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Abstract

It is shown that the complementarity problem of finding a z
in R" satistying zF(z) =0, F(z) 20, z 2 0 , where F:R" - R® ,
is completely equivalent to solving the system of n nonlinear equa~-
tions in n unknowns

G(IPi(z) -z,]) - 6(F,(z) - 6(z,) = 0, i=1l,...,n
where Fi(z) and Zi denote the components of F(z) and z respec-
tively and 6 is any strictly increasing function from R into R that
passes through the origin. If in addition, F is differentiable on Rn
0 is differentiable on R and 6'(0) = 0 , then the above equations
are globally differentiable, and at any solution z which satisfies
the strict complementarity condition F(z) + z > 0 , the system of equa-

tions has a nonsingular Jacobian if F has a nonsingular Jacobian with

nonsingular principal minors.
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Let F:Rn ~ Rn , let zeRn and let Fi and zi ,i=1,...,n,
denote the components of F and z respectively. The celebrated

complementarity problem of finding a Ze‘Rn such that

v
o

hH zF(z) = 0 F(z) 20 Z =

has received wide attention in the mathematical programming litera~
ture [2,3,4,5,8] . The main method for its solution has been that of
simplicial approximation which is a constructive method for finding
fixed points of continuous mappings. We give here a completely equiv=-
alent formulation of the complementarity problem as a system of n
nonlinear equations in n unknowns and thereby make possible the

use of the powerful tools of nonlinear equations theory [9] in solving
the complementarity problem. Our principal result is the following
theorem which can be obtained by symmetrizing the key Lemma 2.7

of [6] or from Lemma 3 of [7].

THEOREM 1let 6 be any strictly increasing function, from R into
R , that is a> b &= 96(a) > 6(b) , and let 9(0) = 0. Then, z solves

the complementarity problem (1) if and only if

(2)  o(|F(2) = z,|) - 6(F (2)) -6(z)= 0, i=1,...,n

Proof: (only if) Foreach i=1,...,n , either zi =0 or Fi(z) =0,
If zi = 0 , then 6(|Pi(z) - zi{) - G(Fi(z)) - Q(Zi) = Q(Fi(z)) - Q(Fi(z)) -
0=0. If Fi(z)=0, 6(|F(z) - z]|) - 0F,(=2)) - 8(z) = 6(z,) = 0 -
e(zi) =0.



(if) (a) To show that F(z) z 0 , assume the contrary, that is Pi(z) <0
for some i=1,...,n. Then 0 s 6(| z, ~ Fi(Z)I) = G(Fi(z)) + G(Zi)
< Q(Zi) , from which it follows by the strict increasing property
of @ that z, > 0 and zi> |z:,L - Fi(z)l =2z - Fi(z) . This

contradicts Fi(z) <0,

(b) To show that z z 0 , interchange the roles of Zi and Pi(z)

in (a) above.

(c) From (a) and (b) we have that z 2 0 and F(z) 20 . To
show that zF(z) = 0 , assume the contrary, that is, zi >0

and Fi(z) >0 forsome i=1,.0.,n. If Pi(z) z 2, then

6(|F,(2) = 2,]) = 6(F,(2) - 2)) < 6(F,(2)) < 8(F(2)) + 6(2)

This however contradicts e(IFi(z) - zil) - e(Fi(z)) - e(zi) =0,
Similarly, to show that the case zi z Fi(z) also leads to
a contradiction, interchange the roles of Zi and Fi(z)

in the last two sentences., QED

In many computational algorithms for solving nonlinear equations
(e.y. Newton and quasi-Newton methods) it is often required that the
Jacobian be nonsingular at the solution to which the algorithm is supposed
to converge. The following corollary gives sufficient conditions for

the Jacobian of () to be nonsingular,

Corollary: Let z solve the complementarity problem (1) and satisfy
the strict complementarity condition z + F(z) > 0. Let VF(z) , the

Jacobian of F at z , have nonsingular principal minors, let 9 be



a differentiable strictly increasing function from R into R such that
6'(0) +6'(¢) >0 forall £> 0., Then z solves (2) and the Jacobian

of (2) at z is nonsingular,

Proof: Ilet Gi(z) = 0 , denote the ith equation of (2) and let

1 if £>0 1 if i=j
sgnf = , aijz
-1 if £<0 0 if i#j

Then
BGi(Z) BFi(Z) BPi(Z)
S = O'([F;(2) - z)[)son(F(2) -z} 5, — - 8,5) = 0" (F;(2) —5
] J ]
- 0'(z) 5ij
Assume for the moment that Fi(z): 0 for i=1,... ,ﬁ £ n and
Pi(z),> 0 for i=n +1,...,n . Hence by strict complementarity
Zi> 0 for i= l,...,ﬁ . zi= 0 for i= ﬁ-{»l,...,n , and
p- — r
—9'(21) - 6'(0) 0
* 0 0
VG(z) = -9'(z.) = 8'(0) | . 0
i JF(2) + -6'(F. ,(2)) = 6'(0)
0 n+l
0 * 0 .
L o | ~6'(F_(2)) = 6'(0)




The nonsingularity of VG(z) follows from 6'(0) + 6'(£) > 0 for £> 0
oF.(2)
i

and the fact that the principal minor 32 , i=1,e00,n,j=1,06.,n,

i
is nonsingular, The argument is similar for the case when Fi(z) =0

for ieI< {1,...,n} and I#[l,“,,ﬁ} . QED

The simplest possible realization of (2) is obtained by taking 9(z) =
This gives
(3) |Fy(z) - 2,| - F,(z) - 2z =0 i=1,...,n

Note that the Jacobian of (3) is nonsingular under the assumptions of
the Corollary. However equations (3) are only locally differentiable
near a solution satisfying strict complementarity. This is because the
absolute value function is not differentiable at zero and hence (3) is
not differentiable when Fi(z) -z = 0 . Note however that at a solu-
tion satisfying the strict complementarity condition, Fi(z) - zi is

equal to either Fi(z) >0 or --z:.l <0,

In order for equations (2) to possess global differentiability

we require that 6'(0) = 0 . The simplest function having this property

and which is strictly increasing is 9(z) = z{ z| . Equations (2) become

| ) |
(4 (F(z) -2)" -F(2a)|F ()] -2z =0 i=1l....n.

Note that by the Theorem above, solving either of the systems

(3) or (4) is equivalent to solving the complementarity problem (1).

This is true without any assumptions on F . Under the additional as-

sumptions of the Corollary on F, both (3) and (4) have nonsingular

Jacobians at certain solution points.

Z




As a consequence of the above Corollary, locally superlinearly
convergent algorithms for solving the complementarity problem take
the form
zJ+1 -z = -F G(zJ)
where HJ may be taken as VG(zJ)_l (Newton method) or an approx-
imation thereof (quasi-Newton methods) [1]. It is hoped that the use
of such methods independently or in conjunction with simplicial approx-

imation methods would lead to an improvement in computational effici-

ency.






References

C. G. Broyden, J. E. Dennis, Jr. and J. J, Moré: "On the local
and superlinear convergence of quasi~-Newton methods”, J. Inst.
Maths. Applics. 12, 1973, 273~-245,

R. W. Cottle: "Nonlinear programs with positively bounded
Jacobians", SIAM J. 14, 1966, 147-158,

B. C. Eaves: "On the basic theorem of complementarity", Math,
Prog. 1, 1971, 68-75.

F. J. Gould and J, W, Tolle: "A unified approach to complementarity
in optimization", Discrete Math. 7, 1974, 225-271.

T. Hansen and H. Scarf: "On the applications of a recent com~-
binatorial algorithm", Cowles Commission Discression Paper
No. 272, April 1969.

O. L. Mangasarian: "Unconstrained Lagrangians in nonlinear
programming”, SIAM J. Control 13(3) August 1975,Univ. Wis.
Comp. Sci. Rept. No. 201, January 1974,

O. L. Mangasarian: "Unconstrained Methods in Optimization",
Proceedings of Twelfth Annual Allerton Conference on Circuit and
System Theory, University of Illinois, Urbana-Champaign, October
2-4, 1974, Univ. Wis. Comp. Sci. Rept. No. 224, October 1974,

J. J. Moré: "Classes of functions and feasibility conditions
in nonlinear complementarity problems", Math. Prog. 6, 1974,
327-338.

J. M. Ortega and W, C. Rheinboldt: "Iterative solution of non-
linear equations in several variables", Academic Press, New
York, 1970,






