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Abstract

A global convergence theory for a broad class of "monotonic" nonlinear
programming algorithms is given. The key difference between the approach
presented here and previous work in this area by Zangwill, Meyer, and
others, lies in the use of an appropriate definition of a fixed-point of a
point-to-set mapping. The use of this fixed-point concept allows both a
simplification and a strengthening and extension of previous results. In
particular, actual convergence of the entire sequence of iterates (as opposed
to subsequential convergence) and point-of-attraction theorems are estab-
lished under weak hypotheses. Examples of the application of this theory

to feasible direction algorithms are given.






1. Introduction

The purpose of this paper is to establish global convergence theorems
for a broad class of "monotonic" nonlinear programming algorithms. The
key difference between the approach presented here and the results of Zangwill
[11] and Meyer [6] lies in the use an appropriate definition of a fixed-point
of a point-to-set mapping. For those élgorithms to which it is applicable,
the use of this fixed~point concept allows both a simplification and a strength-
ening of those earlier results. In particular, it is possible under relatively
weak hypotheses to prove that the entire sequence of iterates converges.
Additionally, point-of-attraction theorems are proved, and an interesting
characterization is obtained for a class of convergence algorithms that lack
the continuity properties usually assumed. Examples of the application of
this theory to the classes of feasible direction methods proposed by Topkis

and Veinott [10] and Mangasarian [5] are given to illustrate the concepts.



2. A Class of Algorithms
The algorithms to be considered will be methods that address the prob-

lem:

minimize f(z)
(MP)
subject to zeF ,

where f is a continuous function defined on a closed subset G of En ,
G > F . The basic chéracteristics common to the algorithms to be con~
sidered are (a) that they start at an arbitrary yO c¢G , (b) that an itera=-
" tion starting at a point yi (i=0,1,2,...) vields a point yi+1 € S(yi) ., where

S 1is a point-to-set mapping from G into the non~empty subsets of G ,

and (c) the existence of a continuous function ¢: G—R such that ¢(y') <
$(y) where y'eS(y) . (The procedures (a) and (b) will be referred to as

the algorithm corresponding to S, and when property (c¢) holds, the algor=-

ithm will be monotonic. Note, however, that these characteristics do not
restrict the algorithms to be considered to be "primal" algorithms for which
f=¢, G=F. Itis possible, for example, to deal with a dual algorithm
such as Kelley's cutting plane method by taking ¢ = ~f and G to be a
set that properly contains F .) We wish to establish conditions that en-

sure that ||y, . - yiH —0 and that the accumulation points of (yi} are

i+l
fixed-points of S . Here it should be emphasized that by a fixed-point

of S we meana point y*eG suchthat S(y*) = {y*} (instead of simply S(y#) o fy*h .




3. Basic Convergence Theorems

To obtain our initial convergence result we need a slight strengthening
of the hypotheses made in the previous section. In particular, we will
need a compactness hypothesis, a continuity assumption, and a stronger

form of monotonicity that requires the addition of some convenient termin-

ology. A point-to-set mapping S will be said to be strictly monotonic

(with respect to a function ¢ ) at y if y'eS(y) implies o¢(y') < ¢(y) when-
ever y is not a fixed-point of S . (The strict monotonicity property may
be thought of as being vacuously satisfied at all fixed-points.) S is said

to be upper semi-continuous (u.s.c.) at y if z’i € S(yi\ (i=0,1,2,...),

v, Y and zi —2z 1imply zeS(y) . These properties will be said to hold
on G if they hold at all points in G . Finally a mapping S will be said

to be uniformly compact on G if there exists a compact set H independ-

ent of y such that S(y)c H forall yeG . (Note thatif S is also u.s.c.

at y , this means that S(y) is compact also.)

Theorem 3.1 Let S be a point-to-set mapping such that

(3.1 S 1is uniformly compact on G,
(3.2) S isu.s.c. on G, and

{3.3) S 1is strictly monotonic on G .



Under an additional finiteness assumption on the fixed-points we will then
show that the entire sequence of iterates {yi} converges to y* . (This
behavior sharply contrasts with earlier results in which it is shown only

that the accumulation points of the iterates have certain desirable proper-

ties, but for which convergence of the full sequence of iterates cannot be
concluded except under strong uniqueness assumptions.) The well-known
mathematical programming algorithms that belong to this class of algorithms
generally have the property that their fixed-points satisfy necessary optim-~
ality conditions of (MP) . If appropriate convexity assumptions hold, then
the fixed-points will also be solutions of (MP) , othérwise they may only
be local optima or saddle-points. (In the basic theory to be developed in

this paper, no convexity assumptions will be made, )




1f {yi} is any sequence generated by the algorithm corresponding

to S, then

(3.4) all accumulation points will be fixed-points,

(3.5) q)(yi)—-»q;(y*) , where y* is a fixed-point,

(3.6) |ly;,; = ¥;ll —0, and

i+l

(3.7) the accumulation points of (yi} form a continuum .

Proof: Because of the compactness hypothesis, any such sequence of

iterates will have at least one accumulation point, which we denote as

y* . Suppose that y* .is not a fixed-point. Then there are subsequences

}(1i=0,1,2,...) such that Yy, Y and

of iterates {yni] and [Ynﬁl i

Y% converges to some point y' . By upper semi-continuity, y'e S(y*)

ni+l

and by the strict monotonicity property, &(y') < ¢(y*) . However, since

forall i, ¢(yi+l) < ¢<yi) , we have lim q>(yni) = ¢(y*) = lim ¢(yni+1) = ¢(y") ,

a contradiction. Thus y* must be a fixed point, and monotonicity of the
sequence {¢(yi)} implies convergence to ¢(y*) . Suppose there existed

a subsequence {y. } such that -y >6>0(=0,1,2,...).
ki ki

| yki+1

Without loss of generality we may assume that Yk- -~y and yk -*3:1 .
i

i+l

Note that H;/ - 3:7[[ > 5. However, y must be a fixed point of S, and,

by u.s.c., ye S(y)

1

(v} , a contradiction. Since ||y yill -0,

i+l

the accumulation points form a continuum by a result of Ostrowski [8].



A number of modifications in the hypotheses can be made that leave
the conclusions of the theorem unchanged. Instead of (3. 3) one could assume
convergence of the sequence {(p(yi)} and strict monotonicity and u.s.c.
only at accumulation points, but most well-known algorithms have the strict
monotonicity property on the entire feasible set. It is also possible to
somewhat weaken the compactness hypothesis (3.1) by dealing with level
sets. Thus, defining L(c) = {Z‘ZG F, ¢(z) < c} , we could assume (instead
of (3.1)) that for every c¢ , there was a compact subset G(c) of F such
that S(z) < G(c) for all zc L(c) . However,whenever this type of hypothesis
is satisfied, it is possible to define a new mathematical programming prob-
lem that is equivalent to the original problem and for which hypothesis
(3.1) will be satisfied in its original form.

Note that the theorem implies the existence of at least one fixed-point

of S in H , and also that hypotheses (3.1) and (3. 3) imply that the problem
of minimizing ¢ over G has an optimal solution. For, if {zi} < G and
¢(Zi) —»éréch{)(z) , tThen [S(zi)} < H , which is compact and by the strict
monotonicity property we conclude inf ¢(z) = in%cp(z) . Thus all z* that

ze( Ze
solve the problem miré ¢(z) are fixed-points of S . For primal methods
Ze
in which f=¢ and F = G, it follows that all solutions of (MP) are fixed-
points of S .,

The hypotheses of this theorem differ from similar results in [6] and




[11] principally in that a fixed-point y* has the property that {y*]) = S(yx)
rather than {yx} < S(y*) (Points satisfying the latter condition will be

called "generalized" fixed-points.) The conclusions of Theorem 3.lare stronger

than those of earlier results precisely because of this more restrictive def-
injtion, which nevertheless is suitable for most algorithms that employ
local searches. Basically, this approach rules out the "oscillatory" behavior
that is possible when we allow y* to be a proper subset of S(y*) . For
example, let G = {yl,yz} and let S(yl) = S(yz) = G and ¢(yl) = q)(yz) =0.
Then the sequence [yl,yz,yl,yz,yl,yz, ...} could be generated by the
corresponding algorithm. This sequence does not have properties (3. 6)

or (3.7) even though its convergent subsequences converge to the "gener-
alized fixed-points" y1 and y2 . Although actual convergence of the full
sequence of iterates of Theorem 3.1 does not follow from the hypotheses
(see the Appendix for the "limit-cycle" type of non-convergence that may
occur', a finiteness assumption on the number of fixed-points will guar-
antee convergence of those iterates. This is not the case, when

"generalized" fixed-points are allowed, as the previous example shows.

Corollary 3.2 Let S satisfy (3.1), (3.2) and (3.3). If the number of fixed-

points having any given value of ¢ is finite, then the algorithm corresponding
to S will converge to a fixed-point of S regardless of where it is started

in G.



Proof: (This result follows directly from the fact that the accumulation
points are fixed=-points a;nd form a continuum. However, for the sake of
completeness we give a short direct proof.)

Assume that the sequence (yi} does not converge, so that there are
at least two accumulation points. By theorem 1, all accumulation points
are fixed-points, so that given an accumulation point y* , there exists

a d> 0 such that y* is the unique accumulation point contained in an

open ball of radius d centered at yx . Now let M be chosen such that

Iy,

" yi|[ <d/3 for i>M . Since y* is an accumulation point,

Hys - y*|| < d/3 for infinitely many indices s . Since there is at least
one accumulation point distinct from y* , for infinitely indices r it is
true that Hyr - y*|| > 2d/3 . From the way M was chosen, then, there
are infinitely many indices t> M such that d/3 < ||y,c - y*|| < 2d/3.
This leads to a contradiction, since it implies the existence of a second

accumulation point in the annulus d/3 < [|y - y* || < 2d/3 . (See Figure 1

Example

As an easily-developed example of an algorithm to which this type
of analysis can be applied, we shall consider a feasible direction algorithm
proposed by Topkis and Veinott [10]. Suppose that the problem to be solved

is of the form




Figure 1.
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min f(x)
(NLP)
s.t. g(x}) <0,

where f is a C1 mapping from Rrl to R1 and g is a C1 mapping from

R to Rm . Welet F=G=H-= {xlg(x) < 0} , and assume that this set

is compact. An iteration starting at a point Xi e F consists of first finding
an optimal solution (6% ,d*) of the approximating problem AP(xi) defined

by

min &
(3.8)
s.t. VE(x)d+ -12- dHd < &
g(x;) +Vg(x)d < de ,

where e is m-vector of 1's and Hi is a positive definite matrix with

eigenvalues in a fixed interval [M MZ] . If (d%,dé%) is an optimal solu-

1[
tion of (3.8), then let K be a positive constant independent of i , let

A(Xi,d"",é*) = (X!Xi +AdxeF , 0<A<Ké*} andlet X be any point of the

+1

form x, . = XoEN d* , where A€ {x|>\eA(xi,d-x~,6*) ;P YA <

i+l
1-pJuhx(x;,dx, &%) , where vy d%) = () = E(x )/ (-VE(x AdX)
pe(O,‘l“ ] is a positive constant independent of i , and A*(xi,d* , O%)

is the largest A in A (xi,d%,é*) satisfying 'yi(k,d*) > p . Letting S(xi)

be the set of all possible successors that may be obtained by this procedure,
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it may be shown that all the hypotheses of Theorem 3.1 are satisfied. In
this case the fixed-points of S will be the points that satisfy the Fritz-
John necessary optimality conditions conditions [4] for the original prob-
lem (NLP). If there are at most a finite number of Fritz~John points for
(NLP), then we may conclude by Corollary 3.2 that the feasible direction
algorithm above is globally convergent to a Fritz~John point. In the tra=-
ditional approach used by Topkis and Veinott only the Fritz-John property
of the accumulation points is established.
In order to condense the presentation, henceforth any mapping S

that satisfies (3.1), (3.2), and (3. 3) will be termed a CUM mapping (an

acronym for uniformly compact, upper semi-continuous, and strictly mono-
tonic). In this terminology, Corollary 3.2 says that any CUM mapping

with a finite number of fixed-points is globally convergent to a fixed-point.

Polak [9] states a result similar to Corollary 3.2 for algorithms allowing
generalized fixed-points, but requires as an assumption that Hyi+l - yiH —0 .
As indicated by the example following Theorem 3.1, this assumption is
readily violated when generalized fixed-points are allowed.

We state now for future reference an additional Corollary that

may be proved in much the same manner:
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Corollary 3.3: Let S be a CUM mapping, and let [yi} be a sequence

obtained by the corresponding algorithm. If {yi} has an accumulation
point yx that is an jsolated fixed-point of S (i.e., not the limit of a
sequence of distinct fixed-points), then {yi] converges to y¥ .

The preceding theorem and its corollaries are global convergence re-
sults that require no hypotheses on the starting point yo . In order to
develop additional insight into the behavior of the algorithms considered
here, we will establish a "point-of-attraction" result for "locally" CUM

mappings after developing a useful preliminary lemma.

Lemma 3.4: Let zx be a fixed-point that is also a strong local minimum
of ¢ on G. Let S be strictly monotonic relative to ¢ on G . Assume
that there exists an open set B containing zx such that S is uniformly
compact and strictly monotonic on BN G (13 compact set H such that

S(z) ©H for all zeBNG). If S isu.s.c. at zx , then given any open

set Bl containing zx* , there exists an open set B2 containing zx such

that Yo € B2 N G implies {yi} c Bl naG.
Proof: Choose ¢ > 0 suchthat B,= (z| ||z=2*]| < ¢} isasubsetof B

and of B and has the property that zeB3nG implies ¢(z) > ¢(z*). Choose €' < ¢

suchthat 845 {z] ||z-2*|| < €'} hasthe property that zeB4nG implies S(z) © B3 .
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Next choose a A > ¢(z*) such that &(z) <A and =z c_B3 imply =z eB4 naG.

Finally, let B2 = [z! lz - z*[[ < ¢"} , where ¢" is chosen so that
B2 CB4 and so that zeB‘2 N G implies ¢(z) <1 . Clearly Yo eBz nG

implies y0 €eB, N G since BZ < B4 - B3 < B The proof will be completed

10
N G, then yi+1€B4 N GCBl NG . By construc-~

tion yi EB4 N G implies yi+l EBB N G . By the monotonicity property

1

by showing that if yi c:B4

¢(yi+l) < ¢(y0) < A , hence yi+1 €B4 naG.

A point-of-attraction theorem is now easily obtained for strong local

minima of ¢ by a slight strengthening of the hypotheses.

Theorem 3.5: If the hypotheses of Lemma 3.4 are satisfied, and, if, in

oddition S is u.s.c. on B and z* is an isolated fixed-point of S,
then there exists an open set Bx such that yo eB*¥ N G implies {yj}

converges to z¥ .

Proof: Since z* is isolated, choose Bl to be an open set such that

z* ¢ B, and z* is the only fixed-point in that the closure of B, n G .

1

which in turn is contained in BN G . Now apply Lemma 3.4 and let

1

Bx = B2 . By Theorem 3.1 and Lemma 3.4, all accumulation points of

{yi] are fixed-points of S and lie in the closure of B1 N G, hence
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z* is the unique accumulation point and thus the limit of the bounded se-

guence {yi] . !

Thus we have shown that any strong local minimum of ¢ on G is
an "attractive" fixed-point of a CUM mapping S , provided that it is an
isolated fixed-point of S . Note that Corollary 3.3 may be interpreted
as saying that an arbitrary isolated fixed-point of S is "quasi-attractive"

in the sense that if it is approached arbitrarily closely by the iterates,

then the iterates will converge to it.
We will now show that both Corollary 3.3 and Theorem 3.5 are readily

extended to mappings that allow "generalized" fixed-points, i.e., those

z¥ ¢ G such that S(zx) D {z*} (see Zangwill [I11], Meyer [6], or Luenberger
[3] for a discussion of the "subsequential" convergence properties of these
algorithms). 1In thise case, instead of the strict monotonicity property,

we assume the "generalized" strict monotonicity property at vy:if y'e S(y) ,

then &(y') < ¢(y) if y is not a generalized fixed-point, and o¢(y') < ¢(y)

otherwise.

Theorem 3.6 Let S be a point-to-set mapping such that S is uniformly

compact and u.s.c. on G , and has the generalized strict monotonicity
property on G . Let {yi} be a sequence obtained by the corresponding

algorithm. If {yi} has an accumulation point y* that is an isolated
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generalized fixed-point of S satisfying {y*} = S(y*) , then yi - y¥
If, in addition, y* is a strong local minimum of ¢ on G , then there
exists an open neighborhood B of y* such that if the algorithm is started

in B n G , then the iterates will converge to y¥* .

Proof: As shown in [6], the accumulation points of {yi} must be general-
ized fixed-points. Since S(y*) = {y*} we can choose d* such that the
distance d from y* to the nearest generalized fixed-point distinct from
y* satisfies d > d* and such that Hyj - y*|| < d*/3 implies

1FA yj” < d/3 . If we now assume that yi%a y* we can establish

J+1-
a contradiction by demonstrating in a manner similar to the proof of Corol-
lary 3.2 that there is a generalized fixed-point in the annulus

d/3< ||y - y*|| < 2d/3.

If, in addition, y* is a strong local minimum of ¢ , the point-of-

attraction result is proved in a manner precisely analogous to the proof

of Theorem 3,5,

The preceding theorems and its analogs for CUM mappings may be
thought as the mathematical programming analogs of Liapunov stability
theory. This analogy for point-to-point mappings is described by

Zangwill [11].
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4. Restrictions and Relaxations of Point-to-Set Mappings

In many cases an algorithm is "derived" from a CUM mapping by intro-
ducing computationally expedient modifications. These modifications might
consist of substituting "inexact" line searches such as those of Armijo
[1] or Golstein [2] for "exact" line searches, the introduction of quasi-
Newton steps to accelerate the convergence of steepest descent as in the
Davidon-Fletcher-Powell method with restart [3], or the deletion of "inac-
tive" constraints [5]. Such modifications may result in an algorithm that
does not have the strict monotonicity or upper semi-continuity properties
of the original algorithm, or for which upper semi-continuity may be very
difficult to establish., Nevertheless, the resulting algorithms generally still
have nice convergence properties, and in this section we will extend the
theory of CUM mappings in order to establish these convergence properties.
It will be seen that an appropriate extension of the theory is obtained by
considering certain classes of restrictions and relaxations of CUM mappings:
if Tl and T2 are point-to-set mappings from G to into the non-empty
subsets of G such that Tl(z) o Tz(z) forall z¢G then T, will be said

1

to be a relaxation of T2 and, conversely, Tz will be said to be a re-

striction of Tl .
We will first consider restrictions of CUM mappings, since these

behave essentially the same as CUM mappings, although they may not

be u.s.c.




17

Lemma 4.1 If T2 is a restriction of a CUM mapping T then Tz is

1 s
uniformly compact and strictly monotonic on G , and {z[ z 1s a fixed~-point
of Tl} = {z|z is a fixed-point of TZ} . Moreover (3.4) - (3.7) hold for
any sequence [yi} generated by the algorithm corresponding to T2 .

If, in addition, the number of fixed-points having any given value of g

is finite, then [yi] will converge to a fixed-point of T2

Proof: Suppose Fx = {z|z is a fixed-point of Tl] and z¥e¢ Fx . Since

Tz(zf*) is non-empty and contained in Tl(z*) , it follows that z* is also
a fixed-point of S . Conversely, if Tz(z%) = {z*} , then z%_c__Tl(z%)

and by the strict monotonicity property Tl(z*) = {zx} . The strict mono-

tonicity and compactness of T2 follow directly from the definitions.

Finally, if {yi} was generated by the algorithm corresponding to

T2 . then {yi} could also have been generated by the algorithm corresponding

to Tl , hence (3.4) - (3.7) and the convergence conclusion also hold.

Example:

It should be noted that a restriction of a CUM mapping need not be
u.s.c. For example, suppose that instead of the Goldstein step-size pro-
cedure in the example following Corollary 3.2 we use a restriction corres-
ponding to an Armijo-type step-size procedure: choose Xi to be the first

power of -12" in A(xi,d%,c‘vx-) that satisfies yi(xi,d%-) > p. Ifat xi
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the latter inequality is satisfied as an equality, then the corresponding

mapping may not be u.s.c. at xi .
Two further observations are in order with regard to the u.s.c. proper=-
ties of a restriction T2 of a CUM mapping Tl . First of all, T2 must

be u.s.c. at its fixed-points. For if we assume otherwise, we can obtain

a contradiction by using the uniform compactness of T,. Secondly, even

if the restriction T2 of a CUM mapping is not u.s.c. at a point z (which

cannot be a fixed-point of T2 by the preceding observation), T2 must

satisfy the following sequential strict monotonicity property at z: if

Ei -z and zie - z% with ziéeTz(Ei) forall i, then ¢(z*)< cp(:Z-) .
(Note that we do not assume that z* ¢ TZ(E) .} It should be observed that
the sequential strict monotonicity property at z implies the strict mono-
tonicity property at z , but not vice-versa. Moreover, by the same rea-
soning, the sequential strict monotonicity property cannot hold at a fixed=
point. The sequential strict monotonicity property is of interest because,
as will be seen, it furnishes us with means of determining if an algorithm
is a restriction of a CUM mapping. This determination might otherwise
be difficult to perform if the CUM relaxation were not known beforehand.
Consider a mapping S that is uniformly compact and strictly mono-

tonic on G , but may not be u.s.c. onallof G. Tlet G' = [z|zeG '

S is notu.s.c. at z} be the subset of G on which we do not have the
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u.s.c. property. (If G' is empty, then S is a CUM mapping, so the
main interest is in the case when G' is non-empty.) If S is sequentially
strictly monotonic on G' , we will show that all the convergence proper-
ties of a CUM mapping hold for S, because S can be shown to be a re~-
striction of a CUM mapping. In particular we define the completion of

S to be the point-to-set mapping é(z) = {z'[H{zi} - Z, (zi} - z',
where ziqS(zi)} . Note that S(z) thus is a restriction of §(z) , and

that é(z) = 5(z) if and only if S is u.s.c. at =z .

Example:

In Mangasarian [5] it is shown that it is sufficient for convergence
purposes to consider only the "e-active constraints in constructing the
subproblem (3.8). That is, rather than considering all the constraints
of (NLP) in constructing AP(xi) we need only consider those constraints
satisfying =-¢ < g], (x.i) < 0, where e is a positive constant independent
of i. This device, however, may cause the corresponding mapping to
fail to be u.s.c. at those xi which are not fixed~-points and for which
gj (Xi) = —- ¢ for some j , since the corresponding constraint will not be
included in the subproblem for x near Xi for which gj (x)< - ¢ ., How-

ever, in this case it is easily shown the sequential strict monotonicity

property will hold at such Xi . SO that global convergence is assured by
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Lemma 4.1. In this case the completion of the corresponding point-to-set
mapping has the property that at Xi a finite family of subproblems may be
considered, which would include both the subproblems in which g], is con~-
sidered and in which gj is not considered, provided that g}, (xi) = =

and that Xi is the limit of a sequence {zl,zz, ..+ } < G such that

Theorem 4.2 If a point-to-set mapping S is strictly monotonic on G

and sequentially strictly monotonic on G' , then its completion § is strictly

monotonic and u.s.c. on G.

Proof: Let z be an arbitrary point in G . If é(é) = S(Z) , then clearly
S is strictly monotonic at z ; otherwise, by the sequential strict monoton-
icity property, it follows that S is strictly monotonic at z . Let Ei -~z

and zeié — zx , where z)fc §(£i) , and let {Ei j} and [zie j} be sequences
r 4

such that lim z, .= E, and lim z¥ , = z¥ , where z¥ ¢ S(:z-, ). By a
jroo 147 jeoo 13 i,j i3

result of Meyer [6, Appendix], there exist subsequences {Ei(j) j} and

{z* j} such that lim z, =2z and lim z¥ = z¥ . From the defi-

14y, A () 3™ 10

nition of é(g) it follows that zx ¢ S

)} , and we have thus shown that

~

S is u.s.c. at an arbitrary EeG .
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We can summarize our results with respect to restrictions as follows:
(1) restrictions of CUM mappings have the same convergence properties

as CUM mappings; (2) a mapping T2 is the restriction of a CUM mapping

Tl if and only if T2 is uniformly compact and strictly monotonic on G ,
and sequentially strict monotonic on G' .

As a final example of restriction, we shall consider a technique for
obtaining a CUM restriction of a uniformly compact, u.s.c. mapping that

has the generalized strict monotonicity property.

Theorem 4.3: Let S be a point-to-set mapping that is uniformly compact

and u.s.c. on G , and that satisfies the generalized strict monotonicity
property on G . If S is also lower semi~continuous at its generalized

fixed-points, then there exists a restriction of § that is a CUM mapping.

Proof: For all ze G, S(z) is closed because of the u. s. c. property.
Let & be a metric on G and define Sx(z) = (z'|z'S(z) ,

5(z',z) < &(y',z) forall y'eS(z)} . Note that if zx is a generalized fixed~

point of S, l.s.c. of S at zx implies that if {zi} < G and z, 2 2%,
then there exists a sequence {zi‘] with zi' CS(Zi) and zi' — zZ%
so that 6(z;,zi) - 0 . From this observation it follows that if z><i 3 S*(zi)

and zéie >z , then z = z* . Since S¥(z*) = {2x} , we conclude that S«

is u.s.c. at the generalized fixed-points of § , which, in tumn, are fixed-
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points of S* . We will now take care of the remaining points of G by
showing that the sequential strict monotonicity property holds for S* at
any point z that is gg_’g a generalized fixed~-point of S . If Ei 2z and
Ei —Z with 'Eie S*(Ei) , then by the u.s.c. of S we have ZeS(z) , and
by generalized strict monotonicity q)(%’) < q)(%) , proving the sequential
strict monotonicity for S* at z . Now by .applying Theorem 4.2, we con~
clude that the completion é* of S* is a CUM mapping, and, moreover,

by the preceding proof of sequential strict monotonicity, it follows that

S¥ is also a restriction of S.

For monotonic algorithms which may be thought of as employing CUM map-
pings periodically rather than at every iteration (such as, for example,

the "restarted" quasi-Newton or conjugate gradient methods, in which periodically
a search is made in the gradient direction), the theorems for CUM mappings
may be extended appropriately by considering relaxations of CUM mappings.

These extensions of the theory and related results may be found in Meyer

(7].
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APPENDIX

Example: Let D' be the sequence {yl,yzl ...} in E? defined in the
following manner: vy = (0,2) : given Y let yn+1 be the point on the
circle with center at the origin and radius 1 + 1/n+l such that (1) the line

segment connecting yn and ynJr is tangent to that circle, and (2) the

1

movement in going from Yn to y1r1+ has a clockwise orientation (see

1

Figure 2). It can be shown that the set of accumulation points of D' is
the unit circle. (This is essentially a consequence of the geometry and the

fact that the distance between yr1 and yn+ is [(an + 4n + 1)/(1r14 + 2n3 +

1
nz)]l/2 , which is of the order of 1/n .)

Now let D be the closure of D', which is the union of D' and the
unit circle. Define a mapping S on D as follows:

(1) S(Y):[y n:llzl'

n n+l}

{y} for y on the unit circle

[a Y]
]
9
i

With ¢(z) defined as the distance from the origin, and F taken to be

D it is easily verified that S satisfies the hypotheses of theorem 3.1.
However, if any point of D' is chosen as a starting point, the correspond=-
ing sequence of iterates does not converge, but rather "spirals" around the
unit circle. (This example is derived from a similar example given by Topkis

and Veinott [10] to illustrate a different observation.)



Figure 2.
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