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ABSTRACT

This paper presents and gives examples of the
behavior of a simple computer-programmed model (called
"SEER", for semantic learner,) for an integrated, wholistic
cognitive system. The system combines the cognitive
functions of pattern recognition, scene description,
information retrieval, deducing, and acting that are
usually handled in separate programs. This forces it to
make fuzzy decisions, e.g. as to what type of behavior
(e.g. describe or answer) to effect, and what type of

thing (e.g. word or object) is being perceived.

The paper examines a number of aspects of such a
system, in order to illustrate how it begins to handle the
problems of fuzziness that can no longer be avoided, and
should no longer be avoided, since they appear to be at

the heart of intelligence.

Presented at Japanese-American meeting on Fuzzy Sets,
Berkeley, July, 1974.
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INTRODUCTION

When the separate cognitive processes of perception,
thinking, remembering, language "understanding"”, acting,
and learning are integrated into a single system, a variety
of fuzzy problems inevitably arise. This paper examines
such a computer-programmed system, one that is a first

attempt to model the integrated, wholistic mind/brain.

The Search for Well-Formed Problems has Focussed "AI"
Research on a Few Non-Fuzzy Problems

Artificial intelligence (AI) Research has to a great
extent legislated that things be well-formed and non-fuzzy
by developing separate systems to handle clear-cut problems
with correct answers(e.g. the proof of a theorem, or the
answer to a factual question) that can be deduced in a
deterministic way. But as soon as we attempt the kinds
of problems that human beings can handle (e.g. the descrip-
tion of a scene, or an on-going conversation in which
several people exchange information) the system must con-

stantly operate in a fuzzy domain.

AI research has attempted to reduce all cognitive pro-
cesses to a search for a path from a set of Givens to a Goal,
using only a set of legal Transforms. But it is rare that
Givens, Goals, and Transforms are known (or, as in a game
like chess or GO, easily computable). Rather, the crucial
problem may be to find the set of transforms that humans,
or some other intelligent entities use (as in pattern
recognition), or to determine what are relevan£ givens (as
in describing scenes or answering questions) or worthwhile
goals (as 1in conversation, or in finding interesting new
theorems) .
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Each area of AT uses slightly different basic
transforms, overall networks, and search techniques. These
are generalized in this paper, so that a single system
(called a "SEER") can handle them all. This makes each
separated function a good bit richer in its powers,
and alsoa good bit fuzzier in the kinds of things that
it does. It further raises new probiems of fuzziness, at
several ever-higher levels of integration of processes.
Relevance must constantly be assessed, as a function of a
wide variety of contextually interacting influences. The
system must make fuzzy decisions as to the types of things
perceived (e.g. objects vs. words), internal processes
needed, and external acts suggested. And learning consists
in a variety of types of fuzzy conjectures as to general
hypotheses posited from particular pieces of experience,
and how to use these to build, unbuild, and restructure the

cognitive memory network.

The Ill-Formed and Fuzzy Nature of Everyday Thinking

Let's look at the kinds of simple everyday thinking
that all of us spend most of our time doing. They are
characterized by an intimate interaction between perceiving,
deducing, searching, remembering, and acting, with
constant monitoring and guidance from feedback. Rarely do
we make deep or difficult deductions, or remember sur-
prising or profound concepts. Rather, we conduct a
kind of shallow and diffuse on-going "conversation" with
our environment, one that finds and uses the relevant aspects
of an impossibly large set of possibilities, in order to

help us muddle along, often with surprising success.

Examples are the way we decide what to do on a holiday,
and actually carry out all the steps needed to do it. Or
choosing a dinner, or a restaurant; opening the refrigerator,
getting food, baking a cake; deciding what to collect; building

a bookcase.
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It may feel like belaboring the obvious, but
consider the subtle interactions between all the cognitive

processes that go on in even the most mundane of acts:

I perceive a can which, in the context of the table
it sits on and the conference I am attending, suggests it
might contain a liquid to drink; so I glance about and
move my head and then walk around it, to look for a spigot
and an indicator - whether a sign or a telltale stain or
smell - of whether it contains coffee. This arouses vague
hunger needs for food, and I further look around for
trays of soft objects and, remembering the time of day,
for food. I sense that I like cream, deduce that it might
be in a pitcher or, if powdered, a deep dish, and look
about some more. I pick up a noticed up, and move it under
the spigot, pushing its level with my other hand, and

carefully monitor the drip. And so on.

Note that a l-year-old infant engages in much the
same interacting set of processes, albeit with fewer
and simpler possibilities, e.g. when it babbles, cries,
crawls, grabs, flails, pushes, bites, drools, etc., in
order to get food. But I must emphasize that despite
its surface simplicity, such a process is far more difficult
than anything we have approached with our artificial

intelligence programs.

This paper describes a model for such processes,

and shows some of their many inevitably fuzzy aspects.
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ARTIFICIAL INTELLIGENCE HAS SIMPLIFIED THE
PSYCHOLOGICAL PROCESSES TO PIECEMEAL
FUNCTIONS FOR WELL-FORMED PATH-SEARCHING

Almost all AI research has concentrated on a single,
separated cognitive function, and attempted to simplify
the problem being attacked to the point where it is
"well-formed."

The Separate Functions of Perception, Thinking, Remembering,
Acting, Language, and Learning

The separate functions being attacked are closely
related to, but usually simplifications of, the traditional
cognitive processes that have always interested psycholo-

gists (Figure 1):

Perception, which studies the absorbing and under-
standing of pertinent information from the cognitive
system's external environment, has been attacked as the
recognition and naming of an isolated patterned object input
to the system (see e.g. Duda & Hart, 1973; Uhr, 1973a).

Thinking, which involves a variety of little-
understood and only partially identified processes for
deciding what are the most relevant and functional things
to do in order to cope with external presses (perceived
objects, imports, suggestions, commands, etc.) and internal
presses (needs, desires, expectations, goals, etc.), has
become deductive problem-solving in deterministic domains
like games, puzzles, and logical systems (see e.g. Nilsson,
1971; Newell & Simon, 1973).

Remembering, which accesses information in the system's
memory model of its world that is most relevant to its

present situation and its attendant problems, becomes the




-5

search for "correct" answers to clear-cut questions that
indeed have answers that can clearly be deduced to be

correct (see e.g. Minsky, 1968; Simmons, 1965, 1970).

Acting, whichincludes a variety of things that the
organism can choose to effect upon its world (e.g., touch,
grasp, mix, melt, combine, heat, ingest; move its glance,
eye, head, body), as a function of its percepts, thoughts
and memories, becomes a very conventionalized set of
actions, e.g. "move-self" or "push-object" (a specified
distance in a specified direction) quite similar to the
moves of the different pieces in a game like checkers or
chess (see e.g. Nilsson, 1969; Uhr & Kochen, 1969;
Winograd, 1971).

Language understanding, which is an especially
mysterious process that involves symbolic reference to
the import of percepts, feelings, ideas and acts, has been
reduced to syntactic parsing and simple question-

answering.

Learning, whichmust build the memory model and the
system's ways of making use of that model in the first
place, becomes largely inductive reweighting of the
strength of already-existing connections (see e.g. Duda
and Hart, 1973) and, to a slight extent, the adding of new
connections and the extracting and inferring of new
things to be connected (see e.g. Sauvain and Uhr, 1969;
Quillian, 1969, Winston, 1970). But for work on
learning that moves into ill-formed problems see Kochen,
1961; Uhr and Vossler, 1961; Hunt, 1962; Jordan, 1971; Uhr,
1964, 1973a.)



Psychology Artificial Intelligence
General Focus of Interest Well-Formed Ill-Formed and Fuzzy

Perception Pattern Recognition Name Describe and Extract
the relevant

Thinking Deductive Problem-Solving Path-find Heuristics; interest-
ing goals, every-
day thinking

Remembering Question~-Answering Parse, Path- Converse

find
Language-Under~- Syntactic Analysis Parse Understand semanti-

standing cally
Motor Behavior Robots Touch, Move "Conversational"
interaction with
environment
Learning Learning Add asser- Induction, discovery,

tions,
reweight

generalization

TRADITIONAL PROBLEM-AREAS OF PSYCHOLOGY AND ARTIFICIAL

INTELLIGENCE:

WELL-FORMED AND FUZZY

Figure 1
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The Deterministic Search for a Solution-Path Between
Givens and Goal, Using only Legal Transforms

Science must simplify, and this is especially true
when it studies so complex a phenomenon as the intelligent
mind. And the simplified problems that Artificial
Intelligence examines are important, reasonably representa-
tive, and still extremely difficult. But there seems
to be an increasingly strong tendency to simplify by
choosing problems that are "well-formed" in the following
sense: Three sets of things are specified when a
problem is posed - "Givens" (e.g. the axioms of a system
of logic, the starting board in a game), "Goals" (e.g.
the theorem to be proved, the winning boards) and "Legal
Transforms" (e.g. the rules of inference, the moves
of the game). The problem then becomes one of finding a
sequence of legal transforms that forms a "Solution Path"
from givens to goals. Thus we have a deductive deterministic
search for a legal path between two clearly specified sets

of nodes in a graph.

This may be an adequate conceptualization (see Figure
2) for deductive problem-solving, including theorem-
proving, game-playing, and puzzle-solving (see Nilsson,
1971) - and these have been the major areas of interest
for researchers in "artificial intelligence." It is also
adequate for syntactic parsing that insists upon a tree
of paths connecting the given sentence with the goal "sentence"
node that roots it in a parse (Chomsky, 1957, 1965; Feldman
and Gries, 1968.)

There is a greal deal of effort today to absorb other
cognitive processes into the same framework (or strait-
jacket). "Syntactic pattern recognition" (e.g.Narashimyan,
1964; Shaw, 1969; see Swain & Fu, 1970; and Uhr, 1971)




attempts to use parsing techniques to transform an

input pattern into a well-formed tree, and "robot

vision" (e.g. Guzman, 1968; Waltz, 1972; see Duda and
Hart, 1973) attempts something quite similar, since it
uses algorithms to match stored network models of
objects with the input object. Question-answerers

(e.g. Thompson, 1966; Shapiro, 1971; Quillian, 1969; see
Simmons, 1965, 1970) typically put two such well-formed
systems side by side: First a parser extracts informa-
tion from the input query that is used to access the
nodes in a memory network that the query is about. Then
a deductive problem-solver searches for a path to

answer nodes. Robot systems (e.g. Feldman et al., 1971;
Nilsson, 1969; Winston, 1972; Winograd, 1971) interface
four such systems, for vision, command-parsing, deductive
problem-solving, and generating actions-sequences that
will effect the deduced solution.

The Fuzzy Search for Relevance

Network models seem natural and attractive. The
brain is a network of neurons connected at synapses that
appear to compute complex threshold functions. The mind/
brain as a cognitive network that models its world is an
appealing conception that has been elaborated by Peirce
(1931), Craik (1952) and many others. And almost all
models of intelligence seem to be network models. (This
may well be a trivial consequence of the fact that any
complex function - and the functions that the intelligent
mind-brain must compute are nothing if not complex - is
best broken down into simpler steps, and any organization of
these simple steps into the complex function forms a
network.)
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But there is far more to using and building networks
than the finding of legal solution paths between well-
specified givens and goals. Rather than trying to simplify
all our problems until they reduce to such a well-formed
process, we should be examining the crucial - and much
fuzzier - problems that arise. For example, in pattern
recognition there are really no "legal transforms."
Instead, any structuring of any set of feature-detectors
or characterizers can be used to map the input pattern
into its name (Figure 2e). The crucial problem for
pattern recognition, and for perception in general, is to
find from among the infinitely large set of possible trans-
forms not the "correct" set but an adequate set, one that
assigns names more or less the way we humans assign them,
using our still-unknown set of transforms. In language
processing the input is usually not a complete, perfectly
grammatical sentence, and the sentence is always embedded
in some larger perceived scene; yet we are able to extract
its meaning and import, even though we cannot "parse" it.
We typically must describe a scene, and converse about
remembered concepts, rather than name objects and give

correct answers (Figure 1).

In all these cases, givens, goals and transforms can
only be inferred. Worse, there is no clear-cut search for
a solution-path; rather, there is an interacting set of
searches for relevant nodes, and nodes relevant to these,

etc.

Even deductive problem-solving, which gives us our
only well-formed paradigms, is basically fuzzy. For it is
only when we are laboring in an idealized world that a

theorem-goal on a game-win-state is posed. And even
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there we must use "heuristics" to try to direct what

now becomes an essentially fuzzy search. In everyday
thinking, and in the logician's and mathematician's
creative work, the goal to be reached or the theorem to be
proved must be judged "valuable" or "interesting" - as
important and relevant enough to be worth achieving.

And in general the goals of everyday thinking must be

achieved by subtle and complex assessments of "relevance."

A BRIEF DESCRIPTION OF AN INTEGRATED
WHOLISTIC COGNITIVE SYSTEM (SEER)

Today's robots lash together several separated systems
for relatively well-formed processes. In sharp contrast,
I have been trying to develop cognitive "SEER"

(Semantic Learner*) systems that do a variety of cogni-
tive processes in as integrated and wholistic a manner

as possible, using as simple and general a structure as
possible (Uhr, 1973b,d, 1974). This seems to me
mandatory from the points of view of scientific model-
building, whose canons include simplicity and elegance
as well as power and fruitfulness, and of evolution-
learning, where each new (and small) change must be func-

tional and serve some purpose.

General Transforms, to Give a Unified Memory Structure

Such an integrated system needs a unified memory
structure that is built up from a single general kind of
transform, one that can perform the entire gamut of cognitive
functions. Figure 3a surveys the kinds of transforms
that have been traditionally used in separate AI systems.

A parser makes the built-in assumption that nodes are con-
catenated (i.e., touching, in order). A deductive system

has built into it the specific relation among nodes -

* .
or Sensed Environment Encoder, Recognizer and Responder
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usually co-occurrence, or ordered. Transforms for
associative memory searches and feature extraction imply

a whole set of unordered things (the nearby nodes in
memory, the possible names to be assigned). Often they
have weights or other kinds of fuzzy values associated
with them. The configurational characterizer used by SEERs
(Figure 3b) is general enough, since relations, weights,
and other attributes can be expressed explicitly, to
represent all of these. Even more important, the
assignment of fuzzy values to things, features, relations
and implications which is essential for fuzzy problems

also allows for a natural deepening of the methods for
handling problems that have been treated as though well-
formed. For examples, the heuristic search for a solution
path can be directed by fuzzy inferences and fuzzy con-
texts; parsing need not insist upon a perfectly grammatical

and noise-free sentence.

Interactive Merging of Implications Across Processes

Intimate interaction among the various processes is
achieved by using these general transforms and by merging
the implications of transforms into a very small number
of common lists. Any transform can imply implications
into any of these lists and any transform can require any
number of conditions. This means that any kind of contextual
interaction can occur. For example, a simple feature like a
curve might imply that additional curve-features be looked
for, to try to build a closed loop, and also that a face
be looked for, which in turn implies looking for its other
features (e.g. nose, hair, ears). Similarly, an internal
need, e.g. for food, might imply particular food objects
which in turn imply specific features that would characterize
them.
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a) Specific Types of Transforms Used in Artificial
Intelligence Systems

i) Parsing a sentence string

Nodel Node2...NodeN = Replacement

e.g.: Article Adjective Noun = Nounphrase

ii) Deducing a move, inference or other transform

Subexpressionl Subexpressionz...Subexpressionn

= Transform

e.g.: .. P+Q ... =...0+P

iii) Searching through an associative memory net

Node, = Node

1 ll,Nodelz...NodeI

N

e.g.: Robin = Bird,Fly,Red-Breast,Animal,
Harbinger-of~-spring

iv) Extraction of Simple Features for Pattern
Recognition

ES
Feature Namel,Namez...NameN

e.g.: Small-closed-loop = P,B,R,Eye,Dumbbell,
Scissors, Eyeglasses

b) A General Characterizing and Compounding Transform

Relatlon,(Featurell,Featurelz,...FeaturelN),
Relationz(... = (Names) , (Compounds) ,
(Characterizers)

e.g.: Top-right (vertical,closed-loop),
Bottom-right (Vertical,closed-loop) = B,
Dumbbell,Eyeglasses,Characterizers(Face)

(NOTE that weights, fuzzy values, relative locations and
other attributes will also be expressed in the actual
characterizing transform)

A GENERAL TRANSFORM, AND THE WAYS IT HANDLES PARSING,
DEDUCING, SEARCHING, FEATURE-EXTRACTION, CHARACTERIZING
AND COMPOUNDING

Figure 3



-14-

Overall Architecture, Processes and Behavior

SEERs are memory networks that model their
"world" (including themselves) in a usable fashion. They
structure transforms into several major sub-systems,
for a) perceptual recognition, b) thinking, including
both deduction and association, and c¢) generation of
actions-sequences. Several successively more powerful
SEERs have been coded (see Uhr, 1974.) Figure 4 sketches

the structure of SEER-2, for 2-dimensional environments.

Information flows into the system from the external
enviromment, which impinges on the retina, and starts
an outer-inner flow of processes. Successive sets of
characterizers (called NOWDO in the SEER program) transform
and coalesce information back into the next layer of the
cone. But internal NEEDs and GOALs are simultaneously
impelling inner-directed flows of processes. Similarly,
partially recognized things can imply additional things
to LOOKFOR and NEW CHARacterizerS to apply, in glancing
about to gather information. Perception is thus a
complex back-and-forth many-layered parallel-serial
process. "Thinking" consists in the serial application of
transforms from the IDEAS list, to make associative memory
searches and simple deduction. A certain amount of
direction is got by having the system choose the single
most highly implied transform on the IDEAS list to apply
next. Thus the strengths of implications, that is, of
connections between one node and another (where a node can
be a transforming procedure, as well as a representation of
an object, class, attribute or compound) serve to
heuristically direct the processes of thinking. When an

act is chosen (because it is the most highly implied
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thing on IDEAS) the system will start generating the
specific actions-sequence needed to carry out that act.
This will usually entail further calls for needed objects
to LOOKFOR and transforming IDEAS to remember and deduce

what might be usable objects, which are then looked for.

SEER thus carries out a rather complex set of parallel
and serial operations. We might make the loose metaphorical
comment that it widens and narrows its "conscious"
"attention" as a function of its problems, tending to be
more parallel in its perceptual processes, more serial in

its central cognitive processes. This means that (serial)

time must pass, and a new program (SEER-T) handles situations

in which it interacts over time with a changing environment
{see Uhr, 1973c).

For fuller descriptions, see Uhr, 1974, and in

preparation.

Overview of the SEER-2 Program, and its Flow of Processes

The following is a succinct description of SEER-2.
The actual program is given in the Appendix, along with
a brief description of the programming language, EASEy
(Uhr, 1973f), an English-like variant of SNOBOL (Griswold
et al., 1968) in which it is coded. Note that caps,

underlines and numbers refer to the program.



(Overview of the SEER-2 program. Program Statement No.
START Initialize Memory (Includes type-name to refer to lists and the Transforms
repeatedly used - ERASER, NORMALIZE, PASSON.
IN input Memory, including NEW lists and ADDitions 1
(The MEMory conversion program, which inputs the transforms needed
(Appendix B) goes here.)
(The environments - scenes and problems - to be sensed are also
input here.)
INITialize for the next input problem, by erasing all temporary Tists.
SENSE Store the input as an array, in the first Layer of the recognition = 2-7
cone.
TRANSform MERGE the things that POINTAT NEEDSGOALS and LOOKFOR into
NEWCHARacterizers 8,9,12
TREPEAT Initialize the LAYERS and CHARacterizerS TODO 10
T6 Get the next layer to NOWDO and its STEP-size 11
Put the ERASER, NORMALIZER and PASSON transforms, and NEWCHARS,
onto NOWDO 14
T5 Get the next TRANSform and attendant information from NOWDO. 15
Get the bounds for applying the TRANSform, and its TYPE 16-18
T3 Get the pieces of its DESCRiption, and handle them as indicated
by TYPE 20-24
Al MERGE all members of the specified CLASS into the next Layer,
to average or difference. 21
Tl - Accumulate the TOTAL weights of the CLASS members that are GOT 22-24
T2 . If TOTAL exceeds THRESHold, MERGE IMPLIEDS into the next Layer 25-26
A2 Iterate through the array until the bounds (CMAX, RMAX) have
been reached. 27-28
El erase each cell in the next Layer, to initialize it. 29
N1 NORMALIZE each cell, to keep weights roughly constant despite
convergence. 30
ITER Go to process the next Layer, shrinking Row and Column by STEP-size, 31-33
until the apex is reached 34
THINK Initialize and go through up to 7 CYCLES 35-37
Get NEWCHARS that POINTAT LOOKFOR and set them on IDEAS 38-40
CHOOSE the most highly weighted THING on IDEAS, up to 100 41-45

-17-

(Cycles through IDEAS until an ACT is the most highly weighted and therefore chosen)

I

ACT

ouT

If TYPE is I, this is an Internal transform to apply to FOUND (the apex).
If the TOTAL weight of CLASS members GOT exceeds THRESHold, MERGE

IMPLIEDS. 46-54
If TYPE is ACT, get the next ACTION and its ARGumentS and other
ARGuments from HISTory 55-58

output the result of the act (after having completed it with
routines below) 59-60
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SEARCH If the act couldn't be complieted, set up a SEARCH for things
that POINTAT the NEEDED PARTS, and return to apply more IDEAS.

FAIL output that have "FAILED" to execute the chosen act, and go to
the next input.

The routines for the different types of acts follow.)
Note how Describe uses name, and Move uses Find.)

(
(
D Describe the scene, giving the objects and their parts
T

Name the single most highly weighted thing of the class specified
in ARGument.

F Find the first THING that is a member of the specified ARGument
and bracket it.

Move all Found THINGs FROM or TO (as indicated) the TARGET thing

R Reply to a query by CHOOSEing all THINGs belonging to the
specified ARGument whose weight exceeds half the MAXWeighTed
THING (i.e. the first) chosen

SEARCHR  If no Reply was chosen, MERGE associations from what already
found into IDEAS and return to think some more, by applying more

IDEAS.

C Compute, using the specified operators (ADD, subtract and divide
are shown)

SEARCHC If the needed numbers were not recognized, return to search
for INTEGERS

G In a Game, make a move by replacing the old board configuration

N with the move
(The following are the functions used by the main program.)

MERGE Get the THINGs on LISTA that belong to the specified CLASS and
MERGE them, combining TOTAL WeighTs and HISTories, into LISTB.

POINTAT Get the TOTHINGS that POINTAT each THING specified, and MERGE
them into the Tists specified.

NORMALIZE Divide the WeighT of each thing TONORMalize by NORM, erasing it
if WT is below 1.

ABS Get the ABSsolute value of the argument (fails if the argument is
not an integer).

CHOOSE CHOOSEs the MAXimum (or if TYPE specifies MIN the MINimum weighted
thing in LISTA of the specified CLASS, getting the THING,
TOTAL, LOC and HIST.

61-66

67

68-76

69-71

77-79
77-85
86-90

91

92-99

96
100-103

MET-

PO1-

NO1-

ABS1

CH1-




a)

b)

To be named:

NAME
(1)

NAME

THIS LZ?
(3)

to be described:

DESCRIBE
THIS

(1)

DESCRIBE
(3)

SIMPLE SCENES

-19-

WHAT IS THIS

(2)

GIVE THIS
A NAME

<P

(4)

DESCRIBE

(2)

OF MIXED OBJECTS AND WORDS

Figure 5
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Some Simple Examples of the Variety of Behavior of SEER-2

SEER must be given a set of transforms, which
form the system's "cognitive memory network model" of its
world. Future systems will learn these transforms from
experience. But for now we can start the system with a
set of transforms already in its memory, and immediately
begin to examine its behavior. The following examples show
the kinds of problems that SEER can handle:

Naming Objects and Describing Scenes. When input an

array of information that zontains one or more objects, and
also verbal statements, like "NAME THIS" or "WHAT IS THIS"
or "DESCRIBE", SEER will successively apply feature-extract-
ing transforms, and then configurational characterizers that
were implied by these prior transforms, and also by tenta-
tively implied things that would be further confirmed or
denied by these transforms. This process continues until
high-level compounds, like words, phrases, objects, and
collections of objects are got. A recognized command or
suggestion will imply whether the system should name or
describe (or do something else), and the system will choose
a particular type of act as a function of such perceived

utterances, and also any internal needs and presses.

Thus when given the inputs shown in Figure 5a, SEER-2
will output:
(1) "CHAIR" (3) "TABLE"
(2) "FACE" (4) "FACE"

When given the inputs shown in Figure 5b, SEER-2 will

output:

(1) "CHAIR(WITH BACK;SEAT;LEGS;)

(2) "FACE (WITH VISAGE;EYE;EYE;NOSE;MOUTH;LEFTEAR;)"
(3) "BALLOON (WITH CIRCLE;STICK;) FACE(WITH EYE;NOSE;

RIGHTEAR; )"
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See Uhr, 1973e for a similar system that gives a
wider variety of descriptive information, where a stylized
interaction allows the human recipient to direct the

description.

For simplicity the rest of the examples of SEER's
behavior will be shown for l-dimensional inputs, which can
be handled by either SEER-1 or SEER-2 (see Uhr, 1974,
for details). The first stages of the perceptual process
handled by SEER-2's recognition cone become trivial,
and a far simpler memory network is needed. For these
examples we will use the convention @(thing name) to indicate
objects, object parts and qualities (e.g. @PEAR is a symbol
for an object whose name is "pear"), as a shorthand for
the actual picture.

When input:
"NAME THIS @PEAR" or
"WHAT IS @PEAR THIS"
SEER will respond:
"PEAR"

When input a set of lower-level qualities, e.g.:
"SAY WHAT @STEM @YELLOW @TEARDROP YQU SEE" and
"@OVAL @STEM @RED WHAT DO YOU SEE"
SEER will respond:
"PEAR" and
"APPLE in turn.

Retrieving Information, Answering Questions, and Conversing.

If the input scene contains a question like:
"NAME THE FIRST PRESIDENT" or
"WHAT DOES WISCONSIN PRODUCE"
SEER will output:
"WASHINGTON" and
"BEER; CHEESE ; GARBAGE; "
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Verbal inputs that are not simple questions, but
rather act in a more conversational way, will lead to more

variable, but more or less relevant, responses.

Deducing Responses. Transforms can similarly lead to simple

deductions, e.g. as to arithmetic, logic, or the moves
(not necessarily brilliant, or even good) in a game. For
example,
"ADD 3 + 2" will give:

ngn

This result is achieved by first recognizing the
parts (letters, words, phrases), which triggers the following
of the command "ADD," which points to a transform that
combines the numbers to be added according to the rules of

addition.

Finding and Manipulating Objects, Driven by External and/or

Internal Presses. When it recognizes some part of the

external scene as a command or sugdgestion (e.g. "TOUCH" or
"FIND" or "WHY DON'T YOU TOUCH"), or some internal need

as a press (e.g. a high level of HUNGER will imply EAT any
perceived food object), it may choose to act (e.g. touch
the indicated object). Note that "touching" is simulated
inside the computer, by the placing of agreed-upon symbols
around the touched objects. The scene's mixture of words
and objects remains, simulating a static visual scene with

written words.

Thus a command like:
"TOUCH THE @BOX PAIL @PEAR @PAIL"

(where @Qobject (e.g. @BOX) indicates the object, not
the word) will lead to the result:
"A PAIL IS FOUND-" "TOUCH THE @BOX PAIL @PEAR: @PAIL:"

(colons indicate the actthat found and touched).
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A command like:

"MOVE THE @PEAR @BOX FRUIT @APPLE TO THE QPAIL PAIL"

will lead to the result:

"A PEAR IS FOUND-"

"MOVE THE @BOX FRUIT @APPLE TO THE (@PAIL @QPEAR) PAIL"
(where parentheses indicate that the objects within

them have been moved together).

An act can also be implied from internal needs as
well as external objects. E.g.

@BOX @PAIL @APPLE @SEER-MOUTH" (along with an internal
need-state of hunger)

will lead to the response:

"A APPLE IS FOUND-"

"@BOX @PAIL (@SEER-MOUTH @APPLE)"

because the act of putting the @APPLE to the MOUTH is now
highly implied, by both the hunger need and the apple
itself.

When conflicting commands and presses are perceived,
SEER will make a fuzzy choice, not necessarily a "correct”

choice, among them.
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Choosing Among Different Types of Behavior

These examples illustrate the range of problems that
SEER can handle. By they make little use of fuzzy values and
give very little feeling for the complex set of fuzzy
choices it must make when the possible set of alternatives
grows larger and more contextual determinants become
relevant. With simple problems and appropriate transforms
there is little chance for ambiguity. But when there are
many distortions of possible objects in a scene and much
information in memory decisions become multi-determined.
This is handled by the use of fuzzy implications which are
merged together into common lists where choices as to what to
do next are constantly being made. Thus a variety of partial
implications, as from different characteristics of a scene,
and also from different sources of information such as
externally sensed scenes and internally felt needs all
merged together, are chosen among and determine when to
choose.

It is not clear how well such a system will work as the
size and complexity of its problems increase. The only way
to find out is to test it on much larger sets of more diffi-
cult problems. But we need not expect it to be perfect, or even
to be exceptionally good - just as people do, it canexhibit

its share of mistaken, stupid and rigid behavior.
HIGHER-LEVEL FUZZY PROBLEMS

The combining of functions into a single cognitive
system forces us to eliminate any rigid flow of processes.
The system must now choose among alternate possibilities, and
these choices confront it with inevitably fuzzy situations,

including the following (see Uhr, in preparation).




-25-

Relevance Must Constantly be Assessed, in an On-Going
Conversational Description

Nothing is built into the system that compels it to
do something like "assign a single name"; rather, the
system must develop a relevant description of its environ-
ment, in the sense that it must notice those things that will
help it do what it decides to do. But "description" is an
extremely fuzzy concept. We can think of a "complete

description,"”

which is far too long to be of use, or a
conventionalized description, which would make such a

system impossibly rigid (see Uhr, 1973c,e for examinations of
"description"). Instead, the system must develop a pertinent
description, as a function of external and internal

presses, and of acts it has decided to try to effect, and

of deductions and memories that suggest what would be helpful
and relevant parts of descriptions, toward effecting those

acts.

Nothing can be built-in that says "find a path from this
to that,"” or "choose the single most highly implied name."
Rather, the system must constantly assess the relevance of
nodes, transforms, and flows of procedures. Nor will it be
clear how to assess relevance, which will be a fuzzy function
of a variety of things. It seems best to think of the system
as engaging in an on-going "conversation with its external
world" (within which may be objects and other systems that
converse verbally). There will rarely be a "correct response,"
and the system will often behave in a mediocre way. But it
will always be trying to act relevantly and, especially with
the aid of friendly elements in its environment (e.g.
parents, teachers, ripe berries and other manna from heaven),

will often muddle through, and even act reasonably well.
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Relevant Imports Must be Got from Mixed Words and Things

Words, phrases, statements, suggestions, guestions,
commands, and any kind of verbal utterance must be input
through the same perceptual channels that sense, recognize
and understand objects and their relations and qualities.
There may indeed be several input channels, such as the
two eyes, and also sensors for sound, touch, smell, or
other type of impinging energy. Butnone can be exclusively
reserved for verbal inputs, in the way that the robots'
teletype inputs are known by the robot to be verbal commands,
as opposed to its television inputs, which are sensed scenes
of objects. Rather, the system must recognize the relevant
things in its input scenes, and further recognize which com-
bine into words and symbolic referential utterances, and what
are the things to which they refer (Uhr, 1973b,d).

The System Must Choose the Type of Act to Effect

At the lowest level, any AI system must make fuzzy
choices, using "heuristics" or "characterizers," in order
to search through an overly-large network of possibilities.
Unless the problem has been cut down to uninteresting toy

size it cannot try everything.

But once we begin to ask a single system to handle a
variety of different types of thing we force it to make
higher-level fuzzy decisions. It must decide what is the
appropriate type of act. E.G. it must decide whether to
name, describe, draw, or touch an object; whether to treat
an input recognized as a verbal utterance as a command to
be followed or a statement to be responded to. This may
entail several levels of fuzzy decisions. E.g. after it
decides to name it must further decide whether to speak,
write or print the name, and which language, e.g. French,
English or American and, sometimes, which of several possible

synonymous names, to use.
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Certain Inputs Must be Recognized as Feedback

Just as there can be no special built-in channel for
verbal utterances, there can be no special channel or
signal for feedback. Rather, the system must recognize
that something perceived (e.g. candy, a smile) or felt
internally (e.g. pain) is feedback that refers to some
previously perceived stimuli and consequent actions by the
system. This entails a complex combination of hypotheses the
system makes as to expected feedback consequences, which
focus its attention for confirming or denying evidence,
and also an ability to relate any identified feedback,
whether anticipated or unanticipated, to percepts, thoughts
and acts that the system must once again fuzzily infer are
relevant.

The Learning of Things, Transforms and Hypotheses is
Essentially Fuzzy

Learning is fuzzy in several ways.

First, the system must generalize from one, or at most
a relatively small number of experiences. Such generaliza-
tions are guaranteed to be wrong a good deal if not most of
the time, since the world is wondrously complex, diverse,
and accidental. 8o the system must make an on~going

experimental assessment of each tentatively-learned thing.

Second, it must generate new hypotheses in the first
place, whether from experience, or by combining, refining,
or in some other ways restructuring previously entertained
hypotheses. Once again, there is no assurance that any
such hypothesis will prove to be correct. Rather, the
system must accrue evidence, through future experience, for
each one of them, sifting and choosing among them as this

evidence confirms and denies.
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Third, a complex structure of hypotheses must be
built. Once again, we have essentially fuzzy decisions as to
which nodes to connect to which - e.g. what things to
put into what classes, or compound into higher-level
structures.

THE STEP-BY-STEP DEVELOPMENT OF MODELS OF
INTELLIGENT MIND/BRAINS

A number of very difficult steps must be taken before
we can hope to achieve intelligent systems. First, we
must model the separate intellectual functions - percep-
tion, thinking, remembering, acting, language, and learn-
ing. But because these are so interdependent, we cannot
expect to model them separately; rather, we must combine
them into whole integrated systems. This paper describes
a first attempt at such a system, one that begins to do a
variety of cognitive tasks, where the different subsystems
must interact smoothly and coherently. Such a system is

just a beginning, and must be extended in a variety of ways.

It must be made to handle more things. To some
extent this can be done by giving it more transforms, that
is by giving it a bigger memory network. At that point
extensive tests must be made, since its behavior will be
far too complex to predict. This further means that we must
develop some conception about the range of behavior that such
a system must model, so that we can say something meaningful
as to how well we are sampling, and examining. We still
need to develop the basic canons for experimental test and

evaluation in this new science of complex entities.

Even more important, the system must be made more

powerful, with more powerful transforms and overall structure.

At the same time, it must be simplified. We must strive

for the simplest possible system, at the same time that we
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strive for the most powerful possible system. Simplicity
is not only desirable from the point of view of efficiency
and of the canons for building good models, but also
because the simpler the system the more likely it may
resemble living systems that have evolved under nature's

canons of simplicity.

In addition to generality, integration, power and
simplicity, we must also worry about the fit of the model's
behavior. At first we can be quite satisfied with rather
general fits, for we are modelling such a wide domain
of behavior - describing the whole elephant, rather than
a few hairs in the left fore-legpit. But at some point -

I think only after we have developed models that exhibit

a good deal of generality and power - we must begin to worry
about fitting details. This completes the hypothetico-
deductive enterprise of predicting human behavior, comparing
with experimental results and thus testing our model, and,
hopefully, finding new disconfirming evidence that leads

to changes that improve the model.

Finally, learning must be added. We can never hope
to pre-program into such a system all the knowledge that it
might need about the external world with which it must
interact, that it must know about. 1In fact this is impossible
in principle, because that external world is itself open-
ended and constantly changing: New things, organisms and
mutants are born, new words, concepts and other man-made
things (e.g. bicycles, transistors, computers, poems) are

created.
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SUMMARY AND CONCLUSIONS

It is attractive to model the mind/brain as a network
of neuron-like threshold elements that itself serves as
a "cognitive model" of its world, including itself. Such
a model must have a general kind of transform capability,
one that can handle the specific types of transforms
used in the typically separated Artificial Intelligence
systems for perception, deductive problem-solving, language
handling, remembering, acting and learning. And the different
cognitive functions must be able to interact intimately,
forming a well-integrated wholistic system with rich
contextual influences on a constant stream of interacting

decisions.

This paper examines a first step toward such a system,
a programmed model called SEER that attempts to handle the
various cognitive functions in as simple and integrated a

way as possible.

A network model is general in that it is simply a
framework for computing structures of functions of any sort.
But today's AI research has over-narrowed the use of networks
to the point where they make a simple well-formed search for a
path, using legal transforms (e.g. rules of inference, moves
in a game) from a set of givens (e.g. premises, the initial
board of the game) to a goal (e.g. a theorem, a win). It
may be possible to handle a few cognitive tasks in such a
well-formed way. But even that seems unlikely, for when
the problem of path-searching becomes difficult (as it does
the minute the problem becomes difficult enough to be
interesting) fuzzy and conjectural "heuristics" must be used

as hunches to guide the search.
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Most cognitive problems are ill-formed and fuzzy.
The mathematician doesn't prove theorems posed to him in
an MIT exam; rather he must find theorems worthy of proof.
A perceiver does not name single isolated easily discriminable
objects (and even that is a fuzzy problem); rather he
makes note of the relevant aspects of a scene of interacting
objects. We cannot expect to be given only simple verbal
questions, for which there is a "correct" answer; rather, we
must usually engage in a conversation, to which we respond
with hopefully relevant comments.

In just about every separated area of cognition the
real problems are ill-formed and fuzzy, and it is over-
simplifying to reduce them to the point where they can be

handled by a search for a solution path.

Even more important, the moment we ask a system to
handle a variety of cognitive functions at the same time -
which is the typical process for human adults, and even for
infants and higher animals, e.g. when we find, stalk,
capture and prepare food - we force it to make a constant
interacting stream of fuzzy decisions. Externally perceived
objects and internally perceived needs fuzzily suggest acts
that might be effected and memories and deductions that
might help carry out these acts. Conversely, remembered
objects, qualities, and procedures suggest objects that should
be looked for and actions (e.g. glancing about, crawling around)
that might help in gathering more information and testing
the potential value of possible acts. 1In general, each
cognitive function calls upon and affects all the others.
There is no "correct" sequence of procedures. Rather, multi-
determined fuzzy decisions are constantly being made to guide

a fuzzy interacting set of sets of fuzzy processes.
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Finally, several higher-level fuzzy problems emerge.
Relevance must constantly be assessed. Allperceived
things are mixed together inthe sensory input channels,
and must be sorted out. Thus verbal utterances must be
recognized as structures over perceived things, and then
as having symbolic referential import. Feedback must also
be recognized as feedback, and as probably relevant to
fuzzily conjectured previous stimuli, acts, and hypotheses.
And learning must make fuzzy decisions as to what to learn, and

how to build, unbuild, or restructure the cognitive network

memory.
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Appendix A: The SEER-2 Program

The following program (coded in EASEy, see Appendix
C and Uhr, 1973f, and therefore able to run on any
computer that has a translator for SNOBOL4, see Griswold
et al.,1968) handles the examples given in the paper, among
many others. It also handles far more complex problems,
e.g. perception of scenes of distorted objects, since it
merges together multiple fuzzy implications, and chooses

among them.

AI programs are too complex to describe fully,
accurately and fairly. The typical paper usually doesn't
give many details, but rather extolls a program's virtures.
But we cannot really begin to understand one another's
programs, so that we can begin to borrow from and built upon
one another, until we can observe them clearly. Think what
monographs on mathematics would be without proofs, or books

on architecture without pictures and diagrams.

The EASEy programming language was developed as a first
attempt to bridge this communication gap. A program coded
in EASEy is still cumbersome and hard to read and understand.
It is like a complicated and messy proof in a peculiar and
fussy notation. But it is precise and complete. For the
reader who want to dig in and see exactly what is happening,
it is the thing itself. This is still difficult - but
because of the intrinsic complexity of the model, not the

peculiarities of the programming language.

Following the program is a set of characterizing
transforms sufficient to handle all the examples given in
both this paper and Uhr (1974) along with many others.
The overview and description given in the paper should

help when digging into the program.
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(Program SEER-2) RECODES-1

(see Uhr, 1973¢)

(Initialize

START set ERASER = 'E OO RCE '

NORMALIZE = 'NOORCN

PASSON = 'P OO RC PT '

P1 = 'A%D= 0 0 1%I=%"

set SPOTSIZE = 1

F = "FOUND'

N = 'NEWCHARS'

L = 'LOOKFOR'

I = '"IDEAS'
(INput and go to TYPE (initialize memory, SENSE or TRANSform)
IN input TYPE DESCR % [+to $('M' TYPE -end) 1
(MEMory input and format routine goes here-only the beginning is shown.
(input NEW Tists or ADDed information on old lists

MNEW from DESCR get NAME =
set $NAME = CONTENTS [to IN]
MADD from DESCR get NAME =
on $NAME set CONTENTS [IN]
MINIT erase R, L, EXTERNAL, TOOUT, NEWCHARS, LOOKFOR, IDEAS, ACTIVEWT
(Input and SENSE a new scene into Layer 1 (the retina)
MSENSE  erase C
on EXTERNAL 1ist DESCR
S1 from DESCR get and call SPOTSIZE symbols SPOT erase [-to S2]
list $(L;R;C) = 'BRIGHT QUAL :BRIGHT ' SPOT ]
C=C+1 [to S1]
S2 R=R+ 1 [to IN]
MTRANS  output DESCR ' SCENE HAS BEEN INPUT, IS BEING TRANSFORMED'
(NEEDS and GOALS imply things to LOOKFOR that POINTAT them
MERGE (POINTAT(NEEDSGOALS),L)
TREPEAT TODO = LAYERS CHARS
T6 Trom TODO get STEP NOWDO % = [-TREPEAT ]
(LOOKFOR 4dmplies NEWCHARacterizers that point at them.
MERGE (POINTAT(LOOKFOR) ,N)
erase LOOKFOR
(To ERASE next LAYER,NORMALIZE, apply NEWly implied CHARacterizers, and PASSON
(found things
at start of NOWDO set ':ERASER X J:NORMALIZE X 1' NEWCHARS ':PASSON X 1!
(Get each TRANSform from NOWDO (to be applied at this layer)

5 from NOWDO get CLASSES : TRANS WT HIST ] = [-ITER]
from $TRANS get RA CAA RMAX CMAX DO
T7 CA = CAA '
T4 from $D0 get TYPE THRESH '%D=' DESCR '%I=' IMPLIEDS %
erase GOT TOTAL
T3 from DESCR get : CLASS TVAL DR DC ] = [ +$(TYPE 1) - $TYPE 2) ]
(TYPE A transform Averages or differences.
Al MERGE ($(L; RA+DR;CA+DC) , ' $ (L+1;RA/STEP ; CA/STEP) ', , TVAL,CLASS) [T3]

(TYPE I transform characterizes

1 from $(L sRA+DR;CA+DC) get # that CLASS # REST : THING VAL [-T3]
is TVAL Tessthan VAL ? yes. TOTAL = TOTAL + 10 [-13]
on GOT 1ist CLASS THING [T3]

(the characterizer succeeds if the TOTAL weight reaches THRESHold.

12 is THRESH greaterthan TOTAL ? [+ A2 1]
MERGE ( IMPLTEDS, '$(L+1;RA/STEP;CA/STEP)"', GOT)

18.V
20.V
21.V

22

SEER-2

TR e

ZEEXEZE.

CoO~NOYOTER W

10
11

12
13

22
24

25
26
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(keeps applying this TRANSform till its upper bounds are reached. RECODES-1 SEER-2
A2 is CA lessthan $CMAX? yes - CA = CA + 1 [+T4 ] 23 27
is RA Tessthan $RMAX? yes - RA = RA + 1 [+T7-T5] 24 28
(Erases the next layer, to re-initialize.
El erase $(L+15 RA/STEP ; CA/STEP) L[A2] 25 29
(Normalizes, dividing by 5 - roughly assuming a STEP-size of 2 plus a bit more.
N1 $(L;RAsCA) = NORMALIZE($(L;RA;CA),5) [A2] N 30
(Converge to the next layer.
ITER L=1L+1 26 31
R =R/ STEP 27 32
C=2C/ STEP 28 33
(If the apex has been reached, start to "THINK" (apply IDEAS)
is R lessthan 1 ? is C lessthan 1 ?[ -T6] 29 34
(CYCLES 7 times applying 100 transform from IDEAS to FOUND (the apex)
THINK CYCLES = 7 35
TCYCLE  CYCLES = CYCLES - 1 36
is CYCLES lessthan 1 ? [+ FAIL 1] 37
MERGE (POINTAT(LOOKFOR) ,N) 38
on IDEAS set NEWCHARS 39
erase LOOKFOR, NEWCHARS 40
set TRIES = 100 41
TMORE TRIES = TRIES - 1 42
is TRIES lessthan 1 ? [+ TCYCLE )] 43
(CHOOSES most highly weighted TRANSform from IDEAS
from IDEAS get CHOOSE(IDEAS) = [ -TCYCLE] 9.V 44
(Applies the TRANSform to the FOUND in the apex
from $THING get TYPE THRESH '%D=' DESCR '%I=' IMPLIEDS % [$TYPE] 11.V 45
I set FOUND = %Kt;o;o) 10.V 46
(Loops if.A11 indicated (should use LOCs and get nearest.)
TH1 from DESCR get : CLASS WT J= [-EVAL] 12.V 47
from CLASS get '$' ALL =L +THA ] 48
ALL = 1 49
THA from FOUND get LEFT # that CLASS # RIGHT : THING WTF = [-TH1] 15.V 50
on GOT Tist CLASS THING 16.V 51
TOTAL = TOTAL + WT * WTF [$(;T?' ALL )]] 17.V gg
EVAL is THRESH greaterthan TOTAL ? [-TMORE 18.V
MERGE ( IMPLIEDS,F,GOT) [TMORE ] 54
(ACTs, because an act was chosen from IDEAS.
ACT from IMPLIEDS get ACTION ARGS ; = [- OUT] 55
ACT2 from HIST get CLASS ARG = L+ $ACTION ] 56
ARG = ARGS [ $ACTION] 57
(OUTputs its actions-sequence
ouT is TOOUT sameas EMPTY ? [+ SEARCH ] 58
output TOOUT 59
ouT?2 output EXTERNAL [IN] 44 .V 60
(Initiates a SEARCH to help in completing the frustrated act.
SEARCH  from $ARG get '»I=' IMPLIEDS % [- FAIL ] 61
SEARCHZ from IMPLIEDS get IMPLIED WT ; = [~ FAIL] 62
from IMPLIED get NEEDED '$' [-SEARCH2 ] 63
from $NEEDED get '%D=' PARTS % 64

MERGE (POINTAT(PARTS),N) 65
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RETURNACT on NEWCHARS set CHOOSE [ TMORE J

FAIL output 'FAILED' EXTERNAL [IN]
D [T]
(Names the most highly implied object of class specified in ARGument
T from $(L;0;0) get CHOOSE($(L;0;0),ARG) = [ -ACT ]
(TOTAL weight must be above 5.
is TOTAL greaterthan 5 ? [-ACT]
on TOOUT Tist THING [$('AC' ACTION) 1
ACD on TOOUT set '( WITH '
(Describes the scene
D3 from HISTC get CLASS THINGH = [-D2 ]

from $(L;030) get : that THINGH REST = [-D3]
on TOOUT 1ist THINGH 3 LD3]

D2 on TOOUT set ' ) ' [T]
(Finds the first THING for each ARGument.
F from $(L;0;0) get # that ARG # REST : THING MORE 1 = [ -ACT]

(Finds THING only if without variations in EXTERNAL input
from EXTERNAL get that THING = : THING : [-ACT]
on TOOUT list ‘A ' THING ' IS FOUND- ' [ACT]
(Moves all Found things as PREPosition (TO or FROM) indicates
M is CLASS sameas 'PREP' ? [ -F 1
from HIST get CLASS ARGT [-ACT 1
from $(L;0:0) get # that ARGT # REST : TARGET [-SEARCH ]

M2 from EXTERNAL get : THINGA : = [+ $('M' ARG) ]

MTO from EXTERNAL get that TARGET = ‘(' TARGET THINGA ')' [M2 ]
MFROM from EXTERNAL get LEFT that TARGET RIGHT =

+ : THINGA : LEFT RIGHT TARGET [M2]

(Replies. If nothing about ARG, SEARCH associates out some more.
(needs more directed and conscious search

R - from $(L;0;0) get CHOOSE($(L;0;0), ARG) = [-SEARCHR]
- MAXWT = TOTAL
R2 on TOOUT list THING ;

from $(L;0;0) get CHOOSE($(L;0;0),ARG) = [ -ACT ]
is TOTAL lessthan MAXWT / 2 ? [+ACT - R2 ]
SEARCHR MERGE($(L30;0),IDEAS) [ RETURNACT ]
(Computes
C from ARGS get OP CLASSA CLASSB
from $(L;050) get # that OP # REST : OP
from $(L;0;0) get # that CLASSA # REST : ARGA [ - SEARCHC ]
from $(L;0;0) get # That CLASSB # REST : ARGB [ + $0P]
SEARCHC MERGE(POINTAT(INTEGERSS LRETURNACT 1]
(ADD, - etc. are OPS.
ADD on TOOUT 1ist ARGA + ARGB [ACT]
on TOOUT Tist ARGA - ARGB [ACT]l
on TOOUT Tist ARGA / ARGB [ACT]

/
(Game move (Needs to look deeper, choose with parallel heuristics)
G from ARGS get OLD NEW

from $(L;0%57‘9§§_# that OLD # REST : OLD [—G%

from $(L;0;0) get # that NEW # REST : NEW L-G

from EXTERNAL get that OLD = NEW [0UT2]

RECODES-1

SEER-2

36-43

46.
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52.
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60.

66
67
68

100
101

103
104
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RECODES-1 SEER-2

(Functions used by the main program
(MERGE two lists, combining weights and HISTories

MERGE DEFINE: MERGE(LISTA,LISTB,HISTA,WT,CLASS) 34.V ME1
is CLASS sameas EMPTY ? [-ME1] 2
from LISTA get LEFT : THING WTA HIST] = [ - return + ME3] 3
ME1 from LISTA get LEFT # that CLASS # REST : THING WTA HIST] =L -returnl] 35.V ME4
ME3 from WTA get '$' = TOTAL 36.V  ME5

(Can optionally specify LISTB as part of THING

from THING get '$' INTOLIST [+ ME4] . ME6
INTOLIST = LISTB 37.V ME7
ME4 from INTOLIST get : that THING TOTALB HISTB = 38.V MESB
+ NAME TOTALB+ (WT+1) ™ WTL HISTA HISTB 1 [+ME11] ,
from $THING get '%C=' CLASSES % [+ME2 ] . ME9
erase CLASSES METO
ME2 on $LISTB list THING CLASSES : THING (WT+1) * WTL LISTB HISTA 1 [ME1] 39.V MET]
(Back-Tinks only to transforms with names
POINTAT DEFINE: POINTAT(THINGS) PA1
PA1 from THINGS get CLASSES : THING HIST] = [- return ] PA2
from $THING get '%D=" TOTHINGS % [- PA1] PA3
MERGE(TOTHINGS;N) LPAT ] PA4
(NORMALIZE to keep weights roughly constant even though converging passed-on things
NORMALIZE DEFINE: NORMALIZE(TONORM,NORM) NOT
NORM1 from TONORM get LEFT : THING WT RIGHT J = [- return] NO2
WT = WT / NORM NO3
is WT lessthan 1 ? [+ NORMI] NO4
on NORMALIZE Tist LEFT : THING WT RIGHT 1 [ NORM1] NO5
(Get ABSGlute value
ABS - DEFINE: ABS(ABS) AB1
ABS1 at start of ABS get '-' = [return] AB2
(CHOOSE MAX or MIN weighted (MAX if no type is specified)
CHOOSE DEFINE: CHOOSE(LISTA,CLASS,TYPE) 41 CH1
(CLASS can be a specific thing, or empty (in which case all things are chosen among
CH1 from LISTA get CLASSES : FIRST THWT HIHIST]=[- freturn ] 42.v  CHZ
js CLASS sameas EMPTY ? T+ CH2] 43 CH3
from CLASSES get # that CLASS # [-CH1 ] 44.v  CH4
1list CHOOSE = CLASSES: FIRST THWT L ; RA ; CA HIHIST 50.v  CH5
CH2 from LISTA get ORCLASSES : ORTHING ORWT ORHIST 1= [+CH4] 45.V CH6
from CHOOSE get CLASSES : THING TOTAL LOC HISTJ [return] 45.v  CH7
CH4 is CLASS sameas EMPTY 2 [+ $('CH'TYPE) ] 46 CH8
. from ORCLASSES get # that CLASS # [+$('CH' TYPE) -CH2 ] 47.v  CH9
CHMIN is ORWT lessthan THWT ? yes - THWT = ORWT [+CH3 - CH2] 48.v  CHIO
CH CCHMAX 3 1 CHTT
CHMAX is THWT lessthan ORWT ? yes- THWT = ORWT [+CH3 - CHZ2] .2 CH12
CH2 1ist CHOOSE = ORCLASSES : ORTHING ORWT LISTA HIHIST 1 [CHZ] 49.v  CHI3

end
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Appendix B: Characterizing Transforms that Form
SEER's Memory Network

Memory networks input in the following form are
automatically input and converted (see Uhr, 1974 for further

description of details of transforms).

Section 1 gives the memory nodes needed to handle the
2-dimensional pattern recognition problems. Several
layers of the recognition cone are set up, giving averaging,
differencing and transforming characterizers rich enough to
begin to handle a variety of distorted and shaded inputs.
Many more such transforms would be needed to handle a
wider range of objects, but these examples should indicate

how they can rather routinely be described.

Section 2 shows the additional memory nodes needed to
handle all other problems. With l1-dimensional inputs
perceptual recognition becomes much easier (although
difficulties can arise with misspellings), and either
SEER-1 or SEER-2 can handle these problems.

Figures 6 and 7 give a sketchy idea of two portions of
the memory network into which the conversion routine

transforms these inputs.




1) Memory 1.
Type Description
L L1:3 ]
MEM A: 121:

Y 242 ]

Y 121 ]
L L2:3]
MEM A:  AAA:

Y ASA ]

Y AAA ]

L 13:31]

MEM 00000(3;7):
Y 111111

Y 00000 1

MEM 01(2;6):

Y 011

Y 01]

Y 011

MEM 0001(4;7):
Y 0010 1

Y 01001

Y 10001

MEM 1000(4;5):
Y 17001

Y 07101

Y 00111

MEM 00111100(3;6):
Y 01000010 1
Y 10000001 1
MEM 110(3;9):

Y 0011

Y 1101

MEM 011(3:3):

Y 1001

Y 1113

MEM 101(1:7):

Y 1011

Y 1111

Y 0101

MEM 010(3;9):

Y 1011

Y 0101

MEM 10001(2;7):
Y 01110 ]

MEM 10000001(3;6):
Y 010000101
Y 001111001
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For 2-Dimensional Inputs

Implieds

HOR*2 ; ACROSSS$N; :

VERT*2; UP$N*3;LEGSEN;:

DIAGA*2;UPS$N; :

DIAGB*2;:

CURVA*2; ACROSS$N ; ENCLOSURESN ;

RLOOP;LEFTEAR; FACES$N; :

LLOOP;RIGHTEAR; FACE$N;

DLOOP;NOSE$2; :

CIRCLE;EYE*3;FACES$N;:

DISH;MOUTH;:

SAUCER;ENCLOSURES$N; :

Classes Name
BRIGHT]
BRIGHT ]

STROKE ; : HOR]

EDGE ;: VERT 1

STROKE; : ]

STROKE;: ]

STROKE;: 1]

STROKE; : ]

STROKE;: ]

STROKE;: ]

OBJECT;: EYE]

STROKE; : ] SAUCER]

STROKE ; OBJECT 5 :
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A GRAPHIC REPRESENTATION OF THE PART OF MEMORY THAT IS NEEDED
TO RECOGNIZE CHAIRS AND TABLES. NOTE THAT MANY DETAILS, LIKE WEIGHTS,
THRESHOLDS, AND HOW POINTERS ARE USED, ARE NOT SHOWN.

FIGURE 6
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Implieds Classes

ACROSS*6;BACK$N*4; :
UP*3BACK$N*4; LEVELSN*6;STICK; :

BACK*9;CHAIRSN*9; :

SEAT*14;CHAIR$N*8; TOP*13; TABLE$N*8; :

LEGS*8; CHAIR$N*6; :

VISAGE ; FACE$N*3; BALLOONSN;
CIRCLE;:
((in IDEAS))

FIGURE;:

( If FACE succeeds, BALLOON is implied with a negative weight, to negate it.]

Type Description

L CHARS: ]

MEM HOR;CURVEA; (1)

MEM VERT;DIAGA;(1):

L IDEAS]

MEM . :ACROSS(7):

Y ..Up . up !

Y SUpP: up il

Y . ACROSS ¢ ]

Y 11UP! 'up! ]

Y *1ACROSS. 1]

MEM '0!ACROSS!(7):

Y :0!UP! ‘P!l

Y *0!HOR:]

MEM VERT; : VERT;VERT ; VERT; ]

(7):1

MEM {CURVEA!:

Y ! 'SAUCER!]

MEM YIVISAGE*5!(6):
! RIGHTEAR! !LEFTEAR:]
! ‘EYE! !EYE.]
: 'NOSE ! ]
: ‘MOUTH: ]

MEM t.CIRCLE: :
LISTICK! ]

MEM LIBACK!(9) :

Y . 'SEAT!.]

Y VILEGS!]

MEM VITOP!(9) :

Y VILEGS:]

FACE*35;PERSON$N*4;BALLOON*-7;: OBJECT;:

BALLOON*163; : OBJECT; :
CHAIR*25;COUCH$L; : FURNITURE$OBJECT;:
TABLE*21;CHAIRSL; : FURNITURE;OBJECT;:

Name
ACROSS ]

UP]
BACK]

LEVEL

LEGS] .

ENCLOSURE ]

FACE ]

BALLOONI

CHAIRI

TABLE]
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1) MEMORY 2.

proper layer, ordered to fit examples in the text.)

Type Description Implieds

Classes

(The following go in Layer 1 (right after L L1:31) (For Pattern Recognition)

(The word PEAR implies "look for a pear (@PEAR)" and "Internally associate about

MEM ' PEAR '(1;7): PEAR; @PEAR$N; IPEARSN;

EM ' @PEAR '(1:;7): @PEAR;TACT$N; IPEARSN*2; PEAR; :
YEM NAME(1;(7): NAME ; TONAMESN*8; TACTEN*2 5 :
MEM  WHAT: TONAME$N; TOFIND$N; :

MEM  NAME;SAY;WHAT; (1): TACT$N*35; :

(The following goes in IDEAS (right after L IDEAS:])

EM ACT: T OBJECT;:
(The following go in Layer 1)
VEM @TEARDROP(1;7): @PEAR2$N; @TEARDROP; :

MEM @STEM(1;5):
(A 2d characterizer of GPEAR.

MEM @YELLOW; @TEARDROP*2;
@STEM; (4): @PEAR*3;NACT$N; IPEARSN; :

MEM @OVAL(136): @APPLE2$N; BOVAL ;:

MEM @RED;OVAL*2;STEM; (4):  GAPPLE*4;NACT$N; IAPPLESN;:

(For Describing (The following go in L1)

MEM DESCRIBE(1;6): DACT$N*99 ; RACT$N*97 5 :
MEM  ALL;: DACTS$N3;:

(The following goes in IDEAS)

MEM ACT: D OBJECT;:

(For retrieving information) (The following go in Layer 1)
MEM PRESIDENT(1;7): PRESIDENT; IPRESIDENTSN*9;

PNOWSN*5;PFIRSTN*5; :
MEM BEER;: BEER;:
MEM CHEESE;: CHEESE; :
MEM GARBAGE; : GARBAGE; :
MEM PROD; : PROD; :
MEM APPLE;: RED*89 ;FRUIT*93;0VAL*83;

(The following go in IDEAS)
MEM PRESIDENT;FIRST;(9): WASHINGTON*99;RACTSN*50; :

MEM ACT: R ;:
MEM PRESIDENT;: FORD*48;RACTEN*23; :
MEM WISCONSIN(1;7):

MEM WISCONSIN;CITIES;: MILWAUKEE*23;MADISON*18;

RACINE*15; RACTSN*25;:
PROD; INIS2$N; GARBAGE*23; :

BEER*27; CHEESE*27 ;RACTEN*25;
COLD;COWS;LIBERAL ;RACT$N*19;:

MEM PRODUCE(1;6):

MEM WISCONSIN*3;PROD; :
MEM WISCONSIN;TELL;:

GAPPLE2$N; GPEAR2$N; @STEM; STEM;
Note variations (e.g. GYELLOW didn't point to i

WISCONSIN; IWISSN*5; IWIS2$N*4;:

WORD; TWORD :
OBJECT;FRUIT;:
WORD ; COMMAND; :
WORD; :
COMMAND; :

QUAL;:
QUAL;:

OBJECT;FRUIT;:
QUAL;:
OBJECT;FRUIT,:

COMMAND :
ADJ;:

NOUN;VIP;:

PROD; :
FOOD;PROD; ¢
PROD; :
CLASS;:
FOOD;:

COMMAND; :

COMMAND; :
WORD;STATE;:

COMMAND; :

COMMAND; :
COMMAND; ¢

For 1-Dimensional Inputs. (to be inserted, as indicated, into the

Name

pear)
PEAR]
@PEAR]
NAME ]
THIS]
TONAME ]

TACT]

@TEARDROP]
@STEMI

)

@PEAR2] -
@APPLE2]

DESCRIBE]
ALL]

DACT]

PRESIDENT]

BEER]
CHEESE]
GARBAGE ]
PROD]
IAPPLE]
PFIRSTI
RACTI
PNOW]
WISCONSINI

IWIS]

IWIs21
TWIS2]
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Decision

output the most highly
implied name

A GRAPHIC REPRESENTATION OF PART OF THE MEMORY FOR
CHARACTERIZING AND NAMING A FEW OBJECTS

FIGURE 7




Type Description

(For deducing responses) (The

MEM 25

MEM TWO; :

MEM 3 ;:

MEM ADD ;:

MEM  PLAY(137):

(The following goes in IDEAS)

MEM ACT:

MEM ACT :

(For Finding and Moving) (The

MEM @BOX(1:7):

MEM BOX(1:6):

MEM @PAIL(1:6):

MEM PAIL(1;6):

MEM @APPLE(;7):

MEM APPLE(1;6):

MEM FRUIT(1:6):

MEM TOUCH(1:7):

MEM FIND(1;7):

MEM ''T0 ':

NEW NEEDSGOALS

L NEEDS]

MEM FOOD; :

MEM FRUIT;CANDY;(1):

MEM MOVE(1:7):

MEM @SEER-MOUTH(1:7):

(The following go in IDEAS)

MEM OBJECT;TO;0BJECT; :

MEM ACT:

MEM ACT:

MEM @HUNGER; FRUIT;CANDY;
TO; @SEER-MOUTH; (6) :

MEM ACT:
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Implieds

following go in Layer 1)
2*5; CACTSN; :

2%5;:

3*5;:

CACT$N*99;ADD*8; :
GACT$N*36;:

C COMMAND NUMBER NUMBER ;:

G Y.Y YXY X.X XXX(IWIN);:
following go in LT)
©@BOX;BOXs :

BOX;@BOXS$N; :
@PAIL;PAIL;:
PAIL;@PAILSN;:

BAPPLE ; APPLE ;EATSN; DACTEN*5;

IAPPLE$N*99 ;APPLE ; GAPPLESN;;
RACTSN*5;:

FRUIT;:
TOUCH; FACT$N*37; FIND; :
FIND;FACT$N*37;:

T05:

:N1 10 1:N2 10 1%

@HUNGER*9;EAT$N; :
FOOD; @HUNGER; EAT$N; :
MOVE ; TOMOVE$N*30; :
@SEER-MOUTH; EAT$N; TO; :

MACT$N*99;
F OBJECT,:
M

EACT*99;:
M3

Classes

NUMBER;:
NUMBER :
NUMBER:

COMMAND; :
COMMAND «

CONTAINER;:
WORD; TWORD; :
CONTAINER;:
WORD ; TWORD; :
OBJECT;FRUIT;:
WORD; TWORD; :

WORD; TWORD;CLASS ;¢

COMMAND; :
COMMAND ; :
PREP:

OBJECT;:

COMMAND; :
SELF;:

COMMAND; :

ADD]
PLAY]

CACTJ
GACT]
@BOX1
BOX]J
@PAIL
PAIL"
@APT
AP’

:

My .

TOMOVE ]
FACT]
MACT]

EAT]
EACT]
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Appendix C: A Note on EASEy Programs (See Uhr,

1973f for detalls)

Numbering at the right identifies statements, and
allows for comparisons between programs. M

indicates initializing Memory statements: I indicates
cards that are Input by the program. .V indicates a
Variant, .1 an additional statement.

A program consists of a sequence of statements, an

end card, and any data cards for input. (Statements
that start with a parenthesis are comments, and are
ignored.) Statement labels start at the left;

gotos are at the right, within brackets (+ means
branch on success; - on failure; otherwise it is an
unconditional branch). + signifies a continuation
card.

Strings on capitals are programmer-defined. Strings

in underlined lower-case are system commands that

must be present (they would be keypunched in caps to
run the program). These include input, output, erase,
set, list, get, start, call, that, and the inequalities.
Other lower-case strings merely serve to help make the
program understandable; they could be eliminated.

EASEy automatically treats a space following a string
as though it were a delimiter; it thus automatically
extracts a sequence of strings and treats them as
names. 1,:,;, and % act similarly as a delimiter,
but the programmer must specify it. The symbol # is
used to stand for any delimiter (a space, 1, +,

ir 3 Or #)

The symbol $stringl is used to indicate "get the contents
of string I, and treat it as a name and get its contents"
(as in SNOBOL) .

Pattern-matching statements work just as in SNOBOL
statements: there are a) a name, b) a sequence of
objects to be found in the named string in the order
specified, ¢) the equal sign (meaning replace), and

d) a replacement sequence of objects (b, ¢, and/or d

can be absent). that stringI means "get that particular
object" - otherwise a new string is defined as the
contents of stringI, which is taken to be a variable
name.
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size(...) is a built-in function that counts the
symbols inthe string(s) named within parentheses
(its argument). integer(...) succeeds if its
argument is an integer.

DEFINE: defines a programmer-coded function. The

function is executed whenever it is specified, FUNC-
TIONNAME (ARGUMENTS), in the program. It ends in

success or failure when it reaches a [return] or
[~-return] goto.




-] -

REFERENCES

Chomsky, N. Syntactic Structures, The Hague: Mouton, 1957.

Chomsky, N. Aspects of the Theory of Syntax, Cambridge:
MIT, 1965.

Craik, K. J. W. The Nature of Explanation, New York:
Cambridge, 1952.

Duda, R. 0. and Hart, P. E. Pattern Classification and
Scene Analysis, New York: Wiley, 1973.

Feldman, J. and Gries, D. Translator writing systems,
Comm. ACM, 1968, 11, 77-113.

Feldman, J. A. et al. The Stanford hand-eye project.
Proc. 2nd Int. Joint Conf. on Artificial Intell., 1971, -
521-526. -

Griswold, R. E. et al. The SNOBOL4 programming language
Englewood-Cliffs: Prentice-Hall, 1968.

Guzman, A. Decomposition of visual scenes into three-
dimensional bodies, Proc. AFIPS EJCC, 1968, 33, 291-304.

Hunt, E. B. Concept Formation: an Information Processing Problem
New York: Wiley, 1962.

Jordan, S. R. Learning to use contextual patterns in
language processing, Unpubl. Ph.D. Thesis, University of
Wisconsin, Madison, 1971.

Kochen, M. An experimental program for the selection of
disjunctive hypotheses, Proc. AFIPS WJCC, 1961, 19, 571-578.

Minsky, M (Editor) Semantic Information Processing,
Cambridge: MIT, 1968.

Narasimhan, R. Labelling schemata and syntactic descrip-
tions of pictures, Information and Control, 1964, 9,
151-179.

Newell, A. and Simon, H. Human Problem Solving, Englewood-
Cliffs: Prentice-Hall, 1972.

Nilsson, N. Problem-Solving Methods in Artificial Intelligence,
New York: McGraw-Hill, 1971.




-48~

Nilsson, N. J. A mobile automaton: an application of
A.I. techniques, Proc. 1lst Int. Joint Conf. on Artificial
Intell., 1969, 509-520.

Peirce, C. S. Collected Papers, Cambridge: Harvard,
1931-1958.

Quillian, M. R. The teachable language comprehender:
a simulation program and theory of language. Comm. ACM,
1969, 12, 459-476.

Sauvain, R. and Uhr, L. A teachable pattern describing and
recognizing program, Pattern Recognition, 1969, 1,
219-232. -

Shapiro, S. A net structure for semantic information,
storage deduction and retrieval, Proc. 2nd Int. Joint Conf.
on Artificial Intell., London, 1971.

Shaw, A. C. A formal picture description scheme as a basis -
for picture processing systems, Information and Control,
1969, 14, 9-52.

Simmons, R. F. Answering English question by computer:

Simmons, R. F. Natural language question-answering systems:
1969, Comm. ACM, 1970, 13, 15-30.

Swain, P. H. and Fu, K. S. Nonparametric and linguistic
approaches to pattern recognition, Elect. Engin. Tech
Rept. TR-EE 70~-20, Purdue Univ., Lafayette, 1970.

Thompson, F. English for computers, Proc. AFIPS FJCC,
1966, 28, 349-356.

Uhr, L. and Vossler, C. A pattern recognition program that
generates, evaluates and adjusts its own operators, Proc.
AFIPS wJCC, 1961, 19, 555-570. (Reprinted, with additional
results, in E. Feigenbaum and J. Feldman, Eds., Computers
and Thought, New York: McGraw-Hill, 1963.)

Uhr, L. Pattern-string learning programs, Behavioral
Science, 1964, 9, 258-270.

Uhr, L., and Kochen, M. MIKROKOSMs and robots, Proc.

1st Int. Joint Conf. on Artificial Intell., 1969, 541-556.

Uhr, L. Flexible linguistic pattern recognition, Pattern
Recognition, 1971, 3, 363-384.

Uhr, L. Layered "recognition cone" networks that pre-
process, classify and describe, IEEE Trans. Computers,
1972, 21, 758-768.




~49-~

Uhr, L. Pattern Recognition Learning and Thought, Englewood-
Cliffs: Prentice-Hall, 1973(a).

Uhr, L. Recognizing, "understanding," deciding whether to
obey, and executing commands, Computer Sci. Dept. Tech.
Rept. 173, Univ. of Wisconsin, 1973(b).

Uhr. L. The description of scenes over time and space,
Proc. AFIPS NCC, 1973, 42, 509-517(c).

Uhr, L. DECIDER-1: a system that chooses among different
types of acts, Proc. 3d Int. Joint Conf. on Artificial
Intell., 1973, 396-401(d).

Uhr, L. Describing, using "recognition cones", Proc. lst
Int. Joint Conf. on Pattern Recognition, 1973 (e).

(Also Computer 5ci. Dept. Tech. Rept. 176, Univ. of
Wisconsin, Madison, 1973.

Uhr, L. EASEy-2: An English-like program language, X
Computer Sciences Dept. Tech. Rept. 178, Univ. of Wisconsin,
1973(£) . )

Uhr, L. A wholistic cognitive system (SEER-1) for integrated
perception, action and thought. Computer Sci. Dept. Tech.
Rept., Univ. of Wisconsin, 1974.

Uhr, L. Semantic Learning, in preparation.

Uhr, L. An integrated cognitive system (SEER-2) that
interacts with scenes that change over time, in preparation.

Waltz, D. L. Gene rating semantic descriptions from
drawings of scenes with shadows, Unpubl. Ph.D. Diss.,
MIT, Cambridge, 1972 (AI TR-271).

Winograd, T. Procedures as a representation for data in
a computer program for understanding natural language,
Unpubl. Ph.D. Diss., MIT, Cambridge, 1971. (Also "Under-

standing Natural Language, New York: Academic, 1972).

Winston, P. H. Learning structural descriptions from
examples, Unpubl. Ph.D. Diss., MIT, Cambridge, 1970.

Winston, P. H. The MIT robot, In: Machine Intelligence
7 (B. Melzer and D. Michie, Eds.) Edinburgh Univ.
Press, 1972.




