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COLLOCATION FOR SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS*

by

John H. Cerutti

I. In [ 1], de Boor and Swartz discuss the use of
collocation with piecewise polynomials to approximate
the solution of an m-th order ordinary differential
equation. Their results place collocation methods on
an equal theoretical footing with other projection
methods (e.g. Galerkin, least squares). They show that
by careful choice of the collocation points the same
order of convergence can be achieved with collocation
methods as with Galerkin's or the least squares method.
More precisely, given a partition A, they obtain the

k+m

convergence rate, O(|A] ), when collocating at

Gaussian points with splines of order k+m that are in
Cm_l. Furthermore, at the knots of A, the approximation
to the solution and its first m-1 derivatives is

o(|a]%%y.

Wittenbrink [10] extends the results of [1] to
include nonlinear boundary conditions. He treats
simultaneously moment methods and collocation methods
using the same techniques as de Boor and Swartz [ 1].
R. Weiss [ 9] studies implicit Runge-Kutta methods for first
order systems and (i) showed their equivalence to appropriate
collocation schemes, and (ii) obtained the corresponding

high order convergence.

*
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R. D. Russell [ 7] extended the work of de Boor
and Swartz to first order systems. He also shows that
Richardson's extrapolation can be applied at the knots
when the mesh is uniform. Of course the system of dif-
ferential equations treated in this paper can be written
as a first order system, however, this reduction is not
necessary in order to apply the collocation procedure
described below. Moreover, the reduction to a first order
system leads to a different algebraic problem, and hence,
a different approximation procedure. In many instances
there are natural reasons to deal with the higher order
system rather than make the reduction to a first order

system.

This note is a direct extension of the results of
de Boor and Swartz [1 ] to systems of ordinary differential
equations. In section 3 we follow Wittenbrink [10] and
use a general theorem of Vainikko [ 8 ] to obtain O(|A|k)
error estimates. Section 4 follows de Boor and Swartz
[ 1] to obtain higher order point-wise and global error

estimates.
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II. NOTATION

Let A = {xi}§=0 be a partition of the interval
[a,b],
a = X5 < X < oeer < Ro = b, (2.1)
with
ij = xj - Xj—l’ 3= 1,...,N,
and
|A] = max Ax. .
: J
J
Let m = (ml,...,md) be a d-multi-index and denote by

Cm[a,b] the space of d-dimensional real vector valued

functions on [a,b], where u = (ul,...,ud)T € Cm[a,b]

means u’ ¢ C J[a,b], i=1,...,d. That is,each u?  has

mj continuous derivatives on [a,b]. More generally,
m_ .m Jn

is a function of N pieces where u = (ul,...,ud) and
. m. m.
J ; : J J

each u is in C [XO’Xl] X ¢.. X C [XN—l'XN]' We

think of each u], j=1,...,4, as having two values at

3 N-1

each of the interior breakpoints {xj}j=l , and on the

k'th interval we denote uJ by ui . Cg[a,b] is a

Banach space with respect to the norm

ull| = max max max iug(x) . (2.2)
l1<j<d 1<icN xe[xi_l,xi]
Let 8;, i=1l,...,N, be defined by
xi+xi_l X=X 4
(Siu)(x) = u > + X 5 , -1 <= x < 1. (2.3)
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Hence Si is a linear map from Co[xi_l,xi] to CO[—l,l].
Thus if P 1is a map on CO[-l,l} we may use S; to obtain

a map PA on Cg[a,b] by setting

(B,w) (x) = (S]'PS.£) (x), X & [x,_;,%,],

(2.4)
i=1,...,N.

When P 1is a bounded linear map then so is P and

A
e, 1l = N2l . (2.5)
We denote by Pm A the linear subspace of Cg[a,b]
14
consisting of those u ¢ Cg whose j'th component is a
pieceiwse polynomial of order mj (degree strictly less
than m.), i.e. u = (ul,...,ud) e P means that
J m, A
wl  is a polynomial of order m. on [xi—l’xi]'
i=1l,...,N; 3 =1,...,4d. We are particularly interested

in PA when P 1is a linear projector from CO[—l,l]
onto P_. In this case we obtain a bound on [[u-Pu|| since

(see e.g. [ 4] pg. 338)

A

|| u-Pul] [T-P|[ inf [lu-pl]|

pEPm

> (2.6)

o 1
const [T Pku(T::TT)

IA

>
where W, the modulus of continuity, is defined by

wu(ﬁ) = max {sup luj(s)—uj(t) :s, tela,b] |s-t]ss}
1<j<d
and
m = min m. .
T 1<9zd

Hence for all u ¢ Cg[a,b]
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A

[z-p||  inf [lu-p]|

lu-P,ul]
A Pep

m, b (2.7)
l|I-P|| dist (u,P_ )

i

y A

and thus for u ¢ Co[a,b]

2]

(m-1)

llu-P,ul|| < const 1 I-P ] w, ). (2.8)
We will use the following conventions: if m is

a d-multi-index and 1 is an integer then

m - i = (ml—i,...,mdfi), m' <« m iff mi < my i=1,...,4;

if an integer 1 appears where a multi-index is necessary

interpret it as a multi-index each of whose terms is

i (e.g. ptu = diag(Dl,...,Dl)u, when u is a vector).

Also let m = max m; and m = min m; . We will assume
i i

throughout that the equations have been ordered so that

m, < m S ese =

md.
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I1T, COLLOCATION AND PRELIMINARY ESTIMATES

Consider the system of nonlinear differential equations

Dmu(x) = (Fu)(x) x e [a,b]
subject to the linear boundary conditions (3.1)
Biu = cy i = l,...,]mf .
m m

Here DU = diag(D l,...,D d) is a d x d matrix,

{B.}im! is a known sequence of continuous linear maps
i

from Cm_%a,b] to RY, and c; 1is a known sequence of

.constants. For example, +the Bi could be of the form
ch(ulr--.,Dmd_lud)T (Sj) where each Cj is a |m| x |m]
J ; .

matrix and {sj} is a finite set of points of [a,bl].
More general boundary conditions are possible and we
discuss this at the end of section III.

a,T .
We assume F = (Flr---,F ) is of the form
. . m, -1
FI(u(x)) = Fj(x,ul,Dlul,...,D 1 ul,...,ud,...,D d ud)

j=l,..o,d

(i.e. F- depends on uk and at most m - 1 derivatives

of uk, k=1,...,4). Thus F 1is a d-vector valued map

on a suitable domain of R|m|+l. We assume that (3.1)

has a solution u(x) € C [a,bl].

m=-1

If v ¢ Wm’l[a,b] = {veC a,bl, D v abs. cont.,

Dmv € Ll[a,b]} then each component vl of v can be

m: 4
written in exactly one way in terms of D J vl and

(vl (a) i=0,...,m.

-1 That is



% mj—i—l o mj-l k—l.\
ij — (x-s) “3 5 i (x=-a)
D v-(x) = J ‘f—— D v (s)ds + ) a, Gt
a (mj~1 1) k=i k  (k-1):
j =1,--.,d, i=0,.-.,mj—'l’
J = (pK,d P -
where aj = (Dv’)(a) 94 =1,..:,d, k = O,...,mj—l. J
Let Hgv(x) denote the right side of (3.3). Hence if
w(x) = pv then v is uniquely determined by the
|m| + & dimensional vector
= 1 1 d d
Y(x) = (W(x),agseeesa _qreeer@preeesay _q). (3.4)

Coanrsely, given a function w ¢ Ll[a,b] and |m| constants

. |m S

{a’} the |m| +d vector {w,(al)l }uniquely determines
i=1

an element v of Wm’l[a,b] via (3.3). With w = DMy

and the representations (3.3), (3.4) we rewrite the

differential equation (3.1) as

1 d d

w(x) = F(x,H%y,Hly,...,Hil_ly,...,Hly,...,Hmd_ly) (3.5)
(i.e. w(x) = F(y(x)), and the boundary conditions as
b, = b + Bi{(Héy,Hj%y,...,H%i_ly),..., b
_d 4 T
(H]Y oo, H y)} - ¢y, > (3.6)
md—l
i=1,...,Inl, J
(i.e. bi = b, + Bi(y) - Ci)' If v = (w’bl""’b|m[) we

define T by

Ty = {Fy'(bl+Bl(Y)—cl)’...'(blml+B!m| (Y)""C ml)} -(3-7)

>(3.3)
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Hence (3.5) and (3.6) can be written in the form
y = Ty. (3.8)

Notice that Cg[a,b] X lel is a Banach space with

the norm
Iyl = lwll + max |e*| (3.9)
l<i<|m| ,
where w ¢ Cg[a,b], e = (el,...,eim‘) £ le‘, and
y = (Wle) .

Im| o

We have Co[a,b] X Blml c Cg[a,b]>< R

Wm’l[a,b]x le[. T is a non-linear operator mapping
each of these three linear spaces into itself. From the
definition of T, solving (3.1) is equivalent to finding
v* € Co[a,b]>< R m| so that vy* is a fixed point of T
(i.e. vy* satisfies (3.8)).

In order to find an approximation to u(x), the

solution of (3.1), we employ the collocation method.

T
Let A = {xi}izo be a partition of [a,b] as in

(2.1). Let k be a fixed positive integer and let
{pi}§=l be a fixed set of distinct points of [-1,1] with

-1 < Py < Py < ve. < P = 1. Set
xj + if -1 = Py
Tygei = ¢ [(XgFEgq) + pybxg,,1/2 (3.10)
xj+l— if +1 = Pk -

We seek a function

11

m=-1
u, € SA = Pm+k,A n C [a,b]

which satisfies the collocation equations

(DmuA)(Ti) = F(u,) (1) i=1,...,kN

(3.11)
Biu = C, i=1,...,lml .
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Using the notation of section 2 we see that the points

{p; 1%

i=1 uniquely determine a bounded linear projector P

from CO[-l,l] onto Pk[—l,l] described by the inter-

polation conditions

I

(Pu) (p;) ulp;), i=1,...,k.

Furthermore, the points {Ti}ii and the partition A determine

1

a bounded linear projector PA from Cg[a,b] onto

Ek A[a,b] described by the interpolation conditions
7

(PAu)J(Ti) = uj(Ti) 3 =1,00.,d; i =1,...,kN. (3.12)

Finding a solution to the collocation equations
(3.11) is equivalent to finding Y, € Pk A[a,b] which
14

satisfies
Yo T PATYA (3.13)

~ 1 d _ 1 d
where PA(W’aO"“'amd—l) = (PAw,aO,...,am —l)'

d
As in Wittenbrink we use a slightly modified form
of theorem 3 of Vainikko [ 8] to obtain existence and
uniqueness of Y in a neighborhood of y*. Additionally,

this theorem also gives error estimates that will allow

us to obtain convergence rates for [|u-u

e

Al

Theorem 1 (Vainikko).

Lét ¢ be an open set contained in a Banach space
E. Suppose T:Q - @ 1is a continuous, possibly nonlinear,
map and {ﬁA} is a collection of bounded linear projectors
defined on E with the following properties:
(1) there‘exists vy*¥ € Q such that y* = Ty*,
(2) (I—§A)y*]| + 0 as |A| - 0,
(3) T is continuously Fréchet differentiable at y*

and [I-T'(y*)]"t

is bounded,




-10-

(4) ﬁAT is Fréchet differentiable in a neighborhood of

!
and n_ > 0 such that H(I-ﬁA)T'(y)!] < ¢ when

ly=y*|| < 6_ and [a] <n_.

Then one can find a § and a o such that the fixed

y* and for every € > 0 there exists a § 0 < 68 < 6,

0
point y* of T 1is unique in the sphere
{y] lly-y*|| = 8§y}, and when |A| < n, the equation
v, = PATY, (3.14)

has in this same sphere a unique solution Y- Further-

17 C5 > 0 such that

oy I x-Boy*|l < lly*=y, Il < c, || (=B y*|

more there exist c

. (3.15)

Remark: T is said to be continuously Fréchet differetiable
at y* if T 1is Fréchet differentiable in an open
neighborhood HN(y*) of y* and for every ¢ > 0 there
exists a § > 0 such that |[T(y) - T'(y*)|| < & when

y e {y] |ly-y*|| < 8} a N(y*).

Proof: Theorem 1 is a direct consequence of theorem 3 of
Vainikko [ 8]. 0

It follows from (2.5) that the family of continuous
linear projectors with which we are concerned is

bounded, (i.e. HﬁAy|I < M ||]y|l] for some M independent

A
(4) of theorem 1 follows from the assumption

of A). Since (ﬁAT)' = P, 7' in our application, hypothesis
H(I—ﬁA)T'(y*)]IS e when |A]| < n(e). (3.16)
To see this observe

(=P T (] < || (T=B,) (P (v)-T" (y*)) || +

I (-B )T (v*) || (3.17)

Since HﬁAH is bounded so is HI¥§A|I, and the

first term on the right side of (3.17) may be made small
since T is continuously Frechet differentiable in a
neighborhood of y* (hypothesis (3)). That the second term

may be made small follows from (3.16).
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Corollary. 1In addition to the hypotheses of theorem 1
suppose that in some neighborhood N(y*) of y* that

ITyy=Ty =" (v)) (vy=y ) | = llyy=v,ll 0 llyy=v,l1)

uniformly for Yir ¥y € N(y*) where w is some modulus of
continuity.,

Then there exists n > 0 so that the Newton iteration

defined by
N(y) =y - [I-B,T" (v)17 " (y-B,Ty) (3.18)

is well defined for |A| < n, y € N(y*). Since

— - ' -1
Y, - N(y) = [1I P\ T (y)]

there is an € > 0 so that N maps

{y] ”Y“YAIISE} N(y*) into itself and

'ﬁA[TYA‘TY-T'(y)(yA—y)] (3.19)

=

ly,=vll = clly,~yllwClly,-vil). (3.20)
Proof.
Obviously
I-B,T' (y) = I-T'(y") + (I-B)T' (y) + [T' (y*)-T' (y)].(3.21)

Under hypotheses (3) and (4) of theorem 1 we choose a

small neighborhood of y*, N(y*) and a > 0 so that

Mo
y € N(y*), |A| < ng imply

Fz=t" () 17| l=B,m () ||+ T w9 -t @) D) < 3.

Hence the Banach lemma (see e.g. | 1 pg. ) shows +that
I—ﬁ'AT(y) is uniformly boundedly invertible in a neighbor-
hood of y* for |A| sufficiently small. Thus N is

well defined. We have, since YA is a fixed point of P T,

A
yA-N<y)==yA-y-+[I—ﬁAT'(y)]'l(y—ﬁATy)
= [I-F,T" ()1 M y-B,Ty + (1-B,T' (v)) (v,=y) } } (3.22)

1

=[1-§AT'(y)]' §A{TyA—Ty~T'(y)(yA-y)}

which shows (3.19).
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By (3.15) we may choose 11(sn0) so small that Yp € N(y*)
(i.e. HyA-yI] < n for n sufficiently small).

We choose € > 0 so that

ltz-8, 7 ()17 ]

. Hf)AH w(e) < min[l,-ﬂ?ﬁmr - 11,

hence N maps {y| ||ly-y*|| < min(n,e)} into itself.
Estimate (3.20) follows directly from (3.22) and the hypothesis
of the corollary. []

This corollary is useful since it shows that in a
neighborhood of Y the fixed point of ﬁAT, Newton's
method converges superlinearly to Y- When we can show
(as below) that the modulus of continuity, w, of the

corollary is O HyA-y}]) then we obtain quadratic convergence.

Before we restate theorem 1 in terms of problem (3.1)
we discuss conditions under which we may verify the

nhypotheses of the theorem and corollary.

We regard F as a d-vector valued map on some domain

of lel+l and write
1.1 1 a d
Fix,z) = F(X’ZO'Zl""’Zml-l""’zo""'zmd-l) (3.23)

where =z ¢ lel. So if D'uwd 1is an argument of F (see (3.3))
then it corresponds to zi. Suppose F = (Fl,...,Fd) and
FJ ¢ Cl(Q), Q < lel+l, = 1l,...,d. Let Fn(x,v),
n=20,1,...,m—1% max mj—l, denote the d x d matrix
J
k
- aF  (x,2)
F . = T ‘e .
[F, (x07) T 5 . k=1,...,d; & (3.24)
32Zy : Coa
Zi = ptyd J=l,...,d;
n=0,...,I_T.1"'l
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Let L, denote the linear matrix differential operator

m-1 i
L =p® - ) F; (x,v)D" . (3.25)
i=0

When 1 2 mj and k < i then [Fi(x,v)]ﬂk =0 for £ = 1,...,4,

so that (3.25) is of the same form as (3.1) (i,e. (3.3) is
satisfied). L, is the Fréchet derivative at v of the
nonlinear operator defined by (3.1). The linear differential
operator Lv also gives us the form of the Fréchet derivative
of T. That is if vy(x) is of the form

y'(X) = (w(x),e), e € Ile|

then the derivative of T at Yq acting on y 1is given by
m-1

T (yq) (¥) = <.}TOFi(x.Hgyl,...,H
1=

d d_,T
o yl)(H%y,.--,Hiy) '

d-1 (3.26)

el + Bl(y),...,e|m| + B [(Y))-:

| m

Hence, finding a fixed point of T'(y) is equivalent to

solving
L v =20
\
B,(v) =0 i=1,...,|m]|. (3.27)
Furthermore, if y = (D™v,e) then solving the
inhomogeneous equation
0 Im]
-t =
(I-T (yl))y <g'al""'a|ml) € CA x R (3.28)
is equivalent to solving
Lyv =g
(3.29)
Bi(v) = a; i = 1,...,[ml

for some vV ¢ Cm—l[a,b].
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We now reformulate thoerem 1 in terms of problem (3.1)
rather than in terms of problem (3.8). Following
de Boor and Swartz [ 1] we have ' '

Theorem 2.

Let u ¢ Cm+n[a,b] n =0 be a solution of (3.1)
(hence (D™u,c) is a solution of (3.8)) and suppose

(1) that F 1is sufficiently smooth near u for
the hypothesis of the corollary to hold (e.g. Let

Q = {(x,z)lasxsb,zeR’mL]z§—Diuj(x)]<6,j=l,..‘,d,

i=l,...,my 6>0} and let F e c2())

(2) the linear problen

L. v =g
4 (3.30)

Bi(v) 0

has a unique solution;

(3) associated with the linear problem (3.30)
is a d x d Green's matrix, G(x,t), and
. b d 3 .
k i
DIvi(x) = [a igl(_;) [G(x,t)1, ;97 (v)dt,

j = 0,.0',mk—l,k=]—,o-o,do

(See appendix 2 for a further discussion of this Green's
matrix.)

Then there exist vy > 0, n > 0 so that

(1) in the sphere {(w,b)| (w,b) ¢ Cg x lel

| (D™u,a)

(w,b) || < e} u is unique;

I

(2) the collocation equations (3.11) have a unique

solution wu, ¢ S, 1in this same sphere for |[A| < n;
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(3) Newton's method for approximately solving the
collocation equations converges quadratically in some

neighborhood of u, for |A| < n;

A
(4) u, satisfies
It (umu ) || = o o™y < (3.31)

(5) the collocation approximation VA to the solution
of the linear problem

L v = Luu

_ (3.32)

B,V = B,u i=1,...,|m|

satisfies
ot (w=v ) || = e fa™ERRAR) i<m (3.33)
and

Dl(u—uA) = Dl(u—vA)-+0(|A|2nun(n'k)) i< me (3.34)
Proof.

The hypotheses of this theorem are precisely those
needed to apply theorem 1. Since u ¢ Cm—l[a,b] is a
solution of (3.1) y* = (D™u,c) is a solution of (3.8)
where ¢ = (D*ul(a)) i = 0y...,ms=1,3=1,...,d. Since
EA(Dmu,c) = (PADmu,c) we have

HY*-ﬁAy*|| = HDmu—PADmuII -~ 0 as |A| » 0 by (2.7).

That T 1is Fréchet continuously differentiable at y*
follows immediately from the differentiability assumption
on F,
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We use the Green's matrix G(x,t) associated with the
linear problem (3.30) to show that [I-—T'(y*)]-'l
Let v ¢ Cm[a,b] satisfy the boundary conditions of (3.30)

is bounded.

and let vy = (Dmv,a) = (w,a) Dbe its representation in
Co[a,b] X R]ml via (3.3). With Yy = (Vl’al)’ (3.26) shows
that
-1 R
— ' — — < ¢ E
y-T'(y)y =y (_ZOFi(jl)Hiy,eleBl(y),---,elml+B1m|(y))
= ' , (3.35)
=(Lvlv,Bl(y),...,Blml(y))-
Thus

y=y-T'(y)y+ (EzFi(yl)Div,eﬁBl(y) reees®g FBin(y)) (3.36)

or

y=y-T'(y;)y +
m-1 m-1

m- b 5 i R
(igoFi<yl>Ia<5§> G(x,t>[w—j=% Fo (v H; (01,

eq + Bl(y),...,e + Bm(y)) (3.37)

m

Thus with yq = v*, (3.37) implies

lyll < |ly=T"(y*) vl

and hypothesis 3 of theorem 1 is satisfied.
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Hypotheses (4) of theorem 1 follows from the differenti-

ability of F, the uniform bound on |/P and the remark

Nl
immediately following theorem 1. Conclusions (1) and (2)

follow immediately from the conclusions of theorem 1.

Newton's method for approximately solving the

collocation equations may be interpreted from (3.18) as:

find VA,n+l from VA,n by solving the linear problem
m-1 i
L v = F(x,Vv ) = ] F.(x,v )D™v
vA,n A,n 120 1 A,n A,n
(3.38)
B,v = Bju = c; i=1,.0..,|m|

by collocation,.

That is, vA,n+l satisfies
m-1 .
PALVA VA,n+l==PA{F(X'vA,n)'— .Z Fi(x’vA,n)DlvA,n}
s i=0
(3.39)
Bi(vA,n+l) = B, (u) i=1,...,|m| .

But the differentiability of F implies the hypothesis of
the corollary with the modulus of continuity w(x) < Ax.
(i.e. gquadratic convergence occurs in some neighborhood of

u) .

Conclusion (4) is an immediate consequence of (3.15)
together with our smoothness assumption on wu and the

approximability result (2.7) of the previous section.
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] * = * - D

Since vy Ty*, Y 5 PATyA we have

- P % 4 " —Tyuk=T (v -
Yo = Ppy*+T  (y) (v, -y*) +Ty \=Ty*=T"' (y*) (y,-y*))

or

~

[T-P,T' (y*) 1y, = B, (y*=T"' (y*)y*+Ty,~Ty*=T" (y*) (v,~y*)) .

Hence
Y, = [I—ﬁAT'(y*H_l P, (I-T' (y*))y*
~ -1 ~
+ [I—PAT'(y*ﬂ PA(TyA-Ty*—T'(y*)(yA—y*))-

~ -1 ~
But [I-P,T'(y*)] © P, (I-T'(y*))y* = v, ,

|[[I—§AT'(y*H-l §A|] is bounded and (Ty \=Ty*=T"' (y*) (y,-y*))
is O HyA—y*ilz) by the hypothesis on F.
Hence

2
Yy =Y =v, -y +0(|lly,~y|| %), and (3.34)

follows immediately by using our representation of u in
terms of y*. 0

The boundary conditions of (3.1) may be nonlinear. The
treatment given in this section does not require that the
boundary conditions be linear, but only that the linearized
problem (3.30) possess a unique solution and an associated

Green's function.
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IV. HIGHER ORDER POINTWISE AND GLOBAL ERROR ESTIMATES

As in theorem 2 let u be the solution of (3.1),
u, the solution of (3.11) and VA the solutiog of (3.32).
From (3.34) we see that in order to estimate Dl(u—uA)
(izm) to within terms of order [A|2 min(k,n) ;¢ 3¢
sufficient to estimate Di(u—vA)(ism). Again let
G(x,s8) denote the d x d Green's matrix for the problem

(3.29) with homogeneous boundary conditions, and let

= oyt .
[Gl(xls)]kj = [("a‘i) G(X’S)]kj k,j = l,-..d. (4.1)

We assume there exists a constant Cl such that when

Gi(x,-) is considered as an element of Cin)[a,x]x C(n)[x,b]

we have
Ipde, (x,8)|] < ¢ i=0,...m1 §=0,...,0. (4.2)
Recall m = min m. .
T 1=isd 1

We discuss this assumption in Appendix 2. Let

r(x) = Lu(u—uA) (4.3)

and note that r(x) vanishes at the collocation points Ty »

Lemma 1

If L, is smooth enough (e.g. if

[Fi(x'v)],@j € Ck+n[a,b] 2,3 = 1,...,d; i= OI-O-IEI"]-I and if
u € Cm+k+n[a,b]) then there exists a constant C2 such that
s k
max ") ) || < cy(g2by) 3 = 0, 7L, (4.4)
xe{xj,xj+l] ] i = 0,..0.,0 .
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Proof.

This lemma is an immediate consequence of lemma 4.1

of de Boor and Swartz [ 1] applied to each component of «r.
Theorem 3

Assume the hypotheses of theorem 2, lemma 1 and the
estimate (4.2). With n < k (in the hypothesis of lemma
1) choose the k points {pi}? in [-1,1] so that

1 k
J p(s) (s—pi)ds =0 (4.5)
-1 i=1

for every polynomial ©p € Pn. (e.g. when n = k the N

are the Gaussian points). These {p.}k are used along
11

with the partition A = {xj}§=0 to determine the

' 1
collocation points {Ti}iil in [a,b] (see (3.10)).

Then the solution of the collocation equations (3.11)

u, € !Pm+k,A[a,b]n c™ lla,b] satisfies
i k+n _ N
||D (u—uA)(xj)}l SNV Xy € A= {x, 54 (.6
i= O,-oo,z—n__ll
and
i k+min (n,m-1i) , _
|| D (u—uA)]] < C|n| - i=20,...,m, (4.7)

where C 1is a constant independent of the partition A .

Proof.

This thoerem follows immediately from theorem 4.1 of

de Boor and Swartz [ 1]. We let their Ej be a vector

(g4d

5he=1 and work with each component separately. That is



-2]=

3]

ij+l

X.
5 g

E?(x) [Gi(x,s)lglqrq(s)ds j=0,...,N-1.

Ho~—10n

1

We give the complete details of this proof in appendix 1. [J
Again consider Gi(x,-) £ Cn[a,x) X Cn[x,b] and suppose

Dl (x,8)1, Il = c; i= 0,c.0,m -1,
(4.8)
j=0,ee0,n, 2 =1,...,4,
which 1s stronger than (4.2). Then estimate (4.6) at the
breakpoints of A holds for all multi-indicies i such
that 1 < m. That is,

k+m

HDi(u—uA)(xj)II < cfalFtm, e s, i<m. (4.9

J
Estimate (4.7), under assumption (4.8) becomes

k+min(n,m-i)
—

Io* (a-u,) || = cfal ism . (4.10)

In general, of course, we cannot expect to obtain better
results than (4.9) and (4.10) since if some index were greater

than m. we would be approximating D™i*1uJ to order IAlk by
m.+1

D J uz ; & polynomial of order k-1.

NOTE: When all d equations are of the same order

(i.e. m such that m = ... = md) then (4.6) and (4.7)

are the same as (4.8) and (4.9).
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APPENDIX

In this appendix we give the details of the proof
of theorem 3.

Recall from (3.34)

p'(u-u,) = Dl(u-v,) + o(]a]? MRy oy,

Thus it is sufficient to prove (4.6) and (4.7) with u,
(the solution of the collocation equations) replaced by

v (the solution of the collocation equations associated
with thelinearized problem at wu). Since (3.35) has a
unique solution and there is an associated Green's function

G(x,t) we have
N
(u-v,) (x) = z

where

Hi

.
Ej(x) fx G(x,t) Lu(u—vA)(t) dt

j=1

and L, is the linearization of problem (3.1) at its
solution wu.

Let

ool _
(6, (x,8)], | = () [G(x,1)] 2, =1,...,4.

L,r

Then (for 0<i<m)

X,
J

L fx Gi(x,t)Lu(u—vA)(t)dt. (A.1)
j-1

e 54

bt (u-v,) (x) = j
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Let E?(x) denote the &'th component of the integral
on the right side of (A.l). Fix i, the interval 3,
and &. On the interval [xj—l’xj] all components of
Lu(u—vA) vanish at the k collocation points

= [x,

J_l+xj+pSij]/2 s = 1,...,k.

Tki+s

With r(x)

il

(rl(x),rz(x),...,rd(x))T = Lu(v—vA)(x) we have

r® (x)

I} o~

6, (x,8)r(x)1" =
S

T P

which vanishes at the k collocation points Tk3+s
[4
s = 1,...,k. Let Tn(t) be the Taylor's series expansion
for
d s
fx(t) = ) [Gi(x’t)]z,s r [Tkj+l,...,Tkj+k,t] (A.2)

s=1
around t = xj—l up to terms of degree < n..

Here rs[Tkj+l"°"Tkj+k’t] is the k'th divided difference

s
of r . Hence

(6, (x, £)x () 1% = py (8) [T, (£)+(t=x;_ )T (O"E) (8)/nt]

where 6, ¢ (xj_l,ij and

k
p,(t) = T (t-t ) .
k s=1  Fi+s
We chose the collocation points to make pk(x) orthogonal

to all polynomials of order k, hence
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X.
A _ J n,.n
|Ej(x)[ = ij_lpk(t)(t—xj_l) (D7f ) (6,) /nlidt
k+n+l n
= K Iijl |D ft{l(j) ’
where Hant(-)]]j = Hant(-)ll - .

L [Xj—l’xj]

and K 1is a constant independent of A.
From (A.2) we see that

d n .

n 1 n+kl _n-j
(DYE ) (E) = ) —=r y( .)D [G. (x,8)], _.
t7x s=1 (n+k) ! =0 k+j} 7t i L,s

(A.3)
k+j_s
%) (8, 4 @)
where et’j,d € (Xj—l’xj)'

We now consider two cases:

(1) If x ¢ (Xj—l’xj) then, from (4.2),
n-p. —
HDt [Gi(x,t)zls]ll(j) <C;, P=20,...,n

and by lemma 1

ID¥*PeS || ) < oy tah T, peo, s s = 1,
J
hence,
k
n ]A]
[ ED) (O] s Calh) .
(3) J
Thus, if x #£ (xj~l’xj)
|E§(x)| < c4|A[k Iij]n+l . (A.4)
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(2) If x € (xj_l,xj), then
mg—i-l
[Gi(x't)]l,s () Hoo [Xj_lrxj]
so that

k
< | A
HDPfX(t)I](j) < C_ (=)

s Ax.
J

when p < min(n,m,-i-1). Hence,

L

lmin(n+l,mg—i)

|E§(x)l < C ]Alk- AX .

J

6 (A.5)

when X e(xj_l,xj).

Since we have restricted i, 0 < i < m, (A.5) is well
defined for all 2 =1,...,d.

N
%50

maximizing over £ we obtain (4.6). If x ¢ (xj_l,xj)

If x e A = { then summing (A.4) over j and

for some j we combine (A.4) and (A.5) to obtain

min(n+l,m-1i)

i k
HDl(u-vA)(x)|{ < | b (C4|A|n+Cs|ijt )

when X < X < Xj‘ Thus (4.7) follows directly from this

i-1

estimate.

From (A.3) we see that the constant, C, in theorem 3
depends on bounds on the coefficients of the linearized

problem (see 3.24) and kK + n + n derivatives of the

L
2'th component of the solution u of (3.1).
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APPENDIX 2

In this appendix we discuss the construction of a Green's
function, G(x,t), associated with a linear problem of the

form (3.30). That is, using the notation of section 3,

m m-1 i
Du = Z Ci(x)D u + g(x),
i=0
(A.1)
Bi(u)=cil i=l,oo-,]mi,

where u, g are d-vectors, and Cj is a d x d matrix.

Our assumptions on F in (3.1) show that
[Cj(x)lzk = 0, jzmi,ksi,2=l,...,d . (A.2)

This natural assumption on the form of F assures us that

(A.1l) may be written as a first order system
Dv(x) = C(x)v(x) + g(x) , (A.3)

where v, § are |m|-vectors and C(x) is an |m| x |m]
matrix. We will use this fact to advantage in a moment, but

first we consider an important special case.
Let L;, i=1,...,4, be defined by

2
(Ljw) (x) = (f2) u(x) + By(x) 70 (x) + q(x)u(x) . (B.4)

Suppose (A.l) is of the form

Llul = u2 + fl(x) ul(a) = ul(b) = 0

L2u2 = u3 + fz(x) uz(a) = uz(b) = 0

. (A.5)
Ldud = fd(x) ud(a) = ud(b) =0 .

Each Li is of the form (A.4) where bi € Cp-l[a,bL qieCEFZ[a,b].

We assume that the homogeneous system associated with
(A.5) is incompatible, that is when fi z 0,i=1,...,d,
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the system admits only the zero solution. Under this
condition we can construct the classical Green's function
Ki(x,t) for each Ly with zero boundary conditions (see

e.g. Courant and Hilbert [ 31]).

With these Ki(x,t) it is easy to construct the d x d
Green's matrix associated with (A.5). Since

a b
u (x) = Kq (x,t) £4 (£)dx
a

let

d-1
u

The equation for shows that

b

W = [ Ry Gt el ()+E, g (0) 1At
a

b b
faKd_l(x,t)[faKd(t,s)fd(s)ds+fd_l(t)]dt

and, upon interchange of the order of integration,

b
= faKd_l(x,t)fd_l(t)dt +

b b
+ [ [ Ky_q(x,£)Kq(t,s)dt f£4(s)ds.
a a

Thus,
[G(x,E)Tg 1 g1 = Kgoq (Xst),
b (A.7)
[G(x,t)13_1 q4 = [ Ry_y(x,8)Kq(s,t)ds .
' a

Continuing in this manner we see that G(x,t) is upper triangular
with diagonal formed by the Ki(x,t). The off-diagonal elements
will be iterated integrals of the form (A.7). In particular,

for 3 > k,
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b b
[G(x,0) Ty = [ oouf R (x,xp)Ky g (%9 4%)) 0 aKy (x5, t)Axg - Ay (A.8)

a a J J
The continuity properties of the Ki(x,t) are well known, and
the equation (A.8) shows

G(+,t) e cP"%1a,t] x P2, b1,
(A.9)
G(x,") ¢ Cp+2[a,x] X Cp+2[x,b] .

This method of building the Green'smatrix may be used also
when the Li are of different orders provided the problem
(A.1l) is of the form (A.5). That 1is, associated with an Li

of order m; are m, boundary conditions, Aj’ of the form

mi mi—l mi—l
{Aj}l c span {éa,...,éa‘ r8preser 8y }

which are applied only to ul .

In order to treat more general problems we turn to the
representation (A.3). We write the homogeneocus first order

system associated with (A.l) as

Dv(x) = C(x)v({x) (A.10)
m,~-1 m.-1 T
Here v{x) = (ul(x),Dul(X),...,D 1 ul(x),uz(x),...,D d ud(x)) .
The corresponding homogeneous boundary conditions are
A (V) =0 i=1,.00,|m| . (A.11)

We assume C(x) ¢ Cp[a,b], p =2 0, although the following
discussion holds if the elements of C have a finite number

of jump discontinuities on [a,b].

Let &(x) Dbe a fundamental matrix for the system (A.10).
Then the unique solution, v(x), of (A.3) satisfying zero

initial conditions (v(a)z0) is given by

X
vix) = e(x)[ o L(t)g(r)at, (A.12)
a
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(see e.g. Coddington and Levinson [ 2], p. 74).
With H(x,t) = o(x)o T (t) (x—t)g we may rewrite (A.12)
as

vix) = [PH(x,0)§(t)dt. (A.13)

Thus H(x,t) is the Green's matrix for the problem (A.3)
with zero initial conditions. Note that '

H('lt) € Cp+l[art]

H(x,.) ¢ cp+l (A.14)

[a,x] .

A necessary and sufficient condition for the problem
(A.3), together with boundary conditions (A.1ll), to have
a solution for every g 1is that the set {Ai}Tzl be

linearly independent over the kernel of L, where
Lv(x) = Dv(x) - C(x)v(x). (A.15)

That is, the boundary conditions are linearly independent
over the columns of &(x).

If A is a matrix let ij denote the jth column of
A. An explicit representation of the Green's matrix G{x,t)
for the problem (A.3) with boundary (A.1l) can be obtained by
modifying the Green's matrix for the initial value problem.
Under the assumption that the boundary conditions are linearly
independent over the columns of ¢ (x) we have that

G(xlt) = H(xlt) - Q(X)QA(t), (A.l6)

- L3l
where Q.. = [Ai@j]

Here it is understood that ﬁj(x,t) is thought of as a function

of x when the functional Ay is applied.

Since G(x,t) is merely a modification of H(x,t) by
a linear combination of elements of the kernel of L, equation
(A.3) 1is satisfied. It remains only to verify that the boundary

conditions are satisfied. The computation goes as follows:
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b
M (V) = Kk[faG(x,t)g(t)dt1
b R .
[ D [H: (x,8)1g7 (v)at
a j J

b ~
- Ak[®(x)QfaA(t)g(t)dt] .

However, with A, (v) = zkﬁvz, we have that
L

b
M Lo (x)Qf A(t)g(t)at]
a

b »
= 1 Mdl D Je, o [ A s (e)1gd (pat
L jmr a

b .
% ~J
Z %xk(@zr(x)>Qrmfa gAmj(t)g (t)dt

)

m
b R i

S/ DOGHS Gt § () at

m a Jj

b . s

i Zxk[H.(x,t)]qj(t)dt .

a j J

Il

Hence, we conclude that
M (V) =0, k=1,...,|m| .
Combining (A.16) and (A.l14) allows us to make continuity

statements about G(x,t). For example, suppose the

boundary conditions are of the form

N
nlenv(sn) = C. (A.17)
Here By,...,B  are |m| x |m| matrices, ¢ 1is a constant

|m|-vector, and the N(21) distinct points {sn} lie in [a,b].
H. B. Keller [ 5] discusses this type of system and shows

that for A(x), §(x) £ C?[a,b] there exists a solution
p+l

r [a,b] satisfying (A.3) and (A.17) iff

vix) eC
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}

B ¢(s )

el D n

is nonsingular. Here, as above, ¢ 1is a fundamental matrix
for equation (A.10), and T 1is a partition of [a,b].

R. D. Russell [ 7] gives an explicit representation for the
Green's matrix for a first order system in this case. The

less detailed representation given by (A.16) is sufficient

to determine the continuity properties of G(x,t). If jBn
is the j-th row of the n-th matrix then
N
As(v) = ) LB vi(ty).
J n= 13 n

Hence, G(x,t) may have discontinuities introduced at the
points {si}. Thus, if T 1is a partition of [a,b] such
that T o {si} then

G(-,t) € B ra el x B e, by

(A.18)
p+l[
r
This result is pertinent to the estimate (4.2) on the

G(x,°) ¢ C?+l[a,x) x C x,b] .

Green's matrix. Recall that theorems 2 and 3 also hold in
the more general case when the functions involved are merely
piecewise smooth, provided that the partition A contains
such points of discontinuity, i.e. we would require

A>T o {si}. In the case that N = 2 and s; = a, s, = b

we see that (A.18) shows that (4.2) holds for first order

systems provided p 1is sufficiently large.

In the case of functionals of the form

b
Ay (v) o= jagi(t)v(t)dt

where g3 is an |m|-vector whose components are continuous
on [a,b] we again see that (A.1l8) holds. In this case no

additional discontinuities are introduced.
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Of course the Green's matrix for theoriginal system
(A.1l) is "contained" in the Green's matrix for the first
order system. When (A.l) is written in the form (A.3)
with

m,~1 m.-1

v(ix) = (ul(X),...,D 1 ul(x),...,D d ud(x))

we see that 6 has only d possibly nonzero components.
These occur in positions C = {m,m;+m,,...,|m[} .

Furthermore we only need rows R = {1,1+ml,...,l+

m[—md} of
the |m|-vector v to determine the d-vector u. Hence we
use the columns of the set C and the rows of the set R of
the |m| x |m| Green's matrix G(x,t) to form the d x d

Green's matrix G(x,t) for the system (A.l).

Consider row d of G(x,t) and let & = m.-1. Obviously

a
b d .
p'ud ) = 0% [ T [6(x,0)1 4,07 (t)at
a j=1 J
b |m| ~5
= fa jzl[G(x,t)]lmljg (t)dt .

But this equality holds for all continuous g(t), and

we have seen (A.18) hold for all rows of G(x,t). Furthermore,
a similar discussion holds for each row of G(x,t). Thus,

if the coefficient matrices Ci(x) of (A.l) are in Cp[a,b],
we have, for j =1,...,4,

p+m

pHm,
[G(',t)]kj e C

Kla,t] x ¢ ¥[t,b]

(A.19)
[6(x,) Ty € cPlia,x1 x cPlx,p].

Of course when (A.l) is self-adjoint we have additional
smoothness on G(x,-). However, with the appropriate p,

(A.19) justifies assumptions of the form (4.2).
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