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Leonard Uhr

ABSTRACT

This paper examines a computer-programmed model for human
recognition and description of scenes of objects that

extend over time as well as space.

When the scene contains several objects, the model will
first output a single most salient name - which may be
the name of a high-level whole, like "couple,” or of a
salient lower-level object, like "stick-girl." It will
then describe that salient object, and go on to mention

other objects in the scene.

The basis of the system is a parallel-serial memory net-
work of interrelated transforms, or characterizers, which
are themselves complex sets of probapilistic n-place
relations over "things" (where a "thing" can be a value,
an internal or external name of an object, part, quality,
class, or function, a characterizer to apply, or an act
to effect) - a network of simplified neuron-like elements

interacting at synapse-like junctions.

This* research has been partially supported by grants from
the National Institute of Mental Health (MH-12266), the
National Science Foundation (GJ-36312), (NGR-50-002-160)
and the University of Wisconsin Graduate School.




INTRODUCTION

This paper presents the perceptual system of a
wholistic model of cognition (called SEERl, see Uhr,
1974, 1975a, 19754).

The SEER system performs a variety of functions
that are normally thought of as "perceptual." These
functions will be examined in some detail after the
model has been described. They include such things as
a) recognition over non-linear as well as linear
transformations and distortions, b) handling of shaded,
textured, and colored scenes, c¢) the use of internal
sets, expectations, needs and goals to help focus per-
ception, d) contending with changes (e.g. movements) that
occur over time, e) "glancing about," over time, as a
function of internal expectations, f) developing descrip-
tions of scenes, and g) outputting appropriate descriptions
as a result of dynamic conversational interactions with
the hearer - the recipient - of these descriptions.

The system described here is actually the perceptual
"front end" (Uhr, 1972, 1973e) of the complete cognitive
model which, along with conversational interaction and
learning capabilities, will be described more fully in

subsgquent papers.

lSEER might stand for something like Semantic learner, or

See and err, or:

Scene
Sensor Environment Extractor Recognizer
Semantic Encoder Educer Recoder
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I musé emphasize that this paper‘describes a running
-computer program. Therefore the model it embodies is
precise and consistent. And when running it exhibits
its ownbehavior, internal processes, and consequences.

It has been given only very limited "toy" tests (in common
-with all large programs to date). It has been given only
a few of the many characterizing transforms it would

need to handle a wide variety of scenes. This is much
like the situation for a parser, where it is quite tedious
to get and then give it the entire grammar of a natural
language.

The Necessity of Learning to Cope with Potentially Infinite

Environments

With effort we could enlarge the set of transforms.
But it seems to me crucial that we instead give the system
learning routines, so that it can discover good transforms
for itself. This not only saves us an enormous amount of
tedium, it is absolutely necessary for language and objects,
which in a very real sense are "potentially infinite."
New words and objects, and structures over them,are constantly
being created, and the organism must learn to cope with them.
In theory we might pre-program the grammar for a dead
langpage like Latin, or the transforms for a finite world,
like a robot's "blocks-world" (as in the major robot projects;

see Nilsson, 1969; Feldman et al., 1971; Winston, 1972).
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But the real world is always changing, and for all
-practical purposes infinite. Any intélligent organism
must learn about that part of theworld with which it must
cope.

A System for Exploring Other Variant Systems

This system can be thought of as a simulation of a
general-purpose parallel-serial computer, 6ne that might be
used much like a nerve-net system, for specifying and
running a particular configuration of transforms. From
that point of view, this paper specifies what a prospective
user must do to develop, test and run a set of characterizing

transforms that he is interested in exploring.

A BACKGROUND OVERVIEW OF SYSTEMS FOR
FORM PERCEPTION (PATTERN RECOGNITION AND SCENE
DESCRIPTION)

The enormous amount of research in pattern recognition
and scene description is examined in some detail in Uhr,
1973a, 1975b and will only be mentioned here (for other reviews,
see Rosenfeld, 1969; Duda and Hart, i973). For collections
of papers, see Uhr, 1966; Kanal, 1968; Watanabe, 1969,
proceedings of the Internal Joint Conferences on Pattern
Recognition and on Aritficial Intelligence, and the
journals Pattern Recognition, Computer Graphics and Image
Procgssing and IEEE Transactions on Computers.

Problems Tackled

Briefly, people have tried to develop computer-programmed
systems to a) recognize and name single objects (e.g. the

letters of the alphabet, spoken words, chromosomes, tables
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and chairs, simplified faces), b) extract features (e.qg.
a break in a bone) or simple objects (e.g.a silo) from a
“scene" (e.g. an X-ray, or an aerial photo), and c)
describe simple scenes of objects (e.g. a TV picture of
blocks in a room, a spoken sentence, or other pictures
containing more than one object).

As the problem is made more complex, the "scenes" are
made cleaner and more abstracted. E.g. single letters are
handled in all the real-world distortions given them by
different people who write them, and the wavery, smudged,
irregular media of pencil, carbon, and paper. In contrast,
scenes are usually very carefully composed, and often
quite severely simplified. E.g. the utterer of the sentence
is trained to speak carefully; only three or four simple
flat-surfaced blocks are used in research on "robot vision,"
each block remains exactly the same, and differs drastically
in shape from the others (e.g.cubes vs. pyramids).

Alternate Approaches to the Assessment of Structure in

Patterns and Scenes

Six major (but rough) distinctions can be made as to
the approaches taken:

A) Local spots and collections of spots are assessed,
and their implications combined into a decision (e.gq.

.

Rosenblatt, 1962; Bledsoe and Browning, 1959). Such an

approach cannot handle scenes unless a prior step subdivides
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the scene into regions where each contains only one
object. But that is very hard to do, and is best done as
an integral part of the recognition process, so that it
can make use of information about partially recognized
objects to segment.

B) Structure is built into the individual feature-
detector. E.g. a singlé feature might be an "L"-shaped
angle, or a loop (e.g. Doyle, 1960; Munson, 1968) or even
a general curve-follower (Sherman, 1960).

C) "Syntactic" structure is superimposed over the
individual features (e.g. Narashimyan, 1966; Evans, 1971;
Ledley, 1972; see Miller and Shaw, 1968; Fu and Swain,
1971). To do this, linguists' "rewrite rules" (which talk
about strings of objects concatenated in the l-dimensional
sentence) must be generalized to handle 2- or N-dimensional
scenes. A number of generalizations have been suggested
(e.g. Shaw, 1969; Pfaltz and Rosenfeld, 1969) but there
are problems - chiefly in combining parts from real-world
scenes, where anything can be broken, gapped, bent, or
missing (see Clowes, 1969, 1971; Uhr, 1971).

D) Some kind of "list-structure" or graph-like model
is superimposed over the individual features (e.g. Guzman,

1968, Brice and Fennema, 1970, Waltz, 1972).
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The problem now becomes one of converting the scene
into a list-structure, and then trying to find matches
between some of the list-structure representations of
objects stored in memory and sub-regions (that is, sub-list-
structures) of the scene. This bears some resemblance
to the finding of paths through problem-solving nets
(e.g. to prove theorems or find good moves in a game like
chess), and people are attempting to dévelop perceptual
systems that use "heuristic search" techniques developed
for problem-solving (e.g. Slagle and Lee, 1971).

E) Successive types of information can be assessed
in stages. Thus in speech recognition, the feature,
word, syntactic structure, and semantic structure; in
"robot vision" the gradients, edges, surfaces, and solids,
can be examined at different stages. Some systems
(e.g. Guzman, 1968) do this from smaller structure to
larger; others use parallel co-routines for each stage.
(e.g. Reddy et al., 1973); still others try to get other
varieties of interaction among stages (e.g. Duda and Hart,
1970; Tappert and Dixon, 1973).

F) Finally, probabilistic relational characterizers,
whose inputs are (lower-level) features, or the implica-
tions of features, are used to build up a hierarchical

.
structure of features. This can be done in a variety of

ways, with a variety of different organizations -
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in a parallel-serial layering of transforms (e.g., Uhr,
1972; Riseman and Hanson, 1974; Hanson and Riseman, 1974) in
a strictly-serial discrimination net (e.g. Unger, 1959;
Hunt, 1962), or in a hierarchical structure without any
well-delineated layers or levels (e.g. Uhr and Vossler,
1961; Uhr and Jordan, 1969; Zobrist, 1971; Williams, 1974).

The Importance of Structure, Parallel-Serial Processes,

and Probabilities

There are many similarities between these different
approaches. Ultimately they may turn out to be alternative
ways of realizing much the same architecture and flow of
information. The crucial point is that this architecture

(except for A) is one that uses structural information in

order to cope with the structure that exists in patterned

objects (indeed the word "pattern" is probably best defined

as a structure of interacting parts). But there are

important differences, chiefly related to issues of parallel

(A) vs. serial (C¢,D,E,B) vs. parallel-serial (F,E), probabilistic
(A,B,F) vs. deterministic (C;D,E), conjectural (A,F,) vs. analyti-
cal (C,D,E) processes, and vagueness and ambiguity (A,F) vs.
certainty (C,D,E). (These are briefly discussed below, and

also in Uhr, 1975b and Minsky and Papert, 1969.)

The SEER ModellIs aDynamic Parallel-Serial Probabilistic

Network of Structural Transforms

The SEER model presented in this paper is a parallel-serial

layered network of structural characterizers. Characterizers
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are probabilistic threshold functions that attempt to cope
with uncertainty and unknown variations, rather than
deterministic tests that can only handle things antici-
-pated in advance. The system makes directed searches,
dynamically deciding which transforms to apply next, that
is, what to look for, as a function of internal expectations

and exte;nal information that has been found so far.

OVERVIEW OF THE SEER MODEL

We will now examine the SEER system:

A) The overall architecture of the parallel-serial,
converging "recognition cone."

B) 1Its basic structural details-the chara¢terizing
transforms that it uses, the connections among structures
of these transforms, and the variety of functions that
they serve.

C) The overall flow of inforﬁation through a SEER
network - how it characterizes, finds parts and qualities,
builds wholes, implies what transforms to apply next and
whether to make intermediate decisions, merges successive
moments of time into its dynamic memory stores, and, in
general, develops a description of the scenes it has seen
in its recent past.

sAfter the model has been described, we will examine

some of its behavior from the point of view of criteria
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that might be posed for the evaluationof a system that

purports to be a "model of form perception.”

OVERALL ARCHITECTURE OF SEER "RECOGNITION CONES"

The perceptual system is organized as a serial sequence
of layers of parallel processes (see Figure 1l). Information
from the external environment is input (sensed) into the
first layer, the "retina." Each layer contains a set of
characterizing transforms, which are all applied in parallel
(this parallel aspect must be simulated when a serial digital
computer isused). A "transform" specifies a structure of
related things to be looked for and a criterion for success.
If the transform succeeds, its set of implications is merged
into the cell in the next layer that lies.directly behind

Lthat transform's center, except for transforms, which are
merged into CHARACTERIZE,2 and triggered choices, which
are merged into FOUND. A "shrink-size" can be specified for
each layer. Thus layers get smaller and smaller as informa-
tion is averaged, extracted, and coalesced, and the system

has the form of a cone.

Insert Figure 1 about here

Parameters and Specific Transforms of the Recognition Cone

The overall structure of the recognition cone allows
for a wide variety of structural modifications, and of
parameter adjustments, including the size of the input

layer, shrink-size at each layer, number of layers, and number

2Caps indicate actual lists in the SEER program.
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_and type of transforms. The specific transforms used can
also be varied, since they are read in as tabled data, or

learned.

This seems extremely desirable at this earl& stage
of model-building, since it means that we can vary details,
both as to general structure and specific transformations,
and thus attempt to draw the system's behavior closer and
closer to the domain of perceptual behavior being modeled.
We can also particularize specific models to a variety of
different purposes - to model different species, and also
perceptual systems that use different basic material
building-blocks or that are designed for different practical
problems. Thus the general structure is a framework within
which we can examine "natural" and "artificial"” perceptual

systems side by side.

Sensing and Inputting Information into the First Layer

Information is inpﬁt to the Retinal buffer of the
recognition cone, using as fine detail of resolution as is
needed for the kind of scene being processed. The first
layer of characterizing functions then transforms this
information, outputting into the next buffer, which is input

to tpe second layer of transforms. And so on.

Types of Transforms in Each Layer

Each layer contains a mixture of a Qariety of different
kinds of functions that can be computed by nets of neurons,
that converge into threshold elements. We will examine these

later, but they include: a) pre-processors (e.dy a@averagers
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and differences to smooth the raw input and bring out
gradients and edges), b) local feature-extractors (e.g.
edge, curve, angle, and color detectors), c¢) structure-
detectors, that compound lower~-level features oOr structqres
into larger structures (e.g. lines into angles, strokes

into letters, letters into words); d) impliers of
transforming characterizers to apply (e.g. to find the

rest of an object, or to "glance about"); andv e) triggers
to decide among alternatives implied in that region (e.g. to

choose an object-name, or a color, for that region).

Ordering of Layers

The placement and ordering of these different types of
transforms is one of the parametrized details that can be
specified for each different model, and varied until
behavior satisfies. A simple architecture might be:

1) an averaging layer, followed by 2) a differencingylayer,
3) a first layer of low-level feature-detectors, 4) a layer
of structural characterizers, and, possibly, 5) a second
layer of structural characterizers (see Figure 2a).

A more realistic (and potentially more powerful)
architecture is shown in Figure 2b. The first few layers
of this cone do pre-processing operations --1) averaging,

2) differencing, 3) averaging, and 4) differencing. Then
5) primitive features (e.g. sloped lines, and, possibly,

very simple curves and textures) are detected, followed by

Insert Figure 2 about here
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several layers of structure-detectors to build compounds
such as 6) angles, 7) enclosures, 8) articulated figures,
,9) coherent sets of several figures (e.g. a "family" or a
word) and 10) higher-level groups or wholes (e.g.a "forest"
or a phrase or other meaningful verbal unit). As we will
see later, parts, qualities, whole objects, symbolic words
and phrases, and internal things (e.g. concepts, images or
ideas) stored in memory can al; be mixed together and
processed in the same layer.

The set of 10 layers I have just specified seems a
minimum for the realistic handling of scenes of objects.
Probably several more layers are required to handle compounding
adequately. And feature- and structure-detecting layers
are a good bit more complex than this simple list suggests,
since they must also use averaging, differencing and deciding
transforms to keep information available and in order (this

will be discussed later).

Convergence and Shrinkage to Reflect Extracting, Abstracting

and Coalescing Information

Most of these layers' transforms reduce the amount of
information being processed. Averaging coalesces local
information in the raw input scene, and eliminates tiny bits
of npise. Differencing and feature-detection focus upon
gradients and local regularities, leaving homogeneous and non-

feature areas unprocessed. Structure-detectors output internal
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names of patterned sub-parts that they are successful in
finding, and ignore everything else, as without "meaning"

to them. Here we have the general process of convergence
from sensory surface as information is successively trans-
formed back deeper into the cognitive system - the con-
-vergence that is an obvious empirical fact of the sensory
systems of animals and has been noted by Barlow (1959, 1969)
and others as an important general principleqof information-
processing_in perceptual systems.

The recognition cone handles this by allowing for a
"shrinkage" in the size of a buffer as a function of the
transform layer being applied. The'simplest way of handling
this would be to have a standard shrink-size - e.g.divide
X and Y size each by 2 - at each layer. The present
system allows the user to specify a separate shrink-size at
each layer. So he can have a uniform shrink-size, or 2,

3, 7, or anything he desires, or he can use different
shrink-sizes for each layer that are appropriate to the
different kinds of transforms at that layer. To complete the
specification, giving a reasonable first approximation

to a sensible model, let's assume that the shrink-size for

all averaging layers is 3, for all differencing layers is 1
(i.e; no shrinkage), and for all feature- and for all
structure-detection layers is 2. (Note that a simple variant -
which has also been coded - allows for separate X and Y

shrink-sizes.)
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This shrinking means that layers grow steadily smaller
in size, until after a sufficient set of shrinkages the
output from a transform layer will merge into a single
cell, which now contains all the information extracted,
abstracted, and coalesced about the input scene. This is the
"apex" of a "recognition cone" whose "base" is the Retinal
input buffer that contains the raw scene, and whose body
is the successive Internal output buffers from the successive
layers of Transforms (see Figure l1). The height and
width of tge input can be got by multiplying all the
shrink-sizes together. Thus if shrinkage is the same (S) at

10 8

all N layers, height= s® (e.g.2'® = 1024; 3% = 6,561).

Some Size Estimates for Model and For Living Visual Systems

Let's use these shrink-sizes to help specify the total
size of the example l0-layer cone in Figure 2b. Working
from apex to base, layers 10,9,8,7,6,5 each have outputs whose
X and Y coordinates are each 1/2 as large as their inputs.
Layers 1 and 3 each have a shrinkage to 1/3d the size. This
gives a total shrinkage of 26 x 32 to the apex, whose X
and Y 1lengths are each 1. Thus the base of such a cone

will be 10522

» Or over 1 million cells - a rather hefty size

for a program, but still small if we compare it to the

7 mi}}ion cones or 125 million rods of the human eye.
According to Polyak (1957) the "central bouquet" of

the human fovea, contains only 2000 of the thinnest and most
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one that is designed to handle a) memory search, question-
-answering and conversation, b) deductive inference, c)
language processing, and d) the construction and execution

of actions-sequences, as well as pe;ception (Uhr, 1975a).
Linguistic rewrite rules, semantic nets, productions for
deductive problem~-solving, concept formation trees, and
associations for memory searches can all be expressed, as
relatively simple nodes, using the basic SEER transform.

In order to handle this variety of types of transforma-
tion in a simple, general, unified way a number of important
modifications had to be made to the typical structure of a
recognizer. These are described, discussed, and examined
in detail in Uhr,1972, 1973c. Briefly the distinctions between
"pre-processing," "feature-extraction," and "naming" have
been erased, so that all of these are handled by sets of
transforms, and they all output their results into the same
kind of next-layer memory buffers. fhis is in sharp céntrast
to most of today's systems, where separate subroutines are
used to handle the separate stages, and possible names to be
. output are merged into a special list, to be chosen among

when the system switches to its decision routines.

Insert Figure 5 about here

. The Parts of a Transform

A transform specifies: A) A set of If-Conditions to
be satisfied, B) a Threshold test for success or failure, C) A
set of consequences, the Implieds, D) a Region within which

the transform is to be applied, .and E) a set of Expectations
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tightly packed cones, and subtends a 20' arc of the visual
field. Each cone is 1 to 1.5 microns thick, subtending

a 12" to 18" arc. Cones, which are the discriminators of
fine detail (and of color), grow 4 to 6 times as thick,

and much less tightly packed, away from the center of the
retina. The central rodless fovea (subtending 1° 50' of arc)
contains abcut 35,000 cones, and the 1.75 sqgq. mm. central
fovea about 100,000, along with some rods. The entire retina
contains over 7 million cones and 125 million rods. But

a pattern like a typed letter is recognizable when it
subtends as little as a 5' or 10' arc (look at typed letters,
moving back to about 4 or 6 feet, where they become hard to
recognize). So a 202 array should just barely be sufficient
for a si§gle letter, as argued by Uhr and Vossler (1961),

and a 2002 roughly simulates the 1° 50' rodless central fovea,
where we might pack several lines of 10 or 20 letters each.
Thus the range of cone-size suggested here, although it does
not approach the entire retinal system, is quite commensurate
with central foveal cone vision of articulated scenes.

Figure 3 shows several other configurations of layers,
from among the very large number that can be specified and
tested. The relatively simple 5-layer system which, although
it is probably too shallow to serve as a good model for

.
complex real-world scenes, is already pushing the economics of
computers to their limits, in terms of space and time needed

to make realistic runs.
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Insert Figure 3 about here

But note how easy it is to specify a cone whose base is
as large as the fovea of the human eye, as shown in Figure 4.

We need only add a few more layers, and/or increase the
shrink-size of some of the already present layers from 2
to 3 or 5. An interesting aspect of this playing-around
with the details of the structural aspects of convergence is
how small our possible range is - from a minimum of 6 to 8
layers if shrinkage is large, to a maximum of 12 to 15 layers
if shrinkage is small (albeit with the further possibility of
adding more layers with no shrinkage - though I suspect that
is pointless, both because convergence appears to be every-
where and uniform, and also because the transforms in a
non-shrinking layer can just as well be intermingled with
the transforms of the subsequent layer - that is, the trans-
forms may well be useful, but there is no need to give them a
special layer of their own).

The nicest thing about these numbers - from 6 to 15 -
is thei; close correspondence to the picture of the depth of
transforms in the visual systems of man and higher vertebrates,
" as got from firm anatomical and physiological evidence as to
the retina (with its 2 to 4 synaptic layers), the lateral
geniculate (1 layer) the primary visual cortex~(about 2 to 6
layers) and the several (see Kaas, 1974) secondary visual

A [
cortexes (about 2 to 6 layers each).
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In fact this whole converging structure of the cone
begins to reflect the overall architecture of the visual
system. Information impinges upon the parallel set of cones
that serve as the retinal sensors. It is then successively
transformed back, with nicely layered synapses across which
transformations from tightly packed neurons are computed,
to input to the next synaptic layer. In living systems
this proceeds in an orderly parallel-serial layered system,
from retina into cortex, with successive convergences of
information (see Konarski 1967, for an informal verbal model).

We have examined the overall structure. Let's look now
at the fine details, and then at the ways in which informa-

tion flows and is transformed by this system.

Insert Figure 4 about here

THE DETAILED STRUCTURE OF TRANSFORMING CHARACTERIZERS

The Generality of the Basic Transforms

The SEER system uses a very general and powerful kind of
thresholding synapse-like transform that allows it to handle
the wide range of pre-processing, feature-detection, structure-
compounding, and naming needed for recognition and description.
In fact the transforms handle several other kinds of processes also,
as will be discussed below. They are, further, general enough

to serve as the basic building blocks for - unified memory

structure that is used in a whole integra: :d cognitive systen,
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(see Figure 5). (For our present purposes we will we will
ignore E) Expectations, since they become important for
learning and for directed planning, both of which are
beyond the scope of this paper.)

A) The If-Conditions include a set of parts, where
each part is an internal name of a thing, or a class of
things that might be stored in the memory buffer the
transform is looking at. Associated with each part is,
optionally, a weight (or a probability), a value, and a
location relative to the overall location at which the trans-
form is to be applied. (See Figure 6 for some detailed

examples.)

Insert Figure 6 about here

Figures 7-9 give some examples of sub-arrays of cells
that transforms' If-Conditions look at. For simplicity,
only very simple examples are given. For example, 3 by
3 arrays are used for pre-processing, but a realistic system
might aQerage or difference over a much larger area. (But
" note that successive 3 by 3 averagings, using extra layers
for each, could compute the same results as a single averaging
over larger areas.)

The region at which the transform is to be applied is
also Specified in the computer program. But an actual hardware
embodiment of the parallel system would have another instance
of the same transform wired-in at each location within the

region. Note that the sub-arrays can be thought of as
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Insert Figures 7-9 about here

-wiring diagrams of the equivalent parallel computer or nerve
net.

B) The Threshold test for success or failure of the
transform is built into the present system in the following
way: When eachthing among the conditions looked for is
found, its associated weight is added to a sum of weights
for that transform. If that sum of weights exceeds a
"threshold" stored for the transform, the transform is
considered to have succeeded.

It is quite easy to modify the system, by adding simple

2- or 3-statement subroutines that compute different functions,

for example multiplying the inverses of the weights, or
tallying the parts found (several such alternatives have
been coded). It is also easy to use multi-valued rather than
2-valued (succeed vs. fail) functions, and this too has been
coded as an option. But note that a set of 2-valued functions
can be‘used to handle any multi-valued function - simply
by having the first insist upon the highest threshold,

the 2d insist upon the next highest, and so on.
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e s

Insert Figure 10 about here

C) The set of Implieds indicates what is to be done
if the transform succeeds (see Figure 10). An implied can be
either 1) a name to be merged into the corresponding cell
in the next layer, where this name can be either a) internal
or b) external, of i) a part, ii) whole, or 1iii) a quality,
2) a transform characterizer to apply, or 3) an act to effect.
Associated with each implied is, optionally, a weight,
and a relative location. The weight is used in the merging,
and the relative location is used to project where to glance
when the implied is a transform to apply, or where to merge

the Implied Name.

Implying Transforms to Apply

Each Implied thing that is a transform to apply is added
to the list of transforms to look for now (as opposed to the
transforms that are built permanently into the net). These
are then looked for at the specified relative locations in
the next layer, along with the fixed set of transforms. This
gives the system a capability to dynamically "glance about,"

‘ looking for things that have been suggested by things found so
far - something that I have called "flexibility," and described
elsewhere, for hierarchical, rather than layered, systems

(Uhr, 1973a, ch. 8; 1973b). It also allows for feedback loops

from central to more peripheral layers.
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A number of variants are possible, several of which
have been coded. Rather than apply the dynamically implied
transforms at the next layer, they can be added to the list
of transforms applied at the present layer. But both of
these are unrealistic in a System that is handling scenes
that are input over time, since the implication of a transform
and its sgbsequent application are serial operations that
themselves take time. So it seems better to have implied

transforms applied at the next moment in time (or, alternately,

after whatever interval of time needed). Here again, several
alternatives are possible: The transform can be applied at
the next layer, the same layer, the layer specified along
with the transform, prior layer(s) or every layer,

This depends upon and interacts with the mechanisms used
to store information over time, letting some things gradually
fade away, but reinforcing some things, as a function of change
and newness, motion, and having been "noticed" by transforms -
So that they become salient and stay around-as discussed

below.

.Merging Implications Using Averaging Transforms

Implied names are merged into the corresponding next-
layer cell. But as the‘cone collapses, neighboring implications
of the same thing should merge together. This is handled by

the same "averaging" kind of transform used in the first
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few layers to smooth over local noise. SO routinely, at
each layer the system 1is given a transform that averages over
all things. Alternately, information can be culled by
setting a threshold, so that weakly implied things are
eliminated. (This is probably crucial for realistic tests,
since an enormous amount of information can be accumulated
and passed along by such a system. Here is one of the major
parameters for adjustment. probably the best way to handle
it is to have a fixed storage capacity, C. at each cell, and
keep only the C most highly implied things. But such a
sorting process ijg costly, either in computing time or the

extra comparator networks needed.)

Triggering Choices in Sub-Regions

Among implieds can pe the action of deciding among
the various possibilities in the cell for which this action
is triggered. Along with this action is, optionally, the
name of a class among which the decision is to be made. (If
no class is named a grand decision is made, among all the
things in that cell.) Thus if the class is e.g. EXTERNALNAME
it will choose among all such names, if it is COLOR it will
choose among all implied colors, if LETTER it will choose
among all names that belong to the letter class, and so On.
* This choosing action 1S itself implied, and can be implied

by a variety of kinds of information. Among these are the
following (all of which can be expressed as characterizers):

the fact that several members of the class have been implied,
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and/or sbme of them have been implied above some value, or
sufficiently above the value of the other members of the class;
2) the fact that an object or members of its class have been
implied in this cell, but not in adjacent cells (suggesting
that a region containing a figure has now been collapsed, and
is surrounded by background) can be got by differencing for
that object, or for the whole class; 3) the fact that a suf-
ficient number of transforms have been épplied, or that a
sufficient layer-depth has been reached. Aall of these can
imply a trigger-transform with a certain weight. The trigger
will go off, implying the decision-transform when a second
simple transform looks at it and finds its combined weight
has now exceeded threshold.

When such a choice is made, it is tagged as chosen, and
its location stored. (Alternately, chosen objects are put
on a FOUND array, rather than being passed back through the
cone.) A sub-cone is then projected, using this location as
its apex, giving a sub-region of the larger cone as its base,
where the chosen object is inferred to lie.

D) At each layer, the system applies the set of transforms
indicated for that layer. But each transform specifies a
sub-region in which it is to be applied.

Many transforms will be looked for everywhere, as though

.
there were copies of them everywhere in a parallel system.
Averaging and differencing transforms will be of this sort,
looking everywhere. Simple gradient and edge detectors, and

other low-level feature-detectors, will probably be of this sort.
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At the other extreme, the transform can be specified
to look at only one spot. (Note that this does not mean
that the transform looks into only one cell, for each of
its parts has a location specified along with it, which tells
where to look for that part relative to the cell location
where the transform as a whole is being applied.)

Looking at only oné spot makes sense only when the
system has good indications exactly where something might
be - for example deep into the cone, where a projected part
of a large whole, e.g. the head of a stick-boy, can be
fairly precisely specified. More typically, the characterizer
will be applied within some small region, so that slight
variations will be ignored. This is effected very
simply, by specifying the bounds of a small rectangle
through which the transform will be iterated, rather than
through the entire layer. Note that an Implied trans-
form (e.g. those glancing about to look for the rest of a
partially recognized figure) is projected to a region
relative to the location of the transform that implied it.

E) The structure of the characterizer is actually
more complex than the present description indicates.

But these complexities will not be described here, but
deferred for a subsequent paper, because they are of im-
porgance for the learning and interaction with more central
cognitive processes that go on in a mére complete whole,

integrated system. Briefly, the actual form of a transform
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is what I will call an Hypothesis, which contains
Antecedent conditions (which are sets of related things),
Evaluation of success, Consequences, and Expectations.
Expectations are useful when the consequences are
themselves high-level acts, where an act is performed
upon the external world as a succession of specific actions.
Now expectations 1) monitor that the step-by-step unrolling
of the act is followed by anticipated consequences - e.g.
the object being moved toward indeed appears to be getting
c}oéer, and 2) await reinforcement or other feedback-
related indications that the act was indeed successful, and

thus lead to appropriate learning.

Handling Color, Shades of Gray, and Other Qualities

This system can handle black-white, shaded, or colored
scenes. Information about color and intensity is input
in the form THING-VALUE, (E.g. RED-5, BLUE-4, YELLOW-0
all in the same cell might indicate PURPLE. INTENSITY-9;
INTENSiTY—B; INTENSITY-5; INTENSITY-2 in adjacent cells
might indicate a local fragment of an edge). Now the
standard characterizing transform can be used just as easily
(albeit with more transforms needed) for colored as for
black-white scenes.

* To handle shades of gray, the system can use the same

transforms as for black-on-white scenes, since it must
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already handle a range of values after the first layer.
The basic averaging and differencing operations turn
black-white scenes into internal representations with
shades of gray, and they can just as/well handle gray-
scales in the retinal buffer also.

To handle color we need only give the system trans-
forms that refer to thrée parts - the three color components
- in the same cell. (This is in contrast to all the trans-
forms we have examined so far, which look in different
cells, for spatially separated parts; now the transform
looks for several dimensions stored in the same cell.)

E.g. a transform that looked for RED in the range of 5

and YELLOW in the range of 5, and BLUE in the range of 0
would, when it succeeded above threshold, output "ORANGE"
with some fairly high weight. Alternately we can assume

3 types of cones, as seems to be found in living systems,
and have a transform combine them into a resulting color -
possibly using a separate layer.

Other qualities - e.g. ROUGHNESS, FUZZINESS, BOLDNESS,
or even BEAUTY, might be nemes implied by transforms that
assessed appropriate characteristics (e.g. texture, or the
value with which a thing is implied, or its relative balance
or unusualness). They could then be used as parts of
high;r—level structural characterizers. E.g. ROUGH and

BOLD might imply FORCEFUL.
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or any characterizer reported in the literature or desired,
whether or not it can conveniently be effected by the
basic nerve-network-compounding mechanism that is basic

to the system.

Often this will give us a function that could be
computed, albeit more cumbersomely, without this capability
- e€.g. a contour can be detected by a serial curve-
follower, or by a hierarchy of edge feétures. Even though
such nerve-net computations are less efficient and more
cumbersome, they seem desirable, since they make use of
the basic neuron- and synapse-like building blocks of our
model, and keep things plausible. But we always have the
option of additional types of functions, if only to im-
prove efficiency,often a crucial practical factor. And
when a compelling need for a new function is felt, this can
be the beginning of a new search for brain capabilities

and mechanisms needed to compute it.

'N—Place Relata as Transforms

Rather than have If-Conditions that are compounds of
several parts, we can specify a relata, which is a
relation over N sub-parts, and specify a whole set of such
relata for a single Transform. This allows for the con-
venignt building of graph-structures of any level of
complexity as the description of the If-Condition to be
looked for. But, since weights will now be associated with

the basic parts of the relata, and also with the relation
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Relata and Functions as Characterizers

Three additional levels of power have been given these
transforms.

Dynamic Adjustment of Characterizers' Descriptions

First, the parts of the characterizer's description
can be functions of one another. When one part is found,
its specific value and attribute are temporarily stored,
and used to adjust what subsequent parts to look for.

For example, if a faint (in that it has a low intensity
value) vertical stroke is found, other faint strokes are
looked for. If the color in the cell where the part is found
is dark red, dark red is favored as the color for other
objects.

This dynamic adjustment seems quite desirable and
powerful. But it violates the parallel nature of the
system, for it would take serial time to signal and effect
such modifications in a characterizer. The same thing can
be done without this mechanism, by implying new characterizers
to apply, at a slightly later moment in time, and adjusting
these characterizers accordingly.

Arbitrary Functions as Parts of Characterizers' Descriptions

We can designate any part of any characterizer as
being of a special type, so that the program will branch

1)
to a special subroutine that computes that function. E.g.

we can introduce a curve-follower, or a color-compounder,
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and the parts as part of the relata, the system can still
specify thresholds that allow for success of the characterizer
even though not all of its relata succeed. This gives
flexibility, since not all parts of such a description
need be present.

Further, the impligd things can now be relata. This
is crucial for the larger SEER system, where implieds
must often be acts to be effected, and an act is coded as
a relata of the action to be effected and its objects.
But for scene description the system can make use of a few
simple types, to trigger the built-in acts of merging
the implied into the next layer, or onto the list of new
characterizers to apply. This can also be combined with
the dynamic adjustment capability, so that the parts of
the relata can be adjusted as the relata is matched. And
the implieds can be adjusted as a function of what
has been found in the matching of the description. This
generalizes what is already being done when relative loca-
tions are projected.

OVERALL FLOW OF INFORMATION THROUGH THE SYSTEM, OVER TIME

Fixed and Dynamic Characterizing Transforms

Information is successively transformed from the
base, to the apex of the cone. This is done chiefly by
characterizing and "pre-processing" transforms that are

built into the layers of the cone, many of them iterated
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as though in parallel throughout the layer.

It is also done by a dynamic set of transforms to
be applied, where these transforms, and the relative
location at which they should be applied (and thus used
to "glance about") are implied by previously successful
transforms. Note that these dynamically implied trans-
forms are hard to interpret anatomically: They are not a
part of the cone; rather, they must be merged into
.dynamically built-up and faded lists, one for each layer
of the cone. But such dynamic lists are certainly
necessary for more central cognitive processes, and
it is interesting to find them indicated and helpful even
at the earliest layers of perceptual processing.

The Many Uses and Types. of Transforms

Averaging transforms serve, especially in the first
few layers, to smooth out noise. But they also serve the
crucial function of merging together the implications of
the same object in adjacent regions, as these regions
shrink from layer to layer. Differencing transforms serve
to find gradients and edges, and second-order changes in
them, in the earlier layers. But they also serve to
help in triggering choices among alternatives in local
apexes of sub—regions:

Feature extractors can work at a’low-level concrete
thing (e.g. building up a long line or simple angle), and

also at high-level compounds (e.g. face, stick-man,
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family, or a sentence). For each part they look for can be
-any kind of thing - an intensity, a gradient, an internal
-name of a part, a structure, an object, or an abstract
thing like a class or a quality.

The Numbers of Transforms in Each Layer, and at Each Point

The number of transforms applied in each layer, and
at each point, can be varied, and this is one of the prime
questions for experimental exploration. Overall
architectural considerations probably suggest that the
total number of processes (neurons and transforms) remain
roughly constant. (The fact of moving from the surface-
skin of the system toward the center suggests there may be
less and less space, so that the total number in each
layer, moving inward, should lessen. On the other hand,
it is reasonable to assume that as they become more
precious components can be miniaturized - as appears to
be the case in the cortex. So, we might make a rough
first approximation that these two factors cancel one
anothef.)

A reasonable set of values seems the following: The
first averaging and differencing layers need only one
transform per layer - the single averaging or differencing
transform - iterated at every point. The first feature-
detécting layer, if it detects something like short line-

segments, might use about 4 to 16 detectors at each point,
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one for each of 4 to 16 slopes, or other primitive

features. It seems reasonable to limit the number of trans-
forms at any point to 5, 10, or at the most 20. This
suggests assigning each to a smaller region, as the

possible number increases and, probagly most important,
flexibly implying them dynamically. See Figure 11 for a
range of examples.

The more cells each transform looks at,mthe less
space there will be for transforms, as wires begin to
crowd one another. So we can think of a trade-off between
number and complexity (in terms of input and output wires)
of transforms. But deep-layer tfansforms can be quite
complex with few wires, because the things they look for

are themselves extremely complex.

Insert Figure 11 about here

Time, and the Fading and Reinforcing of Memory

Up to this point I have described the behavior of the
recognition cone as it processes a single moment of time,
for example a single movie frame, the single 30 milli-
second scan of a tv camera, or a human glance. Now let's
assume that a new scene - a next moment of time, in the
next movie frame or tv scan - is sensed into the input
memory buffers taking, let's say, another 30 msec. Let's
further assume that it takes the same amount of time, say
30 msec, to perform each set of parallel operations needed

to transform information from each Ith to the I+lth buffer.
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(This seems a plausible assumption, since each of these
represents one serial transformation of the many parallel
elements in that layer, across something equivalent to a
synapse - and it seems reasonable that all such l-layer
synapse crossings would take about the same amount of
time.)

Now, rather than replacing what was in each buffer
by the new information got from the new scene, the model
must merge this new information in. This is done in a
very simple way (see Uhr, 1973b, 1975c for details).

‘Merging takes place as follows:

The first time a new thing is implied, it is entered
into its output cell with a relatively high initial
weight. This serves to make salient both new things and
moving things (since they will also be new to that
particular location). Whenever a thing is implied (e.q.
from parts, context, or higher-level wholes) its weight
is up-gd. A general tendency toward forgetting is given
the system, by having everything fade away slightly at each
moment of time. (The initial weight, fade, and up
weights are all parameters.)

Things can be implied from many sources. Characterizers
can imply possible things. Things can imply related
thinés. And internal sources can make things salient.

For example, an internal need like hunger can imply a class
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of objects, like food, that will satisfy it; food might
imply banana, apple, and cracker; banana might imply yellow
and certain curve features, etc. A transform can focus

the system's attention, by implying characterizers to

apply to the input scene, and also imply, probably with
only a small weight, the presence of suggested objects,
slightly enhancing and making salient any such implications
that might exist from partial recognition. Thus, depending
upon the content of the specific memory net given to, or
learned by, the model, salience can become a function of

a variety of different external aﬁd internal sources.

Thus the salience of something in memory, and hence
the length of time it remains in memory depends upon how
recent it is, how long it has remained present in the
sensed external world, how much it has moved, and how much
it has been implied by other things, both external and
internal. Note how this appiies not just to the Retina or
to the Apex of the cone, but also to the Internal memory
buffefs at every layer.

Transforms that are merged into the lists Qf
characterizers to apply next are also faded over time, and
made more salient to the extent that they are repeatedly
implied. Here, as elsewhere, it is interesting to play
around with the fade and up-weight parameters. (Learning

of the Long-Term Memory also follows much the same algorithm,
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with different up-weight and fade functions, so that informa-
tion is not forgotten so fast.)

Depending upon the specific up-weight and fade factors,
information will be forgotten faster or more slowly. It
must remain at least long enough to a) allow for recognition
of objects and scenes that unroll over time - for example a
spoken sentence - and hb) keep enough of the recent past in
memory so thnat when feedback is recognized, as referring to
an act in response to some prior scene, the system still
remembers that scene and that act, so that it can learn from
this episode.

Time to Characterize, Time to Glance About

This leads to rather subtle, and rather nice, time
effects. When a characterizer implies the possible existence
of an object in a certain direction, the system determines
where to glance next, and what further transforms to apply,
to confirm or deny that possibility. This process will take
several moments of time. (When perception is embedded in
a larger system that actually glances by moving the eye, head,
or body about, rather than simply moving the "mind's eye,"
this will take a good bit longer still.) Thus the new
characterizers will be applied to a scene that is slightly
changed, as a result of the passage of time.

To be successful, characterizers must be implied fast

enough so that they will still be pertinent. Fading of the




-37-

recent past must be slow enough to hold whole episodes

"in mind." The external world must not change overly fast
with respect to the system's internal processes and internal
clock. Here we begin to see a subtle and intimate

coupling of internal and external time. We should expect
and be able to count upon such a coupling. For after all
living systems evolve érocesses that respond to externals
fast enough to derive some benefit - e.g. by catching and
eating the fly before it dies of o0ld age, and even before

it buzzes away.

Outputting a Description

The apex of the cone and the FOUND list contain a
rich variety of descriptive information, including all the
triggered choices, along with their locations and sub-parts,
qualities and characteristics, and all partially-implied
things. We could simply have all this output, as a "complete"
description, or have the 1,2, or N most highly implied things
output. But what is really needed is a pertinent description,
and that entails developing a concept of what
the hearer of the description is interested in finding out
(see Uhxr, 1973c, 1973e).

For the moment, SEER gives a hearer a simple "conversa-
tional" capability to make stylized requests for more objects,

and/or more information about the parts or qualities of

already-named objects.
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PSYCHOLOGICAL AND PHYSIOLOGICAL
PLAUSIBILITY OF THE SEER MODEL

Many aspects of the physiology and psychology of the
visual system have already been discussed, as part of the
rationale for SEER's overall architecture, transforms used,
and flow of processes. It is still premature to talk about
detailsf since they deéend upon specific features and
parameter values. But the overall fit of model to data, and
the variety and breadth of phenomena SEER at least begins
to handle, seem to me to make it a reasonable first-approxi-
mation toward a model of form perception in a changing
environment.

A model for so complex a system, where the model itself
has the large number of degrees of freedom of a complex
computer program, should predict to a very large number of
data points, of a wide variety. Such a model does not have

the clean simplicity that we are used to in the physical

sciences. But it must be relatively simple - as simple and
elegant as possible, given the complexity of the domain being
modeled. This must ultimately be shown as exhibiting its

relative power. That is, as the model becomes less simple it

must exhibit relatively more power. Otherwise we can fall
into ad hoc models with as many degrees of freedom as
daté—pointspredicted.

Two general types of data should be fitted. First, the
system should perform the variety of tasks for which it was

built (in our case, perception of objects and description of
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scenes). If we want it to model perception in humans or
a specific animal, it should do this only as well as that
animal, and also exhibit the confusions and peculiarities
(e.ge.illusions) of that animal.

Second, it should look like that animal's perceptual
system, in overall architecture and in details.

The preceding discussion has been directed to the second
point. Extensive testing and tuning will be needed to examine
how well this system can handle a wide variety of perceptual
tasks. But I can only note that it is designed for
flexibility and generality - two prime attributes of human
perception - and has a minimum of built-in procedures or
transforms. (In fact the hope is that as many as possible
of the transforms will be learned.)

Let's look now at some criteria for animal-like behavior
that have been posed in the literature.

N.S. Sutherland's Criteria for a
Model of Form Perception

\ﬁ.S..Sttherland (1968) suggested 12 criteria for a model
of form perception, as follows (see Uhr, 1975b for tables

evaluating other research on these and other criteria):

1) Invariance over Size

The shrinking layers of the cone handle size invariance
in &n especially simple way. We can think of each layer as
another step in trying to focus the image of the object so

that it fits the high-level structure-characterizing
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transforms that imply that object. Assume that these trans-
forms are repeated in several layers. If they do not succeed
in the first layer, because the object is too large, they
will succeed in some later layer, where the object is the
right size. Thus the layer in which they succeed gives a
direct estimate of the object's apparent size.

2) Invariance over Retinal Position (Translation)

This system (like many others) recognizes and describes
objects no matter where they lie in the larger field. This
is very simply effected, by having the characterizing
transforms iterated throughout the field, much like Hubel
and Wiesel's (1962) "simple" features. The successive
shrinking of the cone, and convergence-by-averaging then
merges the implied object into the apex, from
whatever position, giving the effect of Hubel and Wiesel's
(1965) "complex" and "hypercomplex" cells, without programming
them explicitly. Alternately, higher-level transforms can
look for the simple features everywhere, acting like complex
cells directly.

3) Invariance over Brightness.

The differencing transforms are sensitive to gradients,
and to changes in gradients, rather than to absolute in-
tensities. Thus forms are recognized no matter what the
briéhtness of their parts, so long as there is sufficient

contrast,

4) Equivalence of OQOutline and Filled-in Shapes.

This depends upon the differencing transforms used,
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and also upon the structural transforms that build up
higher-level shapes from edges. An outline will give

both an outer and an inner edge; a filled-in shape only an
outer edge. The higher-level structural transform can
specify combinations of either or both. |

5) Invariance over Small Rotations (but not Large
Rotations)

The basic configurational characterizer used, where each
part of the configuration is a relatively sketchy representa-
tion of a segment (e.g. line, curve, angle) of a figure,
appears to have roughly the right amount of invariance
over local noise and jitter, and also over small rotations,
as indicated by living systems. Hubel and Wiesel (1962,

1965) find edge detectors sensitive to slopes within aro;nd

10° of change. In humans recognition appears to begin

to fall off around 25° of slope change (but here we are talking
about recognition of things like letters or pictures that

are made up of a whole complex of simple line segments).
Depending upon how schematic the basic parts are made, this
range, from, say, 10° to 45° seems just about what structural
threshold transforms will give.

On the other hand, with learning, an alternate set of
transforms will be developed to handle the different rotations.
In a learning experiment they might be developed over a
short period of time. More realistically, they would have

been learned in prior experience, but have low weights and
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rarely be used (this again needs a more central mechanism
that has access to and dynamically implies transforms

from a much larger set than those built into the basic
recognition cone) but are available for fairly gquick up-
weighting and use when indicated, as when we adjust ourselves
to reading a book upside-down. Note that these are structure-
characterizers at a high level, ones that make use of the

same relatively small set of basic strokes, so that there

is no need to store very many additional transforms for
rotations.

This fits well with the whole spirit of parallel
redundant thnreshold transforms for recognition over dis-
tortions and noise. The size of the transform set needed
to handle the very difficult non-linear variations is
already large, and will be expanded only a relatively small
amount more to handle the simpler linear rotation.

6) Confusions Between Different Shapes Should Mirror those
of the Animal Being Modelled,

This will depend upon the specific set of transforms
used, and that in turn should depend upon the specific animal
being modelled. But to the extent that edge, curve, angle,
loop, etc. feature-detectors and structure—characterizers.
are plausible we should expect reasonable similarities.

¢ At some point we must tune (or teach) our model, by
finding where it goes astray and using this information to

help improve upon the details of the transforms.
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7) Invariance over Local Distortions and Jitter.

This has already been discussed under 5) above, and
seems to be a basic strength of the probabilistic thresholding
structure, where specifications are loose, and can be
satisfied by a variety of fragmentary, loosely-positioned
information.

More important is invariance over more global, non-linear
and unknown distortions (e.g. all thedifferent A's, or expres-
sions of the same person's face), which will be discussed
below.

8) Segmentation of the Same Picture in Different Ways.

This is done quite naturally when partially-overlapping
structures are built up. SEER will at some point decide
among these, and often it will be wrong. When the decision
is close we might if we wished call it an ambiguous situation.
Much empirical testing would be needed, with a specific set
of transforms, to determine how similar SEER's difficulties
and ambiguities are to those of people.

9) Recognition of Complex Scenes should be Possible, but
More Difficult.

This seems to be the case for SEER, as well as for most
systems that attempt to recognize objects in scenes - which
is the more difficult task - as well as when isolated. But
SEER is able to make fairly nice use of information from a
variety of contextual sources, and can direct its attention
toward different aspects of the scene. These are the sorts of

things that seem part of a reasonable scene-describing system.
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10) Perceptual Learning.

SEER has fairly sophisticated learning capabilities,
but these will be described elsewhere. (Uhr, 1975c; for
related work see 1973a; Uhr and Jordan, 1969). 1In a word,
it tries to discover and learn the feature- and structure-
detectors at the later layers, as well as inductively learn
-good weights for them. (The earlier layers are assumed
to be a result of much slower "evolutionary learning.")

11) Redundancy Should be Taken Advantage of.

This is basic to SEER's use of compounding probabilistic
structures. It is expected that objects will be varied,
noisy, and fragmented. Alternate, partially overlapping
and redundant feature- and structure-detectors are used, so
that no specific parts or features need be present.

This is where the more traditional syntactic and
structural recognizers fall down, since they must have
everything in place. A basic assumption behind SEER is that
a large part of any object (apparantly for real-world-
recognizable objects, well over half) can be distorted,
fuzzed-up, or eliminated entirely, without having much effect
on recognition.

12) The Model Must Satisfy Physiological as Well as
Psychological Evidence.

, This again seems to me one of the strengths of SEER,

as discussed throughout this paper (see also Uhr, 1975a).
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In contrast, systems that use curve~-followers, long chains
of serial processes, or directed deauctive inferences seem
quite implausible as perceptual models.

The anatomy and physiology of living visual systems is
clearly parallel-serial, with 3 to 5 layers irn the retina and
lateral geniculate, another 3 to 6 in the primary visual cortex,
and then several more additional projections in subsequent
visual cortex areas. The basic transform in the brain is
the synapse, which appears to be a threshold element into which
tens, hundreds, or even thousands of neurons fire. The human
eye has the fovea of about 7 million shape=- and color-sensitive
cones at the center of the retina surrounded by over 100
million change- and motion-sensitive rods. And information
from the two eyes merges in the cortex to give binocular
depth perception. There appear to be a number of feedback
loops, and lateral connections within single layerﬁ;/

The recognition cone does not capture all the details of
the visual system. But it attempts to abstract the essentials.

Additional Criteria, for Color, Time,
Descriptions, Context

Several additionel criteria should be examined, including:

13) Invariance over Unknown Non-Linear Transformations

This is the most complex and difficult type of distortion,
and*also the kind that has motivated much of the structure of
this model, which, as the entire paper indicates, is designed

to handle real-world variations, in all their unknown richness.
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14) It Should Handle Shaded, as well as Black-White Scenes

15) It Should Handle Colored Scenes

16) It Should Handle Scenes that Extend over Time

These are all extensions to higher-dimensioned scenes
that recognition cones are especially designed to handle,
as discussed elsewhere in this paper.

17) It Should Handle 3-Dimensional Scenes

The third spatial dimension, giving depth, is the extra
dimension that "robot vision" research has focused upon,
because of the need for the robot to interact with solid
objects in a room. Very powerful techniques have been
developed for inferring straight-edge solids from information
about homogeneous regions, even when solids overlap one
another. They use elaborate serial projective geometry
computations that seem very different from anything a living
visual system appears to do. Recognition cones are/weaker
at this. But they can be given structure-characterizers
sensitive to gradients and perspective in the depth dimension.

Aﬂd it is not clear how much depth perception we should
expect from a single eye, especially if we want to model
living systems. It seems more reasonable to use two cones,
one for each eye, converging, as is done in living systems,
into a single apex that makes use of binocular cues for
depth, rather than trying to infer everything from the single

monocular 2-dimensional projection.
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18) It Should Give Appropriate Descriptions

It is not at all clear what we mean by a "description"
(for examinations of this complex concept, see Uhr, 1973c,
1973e; Firschein and Fischler, 1971; Fischler, 1969).
But recognition cones can give the sort of "standard descrip-
tion" of the whole objects and their structures, given a
suitable set of transforms with suitable weights assigned
to their implications. Or the cone can be put into an
interactive conversation with the "hearer" of the descrip-
tion, who now can demand those aspects that he deems pertinent
(Uhr, 1973e). This, I would argue, is only a first step.
Good descriptions, much like good question-answering or
conversation, will depend upon larger systems that are capable
of building models of the hearer - the other system in the
conversation - and the import of his demands and the‘ﬁg}tinence
of the descriptive information.

19) Recognition Should be Directed from Within as Well as
From Without

As discussed elsewhere, back-~linking from needs and
expectations to lower-level structures and transforms that
might imply them allows this system to mix inner- and outer-
directed activities. This is effected in a natural way
because recognition continues over time.

20) ‘The System Should Handle a Variety of Contextual Inter-
actions

Any transform can imply anything, including other trans-
forms to apply. Thus, e.g., a structure-characterizer that

implies the letter "D" can also imply (with a lower weight)
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a larger whole, e.g. the word "DOG" and/or a separate

-entity, e.g. the letter "O-to-the-right." The word "DOG"

<can back-link to imply the letter "0" which further back-links
to the perceptual transforms that imply it. Moving deeper
into the memory net, beyond the perceptual transforms,

still other words in the immediate context might be "FOOD"

or "SAUSAGE" (or simply imply them), and these in turn would
imply "HOT DOG" as the meaning of "DOG," so that the system
would search for the word "HOT" to the left of "DOG." And

so on.

Generality, Efficiency, Power, Predictability

There are several important overall criteria:

21) How well does the Model Work?

That seems to me a crucial question. Being able to
name and describe well is as pertinent as being made of the
proper kinds of nerve nets, or exhibiting some of the human's
peculiarities.

This model can handle a great vériety of perceptual
tasks. It must be tested extensively, using a good set of
transforms. But it seems at least as likely as more determin-

istic and less flexible systems to give interesting results.

22) There Should be no Theoretical Limits on the Model's
Generallity .

*Minsky and Papert (1969) have shown that Rosenblatt's

"l-layer perceptrons" and Selfridge's "l-layer pandemonia"
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can become grossly inefficient if asked to recognize global
characteristics, like "connectivity." They have further
implied, and many researchers have mistakenly thought that
they had proved, that multi-layered systems, or indeed any
kind of network systems, had similar grave problems. But
this implication is clearly false - just look at the multi-
layered anatomy of the eye-brain network! In any case, as
they mention themselves (e.g. "a universal computer could be
built entirely out of linear threshold elements," p. 231),
Minsky and Papert are only raising issues of efficiency, not
of generality. Their results have been widely misunderstood
to suggest that any kind of hierarchical network of any

kind of characterizing transform suffered from the proved
limits of "l-layer perceptrons." But they proved only that
strictly parallel systems are inefficient in the size of the
threshold element needed to compute a complex function at a

single step. In contrast, a strictly serial system will give

the extreme of inefficiency in terms of the time needed to

compute that function. Mixed parallel-serial systems are

needed, whenever it is desirable to try to optimize over

both space and time, to decompose a single complex function

into a hierarchical network of simpler functions, where the

depth of the hierarchy determines the amount of time needed.
.

This is a commonly used technique, whether in parsing

sentences, building complex switching circuits, or computing
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complex functions. It also appears to be the way brains

do things - as evidenced by the architecture of parallel
layers that serially converge toward the cortex, and by
our subjective intuition that parts hierarchically compound
into larger and larger wholes (e.g. strokes into letters
into words int6 phrases into ideas).

Despite Minsky and Papert, there is no reason to
think such systems are inefficient. In contrast, the
strictly serial extreme that they propose suffers from
grave time inefficiencies, just as the strictly parallel
system suffers from grave space inefficiencies.

In any case, inefficiency and not generality is the
issue. A network of threshold elements with input and
output is equivalent to a Turing Machine, and therefore
has all the potential power of a general-purpose computer.

The hierarchical parallel-serial structure of
recognition cones is designed with efficiency a primary con-
sideration. The building of larger structures from smaller
is probably the best (and also nature's) way to get
complexity.

Minsky and Papert suggest as the alternative "serial
algorithms." Most of the recent "robot vision" research
has Peen of that sort; where long necessarily-serial chains

of computations are needed to match complex graph-like
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structures. As pointed out elsewhere (Uhr, in preparation),
the advantages of serial processing can be got in a mixed
parallel-serial system - but without paying the terrible
price of the excessively long times and careful processing

- needed for strictly serial processing. In nature the per-
ceiver must act as fast as possible, or die; and it must
contend with all of nature's distortions and dissimulations.

PARALLEL VS SERIAL VS PARALLEL-SERIAL SYSTEMS

This is a parallel-serial model. The perceptual part
of SEER is organized into the layered cone. Central memory
does not have such well-delineated layers. But central
processes are also parallel in their associative search
out into a hierarchically organized memory network. This
search continues serially over time, as directed by a melding
of what is expected and desired, and what is implied by the
things that have been found so far.

Parallel processes give robustness and speed. The large
number of partially redundant transforms can recover from
the errors of any particular transform. As scenes become
large and complex it becomes increasingly important to apply
transforms in parallel rather than one after another, in
order to recognize things fast enough to manipulate them.
And }iving animals wiéh well-developed perceptual systems

are extremely parallel, especially at the surface of the body.
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Serial processes give direction, and reduce the total
number of computations. Things implied so far can imply

other things to look for next. Rather than make a single

parallel search for a complex structure and all its possible
real-world variants, the necessary transforms can be de-
composed into a much more efficient set of hierarchies of
simple transforms. Implications can come from any kind of
contextual source, including any aspect of the scene, the
recent past, the memory store, or higher-level possibilities.
The mixing together of parallel and serial processes thus
gives a number of advantages.

PROBABILISTIC VS. DETERMINISTIC SYSTEMS

The use of weights and probabilistic decisions allows
for a simple and realistic system. Many partial implications
of each possible thing can be merged together, and then the
most highly implied among alternative possibilities chosen.
This appears to be what goes on in the thresholding elements,
the synapses, of living brains.

In contrast, deterministic systems must make very
careful serial searches in order to try to match portions of
the scene with descriptions of structures stored in memory.
This can take a great deal of time, and necessitate the use
of c?mplex algorithmié or heuristic searches. All possible
variations of real-world patterns must be anticipated with
additional tests and intermediate decisions in the matching

process.



-53-

Most researchers have tried to handle perception in a
probabilistic way, and deductive problem-solving in a
deterministic way. The determinists are beginning to try
to handle perception, and the probabilists are similarly
moving into problem-solving. It will be interesting
to see which is the more suitable approach, or whether they
must both be used, and if so how they can best be combined.

The SEER model is, of course, an attempt to use a
probabilistic, parallel-serial approach.

A QUICK COMPARISON WITH OTHER PROGRAMMED MODELS

The parallel-serial probabilistic architecture of
recognition cones stands in sharp contrast to the serial,
usually deterministic structure of most programs that attempt
to do scene description by using "syntactic" or "graph-
matching" techniques. (For a detailed examination of
different systems, see Uhr 1973a, 1975b.)

Briefly, the recognition cone builds up hierarchies
that give higher and higher level structures. It expects
redundant and fragmented objects, so it uses weights and
thresholds, rather than insisting that everything be present,
exactly as specified. It uses the same network-flow of
the same basic type of transform to let a wide variety of
sources - including what has been found so far, and also
cont;xts and internal needs and expectations - imply, in

parallel, what might be there, and what to look for next.

There is thus a complex flow of processes, simultaneously
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from outside and inside, that is organized by the overall
parallel-serial converging architecture.

Processing over time gives the serial depth needed
for longer chains of transforms. The ability to decide
when to choose among possibilities allows the system to assign
descriptions to sub-regions of thelarger scene. Decisions
are expected to be less-than-perfect, but the system
tries to do as well as possible, under a basic assumption
that there will be error, and even ultimate ambiguitiés.
"Specific knowledge" is built-in (or learned) as the specific-
transforms - just as specific "rewrite rules" give a parsing
system a grammar for a specific language.

In contrast, most scene describers build "syntactic"-
like or "graph-like" structures over the scene. They there-
fore must assume either extremely clean, simple scenes of
objects that do not vary, as in the robot research, or
powerful pre-processing routines that have turned noisy and
distorted real-world scenes into regular graph-like drawings
of nicely connected line-segments, as in the "syntactic"
systems. These systems use "parsing," "graph—matching" or
"heuristic search" techniques to perform long deductive
sequences of processes that attempt to match parts of the
scene with parts of internal graph-representations. It seems

.
far harder to interpret this latter approach in terms of the

neurophysiological architecture of nature's eye-brain systems,
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or in terms of the living eye's ability to make use of,
or do without, redundancy, in the way it handles noisy,
distorted, and grossly fragmented scenes.

A COMPARISON WITH MORE TRADITIONAL PSYCHOLOGICAL
AND NEUROPHYSIOLOGICAL MODELS

Black-box models like Hunt's (1973) or Norman and
Rumelhart's (1970) (see Figure 12), which are among the
most detailed, are far too vague to be useful in specifying
mechanisms. They encompass all of pattern recognition and
scene description in the box that extracts features and the
next box that assigns names. But that is so general as
to include all pattern recognizers, and is nothing more than
putting the statements, "Input the pattern, extract features,
name the pattern" into separate boxes with arrows between
them. Worse, it obscures the crucial issues of the overall
structure of features, so that we get no idea of the possible
virtues of hierarchical parallel-serial systems, or why
they are needed, or how they can be organized.

I£ is also dangerous to ignore the issue of what the
features are. That 1s a reasonable tactic for awhile since,
especially when we concentrate on the more central processes,
we can always simplify our inputs to the point where only a
few obvious features are needed (e.g.if we input only one
perfect square, circle and triangle, always using exactly the

same pictures, then a few edge, curve and angle detectors or
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even whole-templates will be enough). But that sweeps the
most difficult part of the pattern reéognition problem

under the rug - the recognition that an object is the same
—over widely different and unknown transformations and under
all kinds of noise conditions. And it seems crucial to handle
that problem at the same time as our more central problem,
since the two interact intimately, control and direct one
another, use the same mechanisms, and throw light upon one

another.

Figure 12 about here

Similarly, the Anderson-Bower model (1973)
ignores all the actual scene recognition, assuming that this
is done, as though by magic, so that the recognized letters
are now in short-term memory. It then very carefully traces
out the graph searches needed in order to match them with
representations in memory. But the amount of transformation
needed just to recognize that scene, even if it is done in
as parallel a manner as possible,is almost certainly longer -
probably 5 or 10 times as long - as the final match that they
so carefully trace out. So timing estimates will almost
certainly be quite unrealistic.

More traditional neurophysiolégical models, like Young's
(1964), Konorski's (1967), and Eccles' (1973) £ill in many

interesting and important details at the level of individual
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neurons and synapses, and make provocative suggestions

as to overall structure. But they still seem to suffer
from the inevitable sketchy and incomplete nature of verbal
descriptions. Deutsch, 1955, 1962, Sutherland, 1968, and
Dodwell, 1957, 1970 have made major steps in filling in gaps
and stating things fully, and begin to approach the precision,
self-consistency and completeness of actual computer-
programmed models. (I should note that Stevens, 1961, pro-
grammed her version of Deutsch and the result was, I think
it is fair to say, a fairly typical pattern recognition
program for naming a single isolated object.)

We might better think of these verbal discussions as
general frameworks, or points of view. It is almost impossible
to judge whether, or how well, they will work on the great
variety of patterns that must be recognized. And they say
virtually nothing about the mechanisms for handling moving
or changing objects, or for perceiving scenes of several inter-
acting objects.

The computer-programmed models can begin to £ill in the
details of the sketch, and grapple with the problems of the
actual mechanisms, their interactions and overall structure,
and the ways in which they fit and work together. They can
also begin to bridge the gap between neurophysiological networks
and.psychological functions. It is here that a model that
uses parallel-serial structures of synapse-like transforms
to perform the perceptual functions of recognition and

description appears especially appropriate.
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ICONIC, SHORT-TERM, AND LONG-TERM MEMORIES

The present model was designed holding in mind primarily
1) the perceptual problems of naming and appropriately
describing objects that can vary widely from instance to
instance, 2) the functions that seemed necessary and
desirable to handle naming and describing as efficiently
and as elegantly as possible, and 3) the physiological
macro-structure of the layered parallel-serial visual system
of retina, geniculate, and cortex, and the physiological
micro-structure of neurons synapsing on other neurons,
giving threshold elements that have the properties of
lateral inhibition, edging, and the local feature-detectors
that have been found in living eyes.

There was no special desire to designate functional
black~boxes like Iconic Memory (IM), Short-term Memory
(STM) , or Long-Term Memory (LTM) of the sort information-
processing psychologists have posited, and examined experi-
mentally (see Reed, 1973).

Memory was kept as simple and homogeneous as possible,
with complexity, if needed, forced upon the model by the
problems that must be handled. That is, I wanted to add
mechanisms only as compelled by the problem, rather than
superimpose a priori conceptions upon the model.

.I should point out though that from the problem it
follows quite simplyand obviously that a) inessential informa-
tion from the present input is discarded during transformation

into a description, b) information from the immediately past
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inputs must rather quickly fade away and be got rid of, it
only to keep from clogging up memory stores, and c¢) some
information must be kept relatively permanently, ih order
+to characterize and recognize. So this varying durability
of information will surely lead to more of less transient
memories to which, if we are so inclined, we can give
names like STM, LTM, 2TM, 3TM,.... (My inclination was
and is to have a continuum of some sort.)

But it turns out that, post hoc, we can fairly easily
designate where IM and LTM might reside and further, I
think, get some interesting insights into STM which, indeed,
appears to be a graded hierarchical structure, dispersed
through the many layers of the recognition cone.

Iconic Memory

Iconic Memory (IM) is, pretty clearly, the first Input
Buffer, where all the details of the present sensed environ-
ment are stored. (Alternately, it might be the first and/or
the next layer or two, since they serve to average, to clean
and smooth the raw input a bit, and difference, to heighten
its gradients.) When the next moment of time is input the
new sensed data merge in with theold, and all gradually fade
away. But if we flash one picture for one input moment, as
in Sperling's (1960) or Eriksen and Collins' (1968) experiments,
this‘detailed representation of the flashed picture remains,
albeit rapidly fading (giving much the phenomenon of Sperling's

Iconic Memory). It is during this fading period of the

unchanging picture that we have the IM. Masking by disparate
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stimuli will occur because of the choices made in cells, or
if we limit the size of the store in each cell.

But notice that this IM fades away exactly as does the
memory stored at every layer of the cone, and in that sense
it is a part of the STM.

Short-term Memory

The locus of Short-Term Memory (STM) presents a much
tougher problem. Obvious homes are the Apex of the cone and
the FOUND list, where the external names and qualities that
form the raw material of a description reside. We can, if
we wish, now limit its size, following the results of the
many experiments that suggest relatively small numbers like
7, or at the most 15 or 50, things held in this memory.

Cognitive and Perceptual Aspects of STM

I think it would be more reasonable to worry about how
this perceptual model fits into a larger cognitive model that
can transfer information into STM from internal as well as
external sources. Think of a memory search for the names of
all people talked with during the past month, or a deductive
search for some set of objects, e.g. all the integers divisible
by 17. The apex of the cone isn't a bad place for such a
store, which could be handled by having memory searches transfer
information into it, much as the perceptual search transfers

L]
information into it.
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But I am inclined to put such a\store in a common
FOUND list one or two transform layers back from the cone's
apex, so that a convergence from these very different sources
of information can be made more cleanly - with each source
having its own apex. (When we remember that a complete
perceptual system will nave several sense modes ~-e.g. ears
and skin as well as eyes, this becomes more compelling,
since each separate mode should, at least for awhile, converge
separately, as though in its own cone - though an attractive
alternative is to merge into the same cone only part-way
through, or, as a compromise, do a bit of merging or cross-
talking.)

Glimmerings of "Consciousness"

STM implies several functions, and has several aspects.
We tend to think of it as a temporary store that we have some
control over, and choose to use. There is an aspect of con-
scious awareness - we know information is there in STM - and
of conscious control - we put that information there, in order
to use it in a certain way - whether to scan new scenes,
search memory, or perform deductions. I would prefer to call
such a store "awareness" or even "consciousness” - except
that such terms make many people terribly uneasy, and I am
inclined to reserve "consciousness" for the more complex system
thaé, I am sure, will ultimately have to be programmed, where
it is clear that a "self" is consciously aware of and there-
fore is able to exercise greater processing power over that
body of data that has been transferred to the central "conscious-

ness.*
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I also feel that it is quite premature to assume that
there is one and only one such STM or "awareness." It seems
just as likely that there might be several, or even many,
such temporary buffers (at the least one for pe;ceived and
another for remembered information) but that the still-higher-
level conscious controller has only limited access to these
and, when it pulls information into consciousness (or maybe
I should say when consciousness throws its limited searchlight
over information) we notice it. All that may merely be saying
that a central conscious STM is something like a super-apex
that has access to many apexes in perception and in memory}
and that this super-apex is quite limited in its capacity
(why? - probably because its processes are so sophisticated
as to be quite costly) and quite active and choosey in what
it takes in.

Dispersed Loci of STM

But much else is STM. Each layer in the cone must store
informgtion temporarily, and must let this information fade
away relatively quickly, in order to be able to handle change.
Similarly, there must be temporary transfers in associative
memory searches, and temporary scratch-pads for deductive com-
putations (unless the latter can only be handled by the central
consciousness - which would be a good explanation as to why
we Hhmans are so bad at deductive inference), I would be

inclined to call this all STM. 1In doing so, we radically

change our conception of STM.
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Long-Term Memory

Long-Term Memory (LTM) is quite clearly the whole
structure of characterizing transforms. Remember, we
are talking only about a model for perception. When the
rest of memory is added, to handle facts and ideas stored
from the past, to do deductive inference, and to understand
and use language, we add what people normally think of as
"memory." But this will only be more of the same kind -
except that specific content will differ, and the overall
structure will not follow the nicely layered converging
processes that we see in perception. Thus LTM does not reside

after, more centrally than STM. Rather, it is everywhere, and

it is especially needed just in order to convert raw sensed
information into understood and meaningful information of the
sort the STMs and the conscious awareness contain.

Another crucial issue, one that is beyond the scope of
this paper, is that LTM must itself be learned (which also means
modifiable and un-learnable). Thus almost anything in LTM is
grist for forgetting, and therein similar to STM. Much in LTM
might be wired in solid (this I'd be inclined to say is what
has been learned by evolution of the species, rather than by
discovery and induction over the much shorter lifespan of the
individual), and we might want to restrict our definition of

LTM to refer just to this.
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Note £hat this elevates the perceptual characterizers to
prime place in LTM, since much oftﬂuaperipheral structure of
the sensory systems does indeed appear to be wired in, and turns
what we more typically think of as LTM- e.g. remembrances of
childhood scenes, names, and memorized poems - into relatively
permanent STM. Maybe it is best to think of a Hard or Certain
LTM and a Soft or Probabilistic LTM, noting that a probability
can reach almost 1 for all practical intents and purposes.

Transfer from STM to LTM

STM is thought to be used as a buffer for transfer of
information into LTM, and indications have been found that
there may be different electro-chemical processes involved (See
Gurowitz, 1969; Deutsch, 1973, for both evidence and
controversy.) STM may be erased by shock or drugs, which might
suggest a temporary chemical state, or a circulating train of
impulses. Mechanical change to make synapse crossings easier, or
the laying down of template-like molecules that store memory -
both apparently slow processes with relatively permanent
results - appear to be strong possibilities for LTM. But why
should a single "aware" STM be necessary? The present model
suggests other possibilities.

It seems a bit strange that the same STM holds a phone
numbgf to be dialed, and then forgotten, and also a Latin word
to be memorized forever. We try to exert "effort" to stamp
the Latin word in (and maybe that's why we usually don't do very

well). It seems at least as plausible to think of any of the
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temporary STM stores as possible sources of transfer of
information to LTM. This suggests rich interconnections from
many of the layers of the cone, and not merely the Apex. But
more important, it suggests that motivating context - which
indicates salience, importance, and significance - is crucial
in telling the system what it ought to start remembering. It
further suggests that information transferred into LTM is
likely to be transient, shortly to be forgotten. Only if
future experiences reinforce its importance, so that the bonds
connecting it into memory are both strengthened and made more
numerous, will it remain.

Thus LTM is a dynamic, ever-changing store. It might
best be thought of as just a (very large) extension of STM,
where the principles of salience are emphasized, as a counter-
force to the inevitable fading over time. Thus learning,
using the fuels of feedback and motivation, is the fire that
burns memory into place, and also burns it over.

Overall Architecture of a Unified Memory

There may well be a central consciousness store, limited
"in size because of the great cost of its enchanced processing
power (e.g. for simultaneous scans and deductions, by looking
at everytning at the same time and from a variety of points of
view). And there almost certainly are hard-wired memory nodes,
especially in the relatively peripheral perceptual and motor
systems. There might be two major substances for carrying

memory, one that is relatively fast-acting, another that is
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relatively permanent. But "shortness" in STM, and "longness"
in LT™ almost certainly vary and merge. An obvious observation
is the ever-lessening amount of information we can remember
about 10 seconds, 10 minutes, 10 hours, l10days, 10 weeks, 10
months, and 10 years ago.

This suggests very dynamic LTM as well as STM. Fading
as a function of time and disuse is fastest in IM, slowest in LTM.
Memory is reinforced from a variety of sources, but especially
because of inferred usefulness for future processing. Immediate
episodes must stay around long enough so that the relevant
antecedents are still remembered when feedback indicates that
they should be learned. But "immediate" can mean seconds, hours
or days.

THE EFFICIENCY OF PARALLEL SYSTEMS

Parallel Systems Embodied in Hardware

We use general-purpose computers to simulate cognitive
systems because it is so convenient to write and rewrite
"software" code, and because "general-purpose" means that any
other possible computer can be simulated, with the appropriate
.programs. So we can easily build, test, modify, and rebuild
our models.

But once we have a model worth testing and using extensively,
we can effect enormous savings in speed and costs by using a

.
special-purpose computer built with that model in mind. Today's

general-purpose computers are extremely slow at handling any

parallel model, like the SEER recognition cone, for they
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simulate parallel sequences of operations by iterating through
them one at a time. Thus, for example; if we have a 1000 by
1000 input buffer on which the system must perform only 1
averaging operation, where each such operation must look at a
-center cell and its 24 neighbors, approximately (ignoring the
borders) 24 million operations must be computed serially.
(Actually, each operation takes several times longer because
of the need to compute and move to the next location of each
iteration.)

But these operations could all be computed at the same

time by a parallel system that had a 1000 x 1000 input array
(e.g. made up of tiny optical fibers) and parallel hardware for
the averaging transform - which would simply be connections

going from each cell in the input array and also its 24 neighbors
to the corresponding cell in the next layer back, with
appropriate thresnolding.

Similarly, a later layer, for convenience let's say one
with a 50 by 50, or 2500 cell, input bﬁffer, and a shrink-size of
2, with 10 different transforms, each looking at an average of
10 cells in the input, where some iterate over the entire input,
but others look only locally, so that the average iterates over
1000 rather than all 2500 cells, would use 2500 cells for its
input buffer, 625 célls‘for its output buffer, and 10 connections
for ea;h of the 10 transforms, in each of its average of 1000
locations, or 100,000 connections. With this amount of parallel

hardware, one moment of time would be needed to replace the
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100,000 serial steps.

Thus, with a great deal of hardware, we can reduce the
time needed for such a parallel-serial system to its serial
depth alone - which, inveitably, will be a small number like
15, or 5. (I should note that this large amount of hardware
is just what we see in the brain-eye visual system. It would
also be quite cheap using current LSI technology, except for
major problems in connecting and building up the overall
structure - essentially because connections in a plane are
cheap, but crossings and connections from one plane to another
are expensive and hard to effect in large quantities. Micro-
programmed parallel computers (see Kruse, 1973) may be an interim
compromise.)

Shortening and Simplifying Runs on the Serial
General-Purpose Computer

Without such parallel systems, we are complelled to keep
runs small - chiefly by cutting down on the size of the input
buffer (which means resolving the scene more coarsely, and/or
using smaller scenes). Thus a 20 by 50 scene, which is big
_enough to resolve several articulated forms, needs only 1000
input cells, as opposed to the 1,000,000 needed by the more
realistic - but still skimpy - 1000 by 1000 input buffer, and will
therefore reduce processing time roughly a thousand-fold.

«Similarly, we can make significant savings by cutting
corners and paring down here and there. Rather than average in

a 5 by 5 or larger neighborhood, loocking at 25 or more cells
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we can look only at the immediate surround, thus cutting

. 25 down to 9 cells. (Note that a realistic system would

look at many more than 25 cells in the surround, according to
the probability distributions that have been found in living
eyes.) We can similarly cut down the number of cells looked
at by differencers and feature-extractors. But I should
emphasize that once we have the proper parallel hardware there

will be very little extra cost in components, and absolutely no

extra cost in processing time, in using connectivities as
rich as seems desirable.

Cutting Costs by Using Faster
Languages and Specific Models

The use of a high-level list processing and pattern
matching programming language also introduces inefficiencies -
roughly, a program coded in SNOBOL, LISP, or a similar language
might run from 2 to 10 or 20 times as long as the same program
efficiently coded in assembly language. And the use of general
characterizers and overall structural features in the present
recognition-cone program makes the running of each specific cone
somewhat slower, maybe 2 to 5 times as slow.

. Thus significant savings can be effected by coding a specific
model in a fast and efficient programming language. This is
worthwhile only at the point where large tests are needed, since

it is ﬁar more difficult to code this kind of complex program in
assembly language, and especially to rethink, tear apart, modify,

and restructure, and do this over and over again - as is always
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the case in developing such a model. And it further seems
more efficient, in terms of research strategy, to run short
tests on different specific models using the general system, in
order to determine which specific model is worthy of more
extensive tests, and therefore of recoding as a special-
purpose program.

Although the savings from faster languages, more
efficient code, and/or less general models may only be on the
order of 2, 10, or 50-fold, compared to the thousand or
million-fold savings in using parallel computers, they may
well be crucial at any moment in time from the point of view of
how much research and testing can be bought with each available
dollar. A $1000 budget for computer time looks very different if
each run costs $2 rather than $100. On the other hand, we must
take into account the significant but hidden extra costs in
coding and using a more efficient but more rigid program.

SUMMARY DESCRIPTION OF THE MODEL

Architecture: A Parallel-Serial Converging Cone

The SEER cognitive model's perceptual "recognition cone"

"is a parallel-serial system that converges as successive trans-
forming layers successively extract, abstract, combine,

coalesce, and generalize. A scene is "sensed" at the Retinal Input
buffer IR that forms the base of the cone. The first transform
layer. looks at In and merges the outputs of successful transforms

into the next Internal buffer, Il‘ This continues until the

apex of the cone is reached.
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A General Type of Transform that Handles
a Variety of Tasks

The early layers will do what we tend to call pre-
Processing operations - smoothing, eliminating local noise,
averaging, and differencing to find gradients and the beginnings
of edges. Then first-level feature-detectors are applied,
followed by several layers of higher-level structure-
Characterizers. Transforms can imply other transforms to apply,
so that the system can explore possibilities to adduce more
evidence, glance about over the scene, and dynamically decide
what to do next.

Transforms can trigger the decision to choose among
alternative possibilities. Each such choice defines the cell
in which it is made as the apex of a sub-cone whose base is
the sub-region of the larger scene in which the chosen object
is assumed to lie. The various parts, qualities, and other
descriptive information about that object will have been merged
into and therefore be stored in that same cell.

Thus all the various processes are handled in a single
_homogeneous way.

Changes and Motion Over Time

Information fades gradually over time, with new implica-
tions merged in with the old. Objects are highly weighted to the
extent, that they are implied by transforms (because of features,
structures, contexts, needs, or larger wholes that probably

contain them - these depend upon the specific transforms given the
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system), and also as a function of change - both newness and
motion. This means that the system can handle scenes of
objects that move and change over time.

Internal Needs and Expectations

Transiorms to apply also endure over time, before they
gradually fade away, so that they look for and "expect"
things into the future. Internal needs, sets, ideas and
expectations similarly imply transforms to apply, and thus
help direct and focus the perceptual process. Thus the system
flows in a "top-down" (from internal processes) as well as
a "bottom-up" (from external sensed data) direction.

Shaded and Colored Obijects

Shaded and colored objects can be handled by the same
general type of transform (albeit the specific transforms
must be given to, or learned by, the system - just as the
specific rewrite rules must be given to a parsing system).
Shaded scenes have Intensity ranges reflecting the possible shades
of gray, rather tnan 0 and 1 (for white and black). Colored
scenes are input with the 3 primary colors as qualities, and

transforms are used that look at the same cell for these three
color-qualities, and imply the appropriate color-mixture -
just as other transforms look for three stroke-features and
imply the likely shape.

]
Iconic, Short-Term, and Long-Term Memories

It seems reasonable to equate the Input buffer with

Iconic Memory, and the Apex of the cone, and possibly also the
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FOUND list and internal buffers, with the Short-Term Memory.

The Transform layers are clearly pa;t of Long-Term Memory. In
fact the early transform layers do processes that are almost
certainly built into living eyes by evolution, so that they

are fixed at birth. And in general the perceptual transforms

are the most long~lasting nodes in memory. The more complete
SEER mode} uses the same»general type of transform for all

aspects of memory, and it is important to note that the perceptual
transforms are an integral, and especially permanent, part of
Long-Term Memory.

Possible Loci of "Awareness" and "Consciousness"

We might loosely_equate the many memory buffers with
nodes of "awareness" and the buffer into which infBrEation
from exterpgl scenes and from internal memory and ne;ds finally
merges 3s the possible germ of "conscious awareness." It
might be best to think of all of these temporary buffers as
Short-Term Memory, and the transform nodes as Long-Term Memory.
Transforms are strengthened by being used and being implied;
but all memory gradually fades away, with fading proceedinc more
"slowly the more central the transform.

Plausibility as a Model for Perception

This system's parallel-serial probabilistic structure,
with its intermingling of pre-processors, feature-detectors,
and e&er~higher—level structure-characterizers, appears to
satisfy many of the criteria suggested for a model of form
perception. It can handle a wide variety of patterns, over large

amounts of noise, distortion, and unknown and non-linear -
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distortions. It builds and can describe objects that are
complex structures of sub-parts and qualities. It handles a
number of the problems posed by increasing the dimensionality of
scenes, and in particular to shaded and colored objects, and
to objects that change over time. It makes use of contextual
information, and of internal needs, desires and expectations, to
help direct and focus its perceptual processes.

It is by no means guaranteed to give the correct responses,
as a result of built-in analytic algorithms that have been
coded to anticipate all eventualities. Rather, it makes
probabilistic choices among alternative possibilities. It
attempts to learn,as a function of feedback and needs, ever-
better structures of transforms for doing this. Its converging
parallel-serial layered structure seems to be an effective
technique for gaining the advantages of parallel processes (speed
and robustness) and of serial processes (directedness and economy
of computation). Such a structure also appears to be strongly

indicated by living visual systems.
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A scene from the external environment is transduced
(e.g.by a TV camera, photocells, or reading in punched
cards) into the Retina, the Input buffer, Ig. The first
layer of Transforms, Tyr is applied to Ip and, when any
transform succeeds, its implications are output and merged
into the cell in the next Internal buffer, Il’
that lies directly behind (that is, to the right in the
figure). Transforms to apply are merged into
CHARACTERIZE; the choices of triggered decisions are merged
into FOUND. A layer cad contain many transforms. Each
transform resides at a specific location in its layer, but it
specifies any number of relative locations in the buffer that
it looks at for its parts. Any number of transforms can
reside at any specific location. Each layer has an
associated shrink-size, which determines the relative size
of the next layer (if desired, shrink-size can be set to 1,
so that no shrinkage occurs). Shrinkage means that the
sequence of layers will eventually collapse into a single
cell, the apex. The whole system then forms a (jagged)

"recognition cone."
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FIGURE 2. Some Examples of Layer-sequences in recognition
cones.
a) A simple System b) A more realistic, but

c)

IR(Sensed Input)

T1 Average
1
T2 Difference
)
T3 Feature-~Detect
I3
T4 Structure-—Characterizel
I,

TS Structure-Characterize2

I5 (Apex)

A minimal System

IR (Sensed Input)

Ti Feature-Detect

I

T2 Structure-Characterize

I2 (Apex)

still simple, system.

IR(Sensed Input)

1 Average‘

1

T2 Difference

I

2
T3 Average
I3
T4 Difference
I,

T Primitive Feature-Detect

Is
T6 Structure-Characterizel(e.g.
Angles) ’
Ie
T7 Structure—Characterize2(e.g.
Enclosures)
1,
T8 Structure-Characterize3(e.g.
Figures)
Ig
T, Structure-Characterize, (e.g.
Sets)
Ig

10 Structure-Characterizes(e-go

Groups)

Ilo (Apex)



-78-

FIGURE 3. Some plausible shrink-values for the 5-layer cone
of Figure 2a, and the resulting sizes of input and
subsequent layers. The Height (and also Length)
of each layer is got by multiplying the Height of
the next layer (below it) by the shrink-size of that
layer's Transforms starting with the Apex (at
the bottom). The size of the Sensing Retinal buffer
(at the top) determines the size of the Scenes that
are input to the system.

Structure Alternate Shrink-Configurations
a) b) c) d)
Shrink- Height Shrink Height Shrink Height Shrink Height
Layer Size Size Size Size
IR Sensed Input 24 108 264 32
T] Ave 3 3 3 2
I1 8 36 81 16
T2 Diff. 1 2 3 2
12 3 18 27 8
T3 Feature 2 3 3 2
I3 4 6 9 4
T4 Structure 2 2 3 2
I4 2 3 3 2
T5 Structure 2 3 3 2

I, Apex 1 o 1 1
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FIGURE 4. Some recognition cones with Input Buffers as large

as the Fovea in the Huran Eve's Retina. The fovea
(a circle roughly 5- in diameter) contains roughly
7 million cones (the receptors for detailed color
vision). This is roughly equivalent to a 2,7002
array. The following are several resulting cones:

Example A Example B Example C
Shrink Height Shrink Height Shrink Height
Retina 2700 2700 ' 2700
Tl Average 3 3 5
900 900 540
T2 Difference 1 2 2
900 450 270
T3 Average 3 3 5
300 150 54
T4 Difference 1 2 2
300 75 27
T5 Feature 2 3 3
150 25 9
T6 Structure 2 3 3
75 9 3
T7 Structure 2 3 3
38 3 1
T8 Structure 2 3
19 ~ 1
T9 Structure 2
' 8
T10 Structure 2
4
Tll Structure 2
2
T1l2 Structure 2
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FIGURE 5. The Overall Structure of Transforms (used for
Feature-Detection, Structure-Characterizing, Pre-
Processing, Implying Transforms to Apply, and
Triggering Choices).

A B C D E

If-conditions Threshold Implieds Region  Expectations
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FIGURE 7. Some examples of Pre-processing Transforms, to a) Average,
b) Difference, c) Smooth and Eliminate local noise. A
welght or Value is shown in each cell, as indicated. Output
is the combined weights of the Parts, except when a Threshold
is used, indicated

VALUE
1 2 1 1 1 1 1 1 1
2 3 2 1 2 1 1 1 1
1 2 1 1 1 1 1 1 1
l) center = 3, 2) center = 2, 3) all cells have
diags = 1 neighbors = 1 same weight

a) weights for cells looked at by local averaging transforms (for a
3 by 3 neighborhood)

-1} -41]-1 -1] -1 (-1
-4 ] 20} -4 -1 8 |-1
-1] -4 -1 -1]-11]-1
1) center = 20, 2) center = 8,
diags = -1 neighbors = -1

b) weights for cells looked at by local differencing transform.

0 1 1 0 1
0 0 1 1 0 1
‘90 0 @ 1 0 @ 1
0 0 0 1 1 0 0 1
0 1 1 0 1
1) Changes 1 2) Changes 0 to 1 3) Changes 1 to 0
to 0 when on an edge next to an edge
surrounded
by 0's.

c) expec%ed values for cells looked at by noise-eliminating transforms
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FIGURE 8. Some Examples of Primitive Feature-Detectors

1| -1 1 1
-1 ] -1 1 1
Ly
-1 -1 1 1] -2 -2 _2 [ -1
(VER’D
R T 1 2| 3|4 3 {2
3o
-1 -1 1 1 N I R 3 [T

a) Vertical edge detector b) Horizontal line detector

-1 1 1

1| 1 1] 2 2| 1
-1] 1 2 2
SEEEES 2 -2 %}%—@ -2
-2 -1 m 2 2| =1 1 =
T T 1 -2 ] -1] 1 -1 -2
1
1

¢) Curve detector (note d) T-join detector
that a complete rectangle
need not be specified)



-84~

FIGURE 9. Some Examples of Structure-Characterizers

VERT HOR HOR VERT | CURVEB

VERT HOR VERT CURVEA | CURVEA

VERT VERT CURVEA | CURVEA

VERT VERT | CURVEC

VERT HOR HOR

a) Strokes imply the b) Strokes imply several objects
symbol BRACKET ([) (the letters D,P,B)

CURVEB CURVEB | CURVEB

CURVED EYE EYE | CURVEA
EAR | CURVED NOSE CURVEA |EAR
EAR | CURVED NOSE CURVEA |EAR

CURVED | MOUTH MOUTH MOUTH CURVED
CURVEC CURVEC | CURVEC

c) Strokes and parts imply FACE

HAT
FACE
NECK
ARM | TRUNK| ARM
ARM | TRUNK| ARM
TRUNK
LEG LEG LEG

d) Parts imply PERSON
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FIGURE 12. Two Examples of "Black Box" Information Processing
Models of Perception and Memory

ey Data flow

== = = =% Control information

Short term
memory

¢ 2
1

Intermediate

term memory

Buffers T ¢ === Loneterm Buffers
[N T~ @
inetnory
RS B
L f R peddry
L—-—— (Envirunmcm)______.)
' . .
a) Hunt's (1973) Distributed Memory Model
Multicomponent Models
INPUT RESPONSE
PERCEPTUAL MEMORY
VECTORS VECTORS
[ soorermmmarnnins §
o
Cced
SENSORY NAMING DECISION
INFORMATION PROCESS PROCESS
STORE
3 y
FEATURE SENSORY~ MEMORY Lo;f;g:f” RESPONSE
EXTRACTION DICTIONARY PROCESSING ALTERNATIVES
| v _— >
PERCEPTUAL SYSTEMS MEMORY SYSTEM

b) Norman and Rumelhart's Multi-component Model (1970) of
Perception and Memory (as adapted by Reeéd, 1973).
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