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at time t,, while it is at (xi,yﬁ,zé) in the rocket frame at
time %}, then the events (xk,yk,zk,tk) and (xé,yﬁ,zﬁ,tﬂ) are
related by the Lorentz transformation [8]

(2.1) xé:c(xk—utk)/(cz—uz)% , or, xk=c(xi+uti)/(cz~u2)%

(2.2)  yy=yy

(2.3)  zp=2zy

(2.4) t&=(02tk—uxk)/(c(02-u2)%), or, tk=(02tﬁ+uxﬁ)/(c(cz—u2)%),
where ¢ is the speed of light.

Formulas (2.1)~(2.4) are geometric formulas in the sense
that they relate the coordinates of the two systems under
consideration. Arithmetic formulas for the basic physical
concepts of velocity and acceleration will be given next. The
forward difference operator A ,where
(2.5) AF(k)=F(k+1)-F(k)
will be used throughout.

In the lab frame, let particle P be in motion in the X-direction.
Then at time t,, P's velocity v(tk)=vk and acceleration a(tk)=ak

are defined by

(2.6) vy = Axk/ Aty

(2.7) a)= Avk/ At .

Similarly, in the rocket frame, at time tﬁ one defines vﬁ and
aé by

(2.8) vl;:.—.Axl'c/ Aty

(2.9) alfczAvl'c/ aty .

The structures of (2.6) and (2.8) are the same, as is also the

case with (2.7) and (2.9).




In order to find the relationships between Vi and vﬁ, and

between a, and ay, note first that the linearity of (2.1)-(2.4)

implies

(2.10) axp=c( Ax -u At )/(Pu®)?

(2.11) AYp= DYy

(2.12) AzZy= AZy

(2.13)  aty=(c? avuax)/(c(Pu?)F) .
Thus, (2.8), (2.10) and (2.13) imply

(2.14) vi=(cf(vp-u))/(cP-uvy,)

while (2.9), (2.13%) and (2.14) imply

c3(c2-u2)3/2

2 2
(c -uvk) (cz—uvk+1)

(2.15) a ay .

e

Finally, for later convenience, we note that if
the quantity T 1is defined by

2
(2.16) T =(c tk2~xk2—yk2—zk2)% ,

then (2.1)-(2.4) imply

so that T is an invariant of the Lorentz transformation. In

the case when

2, 2 2 2 2
(2.18) c tk X =Yy —Z > 0,
T is called the proper time of the event (xk,yk,zk,tk). In
a similar fashion, it follows that &T , defined by
(2.19) AT = (cz(Atk) —(Axk)*—(Ayk)g-(Azk)z)%

is also an invariant and it is called the proper time between

successive events (xk,yk,zk,tk) and (Xk+1’yk+l’zk+l’tk+l>’




provided that (2.18) is valid for both k and k+1l.

%, CONSERVATION OF LINEAR MOMENTUM. Assume now that particle

P, which is in motion in the X-direction in the lab frame, has

mass m. Then the linear momentum P, of P at time tk is defined by

(3.1) P =mVy -

Similarly, in the rocket frame, let pﬁ be defined by

(3.2) pL=m'vy .

Now, instead of proving the conservation of linear momentum, we

proceed by assuming it is valid in each frame of reference. This

assumption is valid if and only if [8, pp 101-110]1 ,at time

.t

(3.3) m=cm /(02—v 2)% ’
° 70 k

X in the lab frame,

and, at corresponding time tk in the rocket frame,

(%3.4) m'=cmo/(02-vﬁ2)% .
where men is a constant called the rest mass of P.

Equations (3.3) and (3.4) are, of course, the classical
relativistic formulas for the variation of mass with speed, and
we continue under the assumption that they are valid.
4. SYMMETRY. From the dynamical and computational points of
view, the actual motion of a particle in, say, the lab frame can
be determined from (2.6) and (2.7) once an equation which relates
force and acceleration is given. We assume now that this equation
is

2 AV
(401) Fk = cm k °

((B-v 2)(Pv, 1 2N? A%




We will have the property of symmetry [9, pp 11-1, 52-1] , then,
if in the rocket frame the relationship between force and acceleration

has exactly the same structure as (4.1), that is,

2 ]
(4.2) Fl = cm’ & 7k i

((e2-v}2)(e2mvy,%))? aty

To show that we do, in fact, have symmetry under the
Lorentz transformation, we need only show that (4.1) and (4.2)
imply that F _=F!. To do this, from (4.2) note that (2.14),
(2.15), (3.3) and (3.4) yield

031110
F! = a,
k ‘ k
(2-v?)(P-vy D)2
C3mo
= ak
(02—V 2)(02_v 2)%
k k+1
2
_ c“m AV
- ’
Aty

(P 2)(cPev 2 0)E

and the proof is complete.
Note that taking limits in (4.1) yields the particular

form

¢ m dav
(403) F= a“,E

of the classical relativistic dynamical equation

(4.4) F= z3 (av) ,



in which m is defined by (3.3).
5. ENERGY. The total energy E of particle P of mass m is defined
by

(5.1) E = mc?.

Experimental motivation for this definition follows, for example
[9, p 15-11] , from experiments in which matter is annihilated,
that is, converted totally to energy. Thus, when an electron

and a positron come together at rest, each with rest mass me,

they disintegrate and the two emerging gamma rays each has m002

measured energy.

From (3.3) and (5.1), then,

2
c mg

(5.2) E = ,
(1-v, 2/c?)®

so that for vk2/02< 1

(5.3) E = czmo( 1+ %vkz/c2 + cecee ),
or,
(5.4) E = chO + %movk2 + eeoe .

The quantity %movk2 is, of course, the classical Newtonian

kinetic energy. For the special case vk=0, (5.4) reduces to

o o a2
(5.5) By =0°m,

which is called the rest energy of P,

3till another form for expressing &, which is equivalent to

both (5,1) and (5.,3) is

(546) E = moc3 INWING ,

where A7 is defined by (2.19). This form follows from
(2.6), (2.19), (3.3) and (5.1) since




3 At
n.c 3 .
(5.7) Ezmcz____ Q_ = moc k___

(c2_y 2)3 (c?( at)%-( ax,)%)?

Finally, we note that various relationships can be derived
which relate energy and momentum. Thus, for example, (3.1) and
(5.1) imply

(5.8) pk02 = EV, ,

while (3.2), (3.3) and (5.1) imply

(5.9) E° = pk202 + m0204 .

Identity (5.9) implies immediately that conservation of momentum
Yields conservation of energy, which is why no special attention
is directed toward the question of energy conservation. In
relativistic mechanics, energy conservation is a direct consequence
of momentum conservation.

6. THE MOMENTUM-ENERGY VECTOR. For all practical purposes,
(2.2), (2.3) and the restricted type of motion under consideration
require analysis only of X and tk whenever one studies the
4-vector (xk,yk,zk,tk). Thus, we restrict attention now to the
2-vector (xk,tk) which maps under the ILorentz transformation into
(xi,t&). Also, thus far we have not placed any emphasis on a
particular set of measurement units. 1In this connection, then,

we will now be relatively specific as follows. Let

(6.1) E* = B/c?
be a normalized energy in the sense that the units of E*,
by (5.1), are units of mass. Attention will be directed to
E*, rather than to E.
Our present purpose is to show that the number couple (pk,E*),
where Py is given by (3.1) and E* is given by (6.1), is, indeed,

a vector, called the momentum-energy vector, in the sense that



8

(pk,E*) maps under the Lorentz transformation like (xk,tk).

Specifically, from (2.1) and (2.4), we wish to show that
(6.2)  py = c(p-ub*)/(c?-u’)?

and

(6.3) Bt = (cPE*-up)/(c(cfu?)?) .

Now, from (2.14), (3.2)-(3.4), and (6.1),

pp = mvy
2 2

cm c”-uvy c (vk—u)

(cz-vkz)% 0(02_u2)% cz—uvk

mc(vk—u)/(cz-uz)%

c(mvk—E*u)/(cz—uz)% ,

which establishes (6.2). Then, from (2.14), (3.4), (3.5),
(5.1) and (6.1),
E*' = nq!
= cmo/(cz—véz)%
= cmo(cz—uvk)/(c(cz-—u2 %(cz—vkz)%)
= m(cz—uvk)/(c(cz—uz)%)

= (cZE*—upk)/(C(c2~u2)%) )

which establishes (6.3).

7. CONCLUSIONS. We have shown in Sections 2-6 how to formulate
the basic physical concepts of special relativity using only
aritnmetic processes. In particular, differences and difference

quotients played a major role. Attention was restricted, for




simplicity, to a very special class of particle and rocket frame
motions, but, even so, all the basic consequences related to linear
momentum, energy, symmetry, and momentum-energy vectors were
shown to be deducible within this arithmetic framework. The
major implications are that continuity and limit concepts are
shown to be unnecessary for the development of special relativity,
while the resulting arithmetic formulation is already in the
form necessary for dynamical problems to be solved by high-speed
digital computers.

As indicated in the introduction, subsequent papers will

deal with more general particle and rocket frame motions.
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