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ABSTRACT

Basic processes are presented as uniquely suitable
structural units for the initial analysis of a formally
defined complex of interacting digital systems. An
algorithm is given for decomposing a complex into its
basic processes. The algorithm proceeds iteratively from
characterizations of lesser detail to those of greater,
so that analysis of any part of the system can be
curtailed when the level of detail reached is sufficient.
Furthermore, a modest restriction on the forms of ante-
cedents and consequents in the systems will allow many
of the operations to be performed by very efficient string
manipulation algorithms. An example of this system analysis
technique is worked out, and it is argued that even large

designs could be studied using it.






I. INTRODUCTION

The technique presented in this report is proposed
as a first step in the analysis of a formally defined
complex of interacting digital systems, in the formal
definition universe described in [1] and extended in [2].
It is based on the analytic tools, and the definition of
a process, found in [3]. Its purpose is to provide the
designer with an efficient algorithm for discovering the

overall process structure implicit in his system design.

We feel that the value of such a technique is
obvious. Process structure is widely recognized to be the
key to understanding computations, and so a general look
at a design's process structure must be an appropriate
beginning to any effort toward understanding or verifying
its parts. The fact that we have an efficient algorithm
for doing so means that computers can be used to analyze
the largest designs: this is why we can claim to have

a practical design tool.

The goal of the algorithm is to find a partition of
a system complex into basic processes, the properties of
which are discussed in Section II. Because it is formulated
as a top-down iterative procedure, analysis of any part
of the system can be curtailed when it is detailed enough;
the designer gets only as much information as he can
afford, and is willing to look at. This is intrinsically
more efficient and flexible than the usual bottom-up

approach, as will be shown in Section III.

Top-down or not, system analysis requires extensive
computation. Certain operations on regular languages are

especially prominent in our technique, and so it should
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mean significant savings in computation time if they

can be optimized. We will show that when certain simple
rules are observed in the construction of antecedents
and consequents, the languages involved will belong to

a subclass of the regular languages called delimited
pattern languages. The properties of this class, as
developed in Section IV, allow many of the most common
language operations to be performed by fast string mani-

pulation algorithms.

Finally, an example of this technique is given,
in hopes of showing that what is theoretically sound 1is
also intuitively reasonable, and can contribute to under-

standing of computational structures.
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II. BASIC PROCESSES

A finite process structure (fps) for a system is

a finite directed graph whose nodes are disjoint regular

languages to which process states of the system may

belong. Each arc is associated with a production of the
system, and indicates the possible generation of process
states from states in the preceding o . Fps's for
isolated systems can be extended to graphs describing
system complexes. Given a system complex and an fps
describing it, a process is defined as a set of regular
languages, one for each system in the complex, such that:

(1) the regular language for a system is a union of
nodes in the fps for that system,

(2) all process states in a system belong to the
process if and only if they belong to the regular
language corresponding to that system, and

(3) no arcs cross the process boundary except inter-
actions (multiple-component arcs with at least one
origin node on either side of the process boundary).

These matters are explained in detail in (3].

Basic processes are processes according to the

above definition (although a process is formally a set of
regular languages, we will refer to it more often as a

set of fps nodes--an equivalent notion). We make them the
target of initial system analysis because the division

of any fps into basic processes is a unique partition,

and because basic processes are the smallest processes that
are independently analyzable. The exact meaning of this
will be discussed later, after we have presented the unique

partitioning of an fps, which begins with its modules.



Definition:

A module is a maximal set of nodes in an fps such that
each node in the set is connected to every other

node in the set by a path compoéed completely of
l?arcs, where l-arcs are interpreted as non-direc-

tional connectors.

A module can be found simply by starting with one node

in an fps, adding every node connected to that one by a
l-arc, then every node connected to those nodes by l-arcs,
etc., until no new nodes can be added. Figure 1 shows an

fps divided into modules.

Modules have three properties of interest to us:
(1) any module is contained within one system, (2) a module
is contained within any process it overlaps, and (3)
the division of any fps into modules is a unique partition.
Property (1) holds because only (n+m)-arcs connect nodes
in different systems. Property (2) holds because no process
boundary could be drawn dividing a module into two parts:
the two parts of the module must be connected by at least
one l-arc, but a l-arc cannot cross a process boundary.
Property (3) is implied by the fact that we can view the
nodes of an fps as a set of objects, and non-directional
connection between two nodes by l-arcs as a relation. Since
this relation holds between all nodes of the same module,
it is reflexive, symmetric, and transitive, and is there-
fore an equivalence relation. It is well known that any
equivalence relation defines a unique partition of the set

on which it is defined.

Modules are building-blocks for processes, because any
process is a union of modules. Since the division of an

fps into modules ia a unique partition, if we give an
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algorithm for grouping together certain modules, and say
that any resultant set of one or more modules is a basic
process, the implication is that the division into basic

processes is a unique partition.

Definition:

Basic processes are the structural units of an fps

for a system complex formed by the following
algorithm:

Let the fps be partitioned into modules, and let
each module belong to a distinct set. If there is
an n-arc with all of its origin nodes in one set and
its destination node in another set, then those
two sets are united. Two sets are also united if
the destination node of an (n+m)-~arc is in one of them
and all the origin nodes of the primed components are
in the other. These rules are applied repeatedly
until they can no longer be applied, and then the

resultant sets are the basic processes.

Figure 2 shows the same fps as in Figure 1 with the
basic processes marked. The most obvious property of basic
processes is that they exist entirely within single systems.
We know that modules do not contain system boundaries.

Only (n+m)-arcs cross system boundaries, but their primed
components cannot, so there is no means by which modules

in different systems could be grouped.

Are these really processes, i.e. do only interactions
cross the process boundaries? l-arcs cannot cross them
because they are all contained in modules. N-arcs can
cross them only if they have origin nodes in different
processes, but arcs obeying that rule are interactions by
definition. (N+m)-arcs can cross them only if there are

primed components with origin nodes in different processes,
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or unprimed components originating outside the destination
process while all the primed components originate within it,

and these are interactions also.

We have shown that basic processes comply with the
process definition and that they partition an fps uniquely.
They were defined so as to make the uniqueness obvious, -
but they are really just the smallest processes wholly
within single systems whose boundaries cannot be crossed
by any of the primed components of an (n+m)-arc, if all
their origin nodes are in the same process. It is these
properties that make basic processes independently

analyzable.

By "independently analyzable" we mean that the process
can be studied as a solitary synchronous entity, whose
interface with the rest of the system complex can be
specified as sets of inputs and outputs. More formally,
we will show that all the state information deducible from
the fps of an independently analyzable process can be
expressed in the form of a finite state machine. It is
obvious why basic processes have to exist completely within
one system--asynchronous interactions do not yield much

to analysis, nor do they fit into finite state machines.

All the origin nodesof primed components in an
(n+m) ~arc interact via some other m-arc to produce a suc-
cessor process state which then acts as a channel name
for the acceptance of a message, and disappears. If all
these origin nodes are in the same process, then their
destination node (i.e. the channel name node) must also be
in that process. Consider what happens when other origin

nodes (of unprimed components) of the (n+m)-arc, and its




destination node, lie outside the process containing the
origin nodes of the primed components: because of the
interaction of process states, some or all of which are
not in the process, the channel name will disappear from
the process! This is a side effect which would keep that
process from being independently analyzable, and so we

do not allow it to occur between basic processes.

Figures 3a and 3b are illustrations of this
situation. 1In Figure 3a, node C has successor D, and
language D contains a channel name for the acceptance of
a message in B . Whenever such a message is generated
on the same system step in which a state in language C
generates a suitable channel name, the channel name will
disappear, for no reason which is detectable from the
right-hand module alone. The arc labeled (a) is a legitimate
interaction, and so a process boundary could be drawn
where the module boundary is, but a basic process boundary
could not be drawn there. Figure 3b is more complex, but
the situation is much the same. The fate of a process state
in language J cannot be determined without knowledge of
process states in language E, so the module on the right

is not independently analyzable.

A basic process does interact with its environment
through its input and output arcs.
Definition:
An input arc of a group of fps nodes is an arc whose
destination node is within the group, but having

at least one origin node outside the group.

Definition:

An output arc of a group of fps nodes is an arc whose
destination node is outside the group, but having at

least one origin node within the group.
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We will show later how these are related to the inputs
and outputs of the finite state machine representing a
basic process. We bring them up now to show why the
situation in Figure 4 does not preclude drawing a basic

process boundary.

In describing the action of the right-hand process,
we would say that E is an input node, and that there is
input on arc (a) when there is a process state in node
language A. The actual appearance of a state in language
E depends on the states in nodes B and C, but if a channel
name from D disappears, it will happen as an effect of
conditions known in the basic process on the right: that
there are states in languages B and C, and there is

input on arc (a)

This is not at all the same as if we had said, in
reference to Figure 3a, that there is output from C on
(a'), because the effect on states in D still depends on
the presence of states in A, and that information does

not belong to the module on the right.

Another situation which is handled suitably by the
definition is that in which only one of several primed
components crosses a basic process boundary, as in Figure 5.
The possible disappearance of a process state belonging

to node E can be predicted from the status of node D.

We have shown that basic processes are synchronous
and do not suffer side effects; now we will show that their state
sequences can be interpreted as the states of a finite state
machine (under the abstraction from process states to regular
languages, of course). We feel that this is a powerful result
concerning the possibility of factoring system analysis,
especially because composition and other manipulations of
finite state machines are so well understood. The concept is
not yet practical because of the combinatorics involved in
constructing these machines, but there is always room for
design constraints and optimizations--we should not assume

that it will remain out of reach forever.



-12-

\/basic process boundary
\

FIGURE 4




-13-

basic process
y e boundary

FIGURE 5



-14-

To define an fsm representing a basic process we
need an fps for the process, including the interactions
crossing the process boundary. For input interactions
all we need to know is the names of the arcs and their
destination nodes; for outputs we need to know the
names of the output arcs and their sets of origin nodes
within the process. Let the fps in Figure 6 serve as
our example: the basic process has input to node A on
arc (¢), and outputs from C and D on arc (b), and from

C on arc (d).

i1f s = {aA,B,C,D} is the set of all nodes of the fps
in the process, the states of the fsm are the members of P(8)
(the power set of S). A state <A,C> for instance, is inter-
preted as meaning that there is one or more process state in o
contained in node A and also in C , and none in nodes B
or D. The initial state of the process machine is the set
of all nodes whose intersection with the initial o is

non-empty. In our example the initial state is <D> .

The transition function describes how the state of
the process can change during one system step, as defined
in [1]. It is calculated straightforwardly from the in-
formation in the fps. For instance, if the fps shows a 2-arc
with origin nodes A and B and destination C, then any
state containing the nodes A and B may have successor nodes
containing C. We say "may" because, as long as the arcs
are not known to be deterministic, we must assume that they
are not; the result is a different successor state for
each possibility and a highly non-deterministic machine.
The effect on the fsm would be the same if the Z2-arc were

a (l+1)—arc instead.

If I is the set of input arcs to the process, then
P(I) is the set of inputs to the fsm. The meaning of an
input is this: for every arc in the subset, all the external

conditions are satisfied so that the arc could represent a
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transformation which will actually take place in this
system step--and for every arc not in the subset, the
external conditions are not satisfied. What do we mean

by external conditions? For each intra-system component
of the interaction, O must contain a process state be-
longing to the language of its origin node. Each inter-
system component is associated with the sending of a
message, and that message must be in o" of the system
whose basic process we are modeling before it is seized at

the end of this step.

If O is the set of output arcs to the process, then
P(0) is the set of outputs of the fsm. The output
associated with each state is the set of output arcs all
of whose origin nodes in this process are present in that

state.

Figure 7 gives a tabular description of the fsm for
the process in Figure 6. The non-determinism can get out
of hand quickly! The machine can be reduced to ten or
fewer states, but the breadth of non-determinism still makes

analysis unrewarding.

The best way of cutting these machines down to a
useful size is by making use of any obtainable information
about deterministic arcs. Figure 8 shows the fsm derived
by assuming that all the arcs in the fps are deterministic,
an obvious improvement. The only non-determinism remaining
arises because it is not known, when the machine is in a
state containing D , whether ¢ contains one or more
than one process state belonging to that language. This
kind of information could also be incorporated into any

analysis algorithm where its cost seemed justified.
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STATE OUTPUT TRANSITIONS ON ¢ TRANSITIONS ON (C)
¢ ¢ ¢ ¢
<A> o) $,<B>,<C>,<B,C> ¢ ,<B>,<C>,<B,C>
<B> ¢ ¢ ¢
<C>. <(d)> $,<C> ¢ ,<C>
<D> ® ¢ ,<D> ¢ ,<A>,<D>,<A,D>
<A,B> o) ¢ ,<B>,<C>,<B,C> ¢ r<B>,<C>,<B,C>
<A,C> <{(d)> ¢ ,<B>,<C>,<B,C> ¢ ,<B>,<C>,<B,C>
<A,D> b ¢ ,<B>,<C>,<B,C>,| ¢,<B>,<C>,<B,C>,
<D> <B,D>,<C,D>, | <D>,<B,D>,<C,D>,
<B,C,D> <B,C,D> ,<A>,<A,B>,
<A,C>,<A,B,C> ,<A,D>,
<A,B,D>,<A,C,D>,
<A,B,C,D>
<B,C> <({d)> ¢ ,<C>,<D>,<C,D> ¢,<C>,<D>,<C,D>
<B,D> o) ¢ ,<D> ¢ ,<A>,<D>,<A,D>
<C,D> <{(b),(d)> ‘¢,<C>,<D>,<C,D> ¢ ,<A>,<D>,<A,D>,<C>,
<A,C>,<C,D>,<A,C,D>
<A,B,C> <(d)> same as <A,D> ¢ ,<B>,<C>,<B,C>,<D>,
<B,D>,<C,D>,<B,C,D>
<A,B,D> o) same as <A,D> same as <A,D>
<A,C,D> <(b),(d)>| same as <A,D> same as <A,D>
<B,C,D> <(b),(d)>Yy ¢,<C>,<D>,<C,D> same as <C,D>
<A,B,C,D> <{b),(d)>] same as <A,B,C> same as <A,D>

FIGURE 7
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STATE ouTPUT TRANSITIONS ON ¢ TRANSITIONS ON (C)
<A> ¢ <B,C> <B,C>

<D> ) <D> <A,D>,<A>

<A,C> <{d)> <B,C> <B,C>
<A,D> ¢ <B,C,D> <A,B,C>,<A,B,C,D>
<B,C> <(d)> <C,D> <C,D>
<C,D> <(b), (d)> <C,D> <A,C>,<A,C,D>
<A,B,C> <(d)> <B,C,D> <B,C,D>
<A,C,D> <(b),(d)> <B,C,D> <A,B,C>,<A,B,C,D>
<B,C,D> <(b), (d)> <C,D> <A,C,D>
<A,B,C,D>|<(b), (d)> <B,C,D> <A,B,C,D>

FIGURE 8
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ITI. THE TOP-DOWN ANALYSIS ALGORITHM

For the reasons given in [3], we want to confine
ourselves to finite process structures in the complete
lattice whose join is the canonical fps. We will consider
the basic process structure of the canonical fps for a
system complex to be the "correct" process structure.
Although it is always obtainable by computing the
canonical fps, our goal here is to arrive at it by
successive approximations, so that computing full detail

is unnecessary.

Each system in the complex can be partitioned into
basic processes independently of the other systems. Since
the lattice ordering of the fps's for a single system is
also independent of those for other systems in the complex,

we need only consider single systems from now on.

The strategy is to begin with the fps whose single
node is the total language for the system (the meet of
the canonical lattice), and take successive steps upward
through the canonical lattice. A single step is taken by
splitting a single node of an fps into two nodes, yielding
an fps of higher resolution, and therefore closer to the
canonical fps. The process can be terminated whenever the
system structure it yields is good enough. We call this
top-down analysis because it begins with a gross char-

acterization of the system which is gradually refined.

What makes this approach worthwhile is that any
changes in the basic process structure of the system's fps
resulting from splitting a node will be local to the basic
process in which the node is split, so only that process

can change, and only those arcs touching the affected
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node need be re-computed. The rest of the fps and its
basic process structure is as good as ever. If this
were not true, top-down analysis would be out of the
question, because the whole structure would have to be

re-computed after each step!

This notion is formalized in the following theorem.

Theorem:
If a new fps is obtained from an old fps by splitting
one node, then the only possible change in the basic
process structure from the old fps to the new is that
the basic process to which the split node belonged

may separate into two or more basic processes.

Proof:

Since a basic process partition is uniquely associated
with each fps, and the operations (steps through the
lattice of fps's) of splitting a node and merging

two nodes are inverses of each other, it follows

that if we take an fps, merge two nodes and find the
basic processes for the new fps, then split the
merged node into its original components, the re-
sultant fps and basic process structure must be the

same as we started with.

Consider what happens to the basic process
structure of an fps when two nodes are merged. If
those two nodes are in the same process, the structure
does not change at all. If they are in different
processes those processes will merge, and may suck

other processes into the merger as well.

When we split a node we are performing the
inverse operation of this, and so the process con-
taining the split node may or may not separate into
several processes. In either case, the other processes
will not be affected.
Q.E.D.
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It may be desirable to take larger steps through the
lattice, by splitting more than one node at a time. The
theorem generalizes to say that only processes containing

split nodes need be re-examined.

Although the theorem holds for any node split, only
certain splits will result in fps's that are still in the
canonical lattice. It is not difficult to confine our-
selves to these, however, because the language distinc-
tions occurring naturally in this type of analysis always

yield fps's in the canonical lattice.

The total language is the union of all the languages
Li which are antecedent, consequent, or accepted message
languages from the SR. The nodes of the canonical fps are
the intersections of these languages Li , constructed so
that each node language is contained in any Li it over-

laps.

Definition:

A canonical language of an SR is any union of node

languages from the canonical fps for the SR.

Any fps all of whose nodes are canonical languages belongs
to the canonical lattice (because the lattice consists of
the set of all distinct combinations or groupings of the
nodes of the canonical fps), and so any split of a node
into two parts, both of which are canonical languages,

preserves membership in the canonical lattice.

Theorem:
If the total language of an SR is the union of the

members of {Ll,L ”Ln}’ where each Li is an

o
antecedent, consequent, or accepted message language

of the SR , then each Li is a canonical language

of the SR , as is any union, intersection, or
complement with respect to the total language, of

canonical languages.
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Proof:

(1) Any Li is a canonical language.

By construction, any node language in the
canonical fps can be expressed as an intersection

of languages, one of which is L., or E; . Each
node which has Li in its expression 1is contained
in L, , so if {pl,p2,...,ps} is the set of all
such nodes, Py UPy U ... UDpg is contained in

Li . Li must be contained in Py UPp, U ... U pg

because some union of nodes of the canonical fps

must cover Li , but all of the nodes not in

{pl,pz,...,ps} are in L, . Therefore

Li = P UPpy, U ... U Py and Li is a canonical
language.

(2) If L 1is a canonical language, so is L .

L is a union of some of the nodes in the
canonical fps, so I. is the union of all those

nodes in the canonical fps which are not contained

in L
(3) If Ll and L2 are canonical languages, so is
Ll u L2 . Obvious.
(4) If Ll and L2 are canonical languages, soO
is Ll n L2
Each of Ll and L2 is a union of disjoint nodes
of the canonical fps, so Ll n L2 is non-empty if

and only if there is some set of nodes of the can-

onical fps all of which are contained in both Ll and
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5 - In this case Ll n L2 is the union of the

nodes in this set.

L

Q. E. D.

It is hard to imagine how one would derive a useful node
language which was not a canonical language, according to
this theorem. Certainly no standard analysis algorithm
would do so, because the antecedent and consequent
languages of the SR are the only starting points it would

have.

Exactly which node is to be split at any step in the
analysis is left to the designer, and may depend on
heuristic methods or special needs for detail. 1Its choice
may be the result of a procedure or an interactive session.
In any case it is necessary to guide the search enough
so that successive steps illuminate more of the process
structure--it is useless to split nodes within a basic
process of the canonical fps, because the process structure

will never change.

At each stage of the analysis we have an fps in which
every node larger than a node of the canonical fps is
potentially divisible. Ideally we would test an interesting
node to discover whether it was contained in a basic
process of the canonical fps, in which case we would leave
it alone. There is no way to do this except by calculating
the basic process structure of the canonical fps, but it
would be too general a solution to the guidance problem‘

anyhow.

Assuming the designer has provided a procedure for
proposing node splits, all we need to know is whether or
not the specifically proposed split will cause the basic
process in which it resides to split. If it will not, the
cause of defining process structure is not immediately
served, and it is probably best to ask the procedure for

another proposal.
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Because the.domain of possible change is limited to
the basic process, it may not be too expensive to simply
re-evaluate that part of the process structure. Figure 9a
shows a basic process and a propoéed node split; Figure
9b shows that portion of the fps after the intra-basic-
process arcs touching the split node have been re-computed,
and the relationships between the nodes of the former
basic process have been re-assessed. Here the node split
caused its module to decompose, and one basic process

separated into three.

To cut the cost further, we can define more easily
tested necessary conditions on node splits for them to
cause changes in basic process structure. Hopefully,
testing these conditions will screen out most of the
futile node splits, and only a few will require the more
complete computation. They are based on the fact that
two nodes (the split halves of an original node) cannot
be in different basic processes unless they are in different

modules.

An intermediate test of this nature would call for the
re-computation of all the l-arcs touching the split node,
followed by a check to see if its module still held together.
This is illustrated in Figures l10a and 10b; in 10a the
node split fails the test, and in 10b it passes.

A test which is even more rapid and more local (but
screens out fewer futile splits) only calls for examination
of the l-arcs actually touching the node to be split.
Unless the following three conditions are satisfied, the
two split halves must be in the same module, and a basic

process split is impossible.
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--- module boundary
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FIGURE 9b
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these are re-computed arcs--
in the original fps the node

looked like R{;;

-—-- module boundary

FIGURE 10a

FIGURE 10b
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(1) Any l-arc whose destination node is the
node to be split must have the successor
language (under the transformation by the
associated production) of the origin node
language contained within one of the split
halves.

(2) Any l-arc whose origin node is the node to
be split must have the predecessor language of
the destination node language contained within
one of the split halves.

(3) Any l-arc whose origin node and destination
node are both the node to be split must not,
when re-computed for the two split halves,
appear as a l-arc from one split half to the
other.

Figures lla, b, and ¢ show how violations of conditions
(1), (2), and (3) respectively cause the new nodes to be
connected by a path of l-arcs, and so be in the same
module. Either this test or the test on the whole module
can err by accepting a split which will not eventually
cause a basic process split, but this will be discovered

by the full re-computation.

The process of analysis can terminate when the designer
is satisfied with the information he has received, or the
procedure for recommending node’splits cannot find any
more distinctions on which to base a split proposal. Top-
down analysis as we have defined it is an algorithm
because once all the nodes of the current fps are as small
as the nodes of the canonical fps, no further splits are

possible.
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We will now give a very simple example of top-down
analysis, to be followed by a more elaborate one in
Section V. The system complex consists of the single
system whose SR is given in Figure 12. Observers are not
included in this example. The system reads records off
a tape, deleting them if they are labeled "O" and
recording them in a database if they are labeled "1".
Figure 13 shows the canonica} fps and its basic process
structure, which is the target of our top~down analysis.
It is obvious that calculating this whole fps would be a
waste: the nodes [[tape/Z;] - [tape/O;Z*,Z*/ZSJ -

*
[tape/l; Z*,Z*/ZO]] and [[database (r*)] - [database
(Z*;%*,2*%)]] are irrelevant to the actual computations of

this system, as can be seen from the initial o .

The total language (the symbols [, 1, 4+, and * are
metasymbols used in regular expressions) is [tape/
[O0+1+2+34+4+54+6+7+8+9+;+,+/]1* + database ([ 0+1+42+3+4+5+6+
7+8+9+;:;+,1*)]. The fps at this stage is shown in Figure
l4a. Suppose our procedure makes the obvious proposal of
splitting the total language into [tape/[0+1+2+43+4+5+6+7+
8+9+;+,+/1*] and [database ([ 0+1+2+3+4+5+6+7+8+9+;+,1%) ].

It passes the guick test easily, for the only single-
antecedent production to be dealt with has both predecessor
and successor languages contained in [tape/[ 0+1+2+3+4+5+6+
74+849+;+,+/1*]. So we split the node, re-compute arcs and
modules (there is split) and get the fps in Figure 1l4b.
Note that we have arrived at the basic process structure of

the canonical fps (if we ignore the irrelevant node).

Our procedure might very well recommend a split between
*
[tape/ZOJ - [tape/1[0+1+2+3+4+5+6+7+8+9+;+,+/]*] and
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tape/0;1,3/1;16,256/1;9,81/0;3,10/1;13,169/

and |

database (7,49;4,16;12,144;20,400)

0123456789;, ’

tape {8 x:01 m:};$,$/{$x:0123456789;,/1:} ~ tape/$, or

tape/0;$,$/{$ x:0123456789;,/m:} and
database (8) - database ($4) or

tape/1;$,$/{$ X:0123456789;,/n:} and
database($) - database($4;$l,$2)}

FIGURE 12
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[tape/zgl

—[tape/O;Z*,Z*/ZS]
—[tape/l;Z*,Z*/ZS]

FIGURE 13

[database (Z*)]
~[{database(Z*;2*,5%) ]

~-~-=- module boundary
—— basic process boundary

r,1,+,-,*,2, and r, are

0
metasymbols; I = (0+1+2+3+4
+5+6+7+8+9+;+,) , ZO = (0+1+

243+4+5+6+7+8+9+;+,+/)
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[tape/Zgl
‘+[data5ase (%) ]

FIGURE 1l4a

[tape/ZS]

- -
B - -

FIGURE 14b
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[ tape/1[ O+1+2+3+445+6+7+8+9+;+,+/]1*] because the ante-
cedents of the second and third productions suggest that
this might be a useful distinction. This split, how-
ever, fails to satisfy the third condition of the quick
test. Thus we know that the split will produce no new
modules. Assuming there are no more proposals for node
splits, our top-down analysis procedure has terminated,
having brough us to the basic process structure of the

canonical fps.
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IV. DELIMITED PATTERN LANGUAGES

In [3 ] it was shown that the class of languages matched
by antecedents and génerated by conseguents is a subclass
of the regular languages called pattern languages. Because
pattern languages are not closed under complementation,
algorithms based on fps's may propose optimizing transforma-
tions which cannot be applied to the original systems.
Furthermore, under many circumstances pattern languages are
no more efficient computationally than regular languages.
Ideally, the antecedent/consequent language class of
our formal definition universe would be closed under the
Boolean operations, and operations on these languages
would be very efficient. One possibility would be to
extend the universe so that non-counting languages or even
regular languages could be used, as both these classes are
closed under the Boolean operations. Such an extension is
known to be feasible [ 4 ], but it would make the computation
problem much worse. We prefer to place restrictions on
the forms of antecedents and consequents so that they
match delimited pattern languages, a subclass of the regular
languages whose properties will be discussed here. They
are closed under the Boolean operations, and seem to have
excellent computational characteristics. A simple syntax
checker could determine whether or not the productions in a
system to be analyzed complied with the restrictions, and
compliance need not even be enforced: it could be offered
as an option to the designer who was particularly interested
in analytic efficiency. Thus the use of delimited pattern
languages seems to be a convenient way to add to the speed

and flexibility of our analysis algorithms.
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Definition:

A delimited pattern language (dpl) over I is any

language denoted by an expression (a delimited

pattern expression or dpe) of the following form:

Let each Xi be a subset of I , and let i

refer to a indexing of P(I) (the power set of I)

such that:
X0 = ¢ ,
X, = x5, 1< i<n (|Z] = n),
Xi = gome Ssubset of ¢ with between 2 and n-~1
members, n + 1 < i < 20 - 2,
X,n_q < )

Then a dpe is:
(1) ¢ , denoting the empty set; or
(2) A , denoting the null string; or

(3) any string of the elements X, or Xg‘xk

where Xj n X, = ¢ (1si,j,k52n-l); or

k
(4) X;, or any string of the form defined in (3)
with an X; concatenated on the right

(1<i<2-1); or
(5) any finite union of distinct terms of the
forms defined in (2), (3), and (4).

Note that the dpl's are not closed under concatenation--
it is known that the class of non-counting languages is the
smallest class containing A and all single-character
strings, and closed under both the Boolean operations and
concatenation [5]. We are much more interested in having
¢losure under complementation than closure under concatena-
tion (there is a direct choice between them in our language

definition), especially since we can always achieve the



-36-

effects of concatenation by adding a final delimiting

character to the leftmost language and then concatenating.

Theorem:

The class of delimited pattern languages is properly

contained in the class of pattern languages.
Proof:

We refer to the presentation of pattern languages in
[3]. Any dpe is a pattern expression, so any delimited

pattern language is also a pattern language.

Proper containment holds because X{X% is a pattern
expression, but not a dpe.
Q. E. D.

First we will show the restrictions on antecedents
and consequents necessary to guarantee that our computa-

tions will only be carried out on dpl's.

Theorem:

(a) Any non-empty dpl which can be expressed by a
dpe with a single term is the language matched
by some antecedent;

(b) any non-empty dpl which can be expressed by a
dpe with a single term is the language generated
by some consequent;

(¢) the language matched by any antecedent in which
each unsubscripted $ is either followed immediately
by a character not in the vocabulary associated
with the variable, is followed immediately by a
A variable or subscripted $ whose vocabulary is
disjoint with that associated with the unsub-
scripted $ , or isthe last symbol in the ante-

cedent, is a dpl;
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the language generated by any consequent in

which each $ associated with an unsubscripted

$ in the antecedent is either followed immediately
by a character not in the vocabulary associated
with the variable, is followed immediately

by a A variable or a $ associated with a
subscripted $ in the antecedent whose vocabulary
is disjoint with that associated with the
unsubscripted $, or is the last symbol in the

consequent, is a dpl.

Parts (a) and (b) must be true for dpl's because they

are true for pattern languages (there is a proof in

(3.
(c)

(d)

In [3] it is proved that the language matched
by any antecedent is a pattern language. The
language is shown to be describable by a string

i
because of an unsubscripted $ in the antecedent.

of X.'s and Xg's, in which an Xg only appears

If any such occurrence in the antecedent is
followed by a character not in the vocabulary
associated with the variable, Xg will be

followed by Xi ;1L £ 1 <n, Xi n Xj = ¢

If the occurrence is followed by a A or $i with
K’ Xj n Xk = ¢ , then X§ will

be immediately followed by X - If the occurrence

of X§ is at the end of the antecedent, of

a vocabulary X

course, it needs no delimiter. Thus the restric-
tions are sufficient so that the describing
pattern expression is also a delimited pattern
expression.
Essentially the same as for (c¢).

Q. E. D.
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Theorem:

The class of dpl's is closed under the Boolean

operations.
Proof:

Part I: The class is closed under union.
Let p and g be dpe's for dpl's P and Q ,
respectively. If p or g 1is ¢ , then
PugQ is Q or P , respectively, which is
a dpl in either case. Otherwise we can remove
redundant terms from p + g , and the result

is then a dpe for P u Q

Part II: The class is closed under intersection.

Let P=uP, and Q = u Q be any two
;1 X k

delimited pattern languages where Pi and Qk

can be expressed by the dpe's 1 Pij and
3

i) ng , respectively. 1If either P or Q
L

is ¢ , then P n Q 1is ¢ , a dpl.

Otherwise, P n Q (u Pi) n (v Qk)

i k
= u (P, n Q)
i,k + K

Since we know that dpl's are closed under union, it

is only necessary to show that Pi n Q is a dpl

by constructing a dpe for g Pij n % ka .
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The following table is a recursive definition of the

desired expression. It assumes that if Pi and Qk

consist of a different number of factors, trailing
A's are added to the shorter one so that their lengths

become equal. X _ . denotes {x|xez and x ¢ X n X_}.

The resulting expression must be "normalized" by
carrying out all factored concatenation (thus removing
parentheses), removing trailing A's from terms, and

removing redundant terms.

P, 0 I p..n I Q
iu kv j=u 17 o=y k2
A A A
A XS )
A X* A
S
Xr A 0
X* A A
X X X (0 P,.n T Q)
r 5 rns j=u+l ij g=y+1 k&
X* X X (n P,.n T Q) u
S rns j=u ij g=v+1 k&
(I P,.n I Q)
j=u+l 1J L=v k&
X X* X (I P,. n 1T Q.,) u
r s rns j=u+l 1) L=y k&
(T Pp,. n 1 Q,,)
j=u 1] L=v+1 k&
X* X* * [( I P..n T Q_,) u
rns j=ut+l J L=v k&
(T P.. n T Q)]
J=u 13 L=v+1 k2
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The proof that this expression does denote
the intersection will not be given here, because
it procggds by case analysis and is lengthy.
What we must show is ghat it is a genuine dpl,
i.e. each X; is either at the end of a term

or is followed by an Xj , where Xi n Xj = ¢

In the result column of the table, the factor

X* is followed by ( I P.. n I

rns ) or
n j=u+l I g=

Qs
v

(I P.. n 1

i )--since these two cases are
j=u J 2=v+1

%)

symmetrical, we will discuss only the first one.

P. must be A (the end of the term) or
i(u+l)
. = . : *
some Xt where Xr n Xt b ka is XS . 1If
P is A X;ns is immediately followed by the

end of the term (all X's are trailing in Pi'

Qk’ and Pi n Qk). If P is Xt , X;ns is
immediately followed by ths' and Xrns N ths
= ¢ Dbecause X, n Xt = ¢

III: The class is closed under complement with

respect to I*

The complement of ¢ is denoted by the dpe

X* . Let wu P, be any other dpe. u P, = n ?I ,
27-1 i it i

and since we know that dpl's are closed under
intersection, all we must show is that the
complement of a dpl denoted by a single-term dpe
is a dpl.
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The complement o

Any other term Pi c
n
catenation n P,. .
=1 ij
n n-1
i Pi. = I Sk
=1 k=0 %
where: Sk = ¢ 1if k
or k
or k
Sk = } if k =0, Pi
k
s, = nPp,. if k > 0,
k 3=1 1]
k+1
s, = qnpPp.,. if k = 0,
k j=1 1]
or 0 < k < n~-1
Lk = ¢ 1if 0 < k <
or k = n-1, P
i
k
L, = T P,. X&X¥ 1
k i=1 ij 'k 5n_q
k
L., = I P,.X—=X¥*
k i=1 i3 k+1 ST _q
Pi(k+1) = %y ©F
or

ik

i f

f X is

an

r By

Pix

= XW, P

n,

i(k+1)

k P

n .
T ik

if 0 < k < n,

k 0,

Pi(k+1)

k 0, n= 1, P,
i

= X

k+1)
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k+1
L = 1 P,.X4T _ X* if 0 < k < n-1,
k j=1 +J (k+1)n(k+2) oy
fcd = *
Pk T X Piern TR
or k=0,n>1, Pi(k+l)
:X*;
u
k
L, = I P,.X X* if k =n, P., = X
k i=1 i37,n_ 47,0 4 ik '
As before, Xy = {x|x¢x, or x¢X,}, etc.
0
I Pij = A . We assume that ¢'s, A's, and
j=1

redundant terms will be removed from the resulting

expression.

First we must demonstrate that this is the
correct formula for the complement. Any single-
term dpl is accepted by a simple, deterministic
finite automaton of the type shown in Figure 15a,

e * * * ]
which accepts the dpl XinXngXan . It is

understood that on any inputs except those causing
labeled transitions, the machine goes to a non-

accepting sink state which is not shown.

Since the machine is deterministic, all we
have to do to obtain a machine accepting the

complement is interchange the accepting and
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FIGURE 15a.

FIGURE 15b.
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non-accepting states. This is done in Figure
15b, with the former sink state now explicit.
The formula is simply an expression of the
language accepted by this complement machine.
Each Sk is a language accepted at a state
corresponding to an explicit non-accepting
state of the original machine; each Lk is a
language accepted at the former sink state (and
arriving by a different path from the other
Lk's).

By examining each expression for S, or
Ly and the conditions under which it is used,
it can be determined easily that each is a
valid dpe. Thus the sum of these terms is also
a valid dpe.

Q. E. D.
Corollary:

The complement of any dpl with respect to any containing

dpl is a dpl.

Proof:

We have now established that delimited pattern languages
have all the properties we have claimed for them except
computational efficiency. We are interested in the following
operations: taking the union or intersection of two sets,
taking the complement of one set with respect to another,
testing two sets for equality or containment, and performing
an R-model step on a set. We will show that on dpl's these

operations can be performed almost exclusively by string




-45-

manipulation algorithms, which are intrinsically faster
than the finite-automaton-construction-and-manipulation
necessary for regular languages (and even subclasses of

them larger than the dpl's).

The existence of string manipulation algorithms for
unions, intersections, complements, and differences is
shown in the preceding proof. They can also be used to
calculate R-model steps, when the antecedents match dpl's
(because they obey the restrictions in the earlier theorem)
and they are being applied to dpl's. This is because a
match of an antecedent to a language is really just the
intersection of the antecedent language and the state
language, and can be computed like any other. Once the
match is found, constructing the consequent with the correct
variable values is trivial; string, rather than machine,
manipulation will suffice throughout. It is also worth
noting that dpl antecedents have the desirable characteristic

of matching any process state in one way only, at most.

The most challenging operations are those of testing
two languages for equality or containment, but the dpl's
have a very important property that will facilitate them:
any dpl has a unique string representation which we call
the canonical form. For any two dpl's represented by
canonical form dpe's, string identity is equivalent to
language equality! The containment test is also greatly

simplified.
Theorem:

For any dpl there is a unique dpe to which any other
dpe denoting the language can be algorithmically

transformed.
Proof:

The essence of the proof is that any dpl is accepted
by a deterministic reduced finite automaton having

no loops along a path from the initial state to an
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accepting state with path lengths greater than one.
Since the finite automaton is deterministic and
reduced, it is unique for the dpl it accepts. Since
it has only trivial loops, there is a finite number
of distinct paths between the initial state and some
accepting state. Each distinct path corresponds to
a term in the canonical form dpe; the terms can be
sorted according to the indexing on Xi's to

determine a particular order for them.

Any single-term dpe corresponds straightforwardly
to a deterministic finite automaton with no loops
of path length greater than one, as shown in Figure
15. The machine accepting a dpl with a multiple-
term dpe may have non-deterministic transitions out of

the initial state only (for example X, X*X + X.X*X ,
i3k i'mn

the machine for which is shown in Figure 16). We

know that we can make a deterministic machine from
any non-deterministic one, but it must be the case
that the deterministic one still has no loops with

path length greater than one.

This is true because the deterministic machine is
formed by a simple subset construction on the states
of the non-deterministic ﬁachine; the transition from
any state of the new machine on any input is to the
state which is the union of the states of the old
machine to which transitions under that input are
made from the states of the old machine included in

the subset.

For instance, let the non-deterministic machine

have initial state SO, and 1 1linear sequences of
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. cee,5. . each one ¢ di
P27 , lji, o) orresponding

states Si ' S

to a single term in a dpe. Then a state of the

deterministic machine is some subset of

J .
i
{So,g ( u Sik)} . From any old state S8, , the
i k=1
only possible transitions are to Sik or Si(k+l)'
Thus from any new state {S, /S, S. }
llkl 12k2,..., lnkn ,
the transition on any input must be some subset
of {8, @ s, 'S, ® s, yeos
llkl 11(k1+l) 12k2 12(k2+l)
S, x @,Si (k +l)} , where @ signifies that one
nn n'n

or the other may be present, but not both. Clearly

the only possible input sequences which would return

the deterministic machine to a previous state

{Si K ,Si K """Si K } would be any sequences of
171 272 n'n

inputs consisting entirely of inputs which themselves

cause transitions from the state to itself--loops

of path length one.

Thus we have shown that any dpl is accepted by
a deterministic finite automaton with no non-trivial
loops. Next we must show that this machine can be

reduced without the introduction of non-trivial loops.

Any reduction algorithm operates by merging

equivalent states, where two states Sl and S2 of

machine M are equivalent if and only if

TM., ) = T(M, ) , where M is the finite automaton
Sl 52 Si

obtained by treating state Si as the initial state
of M, and T(M) denotes the set of all input

sequences accepted by M
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FIGURE 16
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In our deterministic machine with no non-
trivial loops, there is a finite number of paths from
the initial state to an accepting state, and the
states along each path can be ordered (numbered)
so that no transitions are ever made to a lower-
numbered state from a higher-numbered one
(as a consequence of previous parts of this proof).
The only way that a merging of states in the reduction
process could produce a non-trivial loop would be to
merge two states Si and Sj 3 > 1+ 1 , in the
same numbered sequence. But since there is a sub-
sequence of an accepting path from Si to Sj '
some string w , |w| > 2, causes a transition from
Si to Sj ; consequently Si = Sj = T(Msi) =
T(Msj) = wT(MSj) [ T(MSj

no two states such as Si and Sj can be merged

), a contradiction. Therefore

during reduction, and so reduction of the machine
cannot introduce non-trivial loops.
Q.E.D.

We will now give an example of the conversion of

* *
dpe Xin + XiXkXQ’ where Xj n Xk # o, Xj n Xl # ¢ , and

all other alphabets are pairwise disjoint, to its canonical
form. The non-deterministic machine is shown in Figure 17a.
The deterministic reduced machine, shown in Figure 17b,

has transitions on the disjoint input sets Xi ' Xjnk '
Xjn%’ Xj—k—z’ Xk—j’ and Xz~j . We have numbered the states
so that we can indicate the four paths to an accepting
state: <«1,2>», <1,2,3>, <1,2,5>, <1,2,4,5>. Thus the

canonical form (with terms in sorted order) is Xix§nk

* * * *
+ Xinﬂka_ka + Xinnka__ijX2 + X

*
125003
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Conversion of a dpl to its canonical form obviously
needs to be streamlined by the development of a string
algorithm to do it. It would also be helpful if the string
operations for complementation and intersection preserved
canonical form. This is already true of the formula for
complementing a single-term dpe! Since the complement of
a multiple-term dpe is the intersection of these single-
term complements, the intersection formula becomes
crucial. There is much reason to expect that the inter-
section formula can also be made to preserve the canonical
form, however. The essence of canonical form is that all
the terms in the dpe represent disjoint languages. If we
can take two languages in canonical form, Pl + P2 + ...
Pn and Ql + Q2 + ... + Qm , all the termwise intersections

i
some similarity of the result with the canonical form.

P. n Qj must also be disjoint, and this already indicates

The efficiency of top-down analysis will be greatly
enhanced by the use of delimited pattern languages and
associated string algorithms. The improvement over regular
language computations might very well mean an order-of-
magnitude increase in the size of practically analyzable

systems.
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FIGURE l7a.

FIGURE 17b.
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V. A DETAILED EXAMPLE

We will now examine a system complex composed of
two systems, a teletype handler (TH) and a processing

system (PS). Here are the SR's for TH and PS, respectively.

{o: tty-handler and may-transmit and
abuf ()in and bbuf ()in and cbuf()in

x: 0123456789#

m: tty-handler - tty-handler or
tty-handler - handler or
tty-handler - a or
tty~handler - D or
tty-handler -» ¢ or
a and abuf($)in -~ abuf($l)in or
b and bbuf($)in -~ bbuf($l)in or
¢ and cbuf($)in - cbuf(Sl)in or
a:# and abuf ($)in - abuf(Slﬁl)in or
b:# and bbuf($)in -~ bbuf($l#l)in or

:¥ and cbuf($)in ~ cbuf($l¥l)in or
a:# and abuf($)in - transmit(a:$l#) or
b:# and bbuf($)in =~ transmit(bzsl#) or

:# and cbuf ($)in - transmit(c:$,#) or
a:# and abuf ($)in = abuf()out or
b:# and bbuf ($)in - bbuf ()out or
c:# and cbuf($)in - cbuf()out or

transmit ({Ay: abc m:}:$) and may-not-transmit -

transmit(A1:$l) or
may-transmit - may-transmit or
may-not-transmit -+ may-not-transmit or

transmit ({Ay: abc 7:}:$) and may-transmit -
Al:$l - processor or
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transmit ({Ax: abc 7m:}:$) and may-transmit -

acknowledge + processor or
transmit({ﬁxi abc 7m:}:$) and may-transmit -

may-not-transmit - may-transmit or
acknowledge - may-send - may-not-send or

a:$ and abuf()out - abuf(Sl)out + abuf ()out or
b:$ and bbuf()out -~ bbuf($l)out + bbuf ()out or

c:$ and cbuf ()out -~ cbuf($1)out ~+ cbuf ()out or

abuf{()out -+ abuf()out or
bbuf ()out -~ bbuf()out or
cbuf ()out - cbuf()out or
abuf (A$)out - Zl +  tty-a or
bbuf (A$)out - Zl +  tty=-b or
cbuf ($)out > A, - tty-c or
abuf (#$)out ~+ abuf($;)out or
bbuf (#$)out - bbuf($l)out or
cbuf (¥$)out - cbuf($l)out or
abuf (#)out -+ abuf()in or
bbuf (#)out =~ bbuf()in or
cbuf (#)out -+ cbuf()in T

processor-system and may~send and
al0()0a and b0()0b and c0()0c and
al()la and bl()1lb and cl{()lc

0123456789#%
processor-system - processor-system or
processor~system = processor or
acknowledge —+ may-transmit - may-not-
transmit or
{ax: abc m:}{dx:01m:} () {Ax:01m:}{Ax: abc m:}~
A1A2()A3A4 ' or

{Ax: abc m:}:{Ax:017m:}$ and
{Ay: abc m:}{Ax:01lm:} () {Ax:01lm:}{Ayx: abc m:}
> A3A4($1)A5A6 - A3A4()A2A1 or
a0 ({A$<processor 0>} 0a - send(a:Zl$l) or

al({A$<processor 1>})la - send(a:lel) or
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a0() 0a gggAbO({Z$<processor 0>})0b ~» send(b:ﬁl$l) or
al()la and bl({A$<processor 1>})1b = send(b:Zl$l) or
a0(A$)0a and b0 (A$)0b ~ bO(A,5,)0b or
al(A$)la and bl(A$)1b + bl(A,$,)1b or
a0()0a and b0()0b and cO({A$<processor 0>})0c

~ send(c:h;$q) or
al()la and bl()1lb and cl({A$<processor 1>})lc

-+ send(c:Al$l) or
a0(A$)0a and c0(A$)0c » c0(A,$,)0c or
al(A$)la and cl(AS)lc - cl(52$2)lc or
b0 (A$)0b and c0(A$)0c + cO(L,$,)0c or
bl(A$)1b and cl(A$)lc + cl(B,$,)1c or
send ({A Xx: abc Ei}:ZS) and may-not~-send -

send(Al:A2$l) or
may-send - may-send or
may-not-send - may-not-send or
send ({A x: abc m:}:4%) and may-send - Al:A2$1

+ handler or
send ({A x: abc 1i}:5$) and may-send - acknowledge

+ handler or
send ({A x: abc Ei}:ﬁs) and may-send - may-not-send

+~ may-send }

TH receives characters from each of the three teletypes
A, B, and C , which are the observers for this system complex.
Each teletype has its own transmission channel (a, b, or c)
to TH, and the messages are labeled according to their
origins (a:, b:, or c:). TH has a buffer for each teletype
in which it collects the characters from that teletype until

the end-of-line character # is transmitted.
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TH then attempts to send the completed line to the
processing system for processing, but this transmission
may be delayed until an acknowledgment of TH's last
transmission is received. The two systems have a two-way
acknowledgment agreement to prevent message loss by

overwriting--thus the system complex is rate-independent.

When TH receives the processor's output from this
input line (which is guaranteed to come after a finite
delay), it inserts it in the appropriate teletype's buffer
and then transmits it, character by character, to the
teletype. TH will not work correctly unless the teletypes
make no new transmissions until they have received replies

from their previous transmissions.

PS receives input lines, applies processors to them,
and transmits the output lines back to TH. The processors
themselves are buried in RPR's; most of the productions of

PS are devoted to allocating them.

The first character of each input line is a 0 or 1,
indicating which of the two processors this is intended for.
On any given system step PS could receive requests by
A, B, and C for the same processor, but each processor can
only work on one input at a time. Therefore the requests
are buffered, then satisfied according to a scheme which

gives A the highest priority and C the lowest.

As an example of systems modeling, the most interesting
thing about this complex is the number of realistic trade-
offs between generality and efficiency that went into its
design. The most obvious is the fact that the systems can
handle only a fixed number of active teletypes, using fixed

buffer spaces, all bound to constant names.
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We begin top-down analysis with the only information

immediately available:

the antecedent and consequent

languages of the productions. These lists only include

the languages which belong to the total languages for each

system, and therefore exclude messages the generating

systems cannot receive themselves. Our regular expres-

sions use the metasymbols I, L_, A, *, +, [, and .

7 denotes the alphabet

(0+1+2+3+4+5+6+7+8+9+#) , and I_

denotes I with the # missing.

TH
tty-handler
handler
may-transmit

may-not-transmit

acknowledge
a

b

c

abuf () in
bbuf () in
cbuf ()i

abuf (Z*)in
bbuf (Z*) 1
cbuf (Z#*)1i
abuf (Z*X_)in
bbuf (Z*L_)in
cbuf (£*x_)in
asL*

b:L*

c:L¥

a:#

b:#

PS
processor-system
processor
may-send
may-not-send
acknowledge
a0 () 0a
al()la
b0 () 0b
1()1b
a0(zZ I¥*)
al(z I¥)
b0(X IL*)O0b
bl(Z I¥*)
c0(z Z¥*)
cl(Z Z¥*)1lc
la+b+c1[0+1]() [0+1]1la+b+c]
Lat+b+c][O0+1](Z*)[0+1]1[a+b+c]
latb+c1:[0+1]Z*
send(a:ZX¥*)
send (b:LL¥*)
send (c:LL%)
send(lLa+b+c]:ZL%)
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TH continued

Q

aQa o oo

transmit(a:2*#)
transmit (b:L*#)
transmit(c:Z*#)
transmit ([ a+b+cl:I¥)
abuf () out

bbuf () out

cbuf () out

abuf (Z*)out

bbuf (£*)out

cbuf (L*)out

abuf (XI*)out

bbuf (ZZ*)out

cbuf (ZI*)out

abuf (Z_I*)out

bbuf (£_I?*)out

cbuf (Z_I*)out

abuf (#)out
bbuf (#) out
cbuf (#) out

For reference we will give the nodes of the canonical
fps's for these systems, although they are not necessary at
this stage.



TH

tty-~-handler
handler

a

b

C

abuf () in
bbuf () in
cbuf () in
abuf (Z*2_)in
bbuf (2*Z )in
cbuf (2*L_)in
abuf (L*#) in
bbuf (L *#) in
cbuf (2*4)in
a: #

b:#

oo Q

t#

1L
N
1L

C

la:] + [a:2Zi*]
(b:] + [b:ZZZ*]
(c:] + [g:ZZIx*]

may-not-transmit

may-transmit

transmit {(a:Z*#)
transmit (b:2*#)
transmit (c:Z*#)

transmit (La+b+cl:[A+Z*Z 1)

abuf () out
bbuf () out
cbuf () out
abuf (#)
bbuf (#)
cbuf (#)
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PS

processor-system
processor
acknowledge
may-send
may-not-send
Latb+c]:[o+110*
send (a:LL*)
send (b:ZL*)
send (c:ZL*)
a0 () 0a

al()la

b0 () 0b

bl () 1lb
a0(2L*)0a

al (XX *)1la

b0 (Z2*) 0b

bl (ZZ*)1b
cO0(ZZ%*)0c
cl(ZZ#*)lc
clo+1l()lo+1lc
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TH continued

acknowledge

abuf (Z_z*)out
bbuf (£_I*)out
cbuf (£_I*)out
abuf (#2%*)out
bbuf (#I*)out

cbhuf (#15%*)out

Now we are ready to begin top-down analysis. We
decide that our first step may entail splitting the total
language into several sublanguages, instead of just two;
the syntactic criterion on which the splits will be made
is that an antecedent or consequent language containing
other antecedent or consequent languages (but not contained
in any others) will become a separated node. This is
based on the notion that the existence of a covering ante-
cedent or consequent indicates a meaningful first-order

grouping of antecedent/consequent languages.

According to this criterion, the nodes of the first fps

would be:
TH PS
(1) abuf(Z*)in (12) [a+b+c]i[O0+1](E*)[ 0+1][ atb+tc]
(2) bbuf(r*)in (13) T[a+b+cl:[0+1]%*
(3) cbuf(r*)in (14) send([atb+cl:Iz*)
(4) abuf(z*)out (15) processor-system + processor

+ acknowledge + may-send +

*)
(5) Dbbuf (Z*)out may-not-send

(6) cbuf(f*)out

(7) a:x*
(8) b:I*
(9) c:r*

(10) transmit ([ at+b+c]:I¥*)

(11) tty-handler + handler +
a+ b + ¢ + may-transmit
+ may-not-transmit +
acknowledge
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Since this makes too many nodes in TH for an initial fps,
however, languages (1), (2), and (3) will be united on

the basis of their obvious syntactic similarities, as will

(4y, (5), and (6), and (7), (8), and (9). The fps is

shown in Figure 18. Note that there is only one arc

component drawn from any particular node to any other particular
node--each letter label indicates the existence of a

separate arc component with that label; () stands for a

component with no label, i.e. a l-arc.

If we had maintained the indicated separation between
languages (1), (2), and (3), etc., the process [[a+b+c] buf
(£*)in] + [[a+b+c] buf(f*)out] would have separated into

three.

Now suppose that the designer is quite confident about
his design for TH, but concerned about PS. At this point
he can begin to concentrate on the characterization of PS.
Based on obvious dichotomies in the languages as matched by
antecedents of PS, he splits (12) into [a+b+c][O0+1]()[0+1]
(a+b+c] and [a+b+cl[0+11(ZZ*)[0+1][a+b+tc], and (15) into
[processor-system + processor + acknowledge] and
{may-send + may-not-send]. Intra-system arcs must be re-
computed, because a node in each basic process is being
split, and so each basic process could split. Outgoing inter-
system arcs cannot affect the basic process structure, and so
we omit them in the fps shown in Figure 19. Since the previous
step of the analysis, one of the basic processes has split
into two. The other experienced an internal split from one
module into two, but remained a single basic process. Just to
show how it looks, we give the canonical fps for this system

in Figure 20.

Admittedly, the process structure of PS is not very
illuminating. This is at least partly because PS is already

excellent from a structured programming standpoint, and so
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our techniques can offer little to improve it. Imagine
that the two processors were explicit and not hidden in
RPR's. Then each one would engender a number of nodes
linked by l-arcs. Our techniques could be used to show
that the nodes belonged to two distinct processes separate
from the rest of the system; in a more sophisticated form
they might also be used to prove that these processes had
no synchronous relation to the rest of the system, and
thus could be hidden in RPR's!

Even as far as it is developed, our theory of process
structuring has three uses: (1) it can be used by the
designer as a diagnostic check on his notions of which states
interact, which form isolated localities, and which can
have side effects on others, (2) it can serve as a precise basis
for factoring the design itself and the problem of verifying
it, and (3) it can indicate potential parallelism and other
opportunities for implementation-independent optimizations.

As mentioned in the preceding paragraph, extension of these
techniques may make it possible to carry out the optimizations
automatically, and prove that the transformed systems are
equivalent to the originals (this is discussed at length

in [21).

Since the use of these techniques does require that
systems designs be expressed in our formal definition universe,
eventually designers may work with syntactic process
structure already in mind. Then the definitions and their
implications may evolve into principles of good design
analogous to, but more precise than, the ideals of structured

programming.
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VI. CONCLUSION

Although we have presented some aspects of a procedure
for design analysis in great detail, it is the technique
involved that we wish to emphasize. We feel that the four
concepts characterizing our procedure are essential to any
successful attempt to analyze large-scale system designs.

To summarize:

(1) The system design must be well-defined (requiring
the rigor of a formal system in which to express it), and
it must be possible to derive an abstraction of it,
algorithmically, from the system representation. It is
commonly understood that simplifying abstractions are
necessary to the analysis of large designs; it is not so
commonly understood that it is impractical to expect people
to derive the abstractions--for this is an enormous, error-
prone job. It is also very creative, in its general form,
which is why we must impose sufficient structure to make

automation possible.

(2) Assertions must be provable from the abstraction
of the design. This requires (a) proof that an assertion
about the abstraction is a valid statement about the object
it came from, and (b) that the structures of interest are
recognizable in the syntax of the abstraction. If these
conditions are not met, analysis of the abstraction cannot

be automated.

(3) Analysis must be an iterative, top-down procedure.
No matter how much time and money are available for computing,
there is a system design whose analysis will exhaust these
resources, because exponential growth is intrinsic to
this kind of computation. The only way to outwit the situa-
tion is to arrange it so that when you buy as much informa-
tion as you can afford, you can get an overview instead of

a detailed fragment.
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(4) It should be possible to increase computational
efficiency by placing effective restrictions on the objects
to be analyzed. There is always a trade-off between
complexity and verifiability, and this enables the designer

to use it to his advantage.

In [3] we compared our formal definition universe,
and the fps abstraction of it, to other models of compu-
tation. We found the other models unsuited to our purposes
because of one or more of these shortcomings: only
capable of representing a single synchronous process, the
abstraction is not algorithmically derived from a well-
defined object, the abstraction is special-purpose, or the
abstraction is not susceptible to syntactic analysis. We
could now add the criticism that many of these abstractions
are strictly one-level descriptions, so that hierarchical

analysis would be difficult.
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