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ABSTRACT

This paper uses elementary algebraic methods to obtain new proofs
for theorems on algebraic relationships between the logarithmic and exponen-
tial functions. The main result is multivariate version of a special case of
the Structure Theorem due to Risch that gives in a very explicit fashion the
possible algebraic relationships between the exponential and logarithm func-
tions. In addition there are some more results that give new information about
the forms of elementary integrals of elementary functions as well as a new
treatment of some algebraic dependence theorems previously discussed by

Ostrowski, Kolchin and Ax.






1. Introduction

In this paper the structure of fields of elementary functions that are
obtained from the rational functions by the use of rational operations and
the use of the logarithm and exponential functions is studied. The main
result is the Structure Theorem of section 5 which explicitly gives the form
of any possible algebraic relationship among various exponential and log-
arithm functions.

The Structure Theorem is a multivariate version of a special case of
a result due to Risch [26]. Risch's result has been generalized by Ax [1].
Both the proofs of Risch and Ax involve elements of algebraic function theory
or algebraic geometry. By eliminating consideration of algebraic cases
an important version of the Structure Theorem is obtained herein by using
only very elementary algebraic arguments.

The study of the structure of fields of functions has recently been re-
vived by the interest in exact mathematical computation (or symbolic math-
ematical computation) but the interest in such topics has a long history.
Joseph Liouville was the first to write extensively on this subject as he did
in the period 1833-1841 primarily in connection with his work on integration
in finite terms. See references [14]-[20] for his results.

The study of the structure of the elementary functions has been a funda-

mental part of the work on integration in finite terms. Hardy [9], Ritt [29],



Ostrowski [23], Risch [27,28] and Rosenlicht [31,32] have written about
elementary functions as a part of their work on integration. The results
of Ostrowski have been reformulated and generalized by Kolchin [12].
Kolchin's generalizations of Ostrowski's work is also treated by Ax [1]
and in section 6 of this paper another treatment of Ostrowski's theorem
and its generalizations is given.

With the recent development of computing systems such as Altran (8],
Macsyma [21], Reduce [10], SAC-1 [5] and Scratchpad [7] for exact mathe-
matical computation, the problem of simplification of mathematical expres-
sions has been recognized as fundamental. Brown [2], Caviness [3], Fateman
[34], Fitch [35], Johnson [36], Moses [37] and Richardson [24,25]have written
explicitly about the simplification problem and have explored both unsolvability
aspects of the problemas wellas having a suggested partial methods for carrying

out simplification. The results of this paperare similarin spirit to those of Brown.

However algorithms for elementary transcendental function arithmetic
based on the results of this paper and the generalizations found in the
previously mentioned work of Risch and Ax provide the most powerful methods
currently known for dealing with the simplification problem for classes of
expressions involving the elementary functions, i.e., algebraic, trigono-
metric, inverse itrigonometric, hyperbolic, inverse hyperbolic, logarithmic
and exponentials functions.

Epstein [6] has developed algorithms in the SAC~1 system for performing




arithmetic in certain subfields (To be precise, in regular Liouville extension fields
of Q(i,z1 reas ,zn) where Q denotes the field of rational numbers. See
section 4 for a definition of Liouville extension fields.) of the field of
elementary transcendental functions. The Structure Theorem is used to

find canonical representatiors for the functions and hence to solve the

simplification problem. The work of Epstein is much like that suggested

and anticipated by Moses [22]. Some of the algorithms of Fateman [34]use
similarideas but the full power of the Structure Theorem is apparently not employed.
The results of this paper are obtained within the framework of differential
algebra. In section 2 standard definitions and concepts from differential
algebra are presented. Although this paper is mostly self-contained, readers
desiring more information about differential algebra may consult Kaplansky
[11], Kolchin [13] or Ritt [30]. Some of the definitions of section 2 are
from Risch [27]. Readers need only be familiar with elementary algebraic
material on polynomials, fields, finite extensions of fields, and homomorphisms
to read this paper.
Presented in section 3 are the basic results upon which the proofs of
the remaining sections are based, Most of these results for the univariate
case occur at least implicitly in Risch [27] and Rosenlicht [32]. An exception
is theorem 3.7 which, although suggested by the work of Risch, is new and
interesting in its own right. This theorem gives rather complete information
about the form of integrals of certain special integrands composed of expon-

entials and logarithms and may have useful applications in algorithms for



integration in finite terms. Results for differential rings that are analogous
to some of the results of section 3 are given by Caviness and Rothstein
[4].

The concept of a well-structured field is introduced in section 4. It
is particularly easy to prove a structure theorem for well=-structured fields
as is done in section 4. The key to the proof of such a theorem is very
explicit knowledge about the form of integrals in well-structured fields.
The necessary information about such integrals is given in the Structured
Liouville Theorem, i.e., theorem 4.1, and corollary 4. 2.

The primary purpose of the results of section 4 is to facilitate the proof
of the Structure Thecrem forregular Liouville extensionfields in section5. In
section 5 it is shown that every regular Liouville extension field is differ—
entially isomorphic to a well-structured field. Through this isomorphism
and the structure theorem for well-structured fields, a structure theorem
is obtained for the more general regular Liouville extension fields.

As was mentioned earlier section 6 contains new proofs of Ostrowski's
theorem [23] and its generalizations due to Kolchin [12]. Kolchin's proofs
utilize a theorem on algebraic groups whereas our proofs are simple induc~-
tion proofs based on the lemmas of section 3. Theorem 6.4 is also proven
by Ax [1, section 4] by algebraic geometry methods. Section 6 is not an
integral part of the paper but is presented to show how the lemmas of section

3 can lead to elementary proofs of other well-known results.,




2. Differential Fields

Let R be a commutative ring with unity and let D . 'Dn be map-

1’

pings from R into R such that forany a,b in R and 1<j, k<n

Dj(a-kb) = Dj(a) + Dj(b) (2. 1)

Dj(ab) = aDj(b) +bDj(a) (2.2)
and

Dj(Dk(a)) = Dk(Dj(a)) . (2.3)

R is called a partial (ordinary) differential ring if n>1 (n=1) with deriv-

ation operators D Dn . If F is a field satisfying (2.1), (2.2) and

17
(2.3), F is called a differential field.

Let Pl and FZ be fields such that every element of Fl is an element

of ]?‘2 . Then FZ is called an extension field of Fl and Fl is called a

be a subfield of the differential field PZ . If

subfield of FZ . lLet F1

for each derivation operator D of FZ and for each a in Fl , Da is in

Fl than the restriction of D to Fl is a derivation operator for Fl and

Fl is a differential subfield of FZ . The derivation operators for Fl are

the derivation operators of FZ restricted to Fl . Also,in this case FZ

is called a differential extension field of Fl .

TLet Pl be a subfield of FZ and S a collection of elements in FZ .

There are fields, such as FZ , which contain both Fl and S . The



intersection of all such fields is called the adjunction of S to Fl and

is denoted by F_(S) . Clearly, Fl(S) is the smallest field containing both

1

d S ° = e 0 s i ini ’ ooy
F, an When S (el, @n} is a finite set Fl(el ; Gn)

1
be written for Fl(S) . If ¢ is an element of FZ such that X aj o = 0
j=0
6 is said to be algebraic over F

may

for some choice of aj in Fl . 1°

In [33] it is proven that if 6 is algebraic over a field Fl , there is
a unigue monic polynomial P{x) in Fl[x] having minimum degree such

that P(9) = 0 . This polynomial is called the minimum polynomial of

is algebraic over F, and

6 . Van der Waerden also proves that if o 1

1

92 is algebraic over Fl(el), 92 is algebraic over Fl .

If there is a polynomial P(x . ,xn) in Fl[xl,. .o ,xn] such

e

that P(s . ,en) =0, &8 ,Qn are said to be algebraically depend-

AR

Otherwise, ©

1ree

ent over T ,Qn are said to be algebraically inde-

1 - R

pendent . If there is no polynomial P(Xl) in Fl[xl] such that P(Ql) =0,

81 is said to be transcendental over 1:'1 . If every element in FZ is alge-

braic over Fl , FZ is said to be an algebraic extension of Fl . If

..,6 ) for some choice of 9,,...,8 , then F_ is said to be
m 1 m 2

F F.(6

2 = 16y

finitely generated over Fl .

Let Fl and FZ be two fields and let ¢ be a mapping from Fl into

FZ . If forevery a,b,c in Fl

da(b+c)) = o(@)(o(b) + o)) (2.4)




o is said to be a homomorphism from Pl to FZ . If the only element,

a of Fl such that o(a) = 0 is 0 and each element of FZ is the image

of an element of Fl under o, then o is called an isomorphism.

and FZ are differential fields with n derivation operators

Suppose Fl

%
.,D and D
n

D ll"'l

*
17 Dn respectively. Let 7 be a permutation of

1,2,...,n and let o be a homomorphism (isomorphism) from Fl to F2

s
such that <:7(Dj (a)) = Dﬂ(j)

ferential homomorphism (isomorphism).

(o(a)) for each Dj . Then o is called a dif-

Iet F be a field and suppose there is a positive integer p such that
pa = 0 forevery a in F . The smallest such integer is called the char-
acteristic of F . If there is no such integer, F 1is said to have character~
istic 0 . Henceforth it is assumed that all fields have characteristic
0.

let F be a differential field and D a derivation operatoron F .

Then D(l) = D(1°1) = D) + D(1) . Therefore D(1)=0. Soforany a £ 0
in F, 0=D(l) = D(a/a) = aD(1/a) + l/a D(a) . Thus D(l/a) = - 1/a® D(a) .
Using induction on m it follows easily that forany a Z0 in F and any

integer m

D@E@™) = ma" D) . (2.5)

Combining (2.2) and (2. 5) yields



D(a/b) = (bD(a) - aD(b))/b2 . (2.6)

Suppose F is a differential field with derivation operators Dl' oo ,Dn .
If Dj(a) =0 and a £ 0, it follows from (2.5) that Dj(a'1

(F)

) = Dj(l/a) =0 .

Together with (2.1) and (2.2) this implies that Cj = {c inF: Dj(c) = 0}

is a differential subfield of F called the field of constants with respect
n
to the jg}' variable. By taking the intersection C<P) =, (F) we obtain

j=1
() is a differential extension field of C(P) .

C,
]

the constant field of F . C].
When no confusion arises in doing so, C will often be written in place

of C(F) ®) .

and Cj‘ will be written for Cj Since C con’tyrains l’, and
F has characteristic 0 , C contains a field isomQrphic to the field of ‘
rational numbers. -

For the remainder of this chapter suppose that T is a differential field

with n derivation operators D.,... ,Dn . The gradient operator, V,

1
is defined by

8,...,D a) (2.7)

for a in F. Va=(0,0,...,0) will be abbreviated Va = 0 . It is clear
that C={ain F: Va=0}. From equations (2.1), and (2. 2) it follows

that forany a,b in F and ¢ in C

V(c(a+b)) = cVa + cVb . (2.8)




Thus cVa = Vb if and only if ca = b+k where k is in C since
Vi(ca-b) =0 .

Let U be a differential extension field of F with the property that
any finitely generated differential extension of F is differentially isomor-

phic to a subfield of U . Then U is said to be a universal extension

of F. In [13, page 92], Kolchin proves that every differential field of
characteristic zero has a universal extension field. Note that what we
call a universal extension is called a semi-~universal extension by Kolchin.
A field T will be identified with its isomorphic image in U .

Let 6 be an element of U such that each Dje isin F . Then
6 is said to be primitive over F . If there is an non-zero f in F such

that

Vg = Vi (2.9)

then o is called a logarithm over F , written 6 = logf . If there is an

f in F such that

Ve = Vi (2. 10)

6 is said to be exponential over F , written 6 = expf.
Observe that 6 in U cannot be primitive, exponential and trans-

cendental over F unless 9 is a constant. For if 6 is exponential, there
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isan f in F such that (2.9) holds. If Vf Z 0 , there is a Djf £Z0.
Therefore 9 = Dje/Djf which is in F since @ is primitive. Thus, either
Vi= 0 or g isin F. If Vf = 0, Vg = 0 and thus ¢ is a constant.

A monomial over F is an element of U which satisfies the following
properties.

(1 6 is transcendental over F ;

{2) @ is primitive or exponential over F .

(F) (F(8))

If also C =C , 6 1is said to be a regular monomial. If & in U

is primitive or exponential over F , then 6 is not a regular monomial

(F(8))

over F precisely when there isa ¢ in C such that ¢ is algebraic

over F(c) . Certainly, if such a ¢ exists § is not a regular monomial.
Conversely, if 6 1is not a regular monomial either g 1is algebraic, in which

(F(0))

case c =1, or 6 is transcendental over F but thereisa ¢ in C
not in C(F) . However, c¢ in F(8) may be written P(8)/Q(6) where
P(6) , Q(6) are relatively prime polynomials in F[6] . Then P(8) - cQ(g) = 0

so that © is algebraic over F(c) .

This section is concluded with the following lemma.

Lemma 2.1 Suppose f,g are non-zero elements of U which are exponen-

tial over the differential field F . Let m be a non-zero integer. Then,

(U)

f_/gm is a constant in C if and only if
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Vg (2.11)

Furthermore, when (2.11) holds, f is not a regular monomial over F(g) .
|

Proof. f/gm is a constant if and only if V(f/gm) =0 . But V(f/gm) =
- - - -t V

- mfg m 1Vg +g me = mig m(:§ +—n'%1;. Vi) . Thus, V(f/gm) =0 pre~

cisely when (2.11) holds since m#Z0 and f and g are non-zero. It is

clear that f is not a regular monomial over F(g) when (2.11) holds,

\ m
since f/g is a constant.
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3. Basic Lemmas

Throughout this section 6 shall be a regular monomial over the differ-
ential field F . A will represent the set of derivation operators on F .
Elements of F(9) will be considered quotients of elements in F[g] , the
ring of polynomials in 6 with coefficients in F . Thus f in F(8) may
be written in the form P/Q where P,Q are relatively prime elements of

Flo] with Q monic. For P in F[6], the degree of VP in 6 , written

dege(VP) , 1s maximum {degQD(P): D in A}. P in F[e] is called square-
free if there does not exist Q in F[g] with degeQ > 0 such that in P.

The next two lemmas are multivariate versions of results appearing

in [27].

k
Lemma 3.1 Suppose P(8) = Z pj QJ is a polynomial of degree k in
I 0
Fle] . If 6 is primitive over F , k—lgdege(VP) < k . Furthermore,

deg@VP = k=1 if and only if pk is in C , the constant field of F .
k

Proof. VP = Z [ij 6 v{wjpj @]—lve] . If dege(VP)<k , ‘Vpk must
j=0

be zero and by definition P isin C . If Vpk = 0, then Vpk_l +k kae

cannot be zero. For if it were, then VP + kkaQ = v(pk-l + k‘pk 6) =0

k-1

which implies that g is not a regular monomial by the discussion following

the definition of regular monomial.
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k

Lemma 3.2 If P(g) = Z, pj o is a polynomial of degree k in F[8]
j=0 |

where @ is exponential over F , deQQVP = k.

Proof. Since ¢ is exp%nential over T, there isan f in F such the
Vg =0gVi. Then VP = Z (ij +jijf)GJ . If Vpk +kkaf = 0,

j=0
lemma 2.1 implies that & is not a regular monomial over F which is con~

trary to the hypotheses. Thus dege(VP) = k.

k

Lemma 3.3  Suppose P(g) = Z pj GJ is a polynomial in F[g] of degree
j=0
k>0. If, foreach D in A, P|DP (as polynomials in F[8]), then ¢

is an exponential monomial and P = pek where p isin F .

Proof. 1If foreach D in A, PIDP, then for each D there isan f in
F such that DP=£fP . Suppose 6 is primitive. Since k = degeP = dege(fP)
= deg@(DP) , Dpk #Z 0 . Equating the leading coefficient of DP with the

leading coefficient of fP vyields Dpk = fpk . Thus kaP - PDpk =0

(F(8))

and V(P/pk) = 0 . Therefore, P = cpk for some ¢ in C contra-
dicting the fact that 6 is a regular monomial over F . Thus 6 cannot
be primitive.

Assume @ is exponential and, therefore, there isa g in F such
that Vg = Vg . The coefficient of the term of degree j in DP then
becomes Dp]. + jijg = fpj . Thus, foreach D in A, pk(ZDpj + jijg)

k k k
(j—k)(pk/pj)Vg which implies that @ = (j—k)(pk/pj) forany j <k . Thus,

=p (fp,) = (fp, ) p, = p,(Dp, +kp Dg) . Then, if p, £#0, V(p /p,) =
kT j j j k')
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if there is a j < k with pj Z0 , lemma 2.1 implies that ¢ is not a reg-

ular monomial.

Lemma 3.4 Let P,Q be relatively prime elements of F[g] with degGQ >0 .
Suppose for each derivation operator, D , D(P/Q) = A/B where A,B are
relatively prime elements of F[g]. Then each B is square-free if and

only if 6 is exponential over F and Q = g6 where q isin F .

Proof. It is easily seen that if ¢ is exponential and Q = q¢ , D(P/Q)
can be written in the form A/B with A,B relatively prime elements of
F[e] and B square-free.

Conversely, suppose D(P/Q)= (QDP - PD Q)/Q2 = A/B . Then
B(ODP-PDQ) = QZA . If B is square-free, Q|(QDP -PDQ) . Since
QIQDP this implies Q[PDQ . Since P and Q are relatively prime
(polynomials in F[9]) , Q|DQ . By lemma 3.3 Q = qek where q is in
F and & is exponential.

m
It remains only to show that k =1 . Suppose k>1 and P = Z p. Qj
where pj isin F . Thenfor some f in F, Vg =6V so A/B =JI:)?P/q ek)
= (D(P/q) - k P/q Df)/ek foreach D in A . Thus 8|(D(P/q) - k P/q Df)
since k> 1 and 92 does not divide B . So the trailing coefficient of

D(P/q) - k P/q Df is zero. Therefore, V(po/q) - k(po/q)Vf = 0. So

by lemma 2.1 ¢ is not a regular monomial. This contradiction shows




that k=1.

Lemma 3.5 Let R(A) £0 bein F(g) . If D(R)/R = A/B where A and

B are relatively prime elements of F[g], B is square-free.

Proof. If R is in F , the lemma is clearly true. Otherwise, write
m ej

R=f I R,
j=1

Rj are distinct, monic, irreducible members of F[g]. Then for each D

where f is in F , the e], are non-zero integers and the

in A

R + : e fl) R I Ii 301
2 !{ Rk . /(f R-) ° ( )

m
DR/R = [Df T
j= j#k j=1

1

from which the lemma follows.

Lemma 3.6 Suppose S isin U and foreach D in A, DS = P/Q where
P and Q are relatively prime elements of F[g] with Q square-free.

Suppose further that
m
DS = Z ¢.,DR/R, + DT (3.2)
R R M
j=1
where T , Rl""’Rm are in F(g) and each cj isin C. Then T is

in F[p] except possibly when @ is exponential in which case 9T is in

F[e] .
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Proof. By lemma 3.5 each ¢ D R],/R]. can be written as Aj/Bj with Aj'Bj
relatively prime in F[g] and BJ, square-free, Each term in equation (3.2),
with the possible exception of DT , can be written as the quotient of rela-
tively prime polynomials in F[9] with a square~free denominator. There=-

fore there is a square-free polynomial L in F[#] such that
m
L(DS - Z AJ,/BJ,) = LDT (3.3)

j=1
is in F[6] . When DT is written as a quotient PT/QT of relatively prime
polynomials in F[6], QT divides L and thus is square~free, It follows

from lemma 3.4 that T is in F[g¢] or 6 is exponential and 6T is in

Fle] .
By strengthening the hypotheses of this lemma more can be said about
T as is done in the following theorem. The above lemma with the weaker

hypotheses is needed in some of the proofs of section 4.

Theorem 3.7 Suppose S isin U and foreach D in A, DS = P/Q

where P and Q are relatively prime elements of F[g] with Q square-

free and 0 < degeP < deg_ Q . Suppose further that

D

DS = cj DRj/Rj + DT (3. 4)

I~

j=1

where T’Rl’““'Rm are in F(8) and each cj isin C . Then if ¢ is
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n

primitive, T is eitherin C or DT = Z k. ij/fj where each f],
j=1
is in F and each kj isin C. If 9 is exponential, 6T is in F[g]

and furthermore T in F[g] implies that T is actually in F .

Proof. Proceeding as in the proof of lemma 3.6, it can be shown that
T mustbe in F[g] or 9 must be exponential and ¢T must be in F[g].
If 0 is exponential and T is in F[g]then either T = 0 or degQT =0
since otherx?rnise deg@ DT > 0 and equation (3. 3) implies that
degeL(DS - é AJ,/BJ,) < dege L< dege LDT which is impossible. Thus
the desiredj;esult is established for the exponential case.

If ¢ is primitive as in the proof of lemma 3.5 express each Ri as

e,

fi I (Rj) ) where fi is in F , each ej is a non-zero integer and each ﬁj
is a monic irreducible member of F[g]. Then DRi/Ri = Dfi/fi + y e Dﬁj/ﬁj .

il

Equation (3.4) becomes
P/Q = Z k.DR./R. + Z ¢.Df./f. + DT
S i
Let L= Qniij . Then L(P/Q - Z kj Dﬁj/ﬁj) = L(Z c, Dfi/fi +DT) .

But the degree in g of the lefi~hand side of this equation is less than

the degree of I since each 1_2], is monic and the degree of the right-hand

side is greater than or equal to L . This cannot be unless P/Q Z kj Dﬁj/ﬁj

= 0 and DT +Z cy Dfi/fi = 0 which establishes the theorem.
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Note that if P/Q is a non-zero member of F the conclusions and
the proof of the theorem still hold.

This theorem is a generalization of the well-known result [9] that
DT = 0 when P,Q are in the ordinary differential field F[z] , F a field
of constants and Dz =1 . It follows from the above proof that when 6
is primitive and P/Q has an integral of the form (3.2) that we may take
DT =0.

Furthermore if the constant field of F is algebraically closed and
P/Q has an elementary integral, it follows from Liouville's theorem [27]
that the integral must have the form given in equation (3.2). The proof of
the theorem shows that if @ is primitive S P/Q can always be expressed
in the form Z kj log —éj where each kj is in the constant field of F and
each I-{j is a monic irreducible element of F[g] .

If o is exponential, T can be more complicated as the following
examples show.

A very simple example suffices to show that T may actually be a ra-
tional function in @ . Let F = Q(z) , the field of rational functions with
rational number coefficients. let 6 = ez . In equation (3.4) take DS =
/o, m=0 and T=-1/8 .

Theorem 3.7 says that if T is not actually a rational function in 6
then in fact T must be in F . We want to show with an example that in

this case T does not have to be in any subfield of F such as the field
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of constants of F . Let Fl be a field of one variable 2z and suppose

fi:FZ(vp) where Fz is some subfield of By and 3 is suchthat 9 = e

is a regular monomial over Fl . For example PZ could be Q and ¢ could
be z or FZ could be Q(z) and ¢ could be eZ . We want to show that
S can be chosen such that T will involve ¢ . This will be the case if

in equation (3.4), DS = z,b'/(9+l) ,m=1,R =98+ 1,c, =-1 and then

1 1

T=v9 . (' is the derivative of with respect to z .)
[ 1
The following lemma is a multivariate generalization of Proposition

1.2 of [27].

Lemma 3.8 Let ¢ be an element of U the universal extension field of
F . Suppose 3 is not a regular monomial over F .
(@) If ¢ is primitive over F , then ¥ =g + Cy where g is in F and

c. is in C(U) .

1

(b)y If vy is exponential over F , then zpm = czh , where m is a non-
zero rational integer, h isin F and CZ is in C(U) .

Proof. If Vy = 0, the result is obvious so assume Vy £ 0.

Since y is not a regular monomial over F there is a cons&lant k
(F(3)) | : ) j
such that ¢ is algebraic over F(k) . Let P(x) = p, X
j=0
be the monic polynomial of minimal degree m with coefficients in F(k)

in C
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such that P(y) = 0. If k is algebraic over F , then y is algebraic over
F , since y is algebraic over F(k) . In this case one may assume k =1

and then F(k) = F . Since pm =1, foreach D in A,
m-1 m-1
j j~1
D(P(y)) = X D(pj)ilfJ + ijjD(w)dJJ = 0 (3.5)
j:O j:O

Consider the case in which y is primitive. D(y) is in FcF(k) and
so D(P(y)) is a polynomial of degree < m with ¢ as a root. This would

contradict the minimality of m unless each coefficient of DP(y) is 0.

Therefore, D(p__;) + mD(y)=0. 8o V(pm_l/m t9)=0 and ¢ =~ Pm-1/m * €

for some ¢ in C(U) . If k is algebraic the lemma is proved since

pm—l is in F . Otherwise, -pm—-l/m can be written A/B with A,B rela-

tively prime and B a monic polynomial in F[k]. Hence ¢ = A/B + ¢ which

implies that (BDA-—ADB)/BZ is in F . Thus BfDB in F[k]. Since B is

monic, degk B> deg DB unless deg B=0, Thus B mustbe 1. So

k k
Y = A +cC. U
Suppose A = 2 a,kJ with the a, in F . Then foreach D , Dy =
K j=0 J
DA = E (Daj)kJ since Dk = 0., But Dy isin F and k is transcendental
j=0 0
over F . Thus Daj =0 for j=1,...,u . Therefore A= a + Z a.kJ
M W j=1 '
with Z aj k) in C(U) . Taking g = a and cl =c + ? aj 1% proves
j:]- j:]_

the lemma for this case.

When v is exponential, V¢ = ¢V for some f in F . Thus equa-

tion (3.5) becomes
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3

D(P(y)) =

n o~

(D p, + P, DE)y = 0

j=0

Let D be suchthat Df £ 0 . Divide D(P(y)) by mDf to yield a monic
polynomial of degree m with ¢ as a root. Therefore the trailing coeffici-
ents of P(y) and —rr-l_ll;f D(P(y)) must be equal. Thus P, = Dpo/me .

So Dloo/pO = Dy/my whenever Df #0. When Df = 0, D(P(y)) can
be written as a polynomial in F(k)[y] of degree < m . Since D(P(y)) =0,
this would deny the minimality of m unless each coefficientis 0 . In

particular, DpO + OpoLDf = Dpo = 0. Thus lemma (2.1) implies 1/)-m =

Cg Py for some c, in C(U) . If k is algebraic over T this completes

the proof.

Otherwise P, is in F(k) , and may be written A/B with A,B rela-

m

tively prime elements in F[k] with B monic. Thus 1/)_ D(qpm) =-mDf =

(BDA - ADB)/AB for each D . But Df isin F, so B|DB. Asin t&e

primitive case, this implies B =1. Thus - mDf = DA/A . If A= Z aj %
j=0
with a}, in F , equating the leading coefficients of -~ mAD{ and DA

yields =-mD({) aM = D(au) . From lemma (2.1) it then follows that w-m =
(U)

czau for some c‘2 in C .
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4, Well-Structured Fields

Let Fo be a differential field with universal extension field U .

For 91,{92,...,9m in U let Fj: FO(Q,...,Qj),ls_j_gm. If each

1

ej is a monomial over F, . then Fm is what Kaplansky [11, p. 24] calls

j=1

a Liouville extension of Po . Kolchin [13, p. 408] calls such extensions

Liouvillian extensions of type (2). If each ej is also regular over Fj—l .

Fm will be called a regular Liouville extension of FO .

For the remainder of this section the following assumptions will be

made: FO will denote the field K(z . ,zn) of rational functions in the

1

z_ with coefficients in K and Ko will denote K[zl,. .2 1,

variables z,,...,
1 n n

the ring of multivariable polynomials over K , where K is a subfield of
the complex numbers. For £ =1,2,...,n let D/& denote the derivation

operator with the properties that D& zj = éU , the Kronecker delta, and

DE k¥ =0 forall k in K. Then FO is the usual field of rational functions

in n variables over the constant field K with the usual partial differenti-
ation operators Dy, ... ,Dn . Denote the set (Dl, e ,Dn] by A.
Observe that each z& may be viewed as a regular monomial which

1 ,z%__l,z&ﬂ,... ,zn) .

= FO(Ql,. o ,Qm) .

is primitive over any subfield of K(z

Let Fm be a regular Liouville extension of FO , Fm

Let Km denote the polynomial ring K[zl, oo ’Zn’el’ e ,em] . Fm is the

quotient field of Km and any element of Fm can be written as a quotient
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of polynomials in Km . Suppose R = P/Q is so written. A polynomial

P in Km is said to be a factor of the rational function R if E[ P or

-ISIQ . In particular R is said to have an exponential factor if some ex~

ponential ej divides R . If the only common factors of R1 and RZ

in Fm are elements of K then Rl and R2 are said to have no common

factors.

Before defining well-structured fields, the concepts of index and dis-
tinguishing factors must be introduced. If R is a member of a Liouville
extension Fm of F, the index of R, written index (R) , is the smallest

j such that R is in Pj .

Suppose that Qk = log Ak . Let fk be a factor of Ak with the fol-

lowing properties:

(1) index (f ) = index (A

) )i
(2) fk is a non-constant irreducible polynomial in Km;

(3) fk has no exponential factors;

and (4) if 9]‘ = log A}, and j £k , f and A], have no common factors.

k

Then fk is called a distinguishing factor for ek . A regular monomial
ej is said to be well-structured provided that it is exponential or 9}. =
log Aj has the properties:

n 9], has a distinguishing factor;

and (2) Aj has no exponential factors.
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If each 9], is well-structured, Pm is said to be well-structured.

In the case of well-structured fields, the requirement that distinguishing
factors be irreducible can be omitted. For, if some f in Km lacked only
irreducibility in order to be a distinguishing factor, any irreducible factor
g of f with index(g) = index(f) would be a distinguishing factor.
Thus a set of irreducible distinguishing factors could always be obtained
from the non-irreducible factors.

The following notation will prove helpful.

Let L(J,k)={4:1<4<k, 9&: log A!L and index(A&) <ij}.
Let E(k)={j:1<j<k and QJ, = exp(Aj)} . Thus L(j,m) is an index
set for all the logarithmic monomials whose arguments have index <j.

E(m) is an index set for the exponential monomials.

Theorem 4.1 (Structured Liouville Theorem) Suppose Fm is well=-structured

and f is in Fm . Suppose for each derivation operator D in A, index(Df) < k .

Then

f = Z c,6, +R_ (4.1)
jeL(k,m) 7/ g

where Rk isin F. and ¢, isin K.
]

k

Proof. The proof will be by induction on m-k . When m-k = 0, letting

each Cj = 0 and Rk = f gives the desired result. Suppose inductively




that the theorem is true whenever 0 < m -k < m . Then since index(Df) <

k<k+1

f = Z c.e, + Rk+l
jeL(k+l, m)

where Rk+1 isin F

, and each ¢, isin K. Since F_ is well-structured,
k+l1 j m

for each j in IL(k+l,m) there is a distinguishing factor 'fj such that
e: . -

Aj = fjJ Aj where fj and Aj have no common factors and e], is a non-

zero integer. Thus

Df = Z c,e, Df /f, + Z c,D A./§.+DRk+1 (4. 3)
jeL(k+l,m) 7 0 11 jenk+1,m) b '

Each term in equation (4.3) can be written as a quo-

tient of two relatively prime polynomials in Kk+1

Let each term in (4. 3) be represented as a quotient of two such polynomials

in Kk“ and let Q be the product of the denominators. Suppose index(Ai) =
k+l and Ci £Z 0 . Then because fi is a distinguishing factor for ei ,
lemma 3.3 implies that fi divides the denominator of Cieini/fi and
thus fi|Q in K-

Since index(Ai) = k+l , index(fi) = k+1 ., For each term in either sum
on the right of equation (4. 3),each factor of the denominator having index k+1

must be a factorof some f], or Aj . Since fi is relatively prime to fj

when i #£j and fi is relatively prime to each 1—\], . fi is not a factor of
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the denominator of any of the terms in the sums other than ci e:,L Df i/fi .

Furthermore, since Df is in Fk lemma 3.6 implies that fi is not a factor

of the denominator of DRk+1 . Thus fi{Q but fiz does not divide Q .
Multiply equation (4.3) by Q to obtain

opf= ) c.eQDE/E + ) c,QDA/A + QDR . (4.4)
jeL{k+l, m) 3 3yl jeL(k+l, m) ¥

Since fi is not a factor of the denominator of any term in equation (4. 3)
other than Cieini/fi . fi divides each term in equation (4.4) except possibly
the term CieiQDfi /fi . Thus fi must divide this polynomial also. Since

fi is not a factor of Dfi nor of Q/fi , it must be that ci =0 .

This shows that whenever cj Z 0 inequation(4.2)it mustbe the case

that 9], = log A]. and index (Aj) <k . Thus each term in equation (4. 3)

except possibly PRk 1 has index < k . Therefore index(DRk+]) <k.
By theorem 3.7 either is i = R is i

y orem either Rk | isin Fk or 6y 4 Rk+l Rk+1 is in P[9k+l]

P . . -
an Qk 11 is not a factor of Rk e In the second case differentiate Rk+1
to obtai R .=

oobtain DRy 1= 0y PRy TR PO

h —
Thus Qk DRk+l R Dek 1

= DRy /9k+1 I:<k+1

H divid R R ial i

ence g, ., divides DRk+l /9k+1 Rk+1 , a polynomial in O sl

over Fk , and hence the trailing coefficient of ﬁk a satisfies the same differ-

ential equation as @ By lemma 2.1 ¢ is not a regular monomial.

k4l ° k+l1

This contradiction implies that the second case cannot occur and that Rk R}
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is in Pk .

By applying lemma 3. 6 toequation (4. 1) the following corollary is obtained.

Corollary 4.2 Let the notation be as in the preceding theorem. Suppose

for each D in A there exists P,Q in F Qk] with Q sqguare-free such

k-l[
that Df = P/Q . Then Rk is in Fk_l[@k] except possibly when 6y is
exponential in which case QkRk is in Fk_l[ek] .

The next lemma is actually the statement of the initial part of the in-
duction argument used to prove the main result of this section, theorem

4.5. Tt is presented separately because it has some intrinsic interest

and because the proof of theorem 4.5 is thereby shortened.

Lemma 4.3 let Fm be a well-structured differential field. Suppose
AO is an element of Fm with index(Ao) = k . Suppose that Qk is not
exponential or is not a factor of A . Let L(k-1,m) = L(k,m) . Then if Ao

is not a constant, logAO is a regular monomial over Pm
Proof. Suppose logAO is not a regular monomial over Fm . Then lemma
3.8 implies there is an R in Fm and a constant ¢ in U such that

logAO = R+c. (4.5)

Then the Structured Liouville Theorem implies that

R = Z c, 6, +R

k
jeL(k, m)
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where Rk isin F. since k Zindex(DAo/Ao) = index(DR) for each deriv-

k

ation operator D . Thus

DA /A =DR= }: c,DA,/A, +D . (4.6)
oo jeL(k, m) NI B Rk

Let AO = P/Q where P,Q are relatively prime elements of Kk .

If k=0, let 90 = Zz& where degz P>0 or degz Q> 0. Then substi-

L L
tuting P/Q for AO and multiplying (4. 6) by PQ yvields

(QDP - PDQ) = PQ( 2 S DA./AJ. +DR,) . (4.7)

k
jeL{k,m)

Since L(k-1,m) = L(k,m) , foreach j in L(k,m) index(Aj) < k and lemma

3.6 implies that for k > 0 either Ry is in Fk-—l[

and 6, R, isin Pk__l[ek] and for k =0 R, isin K(z

Gk] or ek is exponential

e ’ZJ&~1’ZJL+1'° e,z

[z{] . Since @, cannot be an exponential factor of Ao , equation (4.7)

k
implies P|(QDP - PDQ) and Q|(QDP - PDQ) . Since P and Q are
relatively prime, this implies that Q|DQ and P|DP . Butlemma 3.3
implies that this can happen only if P and Q have exponential factors

or are of degree zero in @ Since both P and Q cannot be of degree

K

zero in @, , this is a contradiction proving the lemma.
The next theorem is an easy consequence of the preceding lemma and

is a generalization of the well-known result [9, p. 14] that says, roughly
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speaking,that the logarithm of a non-constant rational function is not a

rational function.

Theorem 4.4 Let Fm be a well-structured differential field. Suppose

A is algebraic over Pm , the index(norm(A)) = m , norm(A) is not a constant
and logA is not a regular monomial over Fm(A) . Then em is exponen-
tial and there is an f in Pm and a positive integer 4 such that norm(A)

2
_fem.

Proof. Let Al, ARE ,Ak denote all the conjugates of A over Pm
Since A is algebraic over Fm and logA is not a regular monomial there
exists g(A) in Fm[A] and some constant ¢ in U such that logA =

g(A) + ¢ which implies DA/A = Dg(d) . kApplying the trace function to this
latter equation yields: trace (DA/A) = 'Zl DAJ,/AJ,:D.(?IV AJ,)/; Aj =
D(norm(A))/norm(A) = trace D(g(A)) = D(Jtrl_”ace(g(A))) . J?%Fhe fajczlthat D can
be extended to Fm(A) and that D commutes with the trace and norm follows
from the uniqueness of the extension of D to Fm(A) as is shown in [31].)

Hence log(norm(A)) = trace(g(d)) + a constant. Thus by the preceding

lemma the theorem follows since log(norm(A)) is not a regular monomial

by lemma 3. 8.

If the hypothesis "norm(A) is not a constant" is removed theorem 4. 4
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is a generalization of the result that says that the logarithm of a non-constant
algebraic function is not an algebraic function. However if this hypothesis
is removed no simple algebraic proof is known for the resulting statement.

A set of functions {Al,AZ, oo ,Am} is said to be pseudo-~linearly

dependent over the rational numbers if there exist rational numbers
m

rl, ase ,rm , hot all zero, such that Z ri Ai is a constant. If there
i=1

do not exist such ri , {A oo ,Am} is said to be pseudo-linearly inde-

1
pendent . (Al, oo ,Am} is said to be pseudo—multiplicatively dependent
m e
if there exist integers el, oo ,em , hot all zero, such that II Ail is
i=1

a constant. {Al, e ,Am} is called pseudo-multiplicately independent
if it is not pseudo~-multiplicatively dependent. It is easy to see that
{Al, oo ,Am} is pseudo-multiplicatively independent if and only if

{logA . ,logAm} is pseudo=-linearly independent.

1

The next theorem is our primary objective for well-structured fields.

Theorem 4.5 Let I—‘m be a well-structured differential field. Suppose

AO is an element of Fm with index(AO) = k and assume that AO has no
exponential factors. In this case 1ong is a regular monomial over Fm

if and only if {log AO} U {ej} is pseudo-linearly independent or

jeL(k,m)

. . , . do- . .
equivalently if and only if [AO} U (Aj}jeL(k,m) is pseudo~-multiplicatively

independent where ej = log Aj for jeL(k,m) .
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The proof of this theorem is somewhat long but the basic ideas are
quite simple. The hardest part of the proof is to prove the pseudo~linear
dependence relationship when logAO is not a regular monomial. Before
giving a detailed proof, this part of the proof will be sketched.

For this case first employ lemma 3.8 to conclude that log AO + a constant

is in Fm . Now use lemma 4.2 to get

(4.8)

logA + constant = e} + R
9h, L 39 TR

jeL(k,m)
where each cj is in K and Rk is in Fk_l[@k] except possibly when

g, is exponential in which case Oy Rk must be in Fk_l[ek] . At this

k
point two things remain to be shown: (1) each Cj is rational and

(2) Rk is a constant. To do this we show that if C’% in equation (4. 8)

is not zero then the distinguishing factor of @& must be a factor of AO .
From this fact it follows without much difficulty that CJ& must be rational.
Knowing that C& is rational, equation (4.8) may be slightly rewritten with
the sum on the right-hand side taken over L(k,m) - {4} and then by induc-
tion on the number of elements in L(k,m) - L(k-1, m) the desired result will

follow. Lemma 4.3 is used to get the induction started. Now for the detailed

proof.

Proof. (of theorem 4.5). If {1ogAO} U mj}er(k,m) is pseudo-linearly

dependent then log AO is obviously not a regular monomial. So assume

that long is not a regular monomial. It must be shown that {log AO} U

{Gj}jeL(k o) is pseudo-linearly dependent. The proof is by induction on
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t , the cardinality of L(k,m) - L(k=1,m) .

When t = 0 the desired result follows from lemma 4.4. Suppose the

result holds for integers less than t> 0 . As noted earlier it follows from
lemma 3.8 and the Structured Liouville Theorem that equation (4.8) holds.
Let 4 be the largest integer in L(k,m) not in L(kk-1,m) . Of course,

2 >k since Pm is well~structured and index(A&) =k . If C& = 0, form

%
the subfield, Fm of Fm obtained by adjoining only those Gj to FO where

j satisfies one of the following properties

)y j<k
or
(2) j isin L(k,m) and j £ 4 .

)

. s ® s :
Also, R isin F since Rk is, as
m

. . sk . B3
Then A . is in Pm since Fm D F

0 k'’

is each @j for which cj Z0 . Thus log AO is not a monomial over Fm
Since Fm is well-structured it follows that F; is. Applying the induction

hypothesis to log AO in the field I—‘::1 now implies the theorem in this case.

If c% Z0 , let f be the distinguishing factor of 9& so that AJL =

b

£ £

5,@ where f is not a factor of 11& and p)C is a non-zero integer. Since

f is a distinguishing factor there is a derivation operator D such that Df A0 .

b,
Substitute f X’A& for A)& in (4.8) and apply D to obtain

A = - A /A . (4.
DAO/ o ‘ Z J :DA./Aj tc,p, Df/f+c£ DA&/A)& + DR, . (4.9)
jel(k,m)
i
If k=0, let O, = z, where degzgf;éo and Fk—l = K(Zl""’ZJe,—l’ZJHl"’"

in the discussion which follows.
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Then from equation (4.9) and lemmas 3.5 and 3.6 it follows that

R isinF  .[6 Each

K k-1 or o

is exponential and QkRk isin F &

k] k k—l[ k] )

term in (4.9) can be written as a quotient of two relatively prime polynomials
in Fk_l[ek] . The proof of lemma 3.5 implies that for each j , any factor

of the denominator of DAJ./AJ, is a factor of AJ_ ; similarly, any factor of the
denominator of D:B:&/A& is a factor of ZX% . Let M be the product of the
denominators of all the terms in (4.9) other than C&p«ﬁ Df/f . Then f is not
a factor of M since it is not a factor of any A]_ for j # 4 , and it is not

a factor of !-3:% and is not equal to @, when ¢, is exponential. Multiply

k k
equation (4.9) by fM and transpose the term cf p}C MDf to obtain

~c p. MDf + fMDA /A = Z iMc, DA./A, + M D/i /:& + fMDR
LR o] , iv L2
jeL(k,m)
i£r

X (4.10)

where each term in this equation is in Pk_l[ek] .

Now f divides the right-hand side of equation (4.10). Thus, f must
divide the left-hand side of equation (4.10). However, f does not divide

—c%p& MDf since f has no exponential factors. Therefore, f cannot divide

fMDAO/AO . Note that fMDAO/AO is in F since every other term

k-116¢]
in equation (4.10) is. Thus f{ must be a factor of AO . Therefore, AO =

n
f L AO where n& is a non-zero integer and f is not a factor of AO . Thus

DAO/AO = n&Df/f' + D.&O/l—ko . Using this relationship in (4.10) one sees
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that f must divide —c& p}C MDf + n}C MDf . But this cannot be unless

CJ& p)t MDf = n{l MDf . Since DEf £ 0, c& = n{./plg . Therefore c{ is a ra-

tional number.

. P, n
Now let A™ = AO 1/A& Y. Then

logA™ = logA -n onstant . 4.11
9 T 1 (4. 1)
Thus 1ogA* = Z p c. 8, +p Rk + constant . An argument similar
, L 17 s
jeL(k,m)
i1

to the one for the case in which c}& = 0 now shows that

logA* = Z d, 8. + constant (4.12)
jeLk,m) 1

where each dj is a rational number. The theorem now follows from equa-

tions (4.1l) and (4.12). |




5, The Structure Theorem

Inthis section we beginby showing that every regular Liouville extension

field is differentially isomorphic to a well-structured differential field.

Lemma 5.1 Let F be a differential field and let 4 and ¢ bein U,

the universal extension of F . Suppose for each derivation operator D that
Do =Dy isin F or that each (De)/6 = (Dz//)/z// isin T . Then the mapping
o from F(@) to F(y) defined by o(f) =f for £ in F ,d(@) = ¢y and

o(RS +T) = o(R)o(8) + o(T) for R, S, T in F(p) is a differential isomorphism.

Proof. It is clear that o is a isomorphism from F(8) to F(y) and o(Df) =
D(o(f)) foreach f in F. If each Do =Dy is in F, D(o(8)) = D(y) =
D(6) = o(D(g)) since o is the identity mapping on F . If each Dg/9 =

Dy/y isin F, D(a(g)) = D) = Op/¥)p = (D8/0)y = a(De/8) * c(g) = oDy .

Thus o is a differential isomorphism. &

Lemma 5.2 Suppose F* and F are differential fields and o is a differ-
ential isomorphism from F*to F. Let A bein F*. Then logA is a reg-
ular monomial over F¥* if and only if logo{(A) is a regular monomial over
P and expA is a regular monomial over F* if and only if expo(A) is a

regular monomial over F .

Proof. If logA is not a regular monomial over F*, lemma 3.8 implies that
there is an f in F¥ such that ViogA = Vi ., But this implies Vlogo(A) =

V (of) (where here V refers to the gradient operator in F ). Thus logdg(A)
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is not a regular monomial over F . Reversing the roles of A and o{A)
in the above argument shows that logA is a regular monomial over F* pre=
cisely when logo(d) is a regular monomial over F .

If expA is not a regular monomial over ¥ , lemma 3.8 implies that
for some f in F* and for some integer mZ0 , m VA = Vi/f . Thus m7(0A)
=Vo(f)/o(f) (where V is the gradient operator in F in this equation.)

(F)

Thus exp(G(A))m =kof where k isin C which implies that exp(ogA)

is not a regular monomial over F . Again, reversing the roles of A and

o(A) shows that expA is a regular monomial if and only if exp(c(A)) is.

Lemma 5.3 Let F and F* be differentially isomorphic fields. Suppose

that F(6 6

,6.,0..,6 ) is a regular Liouville extension of F . Then one can
1772 m

construct a regular Liouville extension F *(z/jl, oo ,gl/m) of F* which is differ-

entially isomorphic to F(® ,em) and which has the property that if

1o

z//j = log Bj , Bj has no exponential factors.

Proof. The proof is constructive, showing explicitly how each z//j is obtained.
Proceed by induction on m . The lemma is trivially true for m= 0 . Suppose
it is true for non-negative integers less than m when m> 0.

By the induction hypothesis there exists a differential isomorphism
g from F(el, coe ,@m__l) onto F (z,bl, oo ,z,(/m_l) . To define zpm and extend

g to an isomorphism from F(el, oo ,em) onto F*(z/;l, cos ,z//m) two cases
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oo .6 ) .

mustbe considered. Tirst, suppose Qm = expA where A isin F(8

17° m-1

Let gbm = exp(oA) and Gem = wm . If o obeystheusual laws of a homomorphism
(i.e. commutes with the operations of addition and multiplication), thenit

is easyto seethat ¢ is adifferential isomorphism from P(@l, ooy @m) onto
F*(zpl, ee e, z/)m) . Thus, bythe previous lemma it follows that zpm is aregular
monomial.

For the other case, assume Qm = JogA . Then A can be written
n,

0. J
3

= where each n, is an integer and A has no exponential
jeE(m~1) i

factors. Let zpm = log(cil—i) . By lemma 5.1, Y’bm is a regular monomial

if and only if log(cA) is since log(cA) = ¢+ Z n, cA, + a constant
jeE(m=-1)

where ej: eprj for each j in E{(m-l) . By the previous lemma log(ch)

is a regular monomial and hence so is gz/m .

Now extend o by defining o(6_) =y + ? n, oA, and letting
m m 1]
jeE(m-1)

o obey the usual homomorphism laws. Then (8 = Z n_A,)n is
L eB(m=1) b
the uniqgue polynomial which is mapped into z//m by o from which it follows
easily that ¢ is an isomorphism from F(Gl, oo ,Qm) onto F*(zpl, oo ,z,bm) .
Thus it remains only to show that ¢ commutes with each D in A.
This will follow easily for all elements of P(e} reo e em) once it is shown
that D(oo_ )= o(D6_) . But
m m
D(og_)=Dvy_ + Z n, D(oA,)
m m
jeE(m~1)

= Dob/A + E n, D(oA,) = DaA/GA
jeE (m~1) ]

=  oDA/cA = cDA/A = G(Dem) .
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*
Lemma 5.4 Let Fo and FO be differentially isomorphic fields. Let

F = TF (6,,...,6 ) be aregular Liouville extension of F_ such that for
m 0’1 m o)

each j in L(m,m),Aj has no exponential factors. Then there are 1/11, 0o ,zpm

*

%
such that F =F
m e}

(z/xl, cao ,wm) is well-structured and there is a differential
isomorphism o from Fm to F;; such that
(1) (J(Qi) = ?/Ji when ei is exponential

and (2) o(8,) = Z r, .y, when g, is logarithmic
. i, 7] 1

jeL{m,m)
where each ri j is a rational number. Furthermore, zpi is logarithmic pre-

1

cisely when ei is logarithmic.

Proof. The proof is by induction on m . The lemma is trivially true when
m =0 . Assume inductively that the lemma is true for non—-negative integers

less than m when m> 0 . Thus there are ¢>1,. oo 'd)m—l and a differ-

ential isomorphism ¢ from Fo(e . ,er to the well-structured

1" n—l)
(cpl,“. ’¢m—l) satisfying (1) and (2) . If Qm = exp Am , let ¢m =

ke
F
O

exp(o(Am)) and the lemma follows easily from lemma 5.2 with ¥ = ¢, I<j<m .
J ] -
When em = 1ogAm , the situation is somewhat more difficult. Sup-

pose then that the differential isomorphism ¢ from FO(Gl, ece 0 ) to

m-1

%
Fo (cpl, 0o '¢m-—l) has been defined by

r ¢, for i in L(m-1,m-])

jeLim=1, m=-1 1.3
0(91) = )
¢i otherwise .
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If were defined to be ' =
¢m ined to log(oAm) where Qm logAm , problems

- p,
could arise., TFor itmaybe that oA = A i £ ) where
o ,
jeL{m-=1, m-1)
fj is the distinguishing factor of qaj in the field Fg (cpl, oo ’d)m-l) and

pj is an integer., Then, if pj 0, fj is not a distinguishing factor for

¢j in the field I—“j (q)l, oo ,q) 1og oA )) . To avoid this problem, suppose
that for each j in L(m=1l, m=1) , ¢j = logA;< with A;k = fjn. Aj where

fj is not a factor of E‘j . Let n= Il n, and define

jeL(m=1, m=1)

sk n & .
A = (GAm) / I A7) i (5.1)
jeL{m=1,m~1)
Then no fj is a factor of Am and theorem 4.5 implies that (bm = log Am is a
regular monomial over Fé’; (4>1, 000 ’¢m—~l) since log(cTAm) is a regular monomial
over F (4)1, o ,q)m_l). Extend o to a differential isomorphism from Fm

T o n e etti
0 Fo (¢l, ,¢m) by letting

6 )=ng¢ - Z (np,/n,) ¢,
? d)m jeL(m~1, m-1) ) ])¢]

1

log[(a* )"/ i @*y b Jy+aconstant (5.2)
m .
jel(m=1,m=1)

and by letting o obey the usual laws of homomorphisms.
In a manner similar to that used in the preceding lemma to show the

extension of o was indeed a differential isomorphism, it can be shown that
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this extension of ¢ is a differential isomorphism from Fm to Fz (¢1,. . ,cpm) .
Clearly, o satisfies (1) and (2) .

However, it may be that P’; (q)l, oo ,¢m) is still not well-structured
in case ¢m has no distinguishing factor. So let fm be any irreducible factor
of Am with index equal to index(A:;) . Then for each logarithmic ¢j
suppose fm is a factor of A;,k precisely ej times, If ej =0 ,j=m

or ¢j is exponential, and in this case let zpj = 4)}, . Otherwise, let

e em ke €,

o J
= - = ) . ..
Vi=endy T8 oy 109((Aj) /(Am) + a constant (5.3)

Then each wj is either exponential or fj is a distinguishing factor of
so that F* (., 00 is - .
zpj o tha FO (1//1 ,wm) is well-structured

Define dl(cpj) = 1”3- if ej =0, m=j or j isin E{(m); 61(¢>j) =

er;ll [z,t/j + ej 1//m] otherwise, and let o.(1) =1. If o, obeys the usual laws

1 1

of homomorphism, then o, is a differential isomorphism from Fz (¢l, oo ,cpm)

1

to P: (wl, oo ,zpm) . For it follows from the definition of O‘l that there is

a unigue element of F: (q)l,. . ,¢m) which is mapped onto each z/;j . Thus
01 is an isomorphism. That Gl commutes with the derivation operators

follows immediately from equation (5.3) and the relations defining Oy -

It is immediate that 01 0 0 is a differential isomorphism satisfying

(1) and (2) and F;; = Fo(wl, . ,zpm) is the required well-structured field.

Combining the last two lemmas vields the following theorem.
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Theorem 5.5 Let Fm = FO(G . ,@m) be a regular Liocuville extension of

1o

F =K(z,,+2.,2_ ) . Then there is a well-structured differential field F (¢.,...,¢ )
o 1 n o'l m

and a differential isomorphism from Fm to Fo(zpl, oo ,zpm) such that
(1) 0(9}.) = wj if j isin E(m) ,

and (2) o(B,) = Z roL Y+ Z ro, )
7 xerim,m) 53K kepm) K3k

when j is in L{(m,m) where each rk j is a rational number.
I

Proof. The isomorphism o is the isomorphism o¢_. oo

2 1 obtained by first

applying lemma 5.3 to Pm to obtain the isomorphism o, and a field F (q;l, )
o]

1
and then applyi 1 5. i
pplying lemma 4 to Po(qp] , ,q;m) to obtain FO (z,bl, . ,2//m)

and an isomorphism 02 .

Lemma 5.6 Let Fm = Po(e ,Qm) be a regular Liouville extension of

pree

PO . I A isin Fm and logA is not a regular monomial over Fm

logA = Z p, 0, + Z q, A, +c (5.4)
jeLim,m) ' 7 jeg(m) '

(U)

where ¢ is in C , each pj and q], is a rational number, and the Aj
are the arguments of the exponential monomials . Equivalently, if logh

is not a regular monomial over Fm , (A} U {Aj : jeL(m,m)} U {fej : jeE(m)}

is a pseudo~multiplicatively dependent set.
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Proof. By theorem 5.5 there is a well-structured field Po(zpl, ces ,z,bm) and

a differential isomorphism o from Fm to Fo(w s ,z//m) satisfying (1) and

1

(2) of theorem 5.5, Suppose A in Fm satisfies

A=( I 6,)A (5.5)

jeE(m)

where A has no exponential factors and each nj is an integer. Then lemma
3.8 implies that logl-_\: is not a regular monomial over Fm since logA is
not a regular monomial over Pm . Thus, lemma 5.2 implies that log O‘(A)
is not a regular monomial over Fo(wl, oee ,wm) . Since A has no exponential
Gj as a factor, 0(1.3:) has no exponential gbj as a factor. Theorem
4,3 implies

logo (ZK) = Z r.y, +a constant (5.6)
jeL(m,m)

where each rj is a rational number. Let o-’-l denote the inverse of ¢ so
that GG_l(f) = f foreach f in Fo(zpl,. oo ,z//m) . Then (5.6) and (2) of

theorem 5.5 imply there are rational numbers &j and pj such that

1

logo (.Z\) Z r, G(c—l z//j) + a constant

jeL{m,m)

Z p, 0(8,) + Z E{ o(A,) + a constant . (5.7)
jeL(m,m) } o jeB(m) ]
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Therefore

log,& = 2, p. 0, + Z 5 A, + a constant . (5.8)
jeL(m,m) * ’  jegm)

The lemma now follows easily from equations (5.5) and (5. 8)

Theorem 5.7 (Structure Theorem) Let Fm = PO(Q ,em) be a regular

AR

Liouville extension of FO . Suppose 9}, = logAj for j in L(m,m) ,

QJ, = exp Aj for § in E(m) , and Am+1 is in Fm .
(a) Let 9m+1 = logAm+l , then 8m+1 is a regular monomial over
. £ . _
F if and only i {Qj}je]ﬂ(m) U {Aj);jeL(m,m) U {Am+l) is pseudo

multiplicatively independent.

(b) Let Qm = expl is a regular monomial over

1 then Qm

+1
)U{A

m+1 ’

U A},

jeL{m,m) j’jeE(m } is pseudo-linearly

F_ if and only if (8].} m+l

independent over Q .

Proof. (a) If logAm is not a regular monomial over Fm , lemma 5.6

+1

implies that log Am satisfies an equation of the form (5.4' which implies

+1

that there exist rational numbers pj and qj such that

A = ¢ ( 1 A e Y
mH s etm,m) ) jeB(m)

where Cl is a constant. Thus there exist integers n], such that
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n n,
) i A hy= c, (5.9)
jeL(m,m)U{m+1} ]

where c2 is a constant. c2 must be in Fm since the left-hand side of

(5.9) is in Fm . Conversely if (5.9) holds logAm is algebraic over Pm(c

)

+1 3
for a constant Cq and so is not a regular monomijal. Thus (a} is true.
£ = i i . i i
(b) 1 9m+l eprm+l is not a monomial, lemma 3.8 implies that
there is an integer k # 0, an R in F_ and a constant ¢, such that ek =
m 4 m+1
¢ R . Therefore kVA = YVR/R from which it follows that kA = logR +
4 m+l1 m+l
a constant . Applying lemma 5.6 to logR yields
Z pj e, + Z q. A, = cg (5.10)
jeL(m,m) jeE(m)u{m+1} 7
where pj and qj are rational numbers. Conversely if Am+l satisfies
(5.10) then
P,
il A, J I g, = 06
jeL(m, m) J jeE(m)U{m+1} ]
where ¢, is a constant. Thus @ is algebraic over F (¢ ,) and is not
6 m-+1 m 6
a regular monomial.
In [6] Epstein gives algorithms for determining pseudo-linear and
pseudo~-multiplicative independence for the case that FO = Q(i)(zl, e ,zn) .
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6. Ostrowski's Theorem

In this section several generalizations due to Kolchin [12] of a theorem
of Ostrowski [23] are presented. The results are of a weaker character than
the Structure Theorem of the previous section but are proved directly here to
further illustrate the usefulness of the simple lemmas of section 3. A multi-
variate version of Ostrowski's original theorem is an easy consequence of
the following lemma.

Lemma 6.1 Let & Qm be primitive over the differential field F .

P
Qm are algebraically independent over F unless there are

(F) (U)

Then @1,...,

c . ,Cm , not all zero, in C anda c¢ in C such that

1"

m
Z c.8.4+c¢c isin F.
j:l J ]

Proof. The proof is by induction on m . When m is 1 the result is just
lemma 3.8 (a) . Suppose the theorem is true for integers less than m .

There are two cases:
Case I: C = C
In this case, use the induction hypothesis to conclude that

m
Z c, @, +c isin F(s
j=2 1) o
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(F(91)> B (F) (U)

where each €. isin C = C and ¢ isin C and some cj Z0.
B

Thus there are P, Q in F[el] which are relatively prime with Q monic such

that

m
P/ = .Z

c,6, +c . (6.1)
1]
j=2

m

Because each 9]_ is primitive over F , so is Z ¢c.6, + ¢ . Therefore,
j=2
lemma 3.4 implies Q =1. Now, lemma 3.1 implies that either P is in

(F)

F or P=c, 8, +f where ¢, isin C and f is in I , thus proving the

171 1

lemma in this case.

(F(8,))
Casell: C(P) 7 C 1 .
(F) (F(el))
Since C ZC . 91 is not a monomial over F . Lemma 3.8 implies
there isa ¢ in C(U) and an f in F such that 6, = f - ¢ from which

1

the lemma follows easily.

Theorem 6.2 (Ostrowski) Let 91, - ,em be primitive over the differential

(F) (Fm)

field T . lLet F = F(el,.., ,em) and suppose that C = C . Then
m

91, .o ‘Qm are algebraically dependent over F if and only if there are con-

c in C(F)

stants ¢,,...
1’ "“m

, not all zero, such that

m
Z C.QJ. isin F .
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m
Proof. Certainly, when Z c. 9, =f where some cj% 0, each cj

(F) =1

isin C and f isin F , 6 ’Qm are algebraically dependent over

1,-0-
FO

Conversely, suppose 8,,...,0_ are algebraically dependent. Then
1 m

(F)

by the preceding lemma, there are constants cl,. - ,cm in C and c¢
. Uy . .
in C with some Cj #0 andan f in F such that
m
f=c + Z c, 6 (6.2)
j:l J J
(F) (Fm)
Thus, ¢ is in Fm . Since C =C ¢ mustbein ¥ . So

which implies the theorem. ¢
The following is the exponential analog of Ostrowski's Theorem which

appears in [12].

Theorem 6.3 lLet 81, 0o ,Qm be exponential over the differential field

F . Suppose F and P(el, o ,em) have the same constant fields. Then

91, .o ’em are algebraically dependent over F if and only if there are integers

e . ,em not all zero such that

m e,
T g, ) isin F.
=1’

e
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m e,
em not all zero such that 11 6, J
j=1
is in F , 91, .o ,em are algebraically dependent. The converse will be

Proof. When there are integers el, ooy

proven by induction on m .

When m = 1, the hypothesis of the theorem is that 91 is algebraic

over F . Solemma 3.8 implies there is an integer el Z0 anda ¢ in C(U)
e
such that 91 1= cg forsome g in F . Thus ¢ isin P(el) . Since G(F) =
(F(Gl))
C , ¢ isin F and the desired result holds.

Suppose m > 1 and the theorem is true for positive integers less

than m. If 6,,... ’Qm are algebraically dependent over T , 92, eee,B

1 m

are algebraically dependent over F(el) . If 5. is algebraic over F , the

1

theorem follows from the case m= 1. Otherwise, by the induction hypothesis

m e,
there are integers ez, .o ,em not all zero such that I g, ) is in F(el) .
j=2
Suppose
m e,
T g ' = P/Q (6.3)
j=2
where P,Q are relatively prime polynomials in F[el] and Q is monic.
Then for each derivation operator D on T
m
m e, 2
(n e, ’ )(Z e, Dej/ej) = (QDP - PDQ)/Q (6.4)

=2
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Since each ej is exponential, f. =

e, De,/o, isin F . From (6.3)
1 j "7

i~

j=2
and (6.4) it follows that

flPQ = QDP - PDQ .

Thus P divides DP and Q divides DQ in F[el] , for each derivation
n1 n
and Q = 91

operator D . Lemma 3.3 implies, P=p g (since Q is

1

monic) where p isin F . Thus,

proving the theorem .

The following result, which combines the previous two results, also

appears in [12].

Theorem 6.4 Let F be a differential field. Suppose each of el, ... ,er

is primitive over F and each of -zpl, oo ,z,bs is exponential over F .

Suppose alsthhat F(Ql, oo ,Qr,z,l/l, oo ,z,bs) has the same constant field

as F . Then 91, oo ,er . zpl, oo ,z/;s are algebraically dependent over F

if and only if
(F)

(1) there are constants CpresesC, in C not all zero such that

I

2_0, g, isin F ;

j=1 1] S e,

or, (2) there are integers el,. . ,eS not all zero such that 1 v, )
=1

isin F .
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Proof. It is immediate that if (1) or (2) is true el, eeo ’Qr’wl' “oo ,1/18
are algebraically dependent. The converse will be proved by induction on

r+s. When r+ s =1, the theorem follows from the two preceding theorems
since either r= 0 or s = 0 in this case.

Suppose, now that r + s > 1 and the theorem is true for positive in-
tegers less than r +s . If either r=0 or s=0, the theorem follows from
the two preceding theorems. So assume that r> 0 and s>0, If
91, cas ,er,v,bl, e ’ws are algebraically dependent over F , 62, eoe ,er,z,lzl, oo ,v,bs

are algebraically dependent over F(Ql) . Then by the induction hypothesis
s e,

either there are integers el,. .o ,eS not all zero such that II v,bj bois
j=1

ip P(el) or there are constants cz, eoe ’Cr not all zero such that

Z cj g. is in F(Gl) . Whenthe latteris the case, the proof follows from Ostrowski's
]

j=2 ;

is in F(Gl) , 6 ,er are algebraically de-

Theorem. For, if Z cj ] ARE

jzz 1]

Yy . Thus @

pendent over F(8 . ,Qr are algebraically dependent over F

1 1"’

and the conclusion of Ostrowski's theorem provides the desired result.

So, suppose there are integers el, eoa ,es not all zero such that
s e,
Joa ..
I s
s wj is in F(Q1 1

immediately from Ostrowski's theorem. Soassume that 91 is transcendental over

)y . If @, is algebraic over F the desired result follows

F . Thus there are P, Q relatively prime polynomials in F[el] with Q

monic such that

S e,
Ty )= P/Q . (6. 6)
=1
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Tor each derivation operator D ,

ej D¢j/¢j)= (QDP - PDQ)/Q2 . (6.7)

S

Since each wj is exponential, 2, ej szj/z/;j isin F . Thus writing £
j=1

for ej Dv,bj/gbj , (6.6) and (6.7) imply

I ~ln

j=1

PQf = QDP - PDQ .

So P divides DP and Q divides DQ (in P[el]) for each derivation operator

D . Since 91 is primitive, lema 3.3 implies that ©Q =1 and P is in

F which completes the proof
The following result, which is apparently new, follows in the same

spirit as the other results of this section.

Theorem 6.5 let o ’Qm be primitive over the differential field F .

17
Suppose the constant field of F(@l, oo ’Qn' log 91, ..., l0g en) is the same

as the constant field of F . Then the following two statements are equivalent:
(hH 91, coo ,em are algebraically independent over F ;
(2) 91, coo ,em , log 91, «os,l0Qg em are algebraically independent

over F ,
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Proof. It is clear that (2) implies (1) . The proof will be complete when
it is shown that not (2) implies not (1) . So, suppose (2) is false. Then

log 6 ..,log Qm are algebraically dependent over F(el, .o ,Qm\ which

1’

has the same constant field as F does since P(el, .o ,Qm,log el ;e .., 100 Qm)

does. Then Ostrowski's Theorem implies there are constants Cl’ cevaCp
not all zero, in F(Ql, oo ,em) and therefore in T and a g in F(el, oo ,Qm)
such that

m

Z c,logg, -g=0, (6.8)

j=1 j

Without loss of generality suppose cl # 0 , since otherwise the ej may
be renumbered. If for each derivation operator D,D61= 0, 91 is a constant,
and 91 must be in F . So el, ees ’Qm are algebraically dependent over
F when each Dg, = 0. Suppose, then, that there is a derivation operator

1

D such that Del is not 0 . Equation (6.8) implies

~. Doe./6, - Dg = 0 . 6.9
o GJ/j g (6.9)

0 ~—i5

j=1

Since each ej is primitive over Fl each DQJ, isin F . Also

Dg isin F(el, ...,0 ) and hence (6.9) is an algebraic relationship over

F for 6,,...,06 .
1 m
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