V FORMAL APPROXIMATION V
REQ. SPECIFICATION REQ. SPECIFICATION
\L DEVELOPMENTAL PROCESS \L
SYSTEM SYSTEM
N s
N ... P
N v
~ SYSTEM INTEGRATI%E/
:SINTEGRATED SYSTEM
(a) INFORMAL DECOMPOSITION/INTEGRATION
REQ. SPECIFICATION
/)
/FORMAL DECOMPOSITION
REQ. SPECIFICATION REQ. SPECIFICATION
\L DEVELOPMENTAL PROCESS J/
SYSTEM SYSTEM

\\\\\\\\SPRMAL INTEGRATIO

INTEGRATED SYSTEM

(b) FORMAL DECOMPOSITION/INTEGRATION

FIG. 3: System decomposition/integration. Solid lines
represent formally defined entities. Dashed
Tines represent informally defined entities.

-33-

find another equivalent set of originating requirements that can be more
completely decomposed.

We can minimize the risk caused by non-decomposable requirements
by carrying the separate developmental processes only far enough so that
integration at that level (perhaps a different level for each system,
or even within each system) makes the non-decomposable requirement
testable. We must then deal with multi-level abstract system inte-
gration and testing in our requirements process.

Another serious problem arises from the informal nature of these
decompositions. The subsequent integration must also be informal.
Since there is no formal characterization of how they were taken apart,
we are unlikely to formalize how they are put back together. In any
event only ad hoc techniques can be used. Note that if a formal decom-
position can be made as in Figure 3b, this problem can be avoided by

doing it that way.

2.3 Formal Decomposition/Integration

A formal requirements specification can be decomposed in the same
way as informal decomposition, except that the decomposition can be formally
characterized and the possibility of subsequent formal integration can be
tested a priori. The essential difference between formal and informal
decomposition lies in the formal specification of the system being decomposed
in the former case. We can thus precisely characterize the decomposition
(even if we have no effective procedure for carrying it out) and establish
sufficient conditions to ensure the correctness of the decomposition. Both

the decomposition and the integration may be substantially aided by design

-34-

automation tools. Indeed, we can accept sufficient design laws on the
form of the decomposition to ensure that integration can be done and
tested automatically. We should still support integration at many levels
of design detail to minimize risk from non-decomposable requirements.

An example of a possible data processing system decomposition and

integration is given in Figure 4.

D.P. SUB-SYSTEM REQ. SPEC.

FORMAL DECOMPOSITION
HARDWARE REQ. SPEC. OP. SYS. REQ. SPEC. APPLICATION REQ. SPEC.
DEVELJPMENTAL DEVELOPMENTAL DEVELOMMENTAL
PRACESS PROCESS PROGESS
INTERPRETATION \/7pTyAL MACHINE SPEC.
INTERPRETATION n£
VIRTUAL MACHINE SPEC. DEVELOAMENTAL
PROGESS
\ TRANSLATION PROCEDURE SPEC.
PHYSICAL MACHINE SPEC. DEVELOPMENTAL
PROCHSS
RANSLATION - ppocEDURE SPEC.
IMPLEMENTATION
PROCESS
MACHINE

FIG. 4: An example of formal system decomposition/integration. The effec-
tive property of each formal specification ensures that the speci-
fied system is in a form interpretable by a formally universal in-
terpreter (the simulating system). Translation (compilation) steps
may improve efficiency of the testing of resulting implementation.
The example developmental process does not exhaust all possibilities
but is intended as an illustration.

-35-

In this case we can develop translators and translator writing systems to
aid the integration of the decomposed systems.

This type of decomposition may be very powerful in isolating the
effects of changes to one of the decomposed systems. Similarly, because
of the loose coupling between such systems (or they would not be decomposed),
some of the components may be directly usable in other applications, or
easily adaptable to changes in an application.

Because of the critical nature of some performance requirements and
the extreme difficulty of meeting them, there must be some "escape me-
chanism" that allows application system designers to require direct hard-
ware implementation of some application algorithms. Thus some need for -
interactions between developmental processes may exist and should be
supported. Such interactions can be well-defined steps of the developmental

process.

2.4 System Partitioning

So far we have not looked at the required internal structure of a single,
formal system requirement specification. In section 2.1.4 we discuss and
justify the use of closed system specifications on the basis of testability
and closure. Thus we implicitly assume there exist at least two systems
to be specified, the environment and the environmental-manipulating system.
The requirements process may, of course, require elaboration of both systems
to reach an acceptable level of testability. OQur formal specifications of
a system must be able to require an interacting system complex with formal
specification, not only of the systems in the complex, but also of their inter-

actions. The partitioning of logical functions among the systems in the

-36-

complex does not necessarily imply the same partitioning of physical
systems in the implementation. This point is illustrated in Figure 5.

The logical partitioning of Figure 5 involves only a part of the
formal requirements. For our purposes, we can factor system require-
ments into the following:

Performance: how well must the system work?

Resources: what kind and how many can the system use?

Logical: what functions must the system support?
We are disregarding here the valid need for similar requirements on the
requirements process itself, and we are not formalizing the testing of
those requirements. This is a potentially important exception, and the
need for better management tools for the developmental process is recog-
nizable. We feel that formalizing the developmental process and the
testing of developing systems are essential first steps in solving
management problems.

The testability of a partitioned logical requirement specification is
still dependent on the existence of the other logical specifications since
only then do we have a testable closure. We can use for this purpose the
currently most suitable of the other specifications in the partitioned
set. Figure 5 thus becomes an elaboration of Figure 2. If the performance
and resource requirements are loosely coupled, we could use formal decom-
position instead, and make the testing even more factored and localized

as in Figure 3, but that would not be a partitioning step.

-37-

—> FORMAL SYSTEM REQUIREMENT SPEC.

ORIGINATING

™~

> REQUIREMENTS PARTITIONING
A/ (Informal)
No
CAN WE ——>> SYSTEM "A" LOGICAL REQ. SPEC.
IMPROVE ELABORATE SPECIFICATIONS
FORMAL
e MATION 2 UNTIL DESIRED BEHAVIOR
: IS TESTABLE ON SYSTEM
COMPLEX
No Yes 4
SHOULD WE
Yes CHANGE - No__ CAN WE_No IS DESIRED BEHAVIOR OBTAINED?
“DESIRED IMPROVES |
BEHAVIOR ? ELABORA-
TION? Yes

SYSTEM "A" LOGICAL REQ. SPEC.

DEVELPPMENTAL

PROCESS

"A" VIRTUAL SYSTEM

FIG. 5: Logical requirements partitioning

LOGICAL
INTEGRATION

L=
VIRTUAL SYSTEM "P"

IMPLEM
PHYSICAL SYSTEM ONE

OTHER LOGICAL REQ. SPEC.
v
INDEPENDENT
DEVELOPMENTAL
PROCESSES SIMILAR
TO THAT FOR "A"

"B" REQ. SPEC. ... "E" REQ. SPEC.
i .
DEVELOPMENTAL DEVELGPMENTAL
PROCESS PROCESS

“B" VIRTUAL SYSTEM

"VIRTUAL SYSTEM "Q"

JATION PROCESS
PHYSICAL SYSTEM TWO

We must thus assume that performance and resource requirements are
not practically decomposable into relatively independent requirements
for each system in the partitioned set. Any attempted decomposition
would run into "the requirements allocation problem" which in these
terms is insoluble. Thus we won't try to solve it, but we don't need
to in order to carry out the requirements process of Figure 5.

We may be able to do even better if we can develop parametric
logical specifications for each member of the partitioned set. We can
then use the decomposition and integration steps of Figure 6. All testing
can now be done independently within parametric ranges.

Each of the decomposed systems is a system complex representing the -
entire system and is thus a testable entity. Interactions between the
decomposed requirements processes are now required only when parameter
ranges must be exceeded to meet specifications, and when the partitioned

systems are integrated by collecting them into a system complex.

FORMAL REQ. SPEC.

DECOMPOSITION BY
REPLICATION

PARAMETRIC "A" REQ. SPEC. PARAMETRIC "A" REQ. SPEC.
PARAMETRIC "Z" REQ. SPEC. PARAMETRIC "Z" REQ. SPEC.

DEVELOPMENTAL DEVELOPHMENTAL

PROCESSS FOR "A" PROCESS| FOR "Z"

IN COMTEXT OF IN CONTEXT OF

PARAMEITER RANGES PARAMETER RANGES

FOR OTHERS FOR OTHERS

%

SYSTEM "A" LOGICAL REQ. SPEC. . . . SYSTEM "7" LOGICAL REQ. SPEC.

INTE ON BY COLLECTING INTO SYSTEM PLEX
TESTED AGAIN AL REQ. SPEC. (ATél. OF FIGURE)

FORMAL REQ. SPEC. (IN PARTITIONED FORM)

FIG. 6: Parametric partitioning
-39-

2.5 Primitive Elaboration

We will assume that the formal requirements specification will be
defined using a functional formalism designed to provide a sufficiently
general model for all systems of interest. There previously was no such
model available, primarily because of the need to functionally model
asynchronous interactions which was not met in available models. We have de-
veloped such a model and it is described in section 3. In this section we
will ignore the requirements for formal interactions, although after section
3 they canbe dealtwith without change in the discussion presented here.

The initial formal requirements specifications will use rather high-
level primitive functions in precisely specifying the system. Primitive
functions are not formally defined but rather are informally characterized
(e.g., in English descriptions). FEach such initial primitive may even-
tually be elaborated by the developmental process into many processes or
procedures spread over an entire network of implemented (physical) systems.
The initial definition is thus as some mathematical expression of the
high-level primitives.

The level of formally defined detail (primitives are only informally
defined) may not be sufficient to formally encode all of the originating
requirements or to formally test against the originating requirements.

The required elaboration of detail is obtained, as shown by Figure 7a,
by formally defining the high-level primitives in terms of Tower level
ones, thus formally encoding in the defining expressions at Teast part
of what was previously encoded informally in English. This results in

an elaboration step as shown in Figure 7b.

-40-

The degree of such elaboration increases as we move along the
developmental process. The requirements process ends when all requirements
have been formally encoded and tested for suitability. Figure 7c describes
some possible intermediate states in the developmental process. The virtual
systems are used (as discussed in section 5) to factor the developmental
process and are defined by some interpretation function (processor) operating
on a pair of program and data (system state) to define a computation of the
virtual (not physical, but logical) machine. Eventually the virtual machine
programs and data may be compiled to implementation (physical) machine in-

itializations. This design process is further described in section 6.

F(xsy) = Py(Py(P5(x)s Pyly))sPs(x)sy)
Pi(xsy52) = Qq(Qy(x),0Q5(y)>2) C \\;;;;375%3(02(X),x)

(a) Function Definition Tree

LOGICAL REQ. SPEC.
(FUNCTIONS OF| PRIMITIVES Pi)

FOR EACH 1| DEFINE Pi AS

SOME FUNCTION OF A LOWER
LEVEL (MORE DETAILED SET
OF PRIMITIVES Qj)

2
LOGICAL REQ. SPEC.
(FUNCTIONS OF PRIMITIVES Q.)

(b) Primitive Elaboration Step

-47-

1 1
DEVELOPMENTAL (F, ARE SYSTEM FUNCTIONS
PROLESS AND o, ARE STATE COMPONENTS)

LOGICAL REQ. SPEC. N F(g) = U F.(c.)

ith VIRTUAL MACHINE SPEC. G(p,d) = VIRTUAL MACH (p,d)
(p is PROGRAM and d is DATA

/' DEVELOPMENTAL for VIRTUAL MACHINE)
Ué// PROLESS

~

jth PHYSICAL MACHINE ~ H(p,d) = PHYSICAL MACH (COMPILE
PROCESS SPEC. (p,d)) (p is PROGRAM and d is
DATA for VIRTUAL MACHINE)

(c) Levels of Primitive Elaboration

FIG. 7: Elaboration of a Functional Specification

2.6 Requirements Process Summary

The informal originating requirements must be encoded formally in
some functional specification whose behavior approximates that of the
desired system. The behavior must be testable and, if unsatisfactory,
either the originating requirements or the formal functional specification
must be changed to improve the degree of approximation. The level of detail
formally encoded may need to be elaborated prior to testing. The require-
ments process ends when the current originating requirements are formally
encoded and the specified system has satisfactory behavior. This may have
required partial completion of the remainder of the developmental process.

We have identified several types of requirements process steps (e.g.,
approximation, decomposition, integration, partitioning and elaboration)

and discussed the issues involved in their formalization.

-42-

We have studied the issues of formal testability and have described
an approach to their resolution by the formal, functional, effective
specification of the requirements for closed systems.

We have identified a number of important properties a formal system
specification must have in general, and laid a foundation for the subse-
quent work in section 3. Other required properties will be developed,
after the formalism is established, as design laws which ensure that the
tools and tests discussed in this section can actually be provided. Fur-
ther design laws will be derived from studies described by the remaining
sections. This is the first pass through this material, and feedback of
results obtained in later sections will be incorporated in the final

report due in January 1977.

-43-

3. FUNCTIONAL PROCESS SPECIFICATIONS

3.1 Introduction

The requirements for a system require needed behaviors or restrict behavior
to certain Timits. It is the behavior of the system being designed which our
formal specifications must relate to the requirements. We must be able to
verify that a specification corresponds to required behavior. For this
verification we must be able to observe the specification's behavior, which
entails the ability to observe the well-defined states and interactions of
the specified systems. We may think of these well-defined actions as state
transitions of a digital process, and the well-defined interactions as
interface transitions. The state transitions can be defined as algorithms
(possibly nondetermininstic) for the successor state.

Many required systems have behavior which is primarily factored into
the behaviors of several components, particularly for geoaraphically
distributed processing. However, these components are required to
communicate and coordinate behavior via some form of interactions--the
states of one component have an effect on the states of the other
component. It is also important that these interactions may occur
asynchronously, as the indispensibility of interrupts has shown. We must

have a formal model for such complex processes.

3.1.1 Basis for Functional Specification
From the goals for modelling system behavior and for observing and
verifying specified behavior, we have the concepts of state, algorithmic

state. transition, and interacting component processes of a system. Our

-44-

formalism begins with these concepts and develops according the goals and
properties required for a specification formalism.

There is a generally accepted concensus that a process can be defined
by a set £ of process states and a (possibly nondeterministic) successor
function f . The application of f +to a process state o to produce a
process state 0©' is known as a process step. When we wish to specify a
a more complex process in which internally asynchronous or independent
transitions occur, there is no longer a consensus, and more work is needed.
Ramamoorthy and So [RAM 76] have said that a functional process specification
should be "(1) comprehensible, (2) unambiguous, (3) verifiable, and (4)
machine processable". These goals are certainly justified by the need for a
requirement methodology: (1), (2), and (3) are needed for correctly and
consistently formalizing functional requirements, (2) and (3) are needed
for correctly developing and implementing specifications, and (4) is
needed for accuracy, for the volume of the work, and for simulation testing.
These goals mayv be met by a formalism based on a mathematical notation of
functions and sets which has been subject to constraints which guarantee
(3) and (4) and which allow sufficient expressive power for (1).

A further goal is to ensure properties which we desire the specified
system transitions to have, such as: algorithmic implication (computations
terminate without blocking), the ability to test real time systems by
nonreal time simulation, and the ability to model anv characteristics of a
real system by our specifications (completeness from 2.1.2). In general,

a specification should be such that each of a set of relevant properties is

[RAM 76] Ramamoorthy, C.V. and So, H.H., "Survey of Principles and Techniques
of Software Requirements and Specifications", Department of Electri-
cal Engineering and Computer Sciences, University of California,
Berkeley, 1976.

-45-

either guaranteed by the form of the specification, or is efficiently

decidable on it. Furthermore we should be able to limit the information in

a specification to that necessary to ensure these properties or their efficient

decidability. We would also like our specification formalism to allow
expansion of this goal as useful new properties are discovered and included
in the relevant set (for example properties relating to the evolutionary
development of existing systems).

Specifications based on mathematical function notation allow concentrating
on relevant areas of a system and hiding the rest within primitive functions;
this is the high level property mentioned in section 2.1.2. Such specifications
also permit guaranteeing properties or their easy decidability by axiomatic
constraints on function combinations, using much of what is already known
about function behavior. Simple primitives for interactions may be inserted
into the formalism of mathematical functions quite naturally, and these
interaction primitives may also be handled by axiomatic constraints. Such a

formalism also ensures the consistency and unambiguity of a specification if

only minimal care is taken.

3.1.2 Properties of a Specification

In justifying the mathematical form of a functional process specification
we have made reference to desirable properties for a specification as well
as to more general goals in the development of functional specifications.

The properties include:

(1) observable and verifiable behavior of a specification.

(2) generality for asynchronously interacting processes.

(3) algorithmic implication (all state transitions will complete).
(4) testability--particularly of real time distributed processes by

simulation.

-46-

(5) completeness of specification with respect to characteristics of
required system.
(6) ability to superimpose developmental and evolutionary processes
on the specification formalism.
(7) ability to concentrate only on areas of the system relevant to
desired analysis, leaving low-level details within primitives.
(8) consistency and unambiguity of specification.
In addition to these properties there are two mentioned in section
2.1.2:
(9) effective decidability of the behavior of a system specification.
(10) traceability of the impact of changes in a system specification.
The decidability of behavior must be in terms of analyzing asynchronous
interactions, which will be discussed later. Tracing the impact of
changes depends upon the change being local to an area of the specification,
which in turn depends upon a correct design decision in factoring the

specification.

3.2 System Specifications

We start our discussion of formal specifications by introducing some
basic definitions. (A more rigorous and complete treatment is given in
Appendix A.)

Definition. A value space V is a set of values v which are not here

further defined.

Definition. A state component op is a subset of a value space Vi .

Definition. A state component space Zi is the set of all state components

o5 which are subsets of the value space Vi

-47-

Definition. A state space I 1is a product Z1x sz soe X Zm of state
component spaces, i.e. o e I if and only if o = (01’02’°"’Om) where
o, €L, ,1=1,2,e00,m.

Definition. A process is a pair (I,f) where I s a state space and f is
a possibly nondeterministic state successor function.

The state successor function f may possibly be decomposed into component

successor functions fi where the fi are set functions. A component

successor function fi may possibly be further decomposed into value

successor functions fij where the fij are not set valued functions but
are value space valued functions. Note that either the fi or the fij
may be nondeterministic. The definitions of the function decompositions
are developed in the next section.

A computation of a process (&,f) 1is a sequence 0gs07 093" "0
such that o; €L (i >0) and Oipq € f(ci) (i >0) , and 5y is an
initial state of the computations. Thus a process and an initial state

define a computation.

3.2.1 Process Graphs

Suppose that we have a successor relation f which we wish to decompose
into simpler relations. Since only finite specifications of f are useful,
writing a different relation for each single state will fail if there are an
infinite number of states. The solution is to gather states into a finite
number of equivalence classes and write a separate successor relation for
each class.

If the equivalence classes are represented as nodes of a graph and the

successor relations as arcs, the result is known as a state graph. The

-48-

corresponding state successor relation can then be defined as a finite state
machine. State graphs may be useful for forming specifications, even for
small systems, only as long as the designer has a single locus of control
transitions. To see how state graphs fail when a process has the potential
for internal parallelism, consider a process which is the composition of two
loosely coupled processes P and 0§ . As P cycles through m state
equivalence classes and Q cycles through n state equivalence classes,
the composite process will be cycling through a state graph of mn nodes.
For each of the m possible values of component P , there will be a different
variant of the component successor relation for Q . State graphs also
fail because they quickly become unworkably complex as the number of state
equivalence classes increases.

A state of the composite process could be represented as having two state
components, one giving the state of P and the other giving the state of
(0 . This indicates a hetter way to graph the composite process: the
nodes of the graph will be a finite set of eauivalence classes of state
components, and the arcs will represent successor relations on state

components. This kind of graph will be called a process granh. The state

and process graphs for the composite process are shown in Figure 8.

The process graph is a better characterization of what is going on in
the composite process, and is much simpler, especially when m and n are
large. Given the definition of the state successor function the two graphs
are functionally equivalent. The state graph explicitly encodes information
that the process graph only implicitly encodes, such as the fact that
P]Q2 and P3Q2 are unreachable, for instance. However, this information is

irrelevant to the problem of specifying f . If that information is relevant

-49-

@ @ @t@é :

(a) state graoh (b) process graph

Figure 8: State successor function graphs. Pi and Qi are components of

sub-processes P and (Q respectively.

to some analysis, it may be either be obtained by studying computations
via the process graph or it could not have been obtained in the first

place. A formal definition of process graphs is given in Appendix A.

3.2.2 State Successor Function Decomposition

The decomposition of a state successor function f into component
successor functions can be represented by a process graph. Each node of
the graph represents a state component space and each arc represents a
component successor function fi . The arc is drawn from the component
spaces in the domain of fj to the component spaces in the range of fi .
For example, suppose we have the state successor function f:I - I where
L= Z]><22><Z3><Z4 . Suppose further that f can be decomposed into

component successor functions f], f2, f3 given by:

-50-

f2: ZTXZZ - 22
f3: 23 > 24 .

Then f can be represented by the process graph in fiqure 9.

Figure 9: A process graph with component selector functions.

3.2.3 Functional Elaboration

The f1 and fij in a functional specification may be left as
primitives or may be decomposed into lower level primitives. The functional
specification must be based on primitive functions of the designer's choosing.
These primitive functions may be arbitrarily simple or arbitrarily complex.
The more complex the primitives are, the simpler the resulting specification
structure will be, and the less help the designer will receive in analyzing
it. The primitive functions must of course obey the design laws, in order

to ensure the overall specification properties which the desianer desires.

-51-

The ability to select these primitives freely lets the designer avoid the
formalism if he wishes. He may elect to define f as a primitive, in which
case there are no restrictions on it. Neither, of course, will be receive
much help in analyzing it.

We must now decide what basic operations on functions we must have in
creating the functional specification structure. From recursive function
theory we know that all algorithms can be defined in terms of a few
primitive functions and the operations of composition, primitive recursion,
and selection. The operation of function composition must be included; with
it we decompose f into the fi , the fi into fij and high level
primitives into lower level primitives. e include the operation of
primitive recursion because it gives us the capability for iteration. By
the definition of primitive recursion this iteration is bounded because the
recursion is guaranteed to stop after a finite number of function evaluations.
Finally we use the operation of function selection, which is defined as
follows: s(p]:g],pzzgz,--o,gk) evaluates to the value of the first 95
such that ps evaluates to true (the p, are predicates which evaluate
to true or false). This selector function s gives us a model of control.

It is worth noting that the basic form of a component function is that
of a tree of nested functions with primitives as leaves. This form is
established by the composition schema. Recursion and selection do not alter
the tree form of the structure which is finally evaluated, but only delay
its binding until evaluation time. Recursion finally expands to a fixed
depth nesting, and selection simply reduces to the selected subtree.

At this point we can model an arbitrary algorithmic state successor

function for a single system. We now need to introduce a functional model

-52-

for interactions to deal with nearly decomposable component functions
(decomposed with residual interactions) and with multiple interacting

systems.

3.3 Interaction Specifications

We now define a class of primitive functions which will allow the

designer to specify interactions. These exchange functions have the unique

property that under certain conditions they will exchange values of
arguments with a matching exchange function elsewhere in the specification.
The exchange of arguments between a pair of matching exchange functions is
accomplished by having each of them evaluate to the argument of the other.
Exchange functions are Tabelled with subscripts and only exchange functions
with the same label can match. The set of exchange functions with a

given subscript is referred to as a class. Thus exchanges may onlv occur
between members of the same class.

The three exchange functions XC, XA, XS are defined as follows:

1

XCi(a) B if there is an outstanding XCi(B) or XAi(B) which has
been waiting for a matching exchange function
or
if this XCi(a) has been waiting for a matching exchange
function and an XCi(B), XAi(B), or XSi(B) is evaluated.
XA.(a) = B if there is an outstanding XCi(B) which has been
waiting for a matching exchange function to be evaluated
or

if this XAi(u) has been waiting for a matching exchange

function and an XCi(B) or XSi(B) is evaluated.

-53-

XS:(a) = B if there is an outstanding XCi(B) or XAi(B) which
has been waiting for a matching exchange function to
be evaluated.

= q otherwise.

3.3.2 Evaluation

Any state successor function can be defined by a definition tree as
shown in figure 10a and automatically transformed into a corresponding
precedence graph as shown in Figure 10b. The precedence graph simply displays
the constraints on possible evaluation sequences. The use of exchange
functions imposes additional (and potentially incompatible) synchronjzation .
constraints and allows values to be exchanged.

The exchange functions can be analyzed as normal (possibly nondeterministic)
functions in their Tlocal context while still providing a high level
(non-procedural) model for asynchronous conventional process specification to
internally and externally asynchronous processes.

An internally asynchronous interaction could be defined as matching
exchanges between component successor functions. An externally asynchronous
interaction could be defined as matching exchanges between state successor
functions (each defining an indepnendent system). Thus all interface
interactions are modelled directly and homogeneously by our functional
specifications.

Using an immediate exchange, XS, we can also model what we will call
unsynchronized systems as containing only XS type inter-system interactions.

Such systems never wait on any interactions and are essential for many real

-54-~

time systems and for modelling the environmental system or real, physical
world. An XS function cannot be used an an intra-system interaction since
there cannot be sufficient constraints in a precedence graph to ever force
its instantaneous matching with another exchange. Such use is therefore
not allowed.

Unfortunately, this enormous generality of functional interaction
specification comes at the price of some new design laws governing the use
of exchanges. Arbitrary usage can lead to inter- or intra-system deadlocks
(as must be true for any general interaction model). An example of an
intra-system deadlock is given in figure 10c when no other exchanges of
those classes are present. However it is possible to place restrictions on
the form of the specification such that no process will be blocked in this
way. Each restriction will correspond to a design Taw which must be followed

in order to guarantee completion. Such restrictions are given in Appendix B.

3.3.3 Examples

A few trivial examples may help explain the use of exchanges.

We could define a pair of interacting systems by state successor
functions f and f' as given in Figure 1la.
In this example the evaluation of f' is delayed until the exchange
XC1 has been completed by a subsequent evaluation of XS] in f.
Thus the evaluation of f is not so constrained, since XS] will
exchange with itself in order to continue without delay. f' “could
thus be interpreted as a system synchronized to the system f, that

uses values from f 1in its own computations. The system f could

be interpreted as a simple real-time clock that goes on with its

-55-

(a) A definition tree for f(X) = gs(g](X),q4(GZ(X),g3(X))) where

q1(Z) = h1(h2(Z),h3(Z)). h], h, h3, 9ps G35 Ty and q; are all

I

92\9/93
—

95

primitives

91

(b) The precedence graph for f(X) in terms of 9

(c) A blocked precedence graph for 94(XC](XC2(A)), XCZ(XC](B))) control
cannot pass the first XC1, XC2 functions.

Figure 10: Use of exchanges in a function.

-56-

XS

XS 1
£(0) = 1 .
XS :
X . . XC,
. XC] f(x) - az(x) .
(1) =2 . .
. ' {x) = g(x,2) . :
XS] . .
. . . f'(x)
XC] XS]‘
f(2) = 3 F(x) ="g(x,3) .
s .
XS] .
. f(x) = a](x)
£(3) = 4 ‘
XS] XS]
£(4) = 5 .
f(x) = a,(x)
(a) Real time clock example ‘ (b) Interrupt system
fiere f(x) = First (suc(x),xs](x)) freve f(x) = (XS](F):a](x),T:az(a))
flieve ' (x) = g(x,xc](O)) flie'»e'f'(x) = g(x,xc](T))
Where first (x,y) = x and Where T = True and F = False

suc (x) = x+1
FIG 11: Simple Exchange Examples

-57-

cycling (ticking) without delays or syhchronizations with another
system. A sketch of the computations of f and f' is given in

Figure 11a.

As a second example, f and f' can be defined as in Figure 11b.
In this example f' 1is synchronized as before. The system f can now
be considered to cycle through evaluations of a2(x) unless an XC] is

outstanding. In that case, the value of XS, will be T and the

1
function a](x) will be evaulated instead. The system f could thus
be described as having been interrupted by system f', to perform

function a].

3.4 System Complex Specifications

3.4.1 System Specification Domain

Our specification restricts the class of solutions and implementations
we will accept for the system complex. In particular, the type of functional
process specifications we have defined requires that there are observable
closed states which processes and their components must pass through. These
states, which are needed for verification and testing, are generated by
the constraints on events (function evaluations) which bind the synchrony
of these events. However we may defer decisions about synchrony or asyn-
chrony until their proper context by including the relevant events within
a single process step, or if necessary by placing the events in different
processes. Thus we may generate observable closed states at the levels
where they are needed and defer other synchronizations. The necessity
for placing events in different processes may arise from an unsynchronized
components system (e.g. the physical world) or when there is no functional

requirement for the relative rates of occurrences of those events, or no

-58-

such requirement in the present design context. If relative rate require-
ments exist we may be able to include the events within one process, where
desired properties are more easily ensured or decided. The flexibility
which our functional specifications provide with respect to observed closed
states and binding of synchrony is itself a desirable property.

Our process specification formalism is capable of specifying a large
range of systems in a natural way. Its constructs reflect the ways we
think about the systems under consideration, subject to the derived
constraints which guarantee desirable properties of system behavior.

Our functional framework lends itself to analysis of axiqmatic constraints,
yet within that framework we expre§§ the breaking of a state into com-
ponents, the distinction between operations on sets and operations on
values, and the decomposition of functions by the operators necessary
for primitive recursive functions (composition, selection, and primitive
recursion). Furthermore within the functional framework we express

three primitive types of interaction, XS, XA, and XC. With these ex-
change functions we can express a wide variety of interactions. It is
also important that we can express a wide varjety of constraints on

these exchange functions in order to ensure the integrity of asynchronous
interactions; it is not unreasonable to say that asynchronous inter-
actions create many of the problems in large distributed real-time sys-
tems. There is no generally accepted model of all asynchronous inter-
actions, as there is of recursive functions, so it is difficult to claim
that our exchange functions are completely general. However, they are
adequate to model asynchronous and real-time interactions of existing

computer systems.

59-

3.4.2 Simulation and Testing

Good functional specifications allow simulation testing which is
consistent and complete with respect to the behavior of the specified
system. Our functional specifications can automatically be interpreted
as a simulation model of the specified systems. Our formalism allows
the stochastic simulation of both functional evaluations and relative
occurrence times of events even without formal specification of primitive
functions. A complete procedural model may also be generated when pro-
cedures for primitive functions are supplied. Simulating a functional
specification is relatively easy, and can be done formally. The direct
use of the functional specifications as the testable model prevents
erroneous assumptions or obsolete models from invalidating the testing.

A very useful property, but one which can be ensured only by
correct decisions in stating requirements, is the local testability of
other properties of the specification. That is, we wish to be able to
ensure or decide desirable properties by considering small portions
of the total system specification. Finding axiomatic constraints which
have an effect on this local testability would be an important area of

future work.

3.4.3 Discussion of Other Formalisms
There are a number of functional specification formalisms which
address some of the issues we have addressed. Chiefly among these are
Petri nets, TRW requirement nets, and Higher Order Software (HOS).
Petri nets model system behavior by a network of events and con-
ditions which relate the occurrence of events. The functional inter-

pretation of events is done outside the network formalism. There have

60

been extensive investigations of constraints on network specifications
which ensure the absence of deadlock blocking of events or the efficient
decidability of the absence of deadlock blocking.

TRW requirement nets model system behavior by a network of events,
external interactions, and processing actions. Thus a requirement net
is essentially a high level simulation of a system. Their formalism
for process specification is well integrated with a developmental
process methodology.

HOS specifies a system by a function which is decomposed into a

hierarchy of mathematical functions according to a set of six axiomatic
constraints. The primary impact of these axioms is in ensuring the in-
tegrity of functional interfaces and the existence of a controller
guaranteeing that all functions in the hierarchy are evaluated. An in-
teresting aspect of the work on HOS is in relating that functional pro-
cess specification formalism to a formalism for developmental processes.
A11 of these approaches can be described in our formalism and compared

with each other as well as with our functional specifications. This will
be reported in our final report. Preliminary comparisons have been

made, but a report on the results now might be inaccurate or misleading.

3.5 Summary

The formalism for functional process specifications must allow
analyses for the prbperties needed by the requirements methodology.
Furthermore, these properties are motivated by the specific types of
systems required, that is real-time distributed data-processing systems.
Some of these properties are listed in sections 2.1.2 and 3.1.2. Others
are developed in following sections. In the case of certain properties,

for example algorithmic implication and boundedness, we have indicated

—6'] -

how the analysis of a functional specification may be carried out. Cer-
tain properties will be satisfied only if correct decisions are made in
developing specifications; these include the locality of testing and

the traceability of the impact of changes on the specification. Some of
the properties are guaranteed by the definition of the formalism, for
example generality and the ability to use high level primitives.

The high level (informally specified) primitives are especially
important for the design process methodology, as discussed in section 2.5.
High level primitives make it possible to factor requirements testing into
well-defined, manageable steps. Primitive elaboration also constitutes
a well-defined design step, and allows design decisions to be made in a
local context.

The formalism we have defined allows the formal development of a
requirements methodology for real-time distributed data-processing system.
We have begun an analysis of properties of the formalism and have indi-
cated areas needing further analysis. Although more design laws will be
imposed, the functional formalism developed here seems a very suitable
basis for identifying, studying, and solving the remaining problems.

We can now give useful formal functional specifications of networks
(interacting complexes) of real-time systems and their real world environ-
ment. This can be done for any stage of the developmental process from
requirements to implementation. Further, we may use the same functional

formalism to study and define developmental process themselves.

_62 -

4. REAL-TIME SYSTEMS
We now have a formal way to define interacting systems, and can
address the questions of what a real-time system is, and how it can be

tested.

4.1 Definitions

An independently-clocked system has only intrinsically non-waiting

interactions with other systems. It is a system which, by its very
nature, cannot wait for other systems, i.e., it does not wait. It will
continue to run as the real-time clock runs: the missiles will continue
their flight even if the data-processing system is deadlocked; the radar
signals will move through the air regardless of who is listening. These

systems will have only XS interactions. A partially synchronized

system is one that executes inter-system exchanges that are XC or
XA (not XS) types. Such a system cannot be independently clocked or
measured.

The relevant characteristic of a real-time system is a bounding on the

path froma given stimulus to a given response.[Ph 76] The bounding is
necessary because the response will have a direct or indirect effect on
some independently-clocked system. (If the effect was on a system that
did not have to be independently clocked, that system could simply wait
until the response was given, i.e., it could synchronize with the re-
sponding system). For example, the responses might be to change the

setting of some variable in a nuclear reactor, or to maneuver an interceptor

[Ph 76] Phillips, Jorge V., and Bredt, Thomas H., "Design and Verification
of Real-Time Systems”, Proceedings of the 2nd International Software
Engineering Conference, San Francisco, California (October 1976),
pp. 124.

-63-

aimed at an incoming missile. The bounding is important because these
systems are independently clocked and therefore do not wait. If the
response takes too long, it may be too late to keep the reactor from ex-
ploding or the missile from reaching its target. (Note that the critical
factor for the definition of real-time is the time bound required for in-
teraction with an independently-clocked system; by this definition an
on-line interactive airline reservations systems would not be considered
real-time, but an air-traffic controller would be). The bounding is neces-
sary (if not bounded, there is no minimum evalution speed sufficient to
meet requirements) but not sufficient (the implementation may not meet the
minimum speed required).

The designer must specify which paths must be bounded; not all inter-
actions with independently-clocked systems are c¢ritical. The designer must
also indicate how critical each path is, as a distribution function or
probability that a given time bound will be reached. If it is imperative
that the time bound always be reached, then the bound is required 100%
of the time. However, decreasing the probability may permit significant
improvements in efficiency. For example, worst-case allocation of resources
may not be required; a very good heuristic may be used in place of an ex-
pensive algorithm.

If one need not operate at 100% probability, that relaxation gives the
designer an additional flexibility. However, it also imposes certain con-
straints:

1) The probability must be figured accurately and reliably.

2) One must be able to know when the time bound has been exceeded.

3) One must specify appropriate recovery action to be taken if the

time bound has been exceeded. The "recovery" may be only a

..64..

message ("Whoops! Chicago destroyed. Deepest regrets.") or an

intricate procedure to continue as best as possible.

4.2 Path Bounds

To show that the path from the stimulus to the response is bounded,
one must first of all be able to define that path, and then to prove that
the path is bounded. Obviously, the complexity of the path will determine
the ease with which this can be done. The following classification of kinds
of paths is in order of increasing complexity.

1) If the response to the stimulus is produced in the same system
cycle in which the stimulus was received, then we know that the
response path is bounded, if the state successor function is
bounded. (Note that the path could be bounded even if the state
successor function, while algorithmic, is not bounded, but the
proof of boundedness would require additional analysis.) Our
formal functional specification makes it easy to decide if a func-
tion is bounded, since building functions by using only the oper-
ations of composition, primitive recursion, and bounded subtree
selection will intrinsically give a bounded function. Our
formalism provides sufficient (though not necessary) conditions
for boundedness; the formalism can thus be considered as a design
tool for proof of boundedness on this level.

2) Inter-step but intra-system computations, however, are not in-

trinsically bounded or even algorithmic; these properties must

-65-

be proved to exist. A simple path without loops and without
interactions would easily be proved to be bounded. However,

the existence of Toops would require an analysis for a bounding

on the loop. Yet even the discovery of such a 1ocop is not a
trivial matter. For example, in bounded subtree selection, the
first predicate could be used as a Toop-exit condition, where its
corresponding value could be the response or could trigger the
response in some other function. Alternatively, the third pred-
icate might indicate loop exit, in which case the negation of

the first two predicates as well as affirmation of the third

would be required for loop exit. These loop-exit conditions, as
simple or as complex as they may be, could be used as induction var-
jables. The value of the induction variable would cause the Toop to
be exited at a given point, namely when that variable takes on a
certain value or range of values. If it can be proved that

a traversal of the loop brings this variable closer to the

exiting value, then by induction one can prove that the loop

is bounded.

One may want to have design laws to control the complexity
of the induction variable, as well as to make the induction
variable easier to identify. If automatic discovery of the
loop and its exiting conditions proves to be too difficult or

too computationally complex, the designer may have to specify

the loop and exit conditions, perhaps using automatic verifi-

cation of the specified paths as a design tool.

-66-

3)

When the path involves inter-system interaction, more complexities
are involved, for now at least part of the whole complex must be
analyzed. For example, if our original system does an inter-system
XC[i], it will wait until some other system does an inter-system
XS[i], XC[i], or XA[i], unless an inter-system XC[i] or XA[i] is
already outstanding. One must prove that if the latter is not
true, then some other system will execute an inter-system XS[i],
XC[i], or XA[i] within a bounded amount of time. The Tevels may

go deeper, of course: the inter-system XS[i] from system A may
not be executed until an XC[j] 1is satisfied by an interaction

from system B, etc. For the purposes of this inter-system in- «
teraction analysis, we can form precedence graph abstractions of
the system in which only the inter-system interactions are rele-
vant. A design law requiring that intra-system exchanges have
different indices from inter-system exchanges would allow such

an abstraction to be made. The designer could then work with

these abstractions to determine if a given interaction would

always complete, i.e., would be mated with another interaction,
within a bounded amount of time. See Appendix B for further

information on such mating theorems.

We also have other options as designers. The case 2) specification may

be given instead as a case 1), with initial to final state step occurring

in only one state successor function evaluation. Some case 3) specifica-

tions may also be given with interactions between independently-clocked

-67-

systems as similar "single step" synchronized system specifications. Much

more work will be required on this topic.

4.3 Non-real-time testing

Simulation 1is one of the chief means of testing large complex systems.
Since the actual timing is so important in real-time systems, they have
traditionally been tested by real-time simulation. However, the real-time
environment which must be simulated may get so complex that it can no longer
be computed in real-time. One would then want to do non-real-time testing,
knowing that a successful test in a "slowed-down" real-time environment
would imply a successful test in a real-time environment running at nor-
mal real-time speeds. What constraints on the system are necessary so
that such non-real-time testing will be valid?

First we must establish the level of the system being tested. Pre-
sumably prior analysis of the functional specifications affirmed that
the stimulus-response path 1is bounded. Knowing that the path is de-
terministic and bounded independent of the relative speeds of systems
already is very useful; it also means that real-time tests need only to
look at path times and correlations, The simulation tests would
be run on the actual implementation, since that is the level at which
physical timing measures are meaningful. The difference between real-
time and non-real-time testing is the speed at which the stimuli enter, i.e.,
the interarrival times. At the functional level this speed may not be
relevant; it may have been abstracted out. If there are functional
performance dependencies, they can of course be tested in a non-real-time

way. However, at the actual physical implementation level, the inter-

-68-

arrival times do affect the actual times for path traversal. Thus a virtual
operating system with an infinite number of virtual resources would show

no effect, but a physical operating system with a bounded number of re-
sources would impose inter-performance dependencies via physical conten-
tion for resources. Different physical resource management polices would
give different dependencies and thus different timings.

The relevant factors for determining the effect of the timing include
the number of virtual resources needed, the number of physical resources
available, and the resource management policy which couples the two. Given
these three factors, if one could prove that the rate of path traversal was
not affected (or how much it was affected) by the number of paths being
traversed (i.e., by the number of stimuli being processed at one time),
then non-real-time testing should produce the same results as real-time
testing. Perhaps analysis could also show the point at which non-real-time
testing is no longer reliable for a given resource management policy (in-
creasing the number of virtual resources required or decreasing the
number of physical resources available could push a system past the
threshold of reliable non-real-time testing). Such analyses would also
give measures for evaluating different resource management policies. In
the limit of 1ight loading, physical resource contention has minimal effect.
In this case the only real-time testing required is to find maximum load-
ings for given path performances. A1l other testing could be done non-
real time.

Note that this analysis relies on the proof that the rate of path
traversal is not affected by the number of paths being traversed. Currently,

there are no design laws which would make such a proof possible, nor even

-69-

any strong indications that such design Taws do exist in a form which is
not overly-constraining. This is simply one possible approach to the prob-
lem.

Another approach involves taking measurements to determine path
correlation. Thus one could measure the performance times on each path
as a function of the stimulus frequency. Then one could determine the
effect on performance when paths are coupled; this would show the effects
of contention. From this data one could develop a model for the coupling
between paths. This model could then be used to extend the results of
non-real-time simulation testing to expectations of real-time testing
results. Only real-time experiments to measure such correlations would

be required.

4.4 Summary

We have distinguished between independently-clocked systems, synchon-
ized systems, and real-time systems. The functional requirements for real-
time systems (as opposed to non-real-time) consist of performance distri-
butions of specified path traversals. Much of the required testing can
be done functionally. It may be possible to restrict real time testing
to either (or both) of

Maximum load tests

Path interference measurements
and allow a systematic and minimal real-time test program to be designed.
Much work is required in this area and only a preliminary set of critical

issues have been defined.

-70~

5. DISTRIBUTED DATA PROCESSING SYSTEMS

The requirements specification process was discussed in section 2.
Section 5 will present an example of some of that section's ideas concern-
ing system (and requirements) decomposition/integration, in the context of
the design of a distributed data processing system. It should be noted
that the system presented in this section was designed before many of the
concepts discussed in Section 2 were formalized and in fact served as a
motivating force for some of that work. Thus the purpose of the inclusion
of this example in this document is not to claim that this is the "best"
distributed data processing system but rather to illustrate the effect of

some of the ideas of Section 2 on a particular design process.

5.1 Introduction

Distributed data processing systems encounter problems which are
unique among computing systems. Not only are the problems common to large
scale computing systems present, such as the effective use of system facil-
ities by the users of the system and software redevelopment in response to
changing technology, but also the problems created by an often very large
class of users with widely differing application needs. Problems also
arise from the desire of users of a network to communicate with each other
to an extent not found in conventional systems, in order to gain infor-
mation or share resources. With the added probability of errant or mal-
icious processes, it seems that the conventional centralized operating
system is inadequate. Thus the network designer is forced to lTook toward
a decentralization of the network operating system in order to solve his

problem.

-71-

This section will discuss an example of such a decentralized network
system which was originally presented in [KR73]. The discussion will
deal with both the design process and the design itself. Section 5.2
will discuss the design process of the network as an example of some of
the system decomposition/integration ideas presented in Section 2. Also
in Section 5.2 will be discussed the design constraints postulated prior
to the design and their effects on system decomposition/integration.
Section 5.3 gives a brief description of the network itself and dis-
cusses some design decisions as they relate to Section 5.2. A more com-
plete presentation of the network of the design is presented in Appendix C.
Section 5.4 will deal with the generality of the resulting network, and

Section 5.5 will summarize the discus.ion of Section 5. =

5.2 System Decomposition/Integration

As discussed in Section 2, in order to avoid the requirements allo-
cation problem, a system must be factored in such a way as to allow the
logical, resource, and performance requirements to also be factored over
the sub-systems. As was pointed out, the requirements allocation problem
can be minimized by identifying the "tightly coupled" attributes of the
system and factoring the system with respect to these. It is also nec-
essary to retain in each factor an abstraction of the entire system which
indicates to the designer of the sub-system how his sub-system fits into
the entire system. In some sense one can imagine a factoring of a dis-

tributed data processing system into 1) Application system, 2) Operating

[KR 7?]Kramer, J.F., A General Structure for Uncooperative Processes
Distributed Over a System Network. Ph. D. Thesis. Madison, Wisconsin:
University of Wisconsin, 1973,

~72-

system, and 3) Hardware system. It is not clear at this stage, however,

that a reasonable factoring of the requirements can occur over these sub-

systems.

To ensure such a requirement factoring, Kramer decomposes the
operating system into two operating systems, the virtual operating
system and the physical operating system. He now can present to the
applications designer an abstraction of the system in which the designer
sees only the virtual operating system and can specify his processes
in terms of virtual resources and virtual operating system primitives,
without any concern for the hardware implementation of the system.
Similarly, the hardware designer's view of the system is application-
independent: his only concern is to implement the physical operating
system. The physical operating system designer's problem is now also
clearly defined. He must map the virtual resources onto the physical
resources. Since all three designers have nearly independent views of
the system, minimal constraints are placed on them in their desire to
optimize their sub-systems to their own performance, resource or logical

requirements.

The method of specification which the applications designer uses
to specify his processes can be that which was described in Section 3.

The same is true for specifying the virtual operating system operations.
An example of this type of specification for the Kramer network system
functions is given in Appendix D.

The system integration phase can occur when the applications designe%
has specified his processes in terms of virtual operating system proce-
dures which can then be compiled or translated into physical operating
system procedures. The physical operating system procedures can then be

compiled or translated into machine code which can be executed. This pro-

-73-

cess is illustrated in Fig. 4 of Section 2. It is not clear at this
point whether system integration must take place in this manner or whether
something on the order of a purely functional specification of the appli-
cation process can be "compiled" into some specification of the physical
operating system.
Even though a comparatively large amount of freedom has been given
to the individual designers to optimize their own sub-system, there is
no guarantee that all the requirements will be met on system integration,
thus the possibility of a design feed-back loop.
Once Kramer has established the factorization of the system, he post-
ulates the following design constraints:
A. Network Communication
"The designed network must consist of a set of interacting,
bounded, programmable, digital computer systems with well-
defined processes, and be open to communication with foreign
systems having undefined processes."
B. Responsibility factorization
"Responsibility for meeting the postulated design constraints
and any design decisions must be factored between the network,
implementation, and process designers."
C. Authority
"Each designer must have sufficient authority to define the
effects, on the processes running in the network, of the
interactions for which that designer has been delegated

responsibility."

-74-

D. Delegation
"Although processes must be permitted to delegate to other
processes their authority to control process interactions,
the delegating process always retains the responsibility
for that interaction and the authority to control the proces
to which it was delegated."

E. Modification
"The network definition must provide for modification of its
definition. The design must provide sufficient constraints
to be able to delegate safely to process managers all modifi-
cation decisions and authority to control the effects of such
decisions on the processes.”

The design constraints fall into two categories:

(1) Those constraints which ensure some desired network charac-
teristics: constraints A, D, and E. Constraint A requires
that the network integrity must be maintained in terms of
its own processes and its interactions with foreign processes.
Constraint D requires that no design decision is made which
arbitrarily centralizes authority, thus ensuring a maximally
decentralized network. Constraint E provides a means for
network evolution to meet future needs.

(2) Those constraints whose only purpose is to preserve the decom-
position obtained at the beginning of the design process: con-
straints B and C. Constraint B states that each sub-system

designer will have the responsibility to meet the other de-

-75-

sign constraints as they apply to his sub-system and Constraint
C requires that each sub-system designer will in fact have the
authority to do this. As an example, it would be a violation
of the decomposition if the applications designer could specify
as part of his application exactly how the virtual memory he
used was to be mapped onto physical memory, as this is under
the realm of the operating systems designer. Consequently

this action also violates Constraint C.

5.3 Brief Overview of the Network Design

This section will present a condensed version of the design of the
network presented in Appendix D, after which some of the design deci-
sions will be discussed in terms of the design constraints presented

earlier.

5.3.1 System Structures
If the design constraints stated in Section 5.2 are to be useful,
some formal definitions are necessary. A digital system is composed

of two parts, a system processor and a system state. Operators

are applied by the system processor to define a new system state or to
construct messages for transmission to other system states in a set

of digital systems. The execution of a system processor occurs in two
distinct phases. Given an initial system state, the processor evaluates
all operators which apply and produces a new local system state. Each

operator can be executed in parallel and without side effects on the

-76-

other operators being executed. The local system state is then updated
by any messages from other system processors, and the local interpre-
tation cvcle beains again. This sequence is called a system step and
transforms the system state into its successor state. This discrete

sequence of states is called a digital computation. A set of digital

computations represents a digital process. The interpretation cycle

of each system in a set of interacting digital systems is independent
and asynchronous. All inter-system communication will be defined in
terms of asynchronous message transmission with any desired synchroniza-
tion explicitly carried out by the cooperating digital processes. Mess-
ages will be received, after a finite delay, in the same order as they
were transmitted by a given system. Some particular digital systems
are defined as network systems, and a set of such systems as a network.
There is a universal simulator of such sets of digital systems. Thus
the system specification is already in a form that can be studied and
tested. There are no physical implementation constraints on how
many network systems may be implemented on a single physical system or
on how many physical systems are used for a network or network system.
The network system states are defined as a set of elements. Each
element can be interpreted as the state of a synchronously interacting
process component of the overall system process. All system state in-
formation and all system computations are based on these system pro-
cess elements. Network system operators are constrained so that at
most one one operator will modify a given system state element in a

given interpretation step.

-77-

Although we wish our system processors to be well-defined with re-
spect to their operations on the system state, we desire also to permit
them to communicate with systems outside of the formally defined networks
which are not well-defined. Such systems are called foreign systems and
are not constrained in their internal structure by the network designers,
except for a communication conventions they must use if they wish to
interact with a network system. Certain elements of the system state
are housekeeping processes that manage inter- and intra-system inter-
actions. These elements contain system state information and are neither
explicitly transformed by application programs nor transportable between
systems in the network. Those elements of the state that are explicitly
programmed, transformed, and moved from system to system will be called
network (i.e. user) processes. A network process step consists of a
cycle of three system process steps or phases. Two of the system phases
are used for housekeeping functions and will be described later. Opera-
tors applied during phase two of a network process step will be called
system subprocessors; their effect is local to that network process
state. The complexity of a given network process step is therefore
defined by the corresponding subprocessor. The process state defines
the current address space of the process. Figure 1 in Appendix C is
an informal characterization of one network system.

In review, a foreign system is not characterized (or constrained)
except as a source or destination of messages. A network system is
composed of a system processor and a system state. A system processor

is composed of a set of operators, some of which are subprocessors.

-78-

The system state is composed of system housekeeping elements and system
elements interpreted as network (user) process states. A network con-

sists of an inter-communicating set of such systems and foreign systems.

5.3.2 Network System Interactions

The mechanism for inter-system communication selected here is
quite similar to the notion of a hierarchical interrupt system. In
phase one, the system processor determines which sub-processors (if any)
should be applied to each network process state in that system and de-
livers the appropriate messages (if any) to an interface buffer in each
network process state. In phase two, the system processor applies the
selected sub-processors to the selected network process states thus
causing them to undergo a network process step. In phase three, the
system processor performs the non-local services requested (if any) by
messages left in the interface buffer by a sub-processor. Non-local op-
erations are those which have side effects external to a network process
state. Messages may be received by the system processor in all phases
and are buffered until their delivery in some subsequent system phase one.

The system processor must be able to recognize, in any network
process state, which sub-processor to apply in phase two, and each sub-
processor must be able to recognize its own state information component
in that network process state. For these purposes, each network process
state will contain one or more objects called control points. Although
control points are used for a variety of purposes, only those aspects

affecting sub-processor application will be described here. A control

-79-

point roughly corresponds to an interrupt level in conventional systems.

A11 control points in a network process state are ordered by
priority within that state. Each control point has an ordered set of
channel terminations and buffers associated with it in the system state
elements for the receipt of messages. Depending upon the status of the
control point buffers and also the status of the control point within a
process state itself, messages may or may not be received by the buffers,
and the control point may or may not be eligible for sub-processor allo-
cation during a subsequent phase two. The details of message delivery
are covered in Appendix C. The highest priority control point candidate
present in a network process state will be made active, and the pending
message, if any, will be placed in the process interface buffer.

During phase two, the appropriate subprocessors are applied to
network process states containing the active control points selected
during phase one. At most one subprocessor is applied to a given pro-
cess state during any phase two step. Although many process states in
a given system may be requesting the same subprocessor, they each have
it applied in parallel during phase two. Whether they are really ser-
viced in sequence or in parallel is an implementation decision that
affects only the duration of phase two since no interprocess interactions
in this network system can occur until phase two has completed. All pro-
cesses containing active control points will have sub-processors applied
prior to the end of phase two.

Each sub-processor transforms only the network process state to

which it is being applied. The applied sub-processor thus defines the

-80-

successor network process state. If a system service is requested (a
non-local transformation), the sub-processor will complete its network
process step leaving a message requesting the service in the local in-
terface buffer for subsequent phase three processing. Note that network

processes in the same system will proceed in synchronous parallel with

each other, each completing one process step in each system cycle. Net-

work processes in different systems will run asynchronously parallel.

During phase three all requests for non-local services which were
Teft in the interface buffer are acted upon. There are four types of
these services: message transmission, resource transmission, process
state transmission, and system modification. Phase three ends when all
such services have been completed and the interface buffers are cleared.

If the interface buffer contains a request for message transmission,
the associated message is removed from the buffer and "broadcast" to
all systems but addressed to a particular control point buffer. The
system containing the control point (destination) buffer will receive
it, other systems will ignore the broadcast. See Figure 2 in Appendix C.
The message has a network standard format and is represented as a string
over a network standard character set.

Although messages broadcast during phase three are subject to
unspecified transmission delays (unless messages are intra-system),
the order of transmission between any two systems is preserved in
perception. In the receiving system, messages are placed in channel
terminations buffers and used to update control point buffers during

every phase. As far as network processes are concerned, message trans-

-81-

mission is transparent to system boundaries, and network processes may
cooperatively move from system to system without losing communication
or restricting their interactions.

A network process defines the local environment and address space
for sub-processor transformations. The interface buffer serves to
factor the sub-processor transformations which are local to the process
state from the system processor services which have effects outside of
the process state. A process state will contain one or more control
points, the status of which may be modified during system phase one as
a result of message delivery or in system phase two as a result of
control points in interprocess communication. Control points also serve
to delimit uniquely a portion of the network process state, called an

expression state. Within this part of the process state the designers

of the corresponding sub-processor are responsible for defining both
the representations and the transformations which that sub-processor
will carry out on those representations. A1l of the state '~formation
required for a sub-processor to continue a computation mus: 2 part of
any corresponding expression state. A network process state thus con-
tains an interface buffer, a set of expression states and one or more
control points.

Many freedoms are given to the network process designer involving
complex process interactions, including manners in which to deal with
uncooperative processes and to exploit known instances of cooperation.
These are detailed more fully in Appendix C. In short, a single net-

work process is capable of supporting all computations that can be

-82 -

carried out on a conventional single processor, multiprogramming system.
There is a sub-processor, called GP (ggnera1 Eyogrammab1e), in

every network system. The GP expression state can be programmed, in

the network system language, to provide on request all network services.

GP expression states thus can specify invariant computations despite move-

ment of the containing network process. The network system language thus

plays many roles such as the following:

a) The network job control Tanguage.

o

The network implementation language for operating "systems".

(9]

)
) The network high Tevel "machine" Tanguage.
)
d) The base language for definitional extension via source
language macros or compilers.

e) The base language for evolutionary augmentation.

f) The system invariant computation language.

The problem of deciding when a given interaction is improper can
only be resolved by another process aware of the interactions. The sys-
tem can not resolve conflicting claims of one process with respect to the
behavior of another process since such resolution may require intimate know-
ledge of the specific applications. In order to guarantee resolution there
must be a responsible authority who can control and manage interactions be-
tween the warring parties. Our system imposes a hierarchy of uniquely desig-
nated responsible authorities in the form of a network process tree, as in
Figure 4 in Appendix C, to make such an arbitration. All authority rests
initially in the root of the tree. Although delegation to a child pro-

cess is allowed, each root of a sub-tree remains responsible to its parent

-83-

for the interactions of the processes in that sub-tree. An uncooperative
root of a sub-tree will still be accountable to its parent process. To

insure this accountability the network provides another sub-processor,

the A0 (Accountable Object) sub-processor. The details of AQ are avail-
able in Appendix C.

The process tree can both grow, by creating new "leafs", and shrink,
by destroying "leafs". An existing process may move, as permitted by
the parental authority, to any network system known to that parent. Thus
both the process tree and its distribution over the network systems can
change dynamically as a result of process computations. Since these are
intrinsically non-Tocal operations, the GP sub-processor can only re-
quest them. The responsibility for carrying them out has been delegated
to a PR (Process Receive) process and its corresponding PR sub-processor.
Each non-foreign network system will contain one of each. The GP re-
quests for such service thus take the form of messages to the local (to
the network system) PR process. Process birth and death and further

details of the PR sub-processor are available in Appendix C.

5.3.3 Design Decisions

As was indicated in Section 5.2, allowing applications designers
the ability to specify their processes in a hardware independent manner
accrues many advantages, such as allowing hardware changes to take place
without the necessity for rewiting applications, allowing a consistant
virtual "machine" throughout the network which permits a process to

move from one system to another to exploit special hardware features,

-84-

and perhaps most important from a design standpoint, the network remains
clearly factored into the sub-systems described in Section 5.2, allowing

for local optimization to take place at all levels.

5.4 Generality

The system postulated in 5.2 and described in 5.3 seems general
enough for a large variety of applications and, with the ability for
self-modification, it would seem it could meet future needs. In addition
to the generality it does allow for specialization in terms of special
purpose hardware systems.

The design process and the resulting network seem to indicate
that many of the problems inherent in a distributed data processing
system can be dealt with effectively in a decentralized network oper-

ating system environment.

5.5 Summary

The design process of the Kramer system could be summarized as

follows:

1) Decompose the system into subsystems over which the require-
ments can be factored. This necessitates the division of the
operating system into a virtual operating system and a physi-
cal operating system.

2) Postulate design constraints so that subsequent design “deci-
sjons in all sub-system will
a) preserve the external requirements, i.e. well-definedness,

provision for evolution, decentralization.

-85~

b) preserve the decomposition obtained in 1.
3) Develop the design or specification of the sub-systems to the

point where integration can take place, i.e. the translation

of application processes into virtual operating system pro-

cesses and again into hardware processes, as illustrated

in figure 4 of Section 2.
Once again, to the extent that (1) is accomplished without side effects,
(3) will be correspondingly easier. This design process allows for
local optimization of sub-systems as well as local testability, in the
sense that application processes can be tested on a "virtual" machine
independent of implementation, and the mapping of virtual resources onto
physical resources can be tested in the absence of particular applica-
tion constraints.

Our functional specifications can describe the resulting "Kramer
Systems" and processes. The need for decomposition into application
(again decomposed if needed), virtual operating, and physical operating
systems lead to additional "good design" principles for requirements

specification, i.e. state requirements in terms of such models.

-86-

6. THE DESIGN SCHEMA

6.1 Introduction

In this section we deal with the methodology of system design
primarily in the context of the formalism developed in the previous
sections. Yet the present discussion takes place on a plane of
abstraction somewhat different from the earlier one since we are
interested in a general strategy, more formally a design schema,
to be realized as an advanced set of tools for the systems designer.
Our development of this strategy is intended to be as unbiased as
possible with respect to the particular aims of a given designer or to
the ultimate application of the systems which he specifies. Further,
we want to restrict ourselves to design techniques which maximize
the possibility of Tocal analysis and testing of system modules
throughout the course of a top-down system definition. It should be
noted that the development of our new design tools will depend upon
some as yet underived consequences of the formalism of earlier sections.
Thus our purpose here will be to explore those properties which we are
already prepared to require of the proposed design package in order to

identify the directions of future research in this area.

6.2 Design Processes

A key concept in this discussion is that of the design process,
which is the second state in the developmental process. In the most
general sense we can define a design process as a sequence of analyses,
decisions, and commitments (all design steps) which start with a formal

requirements specification and lead to a formal system specification

-87-

implementation. As discussed in section 2, there is substantial overlap
between the requirements process (which may also carry out part of a
design process) and the design process itself. Much of the discussion of
the formal requirements process steps in section 2 is directly applicable
to this section. Obviously there are many design processes which can Tead
to a single product, and many products which can satisfy a given set of
system requirements. Moreover we may characterize these design processes
grossly in terms of such factors as cost, total human effort expended, and
success of the product in meeting requirements. However, it becomes appar-
ent thatwe must find it difficult indeed to model a design process after the
fact if the sequence of analyses and decisions mentioned above is poorly
structured, for example, as with decisions made by the designer with an un-
certain or imprecisely stated impact on future decisjons. We could (and in
current practice usually do) have design decisions which are recorded only
as informal statements or which are presented in no tangible artifact at
all. Furthermore, given poorly structured design techniques, if we choose
to restrict the evolution of design processes in order to control some
function of the contingencies of the design steps (such as cost or time
incurred in executing the product software), then we face an even more
complex problem.

Since our goal is in fact to provide design laws which will allow
us to satisfy system requirements, we are inevitably led by the argu-

ments of the preceding paragraph to demand that steps in the design

process be well-defined, that is, that termination of a design pro-

cess step can be determined by criteria imposed by the design laws

-88-

and systems requirements. Viewed in this respect the design process
shares features with the computational processes described in earlier
sections. In particular, we have functional specifications as the
states of the design process, transitions between these well-defined
states (carried out by the designer-aided digital computations), and
finally possible interactions between asynchronous design processes.
The major difference between design processes and the processes
specified in section 3, apart from the difference in state values, is
that in the former processes state transitions, or design steps, cannot
be guaranteed to be algorithmic (finite) or bounded in computation
time. This inability to bound computation time results from the po-
tentially complex nature of many design steps, for which no effective
procedures exist. Further, human designers can carry out design steps
that no machine can do and are not absolutely required to succeed. A
simple illustration would be an optimization step in which a design
procedure may search in vain for an impossible optimization specified
by functional requirements. Thus the need for human intervention in
design steps makes a definition of these step procedures by strict
mathematical algorithms unattainable. We summarize by saying that
well-defined process steps, the termination of which can be decided,
are a minimally acceptable framework for the conceptual and practical

formalization of intended design laws.

6.3. Design Steps

Some new features which we wish to impose on design processes

can best be introduced by first giving a review of the types of design

-89 -

steps which might occur within these processes. This cursory review
is not meant to imply that to carry out a design step is a trivial
matter. On the contrary, a great deal of design and computational
effort may be involved. We have discussed already in section 2 the
decomposition and integration of functional specifications and corres-
ponding design processes; these will be elaborated in section 6.4. In
the preceding paragraph we also mentioned briefly optimization steps,
to be treated more fully in section 6.4. Interactions with other de-
sign processes, at the intermediate steps of a design process, must
also be included to compensate for prior decompositions into Toosely
coupled requirements. The binding step corresponds roughly to imple-
mentation of some entity in terms of another, as in the binding of
control to a particular sequence or in replacing a function by a pro-
cedure. In summary we have the following kinds of steps:

Decomposition: factoring specifications

Integration: composing specification

Optimization: finding a better specification

Interaction: inter-design process communication

Binding: encoding a design decision by elaboration of detail.

We will require that our formal representation of processes and

systems requirements be amenable to several types of analysis in con-
junction with each of the kinds of steps above. In particular we want
to know whether the design step is able to meet the requirements under
the constraints imposed by previous design decisions. We also want to

be able to subject the system to simulation or other investigation in

-90-

order to proceed intelligently with further design decisions. However,
in the event that a design step fails, we must be prepared to perform it
again with a new set of parameters, or if that fails, to retreat to some
earlier design step, repeat it with new parameters and move forward again.
Finally, it is apparent that if design step computations, analyses, and
simulations are mechanized then much of the cost and time required in
systems design can be reduced. Also we can minimize the introduction of

errors and maximize the ability to detect errors.

-91-

6.4 Decomposition, Optimization, Integration

In this section we will provide a sequence of design steps which

might typically be applied to a simple functional specification in order

to reduce it eventually to a set of procedures for evaluating the function
originally defined. By way of example we will deal with a single expression
which consists entirely of primitive functions, thus remaining at a single
level of abstraction and ignoring at this time the more complex issue of
hierarchical functional specifications. The three types of design steps
which we encounter involve decomposition, optimization, and integration.
Decomposition of functional specifications into modules (where we leave
modules undefined for present purposes) .is based here upon the ability to
perform different component computations of expression evaluation in paral-

lel, a key factor in subsequent optimization operations. Figure 12

f

g/h /]lc\
h g g 9 9
Figure 12. Precedence graph for the expression

f(g(h(a,b),g(c,d)),h(c,d),f(g(a,b),g(c,d),g(a,b)))

-92-~

shows the computational precedence graph for a particular expression
consisting entirely of primitive functions. This graph indicates that
evaluation of a parent node awaits the evaluation of its descendent nodes,
and that the descendent nodes of a given parent may be evaluated in
parallel. An unsophisticated approach toward creating system modules

(that is, toward creating a new set of functional specifications which
reflect the potential for computational parallelism) is to assign a module
to each node in the precedence graph. In the formalism of preceding sections,
this would correspond to modeling the state successor function appli-
cable to the expression of interest by an interacting complex of degenerate
system state successor functions. (A more sophisticated decomposition
approach might involve a recursive procedure which could be applied to the
expression in several stages. The development of such an approach is a
topic for further research.) We have thus described the decomposition
process which comprises the first design step of Figure 13.

Our first type of optimization design step exploits computational
parallelism in a simple way. It constitutes the second design step of
Figure 13. For the sake of illustration let us assume that we are con-
cerned with the evaluation of the expression f(g(a,b),g(c,d),g(a,b)),

a subexpression of the one in Figure 12. Since the first and third
arguments of the function f are identical, then we need only evaluate one
argument and save the resulting value so that the same computation does

not have to be performed for the other argument. Whether this optimization,
or any other type to be discussed below, will in fact be performed depends

on the functional requirements, since the optimization may increase the

-93-

formal systems specifications

v

formal systems specifications of a maximally
parallel complex of modules

optimized specifications based upon elimination
of identical functions with identical
arguments

v

optimized specifications based upon elimination
of separate processors for each evaluation
of a function

optimized specifications based upon time or
space multiplexing of asynchronous
processes

virtual systems for running virtual processes

procedures and data bases
Figure 13. Steps in an elementary design process

computation time unacceptably. In the above example, however, the added
complexity of saving the result would generally be exceeded by the cost of
performing the evaluation twice.

The same expression which we used above also serves as an example for
a second and subsequent type of optimization, namely elimination
of separate processors for identical functions with different arguments,
as g(a,b) and g(c,d) for the function f above. Here the savings in the

number of processors needed for the computation is somewhat offset by the

-94-

complication introduced in the state space as well as by some loss of
parallelism. Presumably this optimization could be carried out mechan-
ically, and the result could be demonstrated, again mechanically, to
fulfill the functional requirements. This is an example of how analyses
interact with functional requirements and design laws in determining the
outcome of a design step.

We can include two subsequent types of optimization in our design
strategy. Briefly, one is the storing of results of identical computa-
tions (in the object system) in one location for later use (by the object
system). This necessitates the use of file managers and library managers
in the system, which could be introduced in an automated way as part of
the design step, thus avoiding additional responsibility on the part
of the designer. The next optimization, potentially the most complex to
carry out, is the combination of asynchronous parallel systems into a
single system through time multiplexing or space multiplexing. (This type
of step is clearly a kind of integration step also; however, integration
steps in general need not be optimization steps.) The motivation for this
last kind of optimization is obvious when we recall that functional speci-
fications were initially factored into the maximally parallel form. This
form is in general an unrealistic model for any but the simplest of systems
because of the great expense of implementing such a system. The tasks
entailed in automating methods for accomplishing this system composition,

based upon the formalism developed so far, is a subject for further study.

-95-

Finally, we mention briefly the last two steps of the design
process of Figure 13. These are the creation of virtual systems for the
optimized system specifications and the creation of procedures and data
bases within these virtual systems. These two steps thus complete the
entire process of transforming the original functional specifications into
procedures operating in virtual address spaces. However, we have not
indicated how the procedures and data bases are to be mapped onto the
physical hardware, since our design process is concerned with the logical

part of requirements specifications.

6.5 Design Process Summary

Our main purpose in this section has been to show that well-defined
design steps could minimize the time, cost, and error susceptibility asso-
ciated with systems design. We have also tried to show that automation of
design steps could relieve the systems designer of tedious responsibilities
by providing detailed analytical information at each step in the design, of
course with the possibility of iterating steps, and by providing feedback on
the consequences of design decisions made interactively by the designer. We
have seen many parallels between the formal requirements process steps of
section 2 and the design process steps of this section. This similarity
results from the fact that the design processes which we haye discussed are
the logical component of the requirements process. We have also mentioned
several questions which must be addressed in future research as we attempt

to elaborate and formalize the process steps of the design schema further.

-96-

In particular we have dealt only with design steps with regard to a single
level of abstraction and have not explored the impact of exchange functions
(within functional specifications) on the design steps or the impact of

interactions between asynchronous design processes.

-97-

7. CONCLUSIONS

The preliminary study described in this report provides a conceptual
framework within which a research program to address many of the critical

issues can be developed with reasonable confidence of success.

7.1 Summary

We have identified a variety of different processes (each with its
special constraints and associated design laws and transformations), an
initial hierarchy of system properties (each based on aspects of real-time
and distributed systems), and a formal functional specification system
(meeting the constraints arising from the processes and system properties).
A preliminary exploration of how to use these concepts in the design and
analysis of distributed real-time systems opened up some new and highly

relevant research areas.

7.2 Evaluation

The probability of success in meeting the research objectives of this
contract has been increased to a very satisfactory level, and the plaus-
ibility of this approach has been substantially supported. There do not
currently appear to be any potentially fatal weaknesses in this approach.
It does not address all relevant issues in design, but those that are
addressed are significant and of potentially very high payoff in terms of
cost, time, reliability, and testability. There is reason to believe that
extension of BMD problems to distributed real-time systems can be brought

under intellectual control and effective management.

-98-

7.3 Final Report

The final report (due in January 1977) will extend the results re-
ported here and present them in a more formally integrated way. We will
not try to extend our results beyond the requirements and design processes
or to new system properties. We will complete our survey of the issues,
critical problems and their potential solutions for the processes and
and properties introduced in this report.

We will also work up new (and more coherent) examples of our formalism
and concepts in both requirements and design processes.

The final report will contain a set of research plans to address and

resolve the remaining critical issues in the scope of this work.

7.4 Acknowledgements

The author gratefully acknowledges the assistance of many colleagues,
former students and present students in developing the concepts in this
report. It is not feasible to mention them all here. I do explicitly
acknowledge the many valuable discussions and contributions of Prof.

Pamela Zave at the Unijversity of Maryland. My research assistants at

the University of Wisconsin have, of course, been of substantial assistance
in preparing this report and are Tom Blumer, John Compton, Bill Hibbard,
and Cynthia Hintz. Mr. James Rathmann volunteered to work on this project

and has been a welcome collaborator in preparing this report.

-99-

APPENDIX A-FUNCTIONAL PROCESS SPECIFICATIONS
The functional notation which we use for specifying processes is
given by the following series of definitions. Definition: A value space
V is an unspecified primitive set. We use Vi =V for i=1,2....n.

) 1is the power set of

Definition: A state component space Zi = P(Vi

Vi’ and a state component 01521 is a subset of Vi' Definition: A

state space) = X?z] Zi is a cross product of state component spaces,

and a state oe) 1is an n-tuple (01’02""’0n) of state components.
Definition: A process is a pair (}.f), where)} 1is a state space

and f 1is a (non-deterministic) state successor function which pro-

duces a state o' when applied to a state o .

f 1is much like a relation on) x) except its output o' may
depend on interactions with another process. In the non-interacting
case f would be a relationon) x) . In either case we need to
define some notation for specifying f. Definition: f is specified

by an m-tuple (91,92,...,9) where g; = (Di’Ri’fi) with

m

Di’Ri < {1,2,...,n} and f is a (non-deterministic) component successor

function with domain XTZ and range X Zk . f is specified by
eD.k keR,
. 1 = o)
(91,g2,...,gm) as folldws: f(o]’OZ""’Gn) (o],oz,...,on) where

o = 1<g<m Pi(fj(<0k)k€DJ)) . Pi(fj((gk)keDj)) represents the projec-
tion of fj((ok)keDj) onto Zi if ieRj , and is the empty set ¢ if

1¢Rj . Definition: A component successor fi may be specified by an

Q:‘tup]e (f,i-]:f.iza""f.iz)

domain X V, and range X V, . f. is specified as follows:
k k i
kED_i keR

of value successor functions where fij has

.i

-100-

f.((o,)) = (o)) where for each keR,, o, = U (U P (f,.(Z))).
SeDiS
Similar to the previous definition, Pk(fij(z)) represents the projection
of fij(z) onto V.. Note Zes__D
Z_eo V. !
s S

o. 1is a tuple (ZS) SGD_i with

X S
€

We have defined ways of decomposing a state successor f of a process
(},f) dinto component successors fi’ which are set functions, and if desired
into value successors fij’ which are element functions. The %} and fﬁj in
a specification may be left as primitives or may be decomposed into trees
of lower level primitives by operations of composition, subtree selection,
and primitive recursion.

Definition: A function f may be specified as a composition
f(x) = h(g](x),gz(x),...,gk(x)) where domain f = domain 9; s 1<i<k,

range f = range h, and domain h = X range 95 This may be applied
1<i<k
with non-deterministic functions, and for f in a decomposition tree of

an f. oran f...
i iJ

Definition: A function f may be specified by subtree selection

f(x) = (g](x):h](x),gz(x):hz(x), ...,gk‘](x):hk_](x),hk(x)) where
domain f = domain g, = domain h,, 1<i<k, range f = range hy, 1<iz<k,
and {true, false} = range 95 1<i<k-1. This specification models a flow
of control which, in terms of if-then-else, is
f(x) = if g](x) then h](x) else
if g,(x) then hy(x) else
if gk_](x):then he_1(x) else h (x) .
This may be applied with non-deterministic functions, and for f in a

decomposition tree of an fi or an fij'

-101-

Definition: A function f may be specified by primitive recursion if its

domain can be expressed as SxD where S 1is ordered by n:S»N, N = the
positive integers. Then f s specified as f(s,y) = if n(s)>1 then
h(s,y,f(m(s),y)) else g(y), where m:5»S, n(m(s)) = n(s)-1 if n(s)>1,
range f = range g = range h, domain g = D, and domain h = SxDx range f.
This may be applied with non-deterministic functions if the restriction
on m 1is obeyed, and for f 1in a decomposition tree of an fi or an
fij with the proper ordering on component spaces and value spaces.

The operations of composition, subtree selection, and primitive
recursion allow us to decompose the fi and fij into Tower Tlevel
primitives. These primitives may express any functional relationship
which we do not wish to further decompose. To express interaction we
have three primitive exchange function types: XA, XC and XS. Their
evaluations must synchronize with one another, so evaluation control
and precedence must be discussed. Evaluating a state successor function
f causes each component successor fi to be evaluated once, which in
turn causes value successors fij’ if they were specified, to be evaluated
some number of times, possibly zero. In function composition the functions
95 must all be evaluated before the function h 1is , in order to produce
values for h's arguments. In subtree selection some 9; and hi may
not be evaluated, and the order of evaluation of those evaluated is con-
strained by the if-then-else expression. In primitive recursion the
function h is evaluated some number of times, possibly zero, and the
order of evaluation is given by the generated composition tree and the
if-then-else expressions. These are the only constraints on evaluation

without exchanges. However, any evaluation of an exchange must pair with

-102-

the evaluation of some exchange with the same subscript, according to
the following constraints. An XCi may pair with an XCi, XAi’ or
XSi. An XAi may pair with an XCi or XSi. An XSi may pair with
an XCi or XAi’ except that an evaluation of an XSi may pair with
itself. An evaluation of neither an XCi nor an XAi may pair with
itself. Thus an evaluation of an XCi or an XA1 must wait for the
evaluation of another exchange with the same subscript and of the allowed
type, but an XSi evaluation may pair with itself and evaluate immediately
(XSi is called an immediate exchange). Every exchange has one argument;
when evaluations of exchanges are paired, the output value of one ex-
change is the argument of the other. An XSi which pairs with itself
thus evaluates to its own argument value.

Within the specification of a state successor function there may
be several instances of exchanges with identical type and subscript,
and with identical expressions for their arguments; these are all treated
as if they were the same instance of the exchange. The set of them forms
one half of a pair and all these instances will evaluate identically. If
it is desired to distinguish between such identical instances, distinct

second subscripts must be added to them. This will cause them to be

evaluated separately.

-103-

APPENDIX B — CONDITIONS ON EXCHANGES

Conditions on the use of exchanges which ensure algorithmic implication
and boundedness of a system specification are given below.

Condition 1: In a specification by primitive recursion of a function
f, with h and g as in the definition of primitive recursion in Appendix A,
the specification of h may not contain exchanges. Furthermore the specifica-
tion of a value successor function may not contain exchanges.

Without this condition the number of exchanges evaluated during the
evaluation of a primitive recursively defined function or a value successor
function could depend on state values--leading to an undecidable deadlock
problem.

Definition: An exchange class is given by an index (XCi has index
i, XCMESSAGE has index MESSAGE) and includes all exchanges in a specification’
which have that index.

Thus only exchanges in the same class are allowed to pair and exchange
values with each another, so long as they meet the type constraints.

Condition 2: In a specification of a system of interacting processes,
for any pair (Z,f) and (Z',f') of distinct processes, let I be the set
of indices of those classes which have members in the specifications of
both (z,f) and (z',f'). Then the following must hold:

1) if any class iel has a member in a third distinct process

(z",f"), that member must have identical type and argument with
a member in (L,f) or (&',f').
2) for each class iel either
a) one process has only members of type XS and the other
process has only members of types XC and XA, or

b) both processes have only members of type XC.

-104-

3) each process step (one evaluation of f or of f') entails either
a) evaluating exactly one member from each class iel, with no
time precedence constraints between the different classes, or
b) evaluating no exchange from any class iel

4) both processes must execute a process step of type a) in 3) at

bounded intervals.

Condition 2 is a sufficient constraint for algorithmic implication
when a system complex has only two processes and there are no intra-
process exchange interactions. If there are more than two processes
we need:

Condition 3: In a specification of a system of interacting processes
there must not be a set (2;,f1), (Zz,f2) ,...(Zn,fn) of processes and a
set Cl,Cz,...,Cn,Cn+] = C,; of exchange classes such that, for each
ie {1,2,...,n}, Ci has a member in (Zi’fi) which is constrained to
precede a member ofCi+] in (Zi’fi)’ for any possible combination of
choices in subtree selections.

Condition 3 is designed to prevent circular deadlocks. If there are
no subtree selections then the precedence constraints in (Zi’fi) generated
by composition and recursion (assuming Condition 1) are fixed. If there
are subtree selections in (Zi,fix then precedence constraints depend
upon which functions are evaluated, and Condition 3 demands that the
described deadlock loop may not occur for any combination of choices

in subtree selection.

-105-

Conditions 1, 2, and 3 should be verified in that order; they ensure
that a system without intra-process exchanges has algorithmic implication
and boundedness.

Condition 2, part 3) ensures that no inter-process exchange class
may be involved in intra-process exchanges.

Condition 4: In a specification of a process (X,f), which may be
part of a system complex, if any allowed order of evaluating f results
in two exchanges in f being paired, then every possible evaluation of
f must pair those two exchanges.

Note Condition 4 disallows intra-process exchanges in subtree
selections, and those involving XS type exchanges. Condition 4 states
that the intra-process exchange pattern is fixed, and simplifies testing
for algorithmic implication.

The formulation of conditions on exchange usage in specifications is

at an early stage and is an important area of future work.

-106-

APPENDIX C - VIRTUAL NETWORKS AND OPERATING SYSTEMS

The decomposition of a distributed data processing system into appli-
cation systems, virtual operating systems, physical operating systems, and
hardware systems seems essential to our developmental processes. A great
deal of previous work on this problem has strengthened this belief. An
introduction to some of this work is given in the draft manuscript in-
cluded in this appendix. Further details may be found in [Kr 73] and
[Co 757.

The work reported here was prior to the development of the present
formal functional specifications and has not been reconsidered in this
new context. It does serve to explore the virtual system issues, and so

is included here.

[Kr 73] Kramer, John F., A General Structure for Uncooperative Processes
Distributed over a System Network. Ph.D. Thesis, University of
Wisconsin, Madison, 1973.

[Co 751 Cowan, George, Jr., Management of Resources in a Potentially Hostile
Environment (Logical and Physical). Ph.D. Thesis, University of
Wisconsin, Madison, 1975.

-107-

THE ARCHITECTURE OF A MACHINE INDEPENDENT
NETWORK OPERATING SYSTEM FOR HIERARCHIAL
DELEGATION OF AUTHORITY

JOHN F. KRAMER, JR.
United States Navy
and

DONALD R. FITZWATER
University of Wisconsin, Madison

ABSTRACT: Networks of digital computer systems are in use today and
there is little doubt that their numbers will continue to grow. If
these endeavors are to avoid the traps that befell many qf the third
generation computer operating systems, a practical solution to the
problems of system managability, application generality and process
portability must be found. This article presents a set of postulated
design constraints and a network design derived from them which is a practical
solution to these problems. Through a clear factorization of the management
responsibilities involved in a network, the design presented is able to permit
both the implementers and the users of the network to optimize the management
of their own resources with respect to their own criteria.

Key Words and Phrases: network, system, operating system,
portability, processes, processor, cooperative processes, process
communication.

This research wasusupported in part by the United States Navy
under the Doctoral Study Program. Autho: addresses: John F. Kramer,
Jr., 3-M Officer, Nimitz (CVAN 68) Precommissioning Unit, Newport News,

Va. 23607; Donald R. Fitzwater, Department of Computer Sciences,

-108-

1210 West Dayton, University of Wisconsin, Madison, Wi 53706.

-109-

QUTLINE

1. Introduction---management breakdown
A. Centralized
B. Decentralized
C. Resource factorization

2. Postulated Design Constraints

A. Network

B. Responsibility
" C. Authority

D. Delegation

E. Modification

3. Systems Structures
A. Level of Interpretation
B. Digital Systems
C. System Processes
D. Network Processes
4. System Interactions
A. Phase One
B. Phase Two
C. Phase Three
D. Message Delivery
5. Network Processes

A. Network Process State

-110-

1. Interface Buffer
2. Control Points
3. Expression States
4. Environment
5. Intra-process Transformation
B. Network System Language
1. GP
2. Roles
3. Type Conversions
4. Multi-Lingual
C. Process Tree
1. Conflict Resolution
2. Unique Authority
3. Birth and Death
D. Process Movement
1. Need For
2. Transmission
3. Reliability
4. Translation
6. Resource Management
A. Resources
B. Design Requirements
C. A0
D

. Control of Interations

-111-

7. Operating Systems

A.

B.

Implementation
1. Goals

2. Machine Dependent

3. Language Effective

4. Cooperation
Network

1. Goals

2. Machine Independent

3. Llanguage for Application Independent of Machine
4. Non-cooperation

5. Authority---properly nested
Common Subprocessor

Freedoms

Designate Process Control
Standard Interface

Complex Process Structures
Control Point

Modification and Evolution

-112-

1. Introduction

The emergence of computer networks has underscored the problems
associated with the design of general purpose computer systems. Contemporary
operating systems are prima facie evidence that in spite of nearly
prohibitive investments, operating systems rarely remain in an error
free state, rarely are exploited easily by users and rarely free the
users from having to re-develop their application software to adapt
a new computer. The enormous costs of systems today are caused in part
by mere1y elaborating on the concept of centralized management of resources
in a master/slave mode with 1ittle interaction between "slaves". This
design concept was developed, and worked well, for early batch processing
_ systems. In order to prevent chaotié conflicts between users due to
hardware resource demands, operating system designers were forced to
usurp most resource management decisions and beéome "masters".

If users are not allowed to manage resources fo fit their diverse
needs then the operating systems must attempt to do so for them. A
proliferation of options and compromises emerge which rarely satisfy the
knowledgeable user and significantly constrain applications. A network
only enlarges the community of interacting users and points up the
facility of continuing this ad hoc trend. It is not realistic to
expect operating system designers to continue to make all of the management
decisions in an efficient fashion while the diversity and complexity
of user demands continues to grow.

In conventional systems, resources are usually managed by isolating

_each job or run and allowing it to interact solely with the operating

-113-

system. Since only the processes of the operating system can directly
interact, with sufficient care they can be managed to behave cooperatively
with respect to resource demands. As soon as users are permitted to

employ interacting processes using shared information, such cooperation

can no longer be assumed or guaranteed. Processes may become uncooperative
through malice, error, or lack of facilities for cooperation. Much of

the capacity of systems today is spent managing user specified,

unreliable processes. This is the "last straw" which causes conventional
operating system designs to bog down. The work reported here is part

of a detailed design study found in (8). This paper describes

primarily the nature of the resulting network. Only suggestions of

the justifications for the decisions made are presented here.

Decentralized management capabilities must be provided in a viable
general purpose network so that each involved manager can exercise
sufficient authority to meet that managers' goal. The partitioning of
overall management responsibilities must be carefully done so as to prevent
inso]uab]enmnagerialconf]icts. A "top down" design technique as used
for this network design can guarantee such a partitioning with minimal
constraints on the policies of each manager. We can clearly distinguish
three kinds of management:

1) Implementation managers are responsible for the operation

of a physical node in the network. This includes the support
of virtual systems in a virtual network and the mapping of virtual
resources onto physical resources via physical "operating system"

processes. Aside from physical communication protocols, each

-114-

physical node may be designed, implemented, and managed
independently. Management goals might be maximum investment
returns or node utilization.

2) Network managers are responsible for the formal specification
and evolution of the virtual network. As well as the initial
virtual network operating processes. The virtual network serves
as the interface between the implementation managers and the
virtual process managers. Management goals include the
maximal delegation of responsibility (and correspondingly
factored authority) to the other managers.

3) Process managers are responsible for the specification and
operations of the virtual processes via virtual system programs.
Management goals include the creation of suitable virtual
"operating system" processes as well as "application system"
processes.

We are not here concerned with implementation management decisions,
and will use unqualified "network", "system", and "process" to
fefer to their virtual counterparts.
The recognition of these three kinds of management is required
for effective management decentralization. We also obtain a substantial
amount of freedom to exploit changes in implementation technology
while preserving our investment in application processes. As an
additional benefit, our application processes can become portable
over the network since they can be expressed in temms of (virtual)

network programs. These programs may be interpreted by hardware,

-115-

micro programs, or normal programs, thus playing the role of machine
independent, network "job control” programs. The compilation of subsets
of the network system language to machine dependent "typed values"
(with virtually inaccessible representations) will allow current jobs (e.g.
Fortran programs) to run with normal efficiency, while allowing
inter-process interactions over the entire network when desired. We
are here primarily describing the resulting neiwork design itself
although much more could be said about implementation and application
designs.

‘The network design itself is hierarchically structured with
A corresponding processor and process design decisions. For example,
a processor component may require a particular process state component
“structure. Equally important, the process of network design is also
hierarchically structured, in a "top down" manner. Each level in the
design hierarchy has the goal of making only necessary (or non-controversial)
design decisions so as to defer to later design levels all other
decisions. This technique results in a cleanly structured network
that delegates maximumjfreedom (through invariant network properties)

for other managers to do their job.

2. Postulated Design Constraints

In view of the previous arguments, and others as detailed in
(8), we postulate the following set of network design constraints to form a
basis for furthe} design decisions. Many other useful constraints may be

derived from these but there is not space here to discuss them.

-116-

D.

Network Communication

"The designed network must consist of a set of interacting,
bounded, programmable, digital computer systems with
well-defined processes, and be open tﬁ communication with
foreign systems having undefined processes.”

Responsibility factorization

"Responsibility for meeting the postulated design constraints
and any design decisions must be factored between the network,
implementation, and process designers."

Authority

"Each designer must have sufficient authority to define the
effects, on the processes running in the network, of the ~
interactions for which that designer has been delegated
responsibility."

Delegation

“Although processes must be permitted to delegate to other
processes their authority to control process interactions,

the delegating process always retains the responsibility

for that interaction and the authority to control the process

to which it was delegated." ‘

Modification

“The network definition must provide for modification of its
definition. The design must provide sufficient constraints

to be able to delegate safely to process managers all modification
decisions and authority to control the effects of such decisions

on the processes."

-117-

3. System Structures

In addition to not depending on the hardware/software of today,
we must formally define our system structures so that each implementer
of a node in the network can test the implementation (i.e. there is
at least a standard, correct, specification). The logical structures
which make up the network described here are formally defined in
(8) using the technique defined in (6). This technique involves an
effective network specification which allows a test of hypothesis about
specified system behavior. For the purposes of this paper we will
use informal, hopefully intuitive, notions of these system structures.

In general it is solely a matter of interpretation which determines
whether a set of information physically represented in a computer system
' is data, program, processor, or system and is not an intrinsic property
of the information itself. Since we must first choose a level and consistently
describe structures from that level we must provide a few definitions.
A natural choice for this paper is the network definition level since
this serves as the partitioning interface between network users and
implementation programmers. For the postulated design constraints
presented above to be effective, a general model of digital systems
and processes must be defined.

A digital system is composed of two parts, a system processor

and a system state. A system processor is invariant to the processes ,

which it interprets and contains a set of operators on the system state.
These operators are applied by the system processer to define a new

system state or to construct messages for transmission to other system

-118-

states in a sei of digital systems. The execution of a system processer
occurs in two distinct phases. Given an initial system state, the
processor evaluates all operators which apply and produces a new

local system state. Each operator can be executed in parallel and
without side effects on the other operators being executed. The local
system state is then updated by any messages from other system processors
and the local interpretation cycle begins again. This sequence is called
a system step and transforms the system state into a successor state.

This discrete sequence of states is called a digital computation.

A set of digital computations represents a digital process. The

interpretation cycle of each system in a set of interaéfing digital

' systems is independent and asynchronous. A1l inter-system communication
will be defined in terms of asynchronous message transmission with any
desired synéh?onﬁzation explicitly carried out by the cooperating digital
processes. Messages will be received,after a finite delay, in the

same order as they were transmitted by a given system. We will define
some particular digital systems as network systems, and a set of such
systems as a network. #Hote that such sets of digital systems could model
ordinary computers at several levels of abstraction from one (quite
abstracted) system to a network of "flip flop" and "gate" digital systems.
There is a universal simulator of such sets of digital systems. Thus
the system specification is already in a form that can be studied and
tested. We do not require physical implementation constraints on how
many networks or network systems may be implemented on a single physical

system or on how many physical systems are used for a network or network

-119-

system.

Our network system states are defined as a set of elements. Each
element can be interpreted as the state of a synchronously interacting
process component of the overall system process. All system state
information and all system computations are based on these system process
elements. We will constrain our network system operators so that at
most one operator will modify a given system state element in a given interpretatic |
step. This not only prevents true race conditions from arising but also
avoids the thorny question of how to merge several modifications of
a given system process element into a well defined successor element
With this design constraint we are free to define our operators as
any total function of the corresponding state elements, producing a
" new state element.

Although we wish our system processors to be well-defined with
respect to their operations on the system state, we desire also to
permit them to communicate with systems outside of the formally
defined networks which are not well-defined. Such systems are called
foreign systems and are not constrained in their internal structure
by the network designers except for communication conventions they
must use if they wish to interact with a network systems. Such
systems can be thought of as sources and sinks for messages. Certain
elements of the system state are housekeeping processes that manage
inter- and intra-system interactions. These elements contain system
state information and are neither explicitly transformed by application

programs nor transportable between systems in the network. Those

-120-

elements of the state that are explicitly programmed, transformed,
and moved from systém to system will be called network (i.e. user)
processes. A network process step consists of a cycle of three
system process steps or phases. Two of the system phases are used
for housekeeping functions and will be described later. Operators
applied during phase two of a network process step will be called
system subprocessors and their effect is local to that network
process state. The complexity of a given network process step is
therefore defined by the corresponding subprocessor. The process
state defines the current address space of the process.

It is not feasible to present here the detailed arguments and

justifications for this network design. We will refer the interested

reader to (1) and subsequent reports in preparatioﬁ. We will attempt
to describe the major network system structures in the following
section. Figure 1 is an informal characterization of one network
system.

In review, a foreign system is_not characterized (or constrained)
except as a source or destination of messages. A network system
is composed of a system processor and a system state. A system
processor is composed of a set of operators, some of which are
subprocessors. The system state is composed of system housekeeping
elements and system elements interpreted as network (user) process
states. A network consists of an inter-communicating set of such

systems and foreign systems.

-121-

S&stem

Process
Elements Network (user)
Process Scales
Network

System =t

_.Sub-processors

System
Processor—=s—=.

S

Figure 1: An informal characterization of a network system.

. 4., Network System Interactions

Inter-system interaction mechanisms are inherently non-local
in nature, which means that the responsibility for their design falls
to the network designers. The mechanism selected here is quite similar
to the notion of a hierarchical interrupt system. In phase one,
the system processor determines whiéh sub-processors (if any) shdu]d
be applied to each network process state in that system and delivers the
appropriated messages (if any) to an interface buffer in each network pro-
cess state. In phase two, the system processor applies the selected
sub-processors to the selected network process states thus causing
them to undergo a network process step. In phase three, the system
processor performs the non-local services requested (if any) by

messages left in the interface buffer by a sub-processor. Non-local

-122-

operations are those which have side effects external to a network
process state. Messages may be received by the system processor in
all phases and are buffered until their delivery in some subsequent
system phase one.

The system processor must be able to recognize, in any network
process state, which sub-processor to apply in phase two and each
sub-proceséor must be able to recognize its own state information
component in that network process state. For these purposes, each
network process state will contain one or more objects called control
points. Although control points are used for a variety of purposes,
only those aspects affecting sub-processor application will be
described here. A control point roughly corresponds to an interrupt
level in conventional systems.

A1l control points in a network process state are ordered by
priority within that state. Each control point has an ordered set
of channel terminations and buffers associated with it in the system
state elements for the receipt of messages (not just an interrupt
bit). Control point buffers may be armed or disarmed, and if disarmed,
do not accept new messages. Control points may be enabled or disabled
and active or inactive. When disabled, no further processing of pending
messages in the control point buffers occurs. While active,a control
point is a candidate to have a subprocessor allocated to it and
further messages remain pending in the control point buffers. When
a control is inactive but enabled and has a message pending, it is

considered as a candidate for message delivery, conversion to active

123-

state and subsequent subprocessor application. The highest priority
control point candidate present in a network process state, will be
made active and the pending message will be placed in the process interface
buffer. Two methods of message delivery are provided depending on
a message handling status bit. Either the first message in the ordered
control point buffers is delivered or an ordered concatenation of
all messages for that control point is delivered. Message overurite
accurs if a message arrives at an armed buffer with a previously
undelivered message in it. This may be avoided if desired by programming
processes so they 1:se appropriate synchronizing messages.

During phase two, the appropriate subprocessors are applied
to network process states containing the active control points
* selected during phase one. At most one subprocessér is applied to
a given process state during any phase two step. Although many process
states in a given system may be requesting the same subprocessor,
they each have it applied in parallel during phase two. Whether
they are really serviced in sequence or in parallel is an imp1em¢ntation
decision that affects only the duration of phase two since no
inter-process interactions in this network system can occur until phase
two has completed. All processes containing active control points
will have sub-processors applied prior to the end of phase two.

Each sub-processor transforms only the network process state
to which it is being applied. The applied sub-processor thus
defines the successor network process state. If a system service

is requested (a non-local transformation), the sub-processor will

-124-

complete its network process step leaving a message, requesting
the service, in the local interface buffer for subsequent phase three processing.
Note that network processes in the same system will proceed in

synchronous parallel with each other, each completing one process step in

each system cycle. Network processes in different systems will run

asynchronously parallel.

During phase three all requests for non-local services which
were left in the interface buffer are acted upon. There are four
types of these services, message transmission, resource transmission,
process state transmission, and system modification. Phase three
ends when all such services have been completed and the interface
buffers are cleared

If the interface buffer contains a request for message transmission,
the associated message is removed from the buffer and “"broadcast" to
all systems but addressed to a particular control point buffer. The
system conta%ning the control point (destination) buffer will receive
it, other systems will ignore the broadcast. Remember that a control
point may have several destination buffers associated with it and
that they are maintained as system state elements. Implementers, of
course, are free to keep records of which system a control point
resides in to permit them to transmit to only one system if they so
desire. The relationship of these network system state elements ,
is shown in Figure 2. The message has a network standard format

and is represented as a string over a network standard character set.

-125-

Figure 2:

Receiving
Channel
Terminations

Control
Point
Buffers

Transmitted
Messages

GP Contro]}
ey

Point
GP

-

Intra-system message paths. The integers labeling
communication transitions identify the system phase of

that transition. gg_{s the sub-processor that interprets

the network system language. <GPES> contaiﬁs GP state
information. The system step to transfer channel termination
message to the corresponding control point buffers can

be bypassed for messages arriving, at end of phase 3, if

they are to be delivered on the next phase 1.

-126-

Although messages broadcast during phase three are subject to
unspecified transmission delays (unless messages are intra-system),
the order of transmission between any two systems is preserved in perception.
In the receiving system, messages are placed in channel termination
buffers and used to update control point buffers during every phase.
A new message for a given buffer will overwrite the current contents
(if any) of that buffer. If the destination control point is disarmed,
the message will not be received at all. Figure 3 gives some examples
of message interactions. In Figure 3 process A sends a message to
process B in another system. B responds with a message for A. Process

C sends a message to process D in the same system.

Finite
Asynchronous
Delays

Intertace
Buffer

Figure 3: Interprocess Message Paths.
The Integer Labeling Communication Transitions
Identify The System Phase of that Transition.
The Letters Identify NEtwork Process States.

-127-

Note that the direct mechanism provided for interaction betweén
processes involves message transmission from a network process state
to some control point in a network process state. By controlling
the access to destination control point names, network processes can
be arbitrarily isolated so that uncooperative behavior effects can
be localized. In addition, as far as network processes are concerned,
message transmission is transparent to system boundaries and network
processes may cooperatively move from system to system without

losing communication or restricting their interactions.

5. Network Processes

Since non-local transformation services must be provided by
the system processor rather than by subprocessors, the system processor
" designer must create some standard structures in each network process
state which remain invariant to all sub-processor transformations,

The interface Puffer is just one example of such structures. Subsequent
decisions by other designers must obey such constraints on

network process state structures. Decisions concérning other process
state structures are deferred to sub-processor designers.

A network defines the local environment and address space for
sub-processor transformations. The interface buffer serves to factor
the sub-processor transformations which are local to the process state
from the system processor services which have effects outside of the
Process state. A process state will contain one or more control points,

the status of which may be modified during system phase one as a

-128-

result of message delivery or in system phase two as a result of the
actions of an applied sub-processor. In addition to the role of
control points in interprocess communication, control points also
serve to delimit uniquely a portion of the network process state,

called an expression state. Within this part of the process state

the designers of the corresponding sub-processor are responsible for
defining both the representations and the transformations which that
sub-processor will carry out on those representations. A1l of the state
information required for a sub-processor to continue a computation
must be part of any corresponding expression state. A network
process state thus contains an interface buffer, a set of expression
states and one or more control points.

By constraining all virtual inter-process interactions to
communications, and providing complete control over communications
via restricted access to destination names, the network deéigners
can supply sﬁfficient mechanisms for application designers
to isolate (to the desired extent) uncooperative computations.
Having provided for worst case isolation, the network designers have
an equal responsibility to provide for maximaly cooperative computations.
With the restriction that at most one subprocessor will be applied
to a given process state in system phase two, we can permit multiple
expression states of multiple types to interact as desired by their
subprocessor designers and even access and transform structures
and values in other expression states in the same process. We must

fnsist that access and transformation of a given type expression state

-129-

by subprocessors of different type obey the rules established by
that given type.

The critical section conflicts that can arise in intra-process
transformations by competing expression states are not (and can not
be) prevented by network designers who must instead, provide sufficient
primitive operators so that any desired cooperative conflict resolution
technique can be used. The network designers do not have to deal
with such intra-proces conflict, or guarantee that the conflict will
be resolved, since the process will still be well defined and any
side effects can be restricted to the process with the conflict. Multiple
expression states in a network process state may be used as cooperatively
as desired with minimal constraints from network designers.

Within an expression state we can distinguish between explicit
“go to" executions and implicit “fault" conditions. Both forms change
the "instruction counter" values of an expression state under rules
specified by the corresponding sub-processor designer. Both forms
have effects local to the containing expression state.

Similarly we can distinguish between explicit "move control point"
executions and implicit "activate control point" (by internal command
or external message receipt) conditions. Activations of multiple
control points in a network process state represent a hierarchical
interrupt system with the associated expression states serving as
interrupt handlers. The movement of control points among expression
states represent a scheduling operation such as for co-routines,

tasks, simula "processes", etc. Both of these forms are local to the

-130-

process’state.
We can also distinguish explicit and implicit inter-process
movements of control points as resources (controlled access objects)
as discussed in a later section on resources. An application program
thus has a wide range of structures to use as benefits theﬂapplication,
assigning potentially uncooperative computations to isolatable
network processes (running either synchronously or asynchronously)
and exploiting the advantages of cooperative computations by putting
them in a single process. A network process is capable of supporting all
computations that can be carried out on a conventional single processor,
multiprogramming system. :)
There is a sub-processor, called GP, in every network system.
" The GP expression state can be programmed, in the network sy;tem
language, to provide or request all network services. GP expression states tﬁus
can specify invariant computations despite movement of the containing
 network process. The network system language thus plays many roles
such as the following:
a) The network job control language.
b) The network high level "machine" language.
¢) The network implementation language for operating “"systems":

d) The base language for definitional extension via source language
macros or compilers.

e) The base language for evolutionary augmentation.
f) The system invariant computation language.

A given programmer may use GP only as a definitionally extendible

-131-

job control language, while suppling Fortran programs to a "type
conversion” compiler thaf produces physical node dependent programs

just as he is accustomed to do. The compiler in such a case would
produce an“execute on]y” type value whose interral structure is

virtually inaccesible. The execution efficiency could thus be unchanged.

However a vastly more general computational environment structure

can be specified for new applications. There is no unique system
language required by the network system design and this design will
work with many language structures. A description of a network system
language, aminol (8 1/2), is beyond the scope of this discussion.
. Indeed, aminol will allow the definition and introduction of new -
sub-processors with their corresponding expression states so that
‘the network system processor itself can become mu]ti;lingual.
As a result of this design, the freedom to create a highly
structured and locally managed process, while minimizing the operating system
interference which is normally required to control side effects on other processes,
can be delegated to application programmers. Although a process has
almost total control over the management of its own operations, some
other process must be able to control interactions outside a process,
even without the cooperation of the process itself, in order to
resolve conflicts.
The problem of deciding when a given interaction is improper
can only be resolved by another process aware of the interactions.
The system can not resolve conflicting claims of one process with

respect to the behavior of another process since it may require intimate

-132-

knowledge of the specific applications. In order to guarantee resolution
there must be a responsible authority who can control and manage
interactions between the warring parties. OQOur system imposes a
hierarchy of uniquely designated responsible authorities in the form
of a network process tree, as in Figure 4, to make such an arbitration.
A1l authority rests initially in the root of the tree. Although
delegation to a child process is allowed, each root of a sub-tree
remains responsible to its parent for the interactions of the processes
in that sub-tree. An uncooperative root of a sub-tree will still be
accountable to its parent process. One of the responsibilities of the
network designer is to ensure that a cooperative process can restrict
inter-process interactions of its sub-tree of processes.

The Tlines of responsibility in Figure 4 that define the process
tree must have a basis in an ability of each process to control, and
in worst case, isolate and kill, its sub-tree of processes. These
control mechan{sms are provided by management of "rights to..." as
protected virtual resources using the facilities of the A O
(accountable object) sub-processor aé discussed below.

The process tree can both grow, by creating new "leafs", and
shrink, by destroying "leafs". An existing process may move, as
permitted by the parental authority, to any network system known to that
parent. Thus both the process tree and its distribution over the
network systems can change dynamically as a result of process
computations. Since these are intrinsically non-local operations,

the G P sub-processor can only request them. The responsibility

-133-

6P

GP

) e
———b

GP

GP

| Figure 4:

- s e e wm D e —

\

Network process tree lines of authority

Letters in process states identify the processes.

Conflict between processs "AAA" and "AB" can only be
resolved by their least common ancestor, process "A".
By definition, no conflict can arise between process

"AA", "AAA", and "AAAA" since each ancestor can

arbitrarily control it's descendent.

-134-

for carrying them out has been delegated to a PR (Process Receive)
process and its corresponding PR sub-processor. Each non-foreign
network system will contain one of each. The GP requests for such
service thus take the form of messages to the Tocal (to the network
system) PR process. Process birth and death are described in Figures
5 and 6.

Processes may be moved from system to system in order to control
parallelism, to exploit specialized system implementations, to access
special sub-processors existing in particular systems, or to carry

out inter-process communications local to one system instead of by

inter-system communications. Accesses to a special data base may be more

efficient in a particualr system. Such process state transmission is

inherently an operation not local to one process or one system. When
a process executes the appropriate transmit operator, the request is
placed in the process interface buffer. The destination system is
specified by réferencing the name of a process contained in that
system. Process names are protected objects managed as resources.
During phase 3, the system processor'transforms the process state

into a "message" and places it in a buffer for that system's control
point. The somewhat complex chores involved in transmitting and receiving
process states are fulfilled cooperatively by the involved PR
sub-processors. A unique PR process state containing only a PR control
point and PR expression state is included in the system processes of
each non-foreign system in the network. Since we can not guarantee

the integrity of process states in foreign systems, we do not allow

-135-

PR-—:-{
GP —o
A0 —»

R [R]E
(b) Installation

[A0 JPR T 6P

(a) Creation
Figure 5: Network process birth.
The integers associated with arrows identify system
phases. The transformation between (a) and (b) occurs
in the last system phase 3. Dashed arvow represents
rocess tree branch.

PR ~—g>
GP—=

| 20 | PR T GP | A0 | PR [GP
(a) Request Sequence (b) Death

Figure 6: Network process death. ‘
The integers associated with arrows identify system phases.

The "leaf" process is deleted in the last system phase 3.
Dashed arrow represents process tree branch.

-136-

process states to be either transmitted to or received from foreign
systems.

Communication of process states by the PR subprocessor must be
reliable. We must permit an implementation to refuse to receive an
additional process state without damaging the process in the transmitting
system. This is done by not destroying the process state in the sending
system until the receiving system aéknow]edges receipt of it. If a
rejection response is received, the process state is "revived" in the
source system and the original transmission operator in the revived
process is faulted. Process management may then dn as they like to
ameliorate the problem.

The conversion of a process state to a message in the source
system and the inverse operation in the destination éystem can easily
be defined formally in the network. The corresponding operators in
an implementation will of course be implementation dependent translators

of the network defined form.

6. Resource Management
.2 A process may cooperatively transmit any object to another

process, but once the object is in the destination process state it

is at the mercy of that process state. If the transmitting process wishes
to restrict the access, transformation and disposal of the transmitted
object we must provide facilities to guarantee the validity of the

source imposed constraints even if the destination process is uncooperative.

A1l control of inter-process interactions is based on the distribution of

-137-

“rights to..." by the root of a sub-tree, We will call all such constrained
objects resources in the virtual systems, ancd delegate the responsibility
for enforcing those constraints to the A0 (accountable object)
sub-processor. The AO designers in turn, delegate all possible
responsibility to process management defined programs, while remaining
within the constraints placed on them by the network designers. There
are three services that must remain with the A0 sub-processor: that
of reliable (guaranteed cooperative) communication, that of protecting
access controls of a resource, and that of pre-emptive return of
resources from uncooperative sub-trees. In order to ensure resource
constraints, each network process state will contain a unique AO
control point and A0 expression stafei Thus resources are passed to
guaranteed cooperative A0 expression states that enforce the constraints
whether the process is cooperative or not. Thus the process tree
“lines of responsibility” are embodied in cooperative A0 communications
and all resources are constrained to movements over the process tree.
We thus prevent any conflicts of authority over a resource since, for
each sub-tree, the root process is uniquely responsible. The detailed
derivation and design of the AO sub-processor and its associated
expression state is given in (3). We will only indicate the nature
of the design here.

Unblockable communications are guaranteed by assigning the AO
control point in each process state the highest priority in the process.
Guaranteed asynchronous communication is provided by creating AQ

receiver buffers for the parent and for each of the children. In order

138-

to acknowledge message receipt, a set (at least one) of response

buffers are provided in the transmitting process. The number of
Processes transmitting an acknowledgement to a particular process

is restricted by requiring that any such transmission uniquely designate
a particular response buffer. Using these features it is possible

to define a communication protocal that will provide the required
communication services for resource management.

The A0 expression state contains a set of resources and each
resource contains an object and an ordered set of access procedures.
A1l access to the object by programs of the containing process must
be made by the exect:ion of the ordered set of procedures. A process
may create a resource by specifying any object and any access procedure.
AD conventions guarantee the protqction of the resource without
constraining process management's resource specification.

The access procedure may allow the allocation of the resource
object (or a part of it) to a child process, while adding a new access
procedure which must be executed to gain access to the previously
specified access procedure. Thus additional, properly nested, access
constraints may be added during alocation to a child process. Figure
7 presents an example of the resource relationship.

Process management is delegated responsibility for the normal
management, allocation, transformation and return of resources. The
GP sub-processor will include suitable primitive operators for this
purpose. When cooperation breaks down, pre-emptive return via

A0 services is required. Since a resource may be fragmented and

-139-

sub-allocated in pieces according to the rules and access mechanisms
defined by the resource creator, Ab only returns the pieces and lets
the owner put them back together.

The transmission of unwanted or spurious messages is an explicit
non-local process interaction which must be controllable. Any transmitting
operator is required to have, as an.operand, a resource containing
a "right to transmit" to a particular control point buffer. The
creation and allocation of such permits is under the control of process
management using GP programs. This permits a parent to deny to a
child the ability to interact explicitly with any other process

except that parent or a sub-tree created by that child.

GP AC | PR GP |AO | PR

Figure 7: Interprocess Resource Relationships

The tree structure is defined by the names (subscripts) of the AO ,
control points. The AO expression state contains the set of resources and
a GP expression state. A prime on a resource indicates an accessing program
which hasubeen added by other than the resource creator. Since each

accessing program is additive, restrictions may be added but never removed

by a child.
-140-

Implicit interaction between processes may occur as a result of
conflicts for a particular set of implementation resources (physical). These
interactions occur as the result of the exhaustion of some bounded
phyiscal resource used in the representation of process states and
must also be controllable by process management. Although we must
not interfere with implementation management, we are entitled to delimit
the scope of competition for such resources and define responsibility
for its exhausion. By giving a child explicit delegation of a "limited
competition permit" resource, a parent may restrict the competition of
any child with that parent for such essential resources. When the
1imit of such a physical resource is reached, the effects are constrained)
“to the sub-tree that was most 1oca11y restricted and will appear to
_ the process as an "jnaccessible object" in a process state. Inaccessible
objects play a role similar to end of file marks on a tape drive
and their detection'by process management allows explicit programming
for amelioration of the problem of recovery if desired. Competition
restriction allows a parent freedom from a childs excesses in use
of representational resources.

An example of the use of this restricted competition mechanism

could be the partial control, in demand paging implementations, of replacement

page selection.

7. Operating Systems
Network design responsibilities have been factored

between the implementation and process

-141-

managers. This requires a clean factoring of network resources (e.g.
a file) and implementation resources (e.g. a Drum) upon which the
logical network resources are maintained. Implementation designers
clearly must be delegated responsibility for mapping network resources
onto implementation resources. It is thus necessary to have two
different operating systems, one for the virtual systems, and another
for each of the physical node systems. The current size, complexity,
and unmanageability of contemporary operating systems is in large
part due to trying to meet these diverse goals with one operating
system.

Physical operating systems may vary widely from node to node and
may be developed independently subject only to minimum constraints
.placed on them by the network designers. Designers of each physical
" node can select some utilization function and then manage the physfcal
resources in a way that optimizes this function. The implementation programming
. :guage used should provide easy exploitation of machine dependent resources
and provide a highly optimized machine dependent implementation.
In addition, at each node, programmers may be under one managemenf and can
produce cooperatively structured implementations by informal, but
very hard to enforce, conventions. As long as the implementation
can be debugged prior to its productive use in the network, inadvertent
failures of cooperation can be prevented. Highly structured hierarchical
layers of queue networks could be constructed as cooperative sequential
processes and deadlock problems which can not be cooperatively prevented,

can be cured by sacrificing jobs that can be re-run.

-142-

Like the implementers, the network managers (users) may have
goals which vary markedly from process to process. The factorization
above makes it possible for each of them to pursue these goals subject
only to minimal coastraints placed on them by network designers and
network implementers. There is usually some utilization or reliability
function which they are trying to optimize during their management
of user created resources. They neéd a programming language that
provides for the easy exploitation of machine independent resources
and produces highly optimized (with respect to application measures),
but machine independent, network processes as distinct from the
implementers who are dealing with machine dependent resources and
implementations. In the design presented here each process is subject
‘to constraints imposed on it by its parent process. 'It can be held
responsible for its actions while befng free to manage its own affairs.
It is possible to protect other network processes from interactions
they do not wish to experience. Many users need to be able to develop
programs‘simultaneously even though they are not all under the same
management, and debugging operations must be able to proceed in the
network while it is up and performing services for other processes.
Inadvertent errors, as well as malicious non-cooperation by one procesé
must not jeopardize system performance for others. When user program
structures are based on cooperative hierarchies they often either
become unpoliceable or they collapse under the .required policing

constraints. This independence means that deadlock problems can not

-143-

be prevented or cured by reasonable algorithms imposed by the system.
What is required instead are tools and facilities that allow Aelegation
of such decisions to process managers who can choose appropriate
tatics. In order to allow such application depeadence network and
jmplementation resources must be divorced. Although there still exists
a "master/slave" mode, each process can now become the local operating
system for itself and its children, subject only to the authority and
constraints of its parent. This is advantageous since no global,
premature, decisions need be made by a parent because now they can

give their children the freedom to optimize their own operations while
~ still retaining necessary control over them in case they go astray.

In order for process managers to meet their commitments‘they need
‘a high level resource creation and manipulation 1anghage. In our
network each system will provide a common subprocessor (GP) to
interpret this virtual system language. Conventional and often unmanageable
job control languages, with their many options and lack of general
freedoms provide too rudimentary and‘specialized control of resources
for processes engaged in defining operating environments for thei;
children. A high level system language for network operating system
implementation is required for this purpose.

Other application languages may be provided either by compilers
producing output for the GP subprocessor or for other specialized
subprocessors. To : “vide for such compilers, the system language
interpreted by GP mu:st, of course, be extensible. It must also be

augmentable by implementation adaptions (possibly via micro-programming)

-144-

if specifit efficiency requirements for specific processes, as well
as general evolutionary processes are to be permitted.

The design and specification of such a system language has been
substantially completed and will be reported on subsequently, A
prototype implementation of one complete network system will be
completed in the near future. It should be pointed out that the
overall network structure described here is not dependent on a

specific GP design for its validity.

[V

8. User Freedom

In the previous sections we briefly introduced some of the
features of the network design. In this section we would like to
'present some of the freedom which these features provide the user.
As can be seen from the design features presented, the network designers
have not constrained in any way the design of user algorithms. The
network is abstracted, both from any particular application of it
and from any particular implementation of it. Different physical nodes
supporting systems in the network, may use different physical assets
to do so, with no concern for the users other than how it effects
the costs of running their processes. The mechanisms invoked by a
user to cause a subprocessor to be applied to a control point/expression
state pair, or to use interprocess communication services are standard
in each non-foreign network system. As a result, process states may be
moved between syétems using the services of the PR process and still
be able to run in other systems without explicit changes to reflect

the new system's implementation conventions.

-145-

Another important freedom provided by this design is the ability
of a user to construct a single process environment containing multiple
expression states, of different specialized subprocessor types, which
may interact cooperatively. Very few constraints are placed on the
subprocessors applied to such cooperating expression states by the
network design other than the prevention of true race conditions (only
one subprocessor at a time is applied to a process state) and the
prevention of a violation of resource integrity (because of A0 design).
Adaptation of user specialized cooperative intra-process interactions
is thus minimally constrained.

Control pcint communication provides several advantages to the user.
" First, since control points are paired with expression states, the
destination of an interprocess communication can be bound to a particular
expression state in a particular process. A sender need not be aware
that a destination control point has been moved to a new procesé or
that a whole process, containing the destination control point has
been moved to another‘system. For the implementer, control point
communication permits the maximum freedom to use any method of
intersystem communication desired. The network could easily be implemented
on the ARPANET (2, 4, 7, 9, 10) or on most of the other networks
described in (1) and (5). Since the network design does not tell the
implementer how to handle messages. The interrupt capability
provides a significant advantage in terms of interprocess interactions.
A control point/expression state can stop processing and go to sleep

knowing that lower priority control points in that process will proceed

-146-

until the higher priority control point either receives a message or
is designated to run by a subprocessor operating on one of the other
expression states in that process.

An advantage of using the system/subprocessor and process/control
point/expression state concepts is that it becomes almost trivial to
introduce new subprocessors into the network. The old processes still
run the same while new processes can take advantage of the additions.
The scope of the effects of such introductions will be limited to
the processes introducing such subprocessors or to processes allocated
the right to use them. Another advantage of providing a common
jnterface is tiat it permits a user to move his process to other
‘ systems.

In addition to (8), the network design is more bompiete]y covered
in (3) and other papers in preparation. It is of course not possible
here to describe all of the aspects of this project. The development
of this design was done with a cleanly factored set of design constraints
which we}e abstracted without any particular technology or application
in mind. This is one of the more important reasons why the desigﬁ
is a solution to many problems of manageability of processes in a
network, of application generality, of process portability between
systems in the network, and of network survival between changes in
technology.

The design is fully implementable with the worst imp]eméntation
being a complete simulation. An implementation currently exists of

a single system, multiple process, and multiple expression state with

-147-

myltiple control points. The simulation of the functions of interprocess

communication and controﬁ performed by the system processor is a relatively

minor problem since the system processor implemented supports all but

intersystem messages. It is not these functions which create implementation

complexities.. With the advent of microprogramming, overhead can be reduced,

particularly in the implementation of subprocessors. As hardware, ‘

including firmware, becomes less expensive, the system processor functions

of communications and subprocessor application can be easily implemented

in them. Such implementations of these functions will be able to perform

them in the range of several gate times if desired. The advantage of

“ hard-wiring all subprocessors is something which should be further

investigated. The choice between microprogrammed or hardwifed

‘subprocessors becomes one of balancing efficiency against flexibility.
Another important aspect of this design,not emphasized here,

is that the network as designed has also been formally defined. It is

important that the more formal properties of any design be investigated.

A forma1'system provides us with an ynambiguous, machine independent

way of defining our results. Without such a system, the design might

not be understandable by either the implementer or the user. Machine

independent definitions are particularly necessary since we are interested

in networks of systems and asynchronous computations. As a result of the

formal definition system used, we get a well-defined concept of process and

process step. The use of an interpreter for the definition system

permits the design to be debugged. Analysis of the system definitions

provides valuable insights into the process behaviors supported by the

-148-

network.

One area introduced in (8) and to be pursued in subsequent reports
is the possibility of permitting user control over certain modifications
to the network design. This would include modifications of the formal
definition to include new systems, new subprocessors, or even new
operators in current subprocessors. One of the important constraints
on such modifications is the verification that they will not improperly
effect the processes in the network for which the user performing a
modification is not responsible.

This brief introduction into the network design only touches on
. the basic structure of the network. The references can provide the
interested reader with a detailed analysis of the design. MWe are
“interested in providing a network of interacting digital computer
systems and structures to support general processes. This design
provides user ;ontrol over potentially uncooperative processes
in a multiprocess computation. This includes the sharing of capabilities
and permitting interactions of processes resident in different virtual
systems. The design presented here has, we feel, accomplished these

goals.

-149-

10.

~ References

gell, C. Gordan "More Power by Networking," IEEE Spectrum, Feb.
1974, pp 40-45. '

Carr, C. Stephen, Crocker, Stephen D. and Ceri, Vinton G. "HOST-HOST
Communication Protocol in the ARPA Network," Proc. AFIPS SJCC,
1970, Vol. 36, pp 589-597.

Cowan, George Jr. Management of Resources in a Potentially Hostile
Environment (Logical and Physical). Ph.D. Thesis, University
of Wisconsin, Madison.

Crocker, Steven D., Heafner, John F., Metcalfe, Robert M., and
Postel, Jonathan B. "Function-Oriented Protocols for the
ARPA Computer Network," Proc. AFIPS SJCC, 1972, Vol. 40,
pp 271-279.

Farber, David J. “Networks: An Introduétion,“ Datamation,
April 1972, pp 36-39.

Fitzwater, D. R. and Hintz, C. A. A System for the Formal Definition
of Digital Systems. CS Tech Report #141, The University of
Wisconsin Computer Sciences Department, 1971.

Heart, F. E., Kahn, R. E., Ornstein, S. M., Crowther, W. R. and
walden, D. C. "The Interface Message Processor for the ARPA
Computer Network," Proc. AFIPS SJcCC, 1970, Vol. 36, pp 551-567.

Kramer, John F. A General Structure for Uncooperative Processes
Distributed Over a System Network. Ph.D. Thesis, University
of Wisconsin, Madison, 1973.

Ornstein, S. M., Heart, F. E., Crowther, W. R., Rising, H. K.,
Russell, S. B. and Michel, A. “"The Terminal IMP for the
ARPA Computer Network," Proc. AFIPS SJCC, 1972, Vol. 40,
pp 243-254.

Roberts, Lawrence G. and Wessler, Barry 0. "Computer Network
Development to Achieve Resource Sharing," Proc. AFIPS SJCC,
1970, pp 543-549.

-150-

APPENDIX D.

D.1T Introduction

The following is an example of a functional specification using
the notation developed in Section 3. The system specified is the net-
work described in Section 5., and detailed in Appendix C. It should
be noted that this system was originally specified using a different
formal specification technique, thus the resulting design may not
allow for the cleanest re-specification using the technique of Section 3.
Two specifications of the system will be presented here. The
first is a high level specification whose functions are defined in terms
of very high level primitives. The second specification is a more detailed
version of the first. The form of presentation of both specifications
is the same. First, the functions are defined with a short description
accompanying each definition. Following this, the function definition
tree and process graphs are illustrated. And finally the functions of
the specification are summarized in a table. Preceding both specifi-
cations (and should be considered part of each) is a definition table

of the value spaces and component spaces used in the specification.

D.2 The Specifications

Both specifications consist of two state successor functions, 'SYS'
and 'REAL WORLD'. SYS specifies a single network system and REALWORLD
specifies the rest of the network as it appears to a single system.

Generally sveaking, an application of SYS does the following:

1) Makes subprocessor and message buffer selection for each

process state in the system.

-151-

2) Applies the subprocessors, leaving resulting messages
in interface buffers.
3) Transmits messages.
The REALWORLD system contains a transmitter and a receiver and a packet of

messages which have yet to be delivered for each system in the network.

Roughly it operates as follows:

1) A1l receivers are fired in parallel picking up a packet
(if any) sent from each system.

2) These packets are merged into one packet with an arbitrary
choice made between messages for the same destination.

3) The resulting packet is distributed amongst the systems
updating the packet containing all of the messages
for that system which have yet to be delivered, new
messages for this packet overwrite old messages
with the same destination.

4) The updated packets are all transmitted in parallel from
the REALWORLD system and any which do not get delivered form
the undelivered packet for that system.

The reader is urged to refer to the function trees and process

graphs when reading the specifications.

D.2.1 Definition of Value Spaces and Component Spaces

VALUE SPACES

il

v Space of process states

p
VmB = Space of message buffers
VIB = Space of interface buffers

-152-

Vmessages = Space of messages

{$} = Space containing $

{e} = Space containing {e}

— = v .
Vp pu{$}
Vﬁ§ = VmBu{$}u{e}

VTO = Values of messages directed to system i

i
VFROM. = Values of messages sent from system 1.
i
VNEw = Values of messages in newly arrived packet
. (merged from all systems)
N = Number of systems in network
i<N.
t = TRUE, f = FALSE

Zp = Component space of Vp

B = Component space of V g

g = Component space of Vg

b = Component space of V_

P P

b = Component space of V__

mB mB

Lsys = L, xIp

ZToi = Component space of VTO.
ZFROMi = (Component space of VFROMi
XNEW = Component space of VNEW

N
LREAL = 17 ZTOT.
i=1
(N -t . N =
oter m Ly =T x I, xeex [)

-153-

D.2.2 High Level Specification
The function tree and process graph for SYS appear in Figures 1

and 2 and for REALWORLD in Figures 3 and 4.

D.2.2.1 High Level Specification of SYS

-+

1) SYS:

ZSYS ZSYS

SYS(ogys) $YS; (9,59,8)

Comment: SYS is composed of a single component function.
2 zp X ZmB v zp X sz

SYS = Phase 3 (SP(StatUS(Op,O’ B)))

1 (Op’UmB)

3) STATUS: J xJ) . -)} x7J
p mB i) =B

m

mB) = PRIMITIVE

STATUS (op,c
In general, the Status primitive will return pairs of (process state,

message buffer) such that the process state is requesting that message buffer
and the buffer is a buffer for the highest priority control point in the pro-
cess state. If a message buffer is not requested a dummy is returned: ($§, mes-
sage buffer). If a process is active and has (or wishes) no messages:
(process state, €) is returned, and if a process state is not to have a sub-
processor applied it returns (process state, $). Thus Status does the
selection of the appropriate control point expression state in a given
user state for subprocessor allocation, and associates the appropriate

message with the process state. It returns a dummy pair for unused messages

and also for unused process states.

-154-

P

V_,V_) = PRIMITIVE
p mB

SPyq

SPy; applies the appropriate subprocessors to the elements of (UﬁyUﬁg),
delivering the messages (if any) and leaving messages in the interface
buffer. On dummy pairs 531 simply carries forward the process state
in (process state, $) pairs and the message buffer in ($, message buffer)

pairs. The value function models the parallelism of subprocessor

allocation.
6) Phase 3: Zp X sz X ZIB - Zp X ZmB

Phase 3(o = PRIMITIVE

p*%mg*°18)
Phase 3 finishes up the process step by:

1) Transmitting the messages to external systems

N

)
) Receive messages from external systems
)

w

Merge received messages with old message buffers

Y
~——

Merge message buffers with intra-system messages.

SYS

PHASE 3 SP STATUS

FIG. 1: Function tree for high level specification of SYS

-155-

SYS

FIG. 2: Process graph for SYS

D.2.2.2 High Level Specification of Realworld

1) Realworld: ZREAL - ZREAL

Realworld(o) = Realworld, (G+n 5...07vn)
REAL 1 TO] TON
. N N
2) Realworldy: 43 Jpg > 7 Iyg,
i=1 1 4=]

Realworld, (OTO],...,OTON) = Join (Packetin(), Trysend

(0rq.s--s07g)
T0, TOy,

Comment: Rea]wor1d], merges the existing packets for each system

with the newly arrived packet.

o N N
3) doin: dygy X 77 Iro, > 3T Ino,
i=1 =1

Join: = PRIMITIVE

(Oyc1ys0rA 5+e-Orn)
NEW TO] TON

-156-

Comment: Join updates each 910, with the messages in ONEW

for the ith system, overwriting old messages for the
same destination.

4) Packetin: ¢ -~ ZNEW

Packetin() = PRIMITIVE
Comment: Packetin receives a packet from each system (if one was
sent) and coalesces all received packets into one packet,
choosing at most one message for each destination.
5) TRYSEND:

N N
17 Zroi MR ZTOi
i=1 j=

—

TRYSEND(o = PRIMITIVE

seeesOrn)
TO] TON

Comment: TRYSEND tries to send the accumulate packet for each sys-

tem to that system. A1l packets are sent in parallel.

REALWORLD
REALNORLD]

JOIN PACKETIN TRYSEND

FIG. 3: Function tree for high level specification of REALWQRLD.

REALWORLD]

REALWORLD

FIG. 4: Process graph for REALWORLD.

-158-

D.2.2.3 Function Table for High Level Specification
TYPE MAPPING

State Successor SYS: Jeve > Loys

Component SYS;: Mustm MUXMSm
Component STATUS, : McxMam > Mm.xmaw
Component SP,: Mm.x — vaMam 15
Value mvdd“ <m* e <vx<s_%%:w
Component Phase 3: Mungmx MHm+MUxMam

DEFINITION
SYS(ogye) = SYS (o0 p)
= D
m<mgAqUuqzwv Phase 3 Amnﬂma>qcmﬁau,aawvvv
PRIMITIVE
PRIMITIVE
PRIMITIVE

State Successor Realworld: Joon = Joca

Component Realworld,: N J.. > N ¥
L S ML R R
i=1 i=1
Component JOIN: Tyr X H%.M SNy
: NEW™ 11 ﬁo¢ 11 hﬁcm
i=1 i=1
Component PACKETIN: ¢ -~ Mzmz
. N N
Component TRYSEND: T Mqo. > qq.Mao

Realworld Aqu>rva mmmdso1dagﬁoao s+ + 070)

xmmdso1gadﬁqqodu...uqaozv wx@mmmmﬂWoxmaszzvuvv
70" ""T0y,

PRIMITIVE

PRIMITIVE

PRIMITIVE

-159-

D.2.3 Detailed Specification
The function tree and process graph for SYS appear in Figures 5 and 6.
A process graph for SP appears in Figure 7 and the function tree and

process graph for REALWORLD appear in Figures 8 and 9.

D.2.3.1 Detailed Specification of SYS

%

1) SvYs: Isys

= SYS] (op,omB)

ZSYS

SYS(GSYS)

Comment: SYS is composed of a single component successor

function SYS].

2) SYs;: Zp X ZmB - XP X sz

SYS](G Phase 3 (SP,(STATUS (op,o

0*%mg) 1 mg))

Comment: SYS, 1is defined in terms three component successor

1

functions Phase 3, SP1 and STATUS].

3) STATUS: Zp X XmB - ZE -
STATUS](cp,cmB) = PRIMITIVE
Comment: The function of STATUS] is to pair up a particular
process state with the appropriate message buffer.
There are four possibilities:

1) State Vp is requesting V o and VmB is a
buffer for the highest priority control point
inV
in D

2) State Vp is active and not requesting any

messages, therefore STATUS] returns (Vp,e).

-160-

3) State Vp is neither active nor has a message
pending, thus STATUS1 returns (Vp, $)

4) Message Vg is requested by no Vp, STATUS]

returns ($,VmB)
4) SP]: ZB-X XEB > Zp X sz X ZIB
Comment: In effect SP] will apply the correct subprocessor
(if any) to the process states and messages (if any)
resulting in new process states, message buffers
and interface buffer values. To model the parallelism
of what is effectively Phase 2 of the system step we

will specify SP] in terms of four value functions.

r

SP] (053oa§0 = SP]]: Vp X VmB > Vp X VIB
SPy,: Vp x {e} =~ Vp x Vg
4 SPy53: {$1 x Vs~ Vip
SPrgt Vo X {$r - v
(5a) SP]]: Vp X VmB - Vp x Vig
SP11(Vp’VmB) = PRIMITIVE,

Comment: Delivers message VmB’ and applies appropriate subpro-
cessor resulting in a new state and possibly a message
in the interface buffer.

V. xe » V_ xV

(5b) SP]Z' D b I8

SP.,(V ,e) = PRIMITIVE, same as SP]1 except no message

12 'p
delivered.

-161-

(5¢) SP]3: $ x Vva > VmB
SP13($’VmB) = (t:VmB), carries forward unused messages
(5d) SP]4: Vp x$ - Vp

SP]4(Vp,$) = (t:V_), carries forward unchanged process states.

P

Comment: See process graph for SP], Figure 3.
The subprocessors have been applied so it remains to specify the

message transmission and receival.
(6) Phase 3 : Zp X ZmB X lg > ZmB

Phase B(OP,UmB,oIB) = (t:(op,UPDATE(NEWIN(gmB)

Comment: Phase 3 merely carries forward the process states

NEWOUT (0,5))))

op, and updates the message buffers.

(7) ~ UPDATE: ZmB X Zmessages M ZmB

UPDATE (o) = PRIMITIVE

mB’Omessages
Comment: Update merges the messages in 9B and Umessages
with the provision that if they each have a message
for the same destination only the message in Omessages
is kept.
In terms of the network system, Update models the fact that intra-system
communications take precedence over inter-system communication.

(8) NEWIN: J o] o

- 1
NEWIN(omB) = Compose (omB,REC{ })
Comment: The value of NEWIN is the current message buffers

merged with the incoming external messages.

-162-

(13a)

COMPOSE : sz X Zmessages + ZmB

COMPOSE(amB,omessages) = PRIMITIVE

Comment: Compose merges the message of 9B and Omessages
with Omessages taking precedence.

REC: ¢ Zmessages

REC({ }) = XCLOCRECi(}
Comment: The i indicates that we are in network system

i., XCLOCRECi receives the external messages.

NEWOUT: ZIB M Zmessages

NEWOUT (o = (t:(CONCAT(INSYS(o)),SEND(OUTSYS(OIB))))

IB) IB
Comment: NEWOUT sends the inter-system messages and carries

forward the intra-system messages with messages
for the same destination concatonated.

CONCAT: Jrp » I

CONCAT(UIB) = PRIMITIVE, concatonates all messages for the
same destination into one message and carries

forward the others.

INSYS: [rp > I

INSYS(o = INSYS,,(V

IB) 11(IB)
Comment: INSYS is specified as a value function.

INSYS,,: V¥ >~V

11 IB IB

INSYS = PRIMITIVE,

11 Vig)
Comment: Value of INSYS]](VIB) = Vg if Vig s to go to a

destination in the system and ¢ otherwise.

-163-

(14) outsYs: Jrp > I

OUTSYS(GIB) = OUTSYS]](VIB)
(14a) OUTSYS]]: VIB - VIB
OUTSYS]](VIB) = PRIMITIVE, value is VIB if VIB is to go to

a destination outside the system, and ¢
otherwise.
(15) SEND: ZIB)

SEND(o = XCLOCSENDi(o

IB) IB)
Comment: SEND transmits the external messages, the i indicates

that this is the ith system.

SYS
SYS

PHASE 3 P,
//,/ \\\ STATUS,
SP13 SPyy
UPGATE NEWIN NEWOUT
CONCAT INSYS SEND 0UTSYS
COMPOSE REC

XCLOCSEND,i
XCL CRECi

FIG. 5 Function tree for detailed specification of SYS.

~-164~

SYS

FIG. 6: Process graph for SYS

- AN

/ % N
f
! ‘lﬁl" ‘|II’ Py, \jl/fi:::f%g>
: (& /
~ g

FIG. 7: Process graph for detailed specification of SP].

-165-

D.2.3.2 Detailed Specification of Realworld

1)

REALWORLD: Torn > Ipen

REALWORLD(o REALWORLD] (0],... o

REAL) = Oy)

REALWORLD; : ZTO]X...X 2o, ZT01X"'XZTON

](OTO]""GTQN) JOIN (PACKETIN(),TRYSEND(OT01,---GT0N))

Comment: REALNORLD1 is component successor function.

Inew X ZTO] X ov X ZTON > ZTO1 X oo X Jog
= PRIMITIVE

=

REALWORLD

JOIN:

N

JOIN(ONEW,GTO]""’OTON)

Comment: JOIN updates the oF from ONEW

PACKETIN: ¢ ~ ZNEW
PACKETIN() = CHOICE(GREC,{ },...,GREC\{ })
Comment: PACKETIN receives messages transmitted from all systems

and merges them into one packet with at most 1 message/

destination.
CHOICE:) X oo X))
FROM] FROMN NEMW
CHOICE(UFROM],...,OFROMN) = PRIMITIVE

Comment: Merge the OEROM with the condition that at most
i
1 message/destination.

GREC;: ¢ >) FROM,
GRECi{ } = XSLOCSENDT{ }
Comment: GRECi{ } receives a packet, (if any) transmitted

from the ith system.

-166-

7) TRYSEND: ETO. X eoo X ZTON - ZT() X vou X zTON
; .

TRYSEND(GTO],...,OTON) (t:(GSEND, (o TO])""GSENDN(UTON)))
Comment: TRYSEND tries to send the as yet undelivered packet

for each system, to that system.

8) GSEND,: Zmi > zm]_

GSEND (o TO) = XSLOCREC, {GTO }

Comment: GSENDi attempts to send to the ith system.

REALWORLD
REALWORLD]
JOIN PACKETIN TRYSEND
cHoTCE GREC GREC GSEND ceen GSEND
XSLOCREC \\\\
XSLOCSEND] . SXLOCSEND\I T ... XSLOCRECN

FIG. 8: Function definition trees for detailed
specification of REALWORLD.

-167-

REALWORLD

FIG. 9: Process graph for REALWORLD.

-168-

D.2.3.3 Function Table for Detailed Specification

TYPE

State Successor
Component

Component

Component

Value

Value

Value
Value

Component

Component
Component
Component
Component

Component

MAPPING

SYS: Jsys > lsys

SYS;: MU X Msm.vMu X Msm

STATUS, : Mn X Lo > Mm X maw
SPy: Mm,x meuv Mc X Msm X MHm

mvddn <U X <5m > <U X <:w

mndwﬁ <n X {e} » <U X <H
mvdwn {e} x <aw > <U
mwgp“ <U x {e} » <U

Phase w“MU X Msm X MHw - Mv X MSw

UPDATE : Mam X Mammmw@mm ” Maw

NEWIN:] o+ [o

COMPOSE: Mam X Mammmmmmm.vMam

REC: ¢ = Mammmm@mm

NEWOUT: MHw.vMsmmmm@mm

DEFINITION

SYS = w<mA

m<mquUuq3wv = vx>mmwﬁmvaAma>acmdﬂqn,oamvvv

PRIMITIVE

SP, =5SP.., SP

1 1 » SP

ummu

12 13 14

PRIMITIVE
PRIMITIVE

mvgwAmU<BWVMmAﬁ“A<swvv

mmu._b.A<Uuwv = Aﬁu A<Emvv

PHASE wAchqauanvaﬁ“Aonwcwc>qmﬁzmszAqswv,
zmzocﬂAQHmvvv

PRIMITIVE

zmst,Qva = COMPOSE Aqswuxmoﬁ 1)

PRIMITIVE

REC({ }) = XCLOCREC,{ }
zmzcchquvmﬁﬁ“Anozn>HAHzm<mAqHWVu
mmzoﬁocqm<mAaHmvvvv

169~

TYPE MAPPING DEFINITION
Component CONCAT: MHw,VMHw PRIMITIVE
Component INSYS: M:w - M:w Hzm<mAquv = Hzm,\mmfmv
Value Hzm<mgdu <H_W > <H_w PRIMITIVE
Component OUTSYS: MHw > MHm o:am<mAquv = OCﬂm<ma~A<Hmv
Value ocqm<mdwn <:W - <:W PRIMITIVE
Component SEND: B> 0 mmzoAQHmv = xnroommzcmAQHmv
State Successor REALWORLD: Mmm>r+ Mmm>r xm>rzoxroﬁqu>rv = mm>rzoerAAQﬁoau...quzv

N N =
Component xm>rzoxrca. 1 Mﬂo*+ T mm>rzoxro_ﬁaﬂodu...“QﬁozvfgonAv>oxquzA vu.

i=1 i=1
ﬂx<mmchQﬁOu...uaﬂo
Component JOIN: gy %«.Mqo¢¢. N PRIMITIVE
i=1 i=1
Component PACKETIN: ¢ > J\ oo PACKETIN = CHOICE(GREC, (),...,GREC,())
Component CHOICE: T+ Troow > 1T Lrom PRIMITIVE
Component mwmnw“ o - Mﬂxoza mxmowﬁ) = xmrommmzcmﬁ }
Component TRYSEND: N Joq > N [TRYSEND (0 »-- +307q)= (t: (GSEND(opg)s-
1 i 11 i N 1
i=1 i=1 mmmzoﬂaﬁozvvv

Component GSEND; : MS_ - M.:f. mmmzciqaod.v = xm_.onxmodgqao%
EXCHANGES

XSLOCREC, ()

XCLOCREC! ()
;

xmrommmzcaA)
xorooxmna ()

N

-170-

)))

