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ABSTRACT

A finite graph model is defined to describe all the computations,
finite or infinite, generated by a formally defined complex of inter-
acting digital systems. The graph, called a finite process structure,
is an abstraction which can be formulated and computed directly from
system representations. Finite process structures have properties
making them excellent tools for design analysis; in particular, the
infinite variety of graphs describing the processes of a single system
at all levels of detail arranges itself into a Tattice--so it is
possible to find desired characterizations algorithmically. Thus
top-down hierarchical analysis of systems becomes a plausible goal.
Within this context, a semantic theory of process structuring is
injtiated: a process definition is given, and compared to state-of-
the-art definitions of processes.






FINITE PROCESS STRUCTURES

I. INTRODUCTION

This report is a continuation of the research presented in
(81, [171, and [25] on the properties of formally defined complexes
of interacting digital systems.

Our purpose is to analyze system complexes--algorithmically,

and without recourse to simulation or human interpretation of their
computations--in the hopes that an understanding of their structures
will lead us to diagnostic information, optimizations, and tools for
design automation. Most of our results are based on finite process
structures, which are functional models of the computations generated
by system complexes. In this report we will define them and discuss
the properties that make them so useful.

A finite process structure is a finite, directed graph which
describes all the computations, finite or infinite, that can be
generated by a system or a compiex of interacting systems. It is
an abstraction which can be formulated and computed directly from
system representations. - Furthermore, the level of abstraction is
completely flexible, so that the analysis can be tailored to the
problem it is to solve.

We naturally turn our attention to processes, because they are
the basic structural units of computation. Having a finite process
structure for a system complex allows us to recognize the processes
in it, using a purely syntactic definition of process that has been
developed specifically within this context. The definition is sub-
stantially the same, in spirit and content, as the state-of-the-art



definition of process (although we will make small claims to superior-
ity). We suggest that ours is more useful because it is representation-
dependent (this should not be a restriction because the representation
medium itself is abstract and very general) and can be applied algo-
rithmically; this means that it can be used to find processes, besides
simply verifying that a recognized structure is a process.

Future research will extend this syntactic theory of process
structuring to definitions of specific kinds of process and sub-
process structures, in the hopes of exploiting their properties.

It will also include techniques for the top-down hierarchical analysis
of systems--because we feel that this approach is the only one which
offers any significant hope of taming the sheer computational com-
plexity of system analysis. The ultimate justification of this work,
of course, must come from examples demonstrating that the process
structure we deduce from a system complex is intuitively reasonable,
and contributes to the solution of practical design problems.

It might be interesting to look at examples of other research
with some of the same objectives as ours. The work of Gilbert and
Chandler [9] supplied important ideas for [17]; their graph models
of systems are much more like Johnson's system state graphs than our
finite process structures, but the idea of capturing complete in-
formation about particular aspects of computations in finite graphs
is the same. Gilbert and Chandler assume a known and well-defined
process structure (with special properties) from which they take the
abstraction of the system that their analysis is based on. Here is
where our work differs: we also compute the abstraction of the
system representation the analysis will be using. That is important
in itself, but it also enables us to discover and work with a much
wider variety of process and system structures than Gilbert and
Chandler's technique.




We share almost all of the goals of the LOGOS project ([10],
(121, [5], [24], [11]), an attempt to develop a complete on-line sys-
tem for integrated hardware and software design. In particular, we
agree that there must be a representation system which is convenient
for designers, capable of expressing structures at all levels of
detail, and susceptible to analysis and checking without the difficulty
and expense of simulation. The representation must facilitate proofs.
The representation chdsen for LOGOS is rather complicated and non-
uniform, however, and so it is difficult to see how it will be possible
to verify assertions about designs--the designers seem to be hoping
that progress with Petri nets, formal program proving, etc. will solve
the problems of global design analysis.

We feel that these problems, especially computational complexity,
will not be overcome so easily. Our representation is simple and uni-
form, and the finite process structure abstraction of it can be used
directly in proofs. Both in the representation system which is part
of the formal definition universe, and in the finite process structure
modeling of systems, it is possible to approach designs iteratively,
looking at increasingly detailed specifications. Even so, we believe
that computational complexity is the ultimate problem in the field of
automated systems design: it will not be alleviated except by revolu-
tionary methods, and certainly not by waiting for new techniques to
apply to a representation developed without regard to it.

One relevant difference between our goals and the LOGOS goals
is that LOGOS has been conceived within contemporary ideas of how
systems should be structured and how they are eventually implemented,
and these ideas have greatly influenced its shape. We wish to provide
tools that will still be useful if the computing environment changes,
and so our representation and concepts of structure are less dependent
on present computer architecture.



IT. REGULAR LANGUAGE CHARACTERIZATIONS

1. State Structure

It has been found that, because of the design of the formal
definition universe, regular languages give excellent descriptions
of the structure of process states. This is because the set of all
strings that a given antecedent can match is a regular language;
Tikewise, the set of all strings generated by a consequent can be
closely approximated by a reguldr language which contains it.

We value regular language characterizations of process state
structures because they are natural and convenient, but most of all
because they are finite representations of infinite classes of process
states. So when we analyze systems, we will use regular languages
as equivalence classes for the states occurring during computation:
this is the source of our ability to give a finite representation
for an infinite computation or set of computations.

2. The R-Model Universe

In subsequent sections we will apply the productions of systems
to these regular language equivalence classes to get successor lan-
guages, each representing the result of applying a production to all
members of the predecessor language (if the production has multiple
antecedents, there will be a predecessor language for each antecedent)
and taking the union of the strings generated. Since the application
of productions to regular languages is certainly not part of the
formal definition universe, what is the basis for such calculations?

We will now call the primitive automaton of the formal definition
universe, which interprets systems whose states are represented as
finite sets of strings, the F (for finite) -model interpreter. This
is to distinguish it from the R (for regular language) -model inter-




preter running in the R-model universe as defined by Johnson [17].

The R-model interpreter runs systems having finite sets of regular
languages as their representations of state information. Johnson
proved that all F-model computations are contained in their correspond-
ing R-model computations.

There are three cases in which the R-model loses precision,
meaning that the result of applying a production to a regular lan-
guage is a regular Tanguage larger than the union of the F-model
results of applying the production to each string in the predecessor
language.

Case I: An antecedent of the production contains an RPR.

The RPR pattern matches a regular language which every RPR
result must belong to. Even though the RPR results may all

be contained in a much smaller language, the R-model generates
consequent Tanguages as if the pattern Tanguage were the
smallest Tanguage containing the RPR results. There are two
reasons for this: one is that analysis within RPR's appears

to be more trouble than it is worth, and the other is that

we view RPR's as belonging to a lower level of the computa-
tional hierarchy which can be analyzed separately, if necessary.
Then the results of RPR analysis would be plugged into analysis
at the higher level.

Case Il: The consequent pattern contains a repeated variable,
for example "A $] B $2 C $1 D." In these cases the language
consisting of all consequents need not be regular, and so the
best we can do is approximate it with a containing regular
language. In the case of the consequent shown, the consequent
language is context-free. If "$]" in the antecedent had
matched the regular language R] and “$2“ had matched R2,
then the containing regular language would be A R] B R2 C R] D.



Case III: The antecedent contains two or more variables, all of
which are used to construct the consequent, and in the languages
associated with the antecedent variables when the antecedent is
matched to a regular language, certain sublanguages of one
variable's language only appear in the regular process state
language with certain sublanguages of the other variables' lan-
guages. The Toss of precision is not really surprising because
the information being lost is context-sensitive, exactly what
you would expect to lose in a regular language characterization.
Unfortunately, it can occur when the regular language is as
simple as the single string "ab." If the production is

55> 85, ,

$] matches the language {X,a,ab} and $2 matches the lan-
guage f{ab,b,A} , so the consequent language generated is
{X,a,b,ab,aab,abb,abab} , even though the F-model result is
simply the string "ab." Occurrences of this problem are
curtailed, although not eliminated, if antecedents can match
single strings in only one way. In Section II.4 we will mention
a sufficient condition ensuring this.

The relationship of the R-model interpreter to the F-model is
summarized in Figure 1.

3. Computational Considerations

Case II might be interpreted as an indication that we could get
better results if we used more powerful languages for our analyses.
It is well to remember that the regular languages are the largest
known class of languages for which there are algorithms for determin-
ing the equality, containment, and emptiness of languages, or for
performing such operations as union, intersection, and difference
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on pairs of languages, and which are closed under union, intersection,
and complementation. We need these manipulations of languages to
manipulate finite process structures, and thereby the system complexes
they model, and so it would be very foolish to place ourselves under
the handicap of not always being able to perform them.

From a practical standpoint, computations that are extremely
lengthy might as well be impossible, and even regular language prob-
lems can involve serious complexities. The formal definition universe
is particularly adaptable, however, to schemes for reducing complexity.

The languages matched by antecedents and generated by consequents
are a subclass of the regular languages we have named pattern lan-
guages. Their properties will be discussed in the next section.
Pattern languages will occur naturally in our analysis, especially
since they are closed under some of the most common operations on
Tanguages. Although no work has been done on the specific computa-
tional complexity of problems for pattern languages, the results for
other subclasses of the regular languages [27] suggest that the
improvement over regular languages will be substantial.

It would have been possible to construct the formal definition
universe so that the languages matched by antecedents and generated
by consequents were regular languages, or some other subset of them
besides pattern languages--the domain of systems definable would not
be altered, but only the convenience with which they could be
defined. We mention this because we will be suggesting that the
formal definition universe be altered to achieve certain computa-
tional goals. It could be extended so that antecedent and consequent
languages were non-counting languages (a subclass of the regular
languages about which many interesting theorems can be proved, see
[22]), or restricted to the delimited pattern languages (see next
section). There is nothing sacred about the way antecedents and
consequents were originally defined, and so we think that these
alternatives deserve serious consideration.




4, Properties of Pattern Languages

In this section we will define a subclass of the regular languages
called the class of pattern languages, and show that the language
matched by any antecedent or generated by any consequent is a pattern
language. We will show that the class of pattern languages is closed
under union and intersection, prove that the closure of the pattern
Tanguages under complementation is contained in the non-counting
languages, and discuss the implications of pattern language properties
on the computational complexity of manipulations of fps's.

Let § = {x1,x2,...,xn} be an ordered set of n characters,
A be the null string, and ¢ be the empty set.

Regular expressions (re's) over ) and the regular languages
(r1's) they denote are defined recursively as follows:

(1) ¢ dis an re denoting the r1 ¢ ;

(2) » is an re denoting the r1 {A} ;

(3) X5 is an re denoting the rl {Xi} » 1 <i<n;
(4) if p and g are re's denoting rl1's P and Q

respectively,
then

(a) (p + q) is an  re denoting Pu Q ,
(b) (pq) 1is an re denoting PQ , and
(c) (p)* is an re denoting P* .

The definition of pattern languages uses subsets Xi of } , where
the index refers to an ordering of P(]) (the power set of J):

XO = ¢
Xp= gl T<i<n
X; = some subset of ) with between 2 and n-1 members,

ntl < i < 2"-2
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Pattern expressions (pe's) over ] and the pattern Tanguages (p1's)

they denote are defined recursively as follows:

(1) ¢ 1is a pe denoting the pl ¢ ;
(2) X s a pe denoting the p1 {A} :
(3) Xi is a pe denoting the set Xi’ 1< 5_2"-1 ;
(4) X? is a pe denoting the set X?, 1< 5_2”—1 ;
(5) if p and q are pe's denoting pl's P and Q
respectively, then

(a) (p + q) is a pe denoting P u Q, and

(b) (pgq) 1is a pe denoting PQ.

Theorem: The pattern languages over ) are properly contained in

the regular languages over ) .

Proof: Let X, be the member of P()) which is {yqs¥pseeesy J

Null

m
Containment holds because pe Xi can be expressed by the

re (y; + ¥, + ... +y,), pe Xt can be expressed by the

re (y] + Yo + ... F ym)* , and all other pe's or parts of them
are also re's. Proper containment holds because rl (x1x2)* is
not a pl (a pe for it would have to be infinite:

A+ X]X2 + X1X2X1X2+ X]X2X1X2X]X2+ S

Reduction Procedure: If p and q are fully-parenthesized
pe's, make these substitutions wherever applicable. u and v
are any symbol strings either or both of which may be absent

in any application.

(1) if p = u(¢q)v or u(qe)v, then p := ¢;

(2) if p=ul¢+q)v or u(g + ¢)v, then p := ugv;
(3) if p = ul(op + ¢)v, then p := ¢3

(4) if p = u(r + A)v, then p := uv;

(5) if p = u(rg)v or u(gr)v, then p := ugv.
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Theorem: The null reduction procedure is an algorithm that forms
an equivalent fully-parenthesized pe for the same pl in which
¢ never appears in a product or sum and A never appears
in a product.

Proof: By inspection.

We defined pattern expressions in such a way as to show their
similarity to regular expressions, but this Teaves them unnecessarily
complex. They are fully parenthesized and may have redundant ¢
and X symbols, all of which can be removed. To arrive at this
reduced form, we apply first the null reduction procedure, and then
the parenthesis elimination procedure.

The following algorithm is based on the assumption that in the
evaluation of pe's concatenations (products) are performed before
unions (sums). The result of applying the null reduction procedure
and the following parenthesis elimination procedure to a pattern
expression is to produce an equivalent reduced pattern expression
(rpe). Reduced pattern expressions differ from the originally
defined pe's in three ways:

(1) ¢ appears only when it is the total rpe;

(2) A appears only as a whole term in a sum;

(3) no parentheses appear, and the convention is that
products are evaluated before sums.

From now on, the term "pattern expression" may mean an original pe,
an rpe, or a hybrid expression using elements of both forms.

Parenthesis Elimination Procedure: If p, q, and r are pe's, make
these substitutions wherever applicable. u and v are any
symbol strings, either or both of which may be absent in any
application.
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(1) if p = u(gr)v, then p := ugrv;
(2) if p =u(g + r)v, then p := uqv + urv;
(3) eliminate redundant terms.

Theorem: The null reduction procedure followed by the parenthesis
elimination procedure produces an equivalent rpe for the same

pl which has the form P =} I Pij where
1
(1) Piy e (oMK 000,
(2) Pij can be X only when the maximum value of j is 1,
(3 Pij can be ¢ only when the maximum values of both i and
j are 1, and
(4) P, = ? Pij 7P = E Py unless 1 = k.

Proof: By inspection.

The next thing we wish to show is that antecedent and consequent
Tanguages (the languages matched or generated by them, respectively)
are pattern languages, and pattern languages can be made into ante-
cedent and consequent languages. “

Theorem: (a) The language matched by any antecedent is a pattern
language;

(b) the Tanguage generated by any consequent is a pattern
language;

(c) any non-empty pattern language which can be expressed
by an rpe with a single term is the Tanguage matched
by some antecedent;

(d) any non-empty pattern language which can be expressed
by an rpe with a single term is the language generated
by some consequent.
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Proof: The proofs of all four parts will be by construction over

> where ) is the set of all possible characters appearing
in process states.

When the syntax of an SR reveals a blank space where an ante-
cedent belongs, the pl associated with that antecedent is

A. A1l other antecedents are symbol strings, and an rpe for

the associated pl is produced by substituting for the antecedent
symbols according to the following table. RPR's are first
replaced by their axiom patterns (but variables in the pattern
are still associated with the appropriate x~-sets). Because

each variable has its own associated vocabulary, in the rest of
the proof we will use Xj to denote that subset of Z which

is the appropriate vocabulary for the variable being discussed.

antecedent symbol pe symbol
character A Xk where. Xk = {A}
variable A X, where X = {x e lex # A}
variable § X%
i . S R X,
variable $1 XJ 3 _ j
LY s
"
i

Also, if $i appears in the antecedent, there must be separate
pe terms created substituting strings of i-1, i-2, ..., 1,

and 0 Xj's for the $i in the antecedent. Since terms must be
separated like this for each $1, if there are n subscripted
$'s 1in the antecedent, and the wth one has subscript tW, then
the number of terms in the resultant pe is

n
m(t +1).
w=1 W
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(b) consequent symbol pe_symbol
character A X, where Xk = {A}
variable K} X, where X = {x e lefo}
variable $1 if the corresponding antecedent

$ was unsubscripted, xg; if

_ the corresponding antecedent §
was subscripted with t, t+]
different terms having strings
of from 0 to t Xj's

(c)  An antecedent can also be formed from a single-term pe by
symbol substitution.

pe symbol antecedent symbol
A blank space
Xi character X if 1<i<n,

otherwise {Ax:<X;>m:} where

<Xi> is a metanotation for

y1y2y3--.yn‘, Yye Xy 1<d <
X‘%‘ {$X._:<X1'> T}

(d) pe_symbol consequent symbol

blank space
character X; if 1 <14 <n,
otherwise Zk where k 1is the index

of an antecedent variable having the
vocabulary Xi

X* $k where k 1is the index of an

antecedent variable having the
vocabulary Xi .
Q.E.D.

Theorem: For any set Z, the class of pattern languages over )
is closed under union and intersection.

Proof:

Part I: The class is closed under union.
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If p and g are pe's for pl's P and Q, then a pe for
PuQ is (p+4q), so PuQ must be a pl.

Part II: The class is closed under intersection.

Let P = and Q = i Qk be any two pattern languages
where P. and Qk can be expressed by the rpe's 1 P and
ka, respectwve]y If either P or Q is ¢, tﬂen PnQ
1s o, a pl.

Otherwise, P n Q

it

(l; P'i) n (K Qk)

Y

v (P, nQ).
ik 1k
Since we know that pl's are closed under union, it is only
necessary to show that Pi n Qk is a pl by constructing a
nmpe.. n .

pe for ] i; " ) ng

The construction of II P1j n Il ka is recursive, according
to the following table. Asgum I P J or g ka to be extended
with A's, if necessary, so that ] = 4. Since we are dealing with
non-empty rpe's,-we know that H'P and g QkQ have no parentheses

J A

or ¢'s, and only trailing A's (un]ess the whole term is ).

We use the notation Kpps  for Xe = {xeZfxeX, & xeX.} . Recall

that if Xr n XS = X0 = ¢, ¢ concatenated with anything reduces
to ¢, and ¢* reduces to .

. ne,. I

iu ka jey 14 f ka
A A A

A XS ¢
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A Xg A

X, A ¢

X’; A A

X Xs Xrns j=si]Pian=$i1Qk£)

X? Xs Xrns(jfupijnzzg+lqkz) v ( S+1P1ann ng)
Xy XS Xrns(J Ut Pij" = val) v (Jnupun2 3+1ng)
Xx X} XmsL( g+]p1 in T le) v (JHUP1Jn£ 5+]ka)]

It is easy to show that the result is a pe and that it is

contained in Pi n Qk' The proof that Pi a Qk is contained in
the result proceeds by case analysis, and is lengthy.
Q.E.D.

We know that the pattern Tanguages are not closed under com-

plementation. A conterexample is (01)*. This is a pl, as can be
seen from this pe for it:
* *
X (X X +X X )X + XX + X Xn s
2.1 7400 P U TP LI B

but its complement, (01)¥, is definitely not a pl.
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Theorem: The pattern languages and their closure under complementation
are both contained in the non-counting Tanguages.

Proof: One way of characterizing the class of non-counting languages
is that it is the class described by star-free extended regular
expressions, i.e., regular expressions using the union, inter-
section, concatenation, and complementation operators, but not
the star. We will show that any pl can be expressed in a star-
free extended regular expression. It will then be obvious that
the closure of the pl1's under complementation is contained in the
non-counting languages, because if q 1is a star-free extended

regular expression, so is (.

In the definition of a pattern expression, the only components
which are not also valid in star-free extended regular expressions
are Xi and X?, But

X, = (xi1+x12+..,+x.

i 1m>9 where {X119Xi2,°,.gxi

m} = {leXjEXi} )

and X% = %&%@i where Xy is a shorthand for {lexjéxi}.
Thus any pe can be converted to a star-free extended regular

expression, and so any pl is also a non-counting Tlanguage.
Q.E.D.
An interesting consequence of the proof that the pl's are closed

under intersection is that a pattern expression for the intersection
of two pattern languages can be computed by a simple manipulation of
the pe's representing them. Such a string operation is vastly more
efficient than the algorithm to do the same for regular languages,
which requires intermediate construction of finite state machines.

We might expect the same to be true of other operations or algorithms
on pattern langquages.
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For those operations requiring the use of finite state machines,
the machines accepting pattern languages have a rather simple and
distinctive structure, which is shown in the examples of Figures 2a
and 2b. These machines are non-deterministic. Each state has an
implicit transition to a dead-end non-accepting state on any input
not otherwise causing a transition. Note that there are no loops
with path lengths greater than one. This is suggestive of the
crucial difference between regular languages and non-counting lan-
gquages, that non-counting languages are expressable without stars.

Union and intersection are undoubtedly the most common operations
we will be performing on fps languages. For instance, suppose we
want to characterize the set of all strings generated by either a

production whose consequent language is L, or a production whose

consequent language is Lc’ that match thebantecedent language La'

It is the pattern language (Lb u Lc) nl.. If we were interested

in this Tanguage because we were optimizing the SR, and needed to

add a production whose antecedent matched just that language, it could
be done. In this case there might be a slightly different production
for each term in the pe for (Lb u LC) n La’ because we only know for
sure that we get an antecedent to correspond to a single pe term.
Section VII.2 presents another very important application of inter-

secting pattern languages.

A problem that arises is that an algorithm may return a Tan-
guage f;' or LC - La which is not a pattern Tanguage. If the
objective of the algorithm is to translate the resultant language
into a transformation on the SR, it will not be possible to achieve
its objective, because the language does not correspond to any
antecedent or consequent (or finite union of them).

It is well to remember that we still have a choice in the matter:
all forms of diagnostic analysis, and even many optimizing transformations
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of system complexes, can be carried out without making fps nodes

into antecedent and consequent languages. However, there are

two prospective solutions. One of them is to extend the formal
definition universe so that antecedent and consequent . Tanguages

are non-counting languages. This would introduce additional computa-
tional complexity, though, and it is not yet certain that such a
well-defined extension exists.

A more attractive solution is to restrict antecedents and
consequents in SR's which are being analyzed for the purpose of
transformation. An easily satisfied and easily checked rule will
ensure that the antecedent and consequent lanquages are delimited
pattern languages, a subclass of the pattern lanquages which is
closed under union, intersection, and complementation. The properties
of delimited pattern languages will be developed in [26]. This
solution has the advantage that the delimited pattern languages
are computationally quite superior to the pattern languages! Each
language has a canonical form, and there are efficient string
manipulations to perform all the useful language operations--they
may even preserve the canonical form. Delimited antecedents have
the highly desirable property that they can match strings in only
one way. We expect that it will be highly advantageous for the
designer to restrict himself to delimited antecedents and consequents,
no matter what kind of algorithmic analysis he anticipates using.
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IIT. FINITE PROCESS STRUCTURE LANGUAGES

1. Closure and Total Closure

We have already indicated that a finite process structure
(fps) is a graph whose nodes are disjoint regular Tanguages. The
finite process structure Tanguage (fpsl) of an fps describing an
isolated system is the union of its node languages. Even when we
extend the fps definition to a complex of systems, the resulting
fps is still, in many ways, a loosely connected set of single-system
graphs--in particular, the nodes for one system can be chosen inde-
pendently of the nodes for other systems, and so an fpsl is always
associated with a single system.

There are four ways in which a process state can come to belong
to the process state set of a system: the two "external" ones are
(1) belonging to the initial o, and (2) being accepted as a message
from another system; the two "internal" means are (3) being generated
as a consequent, and (4) being accepted as a message to this system
that was also generated by it. These categories are relevant to two
definitions we need.

Definition: A language is closed under a system if and only if as
long as no process state not in the language is ever introduced
into o by external means, then no process state not in the
language will ever be introduced into o by internal means.

Closure is important because an fpsl for a system must be a
Tanguage which is closed under that system. We make this require-
ment so that the fps will be well-defined, i.e., the result of
applying a production of the system to a node language in the fps
will be a language contained in some node or nodes of the fps.

In [17] there is an algorithm for testing a system and a language
for this property.
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Definition: A language is totally closed under a system if and only
if it is closed under the system and, in addition, if a process
state not in the language were introduced into o by external
means, the fact of its presence would not be observable, nor
could it have any effect on any subsequent computations of the
system complex.

We say "the fact of its presence" because message acceptance
always has the side effect of deleting a channel name from o at
the time of acceptance. Such negative side effects are usually
ignored, for reasons that will be discussed in Section IV.3. The
word "computation" is used in its standard sense, that of a sequence
of states corresponding to an interpretation of a digital computing
device.

2. The Total Language

The significance of total closure will become clear later;
suffice it to say that it is a very useful property of fpsl's.
In fact, we will almost always want to work with fpsl's that are
totally closed under their systems. We will define (by specifying
an algorithm for calculating it) a canonical language for a system
called the total language. The total language is totally closed
under its system, and any language it is contained in is also
totally closed under the system; these properties guarantee its
importance in our analysis techniques.

Definition: The total language of a system is the union of all
the antecedent languages of all the productions in the system,
all the consequent languages of productions having single
consequents, and all the message languages generated by
the system which can also be received by it.
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To find these message languages we must look at, for each
production in the system that sends a message, the (channel
language, message Tanguage) pair defined by the pattern
languages matched by its second and first consequents,
respectively. Assume we have a list of these pairs (LC, Lm),
and that the union of the antecedent and consequent languages
is L. Then if L s the union of all languages L.~ such
that (L., L) 1is a pair on the list and Lo n Ly £ 9, the

c®m
total language is Lt U Lu“

Theorem: The total Tlanguage of a system is totally closed under that
system, as is any language in which the total language is
contained.

Proof, Part I: The total language is totally closed under its system.

The total language includes, by construction, every process
state that the system can generate as a consequent. It also
includes every state the system can generate as a message and
also accept: every state which can be generated by the system
is considered a potential channel name except those which can
only be introduced into o as accepted messages (and therefore
cannot act as channel names for the acceptance of other messages).
Thus the total Tanguage is closed under the system.

Suppose a state not in the language were introduced into o
externally. It would not be observable because it would not
match any antecedent in any production, and therefore could not
cause a message to be sent. For the same reason, it could not
cause the internal generation of any process state, either (i.e.,
act as a channel name on which a message is accepted) because
(a) if it is an initial state, it is only in o at the beginning
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of the first step, when o" is always empty, and (b) if it

is an accepted message itself, the definition of the primitive
automaton ensures that it cannot be used as a channel name.
Thus, since this externally introduced state cannot participate
in any of the four ways process states are introduced to a

o, it cannot have any effect on any subsequent computations

of the system complex.

Proof, Part II: Any language in which the total language is contained
is totally closed under its system.

Consider any language Lt+ containing the total language. It
is closed under the system because no state not in Lt+ can
be generated internally. Since f;:' c E;} all the arguments
that states 1in Lt can have no effect on computations are
true for states in Lt+‘ ‘
Q.E.D.
The total language is not necessarily the smallest language
which is totally closed under a system. This is because we added a
Lm when its corresponding LC had only a non-empty intersection
with Lt --if LC were divided into LC n Lt and LC - Lt s
and Lm were divided correspondingly, it could be that only a

sublanguage of Lm needed to be added to L This procedure,

.
however, requires much more computation, and we judge that the
additional precision is not worth the effort, unless it is

specifically required.
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IV. GRAPHS OF ISOLATED SYSTEMS

1. Single-Component Arcs

We will now define a finite process structure for a single
system; in the next part these ideas will be extended to fuse
single-system fps's into an fps for a system complex by adding
representations of communications between systems and observers
(see [25] for a thorough discussion of observing systems). As
we have explained, the nodes of the fps are disjoint regular lan-
guages whose union is a finite process structure language--the
graph is completely determined by the system representation and
this choice of nodes.

Each directed arc is implicitly (or explicitly, if one desires
to Tabel the productions and then Tabel the arcs accordingly)
associated with a production (or two, but that comes later) of
the system. If a production has only one antecedent and generates
a consequent rather than sending a message, then all its associated
arcs have a single component (they are called T-arcs).

The 1-arc in Figure 3 has the meaning that the antecedent

of the production associated with it can match a string in L],

and when it does, the consequent generated can be in language L2.

2. Multiple-Component Arcs

Productions which have n antecedents and generate single
consequents are associated with arcs having n components, called
n-arcs. Productions which have n antecedents and send messages
are associated with multiple-component arcs called (n+m)-arcs.

N-arcs are basically the same as single-component arcs (which
they include) except that they are associated with productions that
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Figure 3
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may have more than one antecedent, and there is a component for
each antecedent. A1l the arc components (n>1) are directed to
the same destination node, and all bear a common unique label to
show that they belong together. The production

go and process $ [$] and data [$]0 > permit $1

could be associated with either of the 3-arcs in Figure 4.

When a system sends a message which it also accepts, here
is what actually happens: 1in one o there are process states
matching all the antecedents of the production that sends the message,
and process states in the same o also match the antecedents of a
production generating a consequent, which is to be the channel name
on which the message is accepted. At the end of the step the message
is sent and received instantaneously, the new o 1is updated from
o", and the message is then a process state in the new o (while
the channel name has disappeared). The effect is that all the process
states in the preceding o which matched either the antecedents of
the message-sending production or the antecedents of the channel-
generating production interacted to produce the message as a process
state in the succeeding o. It is this interaction that we need
to model in the arcs associated with message-generating productions.

So if a message-generating production has n antecedents,
and a consequent-generating production whose consequent language
intersects the channel Tanguage has m antecedents, an fps may have
an (n+m)-arc associated with these productions. The arc will have
n+fm components, one for each antecedent involved, all pointing to
the same destination node; the components will have a common unique
Tabel, but the labels on the components associated with the channel-

generating production will be primed to distinguish them.
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For example, supoose a system sends a message to itself via
the production:

*$* 5 jnput phase - waiting phase

and the process state "waiting phase" can be generated by one of
these two productions:

acknowledgement and output phase + waiting phase or
waiting phase + waiting phase

Then these productions may be represented by the fps in Figure 5.

3. General Interpretations

A11 arcs which can possibly be drawn between the given fps nodes,
associated with the productions of the given system, must be drawn.
An arc corresponds to a step in the R-model universe, and can there-
fore be computed by the R-model interpreter.

A1l the arcs in an fps have the same basic meaning: if, in any
o of any computation of the system, there is at least one process
state contained in each origin node of the arc, then the succeeding
o can include process states contained in the destination node of
the arc.

One interaction these arcs do not model is the erasing of a
process state that takes place when it functions as a channel name
on which a message is accepted. Although it is not clear that we
would ever want to model this effect (because, in general, it is
not known for sure whether the channel name was generated in the
first place), we can deduce how it would have to be incorporated.
The arc representing it would have to be consistent with the preceding
paragraph, and would have to have the same origin nodes as the (n+m)-arc
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describing the message acceptance--since it really is an effect

caused by the same interaction of process states. The destination

node would have to contain the erased process state. Finally, markings
on the components would be necessary to show that the arc must be
interpreted as an eraser rather than a generator. If we did this

by prefixing the component label with a minus sign, the preceding
example would turn out as in Figure 6. It is easy to see why we

do not want to add these arcs unless they become absolutely necessary!

4. Comparison with Other Techniques for Proving Assertions about
Programs and Systems

There are two basic purposes for using finite process structures
as abstractions of systems or system complexes. One of them is to
attain an understanding of the structure of the system so that it
can be factored or otherwise manipulated. This is discussed further
in Part VIII. The other purpose is to prove assertions about these
systems, based on the confidence that the relationship between systems
and their finite process structures is sufficiently rigorous that
proofs using finite process structures (in the R-model universe) are
valid for systems (in the F-model universe, whose computations are
contained in R-model computations, as proved by Johnson).

There is a sufficient number of schemes fo} proving assertions
about programs and systems to create confusion about what objectives
each is trying to accomplish. In the hopes of clarifying the matter,
thus making it possible to compare our objectives to those of other
researchers, we have developed a crude classification scheme into
which we will stuff nine research areas as well as our own. They are:

(1) computation graphs [1], [2], [23];
(2) program schemata [20], [7];

(3) Petri nets [14];

(4) specialized graph models [9], [15];
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(5) parallel program schemata [18], [19];
(6) formal and informal program proving [13], [21], [7];
(7) the Vienna Definition Language [29];
(8) operational models (by this we mean models designed

to prove particular properties of the operations of
particular kinds of systems) [28], [4], [6], [3];
(9) LoGos [10], [12], [5], [24]1, [11].

We trust this is a representative sample!

The first category for classifications has to do with the
fundamental object that the assertions are about. This is always
a program in a programming Tanguage, in some form or another--because
our interest is in computations, and a programming language is just
a notation for directing the generation of computations. The two
questions to be asked about a programming language are (1) is it
defined by compiler or interpreter (see [29] for a good explanation
of the difference)?, and (2) can it only describe a single process,
or can it describe interacting processes?

The next category has to do with the abstraction from the funda-
mental object used by the proof technique. In the cases where the
fundamental object is specified, the abstraction is usually computed
from the object algorithmically. A good example of this is the formula
in first-order predicate calculus which is constructed directly from
a program, in Manna's approach to formal program proving. There are
many abstractions, however, which are considered sufficiently general
to be applicable to many types of fundamental objects, and so the
underlying objects are not defined: the theory begins with the
abstraction and goes from there. Obvious examples of this are Petri
nets, program schemata, and parallel program schemata. The other
question about abstractions we can ask is: is the abstraction highly
specialized, or can it be used to prove a wide range of properties?
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The final question is concerned with the type of assertions
to be proved. The two major classes here are assertions about
correctness and equivalence, and operational assertions (those about
states and conditions arising during computation). These two classes
are not mutually exclusive; in fact, many schemes derive assertions
of both kinds.

With all humility, we present the classification in Figure 7,
hoping that its crudeness will not do too much injustice to the
projects entered. The entries are arranged in an order that emphasizes
the progression from one concept to another. The classification certainly
supports our earlier statement that we share many of the goals of the
LOGOS system.

The reason for our objectives should now be clear. We believe
that an abstraction should be taken algorithmically from a well-defined
fundamental object, because it is the act of finding an abstraction of
an extremely complex object that is most challenging, and most beyond
the reasonable reach of human capacity. This is enough for verifying
assertions, but if we also want to discover optimizations from the
abstraction and apply them to the fundamental object, a two-way
algorithmic relationship between fundamental objects and abstractions
is essential.

We believe that the fundamental object should be interpreter-
defined for the reasons given by Wegner in [29] and also in [8]; it
should be capable of describing asynchronously interacting processes
(without undefined states!), because there is where many of the
interesting problems in systems design occur. Finally, we want our
techniques, and therefore our abstractions, general enough to prove
assertions about a wide range of useful properties of systems designs.

So far we have only mentioned objectives, not possibilities,
and it is on the practical side that some of these schemes suffer
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their worst difficulties. For instance, it seems that we are many
years away from having mechanical theorem provers powerful enough

to resolve the formulas extracted by Manna's program proving method.
The representation system of LOGOS may be too complicated to yield
many interesting results. We have always been mindful of the need
to focus our attention on what can be done in a straightforward,
practical way. This has led us to emphasize constraints on designs
(which can be viewed as principles of good design) making analysis
practical. Thus our approach can be summarized as an attempt to
prove all kinds of assertions about all kinds of systems, with a
well-structured (effectively decidable!) capability for restricting
the kinds of systems or the kinds of assertions when the general cases
become impractically difficult.
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V. GRAPHS OF SYSTEM COMPLEXES

1. Description of a System Complex FPS

When fps's for individual systems are brought together to
make an fps for a system complex, the resultant graph should re-
tain (implicitly or explicitly) the system membership of each node.
The reason is that nodes belonging to different systems have a
different relationship than nodes belonging to the same system;
in particular, nodes belonging to different systems need not be
disjoint.

In addition to all the nodes of all the single-system fps's,
the system complex fps will have a "dummy" node (because no Tangu-
age is formally associated) for each observer.

Systems and observers can only communicate via the message
transmission facility, and we have seen how (n+m)-arcs model this
at the intra-system level. The same arcs are used in the same
way to describe inter-system communications. Of course, the inter-
system (n+m)-arcs do not have quite the same interpretation as
the intra-system ones because all the antecedents are not matched
in the same o (the n antecedents of the message-generating pro-
duction match process states in the sending system; the m ante-
cedents of the channel generator match in the receiving system).
There is also an additional element of uncertainty about the even-
tual creation of a process state contained in the destination
node, because the relative rates and transmission times of the
systems influence whether the message arrives at the o¢" of the
intended receiving system just before the completion of a step

in which a proper channel name is generated.
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2. An Algorithm for Fusing Single-System FPS's

As before, any arcs which can be drawn must be drawn. To
find all the arcs which can be drawn, we begin by making a list
of all the (channel language, message language) pairs which can
be broadcast throughout the system complex. Each message-sending
production in each system can contribute to the list of pairs.

If the message-sending production has n antecedents, then it
contributes a language pair for each distinct n-tuple of nodes

in the fps for that system such that the ith antecedent of the
production can match a string in the ith language of the n-tuple--
this represents a match of all the antecedents in the R-model
universe, and the channel language and message language are the
second and first consequents, respectively, generated by the R-
model interpreter. The pairs contributed by each observer are
easier to come by: they are simply the output channel languages,
each with its associated message language.

We will be using as an example the system complex in Figure
8, which has two systems and one observer. The first system (once
started by the observer) is just a clock, generating successive
binary integers on each step and broadcasting them on the channel
"time". The other system monitors them, sending a message to the
observer whenever it receives a time divisible by eight. The workings
of this system complex are not particularly rate-independent:
the monitor may miss any eight-multiple time, if it does not finish
a step and seize ¢" before that time is over-written by the
next. Anyhow, we will supply all the arcs describing both inter-
and intra-system message acceptance at the same time, because the
mechanisms involved are identical. Figure 9 is a finite process
structure for the complex with no (ntm)-arcs filled in yet.

Now we can write down the 1ist of (channel language, message
language) pairs broadcast in this system complex. We have




System] =

{o: signal yx: 01

m: signal - signal

start - O.
$. > time
{$.%  y: 01
m: $0.5 ~ L8108, or
$A1.$ $]K1.O$2 or
1.8 > .10%, b+ %, > time}
System2 =

{o: time x: 01

m: time » time

$. » time

$000. -~ monitor call - observer}

Nhserver:

(output channel lanquage, message language)
(signal, start)

(time, stop)
input channel Tanquage:

observer

Figure 8

pairs:
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(1) (signal, start) and (2) (time, stop) from the observer. The
antecedent of the fourth production in System] matches only one
node, £*. r* , and so the pair generated is (3) (time, I* .).
The third production of System2 also has only one match to the
nodes of its fps, generating (4) (observer, monitor call).

The next step is to find, for each pair: (a) all the systems
at which it can be accepted, (b) for each system, all the nodes
containing strings which can act as channel names, and (c) for
each channel name node, all the arcs which can cause the genera-
tion of a string in the channel name node. Each entry at level
(¢) of this informal tree will correspond to an (n+m)-arc in the
final fps.

At level (a), a message language can be accepted by a system
only if the associated channel language has a non-empty intersec-
tion with the union of all the node languages in the system which
are destination nodes of at least one n-arc (or the union of all
its input channel languages, if it is an observing system). The
reason for the restriction on the fpsl is that process states which
can only appear in o as initial states or accepted messages
cannot function as channel names. The only exception here is that
messages from observers are never accepted by other observers.

In our example, we get:

(1) (signal, start) accepted at System];
(2) (time, stop) accepted at System,, System,;
(3 (time, *.) accepted at Systemw, Systemg;

(4)  (abserver, nonitor call) accepted at (Observer.

Finding the nodes at level (b) is simply a matter of finding,
for each pair accepted at a system, all those suitable nodes such
that | (node language) n (channel language)] # ¢ . Inour

example this is trivial, because each channel language 1is identical
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to one node language in each system at which it is received.

At level (c), we remember that the origin nodes of the primed
components of an (n+m)-arc are the same as the origin nodes of
an n-arc whose destination node contains a possible accepting chan-
nel name. Thus for each node of Tevel (b), there is an (n+m)-arc
drawn for each n-arc whose destination is that node. Figure 10
shows the completed fps.

One more detail of the procedure must be mentioned. The arcs
representing communication between a system and an observer may
be simpler than other inter-system arcs, because they need to carry
less information. Messages from the observer are always represented
by a single unprimed component. Messages to the observer are rep-
resented by n-arcs rather than (n+m)-arcs, because there is no
channel mechanism to be described.

A certain complication arises when a system can receive as
messages strings which are not already contained in its fpsl.
A node or nodes must be added to the fps so that these strings
will be contained somewhere, but then the union of the fps nodes
may not be closed under the system any more. Adjustments will
be necessary. This is the primary reason for preferring the total
language (or any other Tanguage totally closed under the system)
as an fpsl: any message language can be added to the fpsl without
disturbing its closure property, as the theorem of Section I11.2

verifies.




observer

Figure 10
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VI. LATTICES OF FINITE PROCESS STRUCTURES

1. FPSL Choices

Even at the level of isolated systems, there may be an infi-
nite number of finite process structures describing any particular
one. Each valid fpsl for the system is associated with a large
class of graphs--in this part we will be discussing the properties
of such fpsl-classes.

As mentioned in Section 1I11.2, we will usually use the total
language as an fpsl, not only because it eliminates problems when
drawing an fps for a system complex, but also because we are inter-
ested in how our systems process any string that might appear in
their o's. The set of all fps's describing a system whose fpsl
is the total Tanguage is basic in the sense that it contains all
the information about this system which any fps is capable of ex-
pressing: any graph whose fpsl is a subset of the total language
can be found as a subgraph of some graph in this set; any graph
whose fpsl is a superset of the total language contains no addi-
tional information. The latter is true because nodes not contained
in the total language will not be the origin nodes of any arcs.

There are certainly reasons for using fpsl's smaller than
the total language. One of them is to factor the analysis of a
system (combinatorics being what they are, two smaller graphs are
almost always better than one bigger one). Another is that a small
fps1 can lead to a complete, but simple characterization of a
system's computations, if it is known that initial states will
be restricted to strings in that language.

2. lattices of FPS's

Unless an fpsl for a system is finite, its fpsl-class of
fps's will be infinite, because the fpsl can be partitioned into
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nodes so many ways. This infinite set of fps's can be arranged
in a lattice. Formally, a lattice consists of a pair <S,R>
where S 1is a set of objects and R is a partial order defined
on them. A partial order is a relation with the properties:

(1) ¥x: x R x (reflexivity);
(2) ¥x,y: xRy &yRx= x =y (anti-symmetry);
(3) Vx,y,z: XRy&yRz= xRz (transitivity).

For <S,R> to be a lattice there is the additional requirement
that any two set members must have a unique least upper bound
(join) and a unique greatest lower bound (meet). w s a least
upper bound of {x,y} if (1) x Rw and y Rw (w 1is an upper
bound of {x,y}) , and (2) 2z s an upper bound of {x,y}

= wRz. w 1is a greatest Tower bound of {x,y} if (1) wR x
and wRy (w is a lewer bound of {x,y}) , and (2) z is a
Tower bound of {x,y}=>z Rw . Figure 11 is an example of a
lattice.

In our lattice S 1ds the set of all fps's for a particular
system with a particular fpsl, and the relation R (symbolized
by < ) means "is a lower- (or equal-) resolution form of". The
concept of resolution has to do with how detailed the fps is.
We say that an fps with many nodes which are small Tanguages has
high resolution; an fps with a few large-language nodes has low
resolution. It could be quantified roughly by the number of nodes
in the fps. In other words, we could draw all our lattices so
that fps's with the same number of nodes were on the same horizontal
Tine, indicating that they had similar Tevels of resolution.

A < B if and only if A s an fps which can be derived
from fps B by taking as nodes either nodes of B or unions of
nodes of B so that each node of B is represented in A exactly
once. This rule accomplishes two simple things. First, it en-
sures that A will have the same fpsl as B , and that its nodes
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Dots represent objects in S, and lines represent the relation
R. Since R 1is transitive, if x 1is connected to y by any
upward line or continuous sequence of upward lines, then x R y.

Figure 11
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are disjoint. Second, it ensures that all the information in

A is also in B , i.e. the whole fps A can be inferred from

B , without reference back to the original system. Since all the
nodes of A are simple unions of nodes of B , the arcs of B
can be transferred directly to A , with each new arc component
passing from the node of A containing the origin language of
its counterpart in B , to the node containing the destination
language of its counterpart in B . Figure 12a is a part of a
lattice in which the fps's are represented by their nodes (R, S, and
T are regular languages). A1l three fps's on the middle Tevel
have the relation < to the fps on the top lTevel; the fps on the
bottom has the relation < to every other fps in the sublattice.
In Figure 12b we see the top fps with its arcs, and a middle-level
fps derived from it.

t

Theorem: <S5
fpsl} ,

{all fps's for a given system with a given
> is a lattice.

§
N

Proof: First we must show that < is a partial order,

then that any twe fps's in S have a unique meet and
join.

Part I: < dis a partial order.
Let x, y, z be elements of S

(1) < is reflexive because an fps can be derived
from itself by taking as nodes the nodes of

itself.
(?) I1f «x <y then all the nodes of x are nodes
of vy or unions of nodes of 'y . Obviously

the only way that y could be constructed
from nodes of x or unions of them would be

if x =y , so < dis anti-symmetric.
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(3) If x <y and y <z , then x could be de-
rived from 2z by constructing each node of
x as the union of all the nodes of =z that
went into all the nodes of y that went into
that node of x . Therefore x < z , and
< is transitive.

[l: Any two fps's in S have a unique meet and join.
Let A and B be two fps's in S with nodes ays
Apsenasdp and b1,b2,...,bm , respectively. Suppose
we draw a grid whose rows represent the languages a,
and whose columns represent the languages bj , as in
Figure 13. Thus both the rows and the columns repre-

sent partitions of the fpsl, and the fpsl could be ex-

pressed as iV (ai n bj) . We put an "x" in the inter-
section of a; and bj if (ai n bj) £ ¢

The join (Teast upper bound) of A and B is the
fps C whose nodes are {(ai n bj)l(ai n bj) 7 ¢}
This fps is certainly unique, and is certainly an upper

bound of A and B : A < C because each node a,

of A dis (ai n bj) ; B < C because bj = (ayi n bj)

J
It only remains to be shown that if any other fps C'

is an upper bound of A and B , then C < C' . This

is true because {(aj n bj)]i = 1,2,...,n 3 3 =1,2,...,m)
is the Targest partition of the fpsl contained in both
{aili = 1,2,...,n} and {bj|j = 1,2,...,m} . Another
way to express the relation < s to say that 1 < J

if and only if the nodes of J vrepresent a partition
of the fpsl which is contained in the partition induccd

hv Lhe nodes of 1

The weet D (grecatest lower bound) of A  and

Boois the fps with the largest number of nodes partitioning
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.u. (a.
i, i
completely contained within a node of D . A node

n bj) such that each node of A or B is

dk of D can be found by selecting some node of A

i k

must be at least as large as a; v bj . If any node of

K then it must be added to
dk » as must any node of B , etc. When no more node

a,: 1f any node bj of B intersects 2., then d
A intersects the new d

languages can be added in this way, dk is a node
lTanguage of D . The others can be found by a similar
construction, using nodes of A and B not already
included in nodes of B (until all have been used).

D 1s unique by construction. It is < to both
A and B because each node is, by construction, both
a union of nodes of A and a union of nodes of B
Thus both A and B could be derived from D by split-
ting nodes. Finally we must show that any other lower
bound of A and B is < the meet. The nodes of such
an fps, D' , would also have to be unions of nodes of
A and of nodes of B . Inspection of the algorithm
for finding a node of D will convince the reader that

it forces only unions of a;'s which are absolutely
necessary so that the result will also be a union of
bj‘s » or vice versa. Therefore the nodes of D' would
have to contain the nodes of D , which would imply
D' <D

Q.E.D.

The reason for disallowing changes to the fps1l during
a change in resolution is that no lattice ordering is
possible under such circumstances. A lattice ordering
can only exist for a set of fps's all with the same fpsl,
because steps through a Tattice must be uniquely invertible.

The reason for restricting the nodes to being dis-
Joint regular 1anguaggs is to eliminate redundancy.
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It is easy to imagine graph algorithms, such as those whose inten-
tion is to partition the fpsl (an important case! see Part VIII),
being complicated or destroyed by overlapping node languages.

There are reasons why either of these two degrees of freedom
might be desirable for using fps's to model systems, but both of
them are really available with the definition of an fps as it stands.
Any graph with overlapping or contained nodes can be reached from
an fps by a straightforward mapping. Figure 14b shows a descrip-
tive graph with node languages P and Q overlapping, and S
completely contained in R . The arcs for this graph are easily
found by transferring the arcs of the fps in Figure 14a.

Often a jump to a higher level of resolution entails splitting
special cases off a generalized node language, and it becomes clear
that the strings left over in the generalized node never appear
in computations. They cannot be thrown away from the fpsl, but
they can probably be removed from the active part of the fps quite
easily: 1if these leftover strings are put in a node by themselves,
they will not be touched by any arcs. Much the same is true of the
reverse process, in which padding is added to specialized nodes
to make them into a generalized node, while lowering the resolution
of a graph. In either case it might be best to let the fpsl be
the set of all strings over the global alphabet, and equip any graph
algorithms to handle inactive nodes efficiently.

The shape of this lattice is that of a tree which branches
upward infinitely. At the root is the meet of the entire lattice--
an fps whose single node is the fpsl. The Tlattice does not have
a join, but we can imagine one by pretending we could take the Timit
of the upward branching of the tree at infinity. This graph (not
really an fps any more, since its number of nodes would be infinite)
would include all the information that could ever be obtained from
any F-model run of this system, except for the types of information
intrinsically Tost in R-model simulation.
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Figure 14a

Figure 14b
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What is the significance of this lattice? It means that there
is an fps describing any part of the system in any level of detail,
and the organization imposed by the lattice order provides an algor-
ithm for focusing on it, relating it to the information in other fps's,
computing the cost of obtaining such information, etc. For example,
the join of any two fps's has been proved to be the lowest resolution,
i.e. cheapest, fps contaihing all the information in both of them.
We feel that flexibility in fps characterizations makes our tools
practical, and the Tattice ordering makes the flexibility manageable.

3. Finite Complete Sublattices

A complete Tattice is one in which every set of elements,
instead of just every pair, has a unique meet and join. When we
wish to study any specific property of systems, we will probably
be interested only in a finite, complete sublattice of the infinite
lattice which will contain all the information relevant to this
property expressable in an fps. Figure 15 shows the relationship
between a finite complete sublattice and the infinite lattice it
is embedded in. Note that a complete lattice always has a unique
“top" and "bottom", which are the join and meet of all the elements
in the lattice, respectively.

One way of arriving at a finite, complete sublattice would
be to select as its join an fps containing all the information that
could ever be relevant to the problem. Then the lattice is formed
by Towering the resolution of the join (merging its nodes) repeatedly
and in different ways, until the single-node meet is reached. The
result is guaranteed to be finite, because there is only a finite
number of ways to simplify an fps by merging its nodes.

Another way of forming such a lattice might be to start from
the bottom and raise resolution only in ways that provide quantum
jumps in the amount of information displayed about the property
under study. With a 1ittle bit of luck, this repeated raising of
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resolution will converge on a maximum-resolution member, the join
of the complete lattice.

It is clear that no one is going to compute an entire sub-
lattice for any purpose. Our point in describing these structures
is that when a designer is searching for the fps which will give
him all the information he needs in the simplest way, he should know
that only a finite number of graphs are potentially useful and sig-
nificantly distinct.
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VII. THE CANONICAL FINITE PROCESS STRUCTURE FOR A SYSTEM

1. Determinism in FPS's

The foremost property of systems and system complexes that
we intend to study using finite process structure graphs is, of
course, their process structure. Therefore we would like to find
an fps for each system to serve as the join of a finite, complete
sublattice containing all the information we can use about the
process structure of the system. This fps will be so important
to us that we will call it the canonical fps for the system.

We will associate canonical fps's with single systems, for
much the same reason that we associate fpsl's with single systems.
Later we will define a canonical extension of them to fps's for
system complexes. Meanwhile we must recognize that the selection
of a canonical fps is basically a design choice, with the purpose
of getting the most useful information without incurring any im-
practical costs, and look at which fps properties are most desir-
able.

Determinism is a property of arcs in an fps which seems to
be related to the quality of the fps for revealing process structure.

Definition: An arc of an fps for an isolated system is deterministic
if and only if each time o of the system contains at least
one process state in each one of the arc's origin nodes,
then the succeeding o will contain at least one process
state in the arc's destination node.

Experience and intuition indicate that if most of the arcs of an

fps are deterministic, then the boundaries between nodes reflect
genuine distinctions between different categories of process states,
and the whole fps gives an interesting picture of what goes on
during the system's computations.
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The simplest reason why an intra-system arc might not be
deterministic is that one of its origin nodes might not be con-
tained in the pattern language of the antecedent it is supposed
to match--then a process state belonging to the node language
could be in o, but would not match the antecedent, if it was in
the language L = (node Tanguage - antecedent language). This
situation is illustrated in Figure 16a. It is easily remedied
by splitting the origin node of the arc as in Figure 16b.

Another cause of non-determinism is that the successor Tlan-
guage to an origin node, as calculated by the R-model interpreter,
might overlap two or more fps nodes. In this case it is not
determined which node will actually contain the successor, as shown
in Figure 17a. Figures 17b and ¢ give two solutions to the immediate
problem.

To carry out a transformation like the one resulting in
Figure 17b, it is necessary to know where to split the origin
node. The division of the node language (L] n L2) into L, and
L2 was dictated by the division between suc(L]) and suc(Lz)
caused by the successor node boundary. Certain properties of the
R-model interpreter ensure that the correct partition of the origin
node language can always be found.

Let L be an origin node language and L' its R-model suc-
cessor under a production. Because all F-model computations are
contained in their corresponding R-model calculations, we know
that every string in L has as its successor a string in L'; if
we partition L' into Li and Lé because of a node boundary,
that will induce a corresponding partition of L. Because of the
closure of regular languages under intersections, R-model steps,
and inverse R-model steps, the languages L] and L2 such that
L= L] uly, and the R-model successors of Ly and L2 are Li

and L.

2 respectively, will be regular languages.
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Unfortunately, the problem is not so simple. Any splitting of
nodes, as in Figure 17b, can cause arcs whose destination node is
the split node to become non-deterministic. Any merging of nodes,
as in Figure 17c, can cause arcs whose origin nodes are the merged
nodes to become non-deterministic. Thus any change which improves
the determinacy of the fps in some neighborhood may destroy it in
another, and so there is no algorithm for making an fps fully
deterministic. One of the most common examples of this is the case
in which there is a chain reaction of node-splitting which does not
terminate. We see such an example in Figure 18. Figure 18a is a
fragment of an fps the arcs of which represent these productions:

ARS$ +By 8, or
A+ stop

Presumably the way to remove the non-determinism is to split
Z'K‘E* into two nodes, one whose successor will be A A &*

and one whose successor will be &, deterministically. We see
the result in Figure 18b: the non-determinism is still there,
but it has been pushed back one node. There is no way to achieve
determinism in this fps short of having an infinite set of nodes
A, NAy AANRy, AADD, ou...

Although all the illustrations to the above remarks used
1-arcs, they can be generalized straijghtforwardly to n-arcs or
(n+m)-arcs. With (n+m)-arcs there are additional problems, so that
these can be made deterministic only under the most special cir-
cumstances. Any inter-system (n+m)-arc is intrinsically non-
deterministic because of the vicissitudes of relative rates.

Even intra-system (n+m)-arcs, which are as fully synchronous as
n-arcs, can be made deterministic only if the accepting channel
language (the intersection of the channel language produced by
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the message-generating production, and the language from which the
accepting channel must come) is finite. Then a separate (n+m)-arc
must be drawn for each of the members of this language. The reason

is simply that a message will be accepted if and only if there is a
process state in ¢ that matches its channel name exactly--an overlap
of containing languages is just not good enough. Of course, even if
that step could be carried out, the resultant splitting of nodes to
make the new arcs deterministic could be impossible, or disastrous to
the determinism of the rest of the graph.

2. Definition of the Canonical FPS

Because of these difficulties we gave up on deterministic graphs
and tried to find something more practical. There is a graph rather
closely related to deterministic ones which is easily found, and which
may even be more meaningful for studying process structure: this will
become our canonical fps. The philosophy behind it is very simple.

If a node is completely contained within any antecedent language it
intersects, then it is known that any arc component whose origin

node is that one really applies to the whole node, and the antecedent
will always be matched by any process state in that node. If a node
is completely contained within any consequent language it intersects,
then we have precise knowledge of all the ways in which a process
State in that node could have arisen. Thus the flow of process states
through operators to other process states is accurately characterized.
Our canonical fps is constructed so that all nodes have these two
properties.

Definition: The canonical finite process structure for a system is
an fps whose fpsl is the total language for that system. The
fpsl is partitioned into nodes as follows:

The set of all antecedent languages of productions in the system,
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plus the set of all consequent languages, plus the set of
all message languages such that their associated channel
languages have non-empty intersections with the total
language (see Part III), is a set of n languages

{L], PLERRTIIN, suchnthat each L; is contained in the

total language and v Li is the total language. There
i=1
may be as many as 2"-1 nodes, each one corresponding to

some member of the power set of this set except ¢. If
{L]’LZ""’Lm} is a member of the power set, then the
corresponding potential node language (potential because

nL

me2 0o n
Ln} is the set of all members of the

it may be ¢) is Lynlyn.oonl 0 L 41 N [
where {Lm+],Lm+2,...,
n-language set which are not in {L], 2,...,Lm}.

This has many similarities to the elusive deterministic fps
(notice that the first-presented type of non-determinism cannot
occur), but also some substantial advantages over it. To begin
with, if the antecedent and consequent language are delimited
pattern Tanguages, all the nodes of the canonical fps are delimited
pattern languages, which certainly need not be the case in a
deterministic fps. Secondly, the desirable properties of any
fps in the canonical sublattice will be enhanced by raising its
resolution. The most frustrating aspect of the search for
determinism is that both raising and Towering resolution can
result in local successes--so one never knows which direction
to try.

Another serious problem with the deterministic fps that the
canonical one avoids is the necessity of performing R-model steps
Jjust to arrive at the nodes of the fps. Since we have so many
other computational problems, introducing a complex iterative
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process at such an early stage of analysis is just not reasonable
unless there is no alternative. The canonical fps, of course,
can be defined by a single set of language intersections (which
can be performed very efficiently using string operations on
delimited pattern expressions, if the antecedent and consequent
languages conform to restrictions). Furthermore, the canonical
fps is the best characterization of the system obtainable without
using R-model steps to calculate nodes, because it uses all the
language information present in the SR.

What can we say about the canonical fps in its own right?
Only the intuitive conclusion that it is a high-quality description
of the process structure of its system (the highest quality obtain-
able without extraordinary measures) and that it is sufficiently
detailed so that analysis restricted to this fps and lower bounds
of it will be able to achieve its purposes. This is true for two
reasons: (1) obviously, in any neighborhood where special detail
is necessary, it will be possible to depart from this finite sub-
lattice to get it, and (2) the problem is usually to make things
simpler, rather than more complicated--the canonical fps is probably
far too detailed itself for most practical large-scale analysis jobs.

Now that we have a canonical fps for an individual system, it
is easy to define one for a system complex. There is one node for
each observer. Each participating system has all the nodes of the
canonical fps for that system. It has, in addition, one node which
is [(the union of all the message languages of all the {(channel
language, message language) pairs in the complex such that the
channel language has a non-empty intersection with the total lan-
guage of this system) - (the total language of this system)]. This
extra node absorbs all the process states not in a system's total
language that could be accepted as messages by it. It does not
matter that all the message languages are lumped together, because
so long as they are outside the total language they will not be
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the origin nodes of any arcs. Of course, the system's fpsl is
still closed, because the total language of a system plus any-
thing else is still closed under its system.

-
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VIIT. PROCESSES

1.  Syntactic Process Structuring

We are interested in processes because they are the basic
dynamic units of computation, and must be understood before we can
hope to define interesting transformations on system complexes.

Any division into processes is subjective (as well as hierarchical,
so that processes on one level contain many processes on a lower
level), so we cannot expect the answers to questions of process
structure to be unique. The ultimate justification of a process
structuring technique must come from examples showing that it is
intuitively reasonable, and contributes to the solution of practical
design problems.

Recently several groups of researchers have given the concept
of process precise definitions. We feel that the definition of
Horning and Randell [16] is outstanding for its clarity and generality,
and so we shall consider it the state-of-the-art process definition,
and refer to it often for comparison. Our first observation about
Horning and Randell's definition is that it is representation-
independent. Thus it is applied with some difficulty to working
processes (which can only be observed through their practical
representations), usually only as a verification that something
perceived as a process does indeed fit the definition.

Our philosophy is that one of the most important tasks of auto-
mated design analysis is to discover process structure where the
design is too intricate for the structure to be apparent. This
is a key step on the way to developing algorithms for identifying
and manipulating processes without recourse to supplementary in-
formation or human intervention. This philosophy Teads us to a
syntactic theory of process structuring to be established within
the context of the formal definition universe. The idea is that
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with a representation-dependent definition of a process, we can
identify processes strictly on syntactic grounds, and therefore
find process structure algorithmically. The same concept is be-
hind "structured programming" as founded by Dijkstra.

Since our definition of a process depends on an fps, the
Tevel of resolution of the fps places an upper bound on the level
of detail of the process partition. Process structure is alto-
gether dependent on the underlying fps, and any valid application
of this definition must take cognizance of the fact that processes
are arranged in a relative hierarchy.

Definition: Given a system complex and an fps describing it, a
process is a set of regular languages, one for each system in
the complex, such that:

(1) the regular language for a system is a union of nodes
in the fps for that system,

(2) all process states in a system belong to the process
if and only if they belong to the regular language
corresponding to that system, and

(3) no arcs cross the process boundary except interactions
(multiple-component arcs with at least one origin
node on either side of the process boundary).

As an example of this definition in action, see Figure 19.
The dotted 1ines show one way of partitioning this system complex

into processes.

The computations of a process are simply the sequences of
process state sets, consisting solely of process states belonging
to the process, generated by the system complex as it runs. If
the process has states belonging to more than one system, it
can change state whenever one of the participating systems finishes
a step.
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Figure 19

system boundary
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Although this definition is in an unfamiliar guise, it is
actually very similar to Horning and Randell's. The two definitions
will be compared closely in the next section.

For all aspects of our definition which are paralleled by
Horning and Randell's, we will let that stand as sufficient
justification. This leaves to be explained only our choice of
where process boundaries can be drawn, because Horning and Randell's
processes do not interact with each other at all. Figures 20a
and b show the kinds of process boundaries precluded by our definition:
a process state should certainly be in the same process as a single
process state generating it, as should a process state generated
by the interaction of two states in the same process. Otherwise
we would find ourselves claiming that different times on a cyclic
clock were parts of different processes, among other improbabilities.
We know intuitively that a process is a cohesive unit; we partially
express that cohesion in the rule that any process state generated
solely by antecedents in one process must also belong to that
process.

Figures 20c and d show process boundaries that may be drawn,
and indicate what interactions look 1ike. Note that the two origin
nodes represent any number greater than one, and that it does not
matter if the multiple components are primed or unprimed. Con-
sequently, any system boundary can be a process boundary, because
inter-system arcs are always (n+m)-arcs with n origin nodes on
the sending side of the system boundary and m origin nodes on the
receiving side. Incidentally, sending a message to an observer is
considered to be an interaction, even though all the origin nodes
of the arc representing it may be in the same process. This is
so because the arc is symmetrical in meaning to (n+m)-arcs, and
only fails to have m-components because we do not model message
acceptance in observers.
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Figure 20a Figure 20b

Figure 20c Figure 20d
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The next step in building this theory will be to classify
specific process structures and learn to exploit their properties.

Preliminary work in this direction has been encouraging.

2. Comparison with Horning and Randell's Processes

Horning and Randell's definition of a process fits most of

the diverse viewpoints that the authors investigated:

A process is a triple (S,f,s) where S 1is a state

space, f 1is an action function in the space, and

s is the subset of S which defines the initial

states of the process.
The state space consists of all possible values of a set of state
variables; the action function f has a domain contained in S,
and a range consisting of assignments of new values to state
variables.

In the formal definition universe there are no fixed sets of
variables: the number and size of process state strings is completely
fluid. Thus we need not constrain the state space of a process as
rigidly as Horning and Randell do. The natural way to characterize
our state spaces is with regular languages describing the delimiter
structure of process states, which is how it is done--so our regular
languages play exactly the same role as S.

Horning and Randell's action function has its analog in a suc-
cessor function (recognized by Horning and Randell to be an equivalent
notion) defined by the productions of the systems involved. Although
we do not have an explicit set of initial states, the same purpose
would be served by intersecting the initial state set of each system
participating in the process with the process language associated
with that system. So we see that all three components of Horning

and Randell's processes are present, implicitly, in ours.
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We acknowledge that our definition exists within a specific
universe. Horning and Randell's definition can only exist within
a class of universes conforming to their basic structural assumptions
(ours, for instance, does not conform), and so we can say that it
exists within a (meta-) universe, too. We claim that our definition
has some superiority over theirs only because it exists in a richer
universe, one better suited for studying systems problems.

Horning and Randell's representation-independent definition
becomes tied to a representation by the definition of a processor,
a pair (D,I) in which D 1is a physical device and

I s an interpretation of its physical status which

indicates at what instants of time, and by what
means, the device represents successive states.

This leaves the user of their definition free to use any device,
but places on him the overwhelming burden of finding appropriate
interpretations, at the right level to be illuminating. In fact,
since processes and processors can be in one-to-one correspondence,
the problem of identifying processes is contained in the problem
of finding interpretations--exactly the job we hope to delegate to
syntactic analysis. Our definition requires that the device be a
formally defined system complex, but it provides the designer with
automatic interpreters at any desired level, and the key to process
identification besides.

The state spaces of Horning and Randell's processes are of
fixed size and dimensions, which is appropriate to the fact that
they are already bound to a fixed physical device. Since our state
space is not bound in any way, we allow it to grow and shrink
via a much more flexible successor function.

One of the most important differences between our universe
and theirs is that we allow the specification and use of any
number of asynchronous state spaces, while they have only one state
space. The effective difference is that variables in the same
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state space always change values synchronously, in discrete time
steps, while variables in different spaces are mutually asynchronous.
In the formal definition universe, each system corresponds to a
state space. Horning and Randell do recognize the necessity of
modeling asynchronous interactions, but their concessions to it

are unconvincing: they combine asynchronous processes to make

one process in one "state space," but then the variables of the
state space are presumed to be mutually asynchronous--which is self-
contradictory, and also discards the relevant information that many
of the variables really are synchronous with respect to each other,
since they belong to the same synchronous subprocess.

This brings up the problem that Horning and Randell's processes
cannot communicate as ours do, and so the only way to describe the
interaction of two processes is to define a containing process in
which the subprocesses share variables, as above. It seems like a
very bad idea to multiply the size of processes just to investigate
their connections! Our goal is to factor the analysis of systems
as much as possible, and we are convinced that Horning and Randell's
approach is not practical. Undoubtedly it was not formulated with
such algorithmic analysis in mind.

The final difference between our universe and theirs is that
they completely avoid the issues of race conditions and memory
interference by calling the result of any such situation undefined--
without even giving the user of the processes a way to discover
whether his results are undefined or not. In other words, general
interaction of processes is not well defined. In our universe
nothing is ever undefined. We prefer to face these situations
and provide tools for structuring, observing, and controlling
them, so that designers have a chance to solve some of the

associated problems.
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It would certainly be possible to describe a process in the
style of Horning and Randell in the formal definition universe,
and to recognize it as a process by our definition. It would have
a rigid state structure delimiting a fixed number of variables,
and no arcs crossing its boundary. We can also talk about processes
that grow, disappear, reproduce, interact, etc.

We welcome the current work on process structuring being
carried out using other universes, because the correspondence
between our process definition and Horning and Randell's shows
that it will be possible to apply results from one context to
the other. In particular, the interest in processes is stimulating
work, such as that on combination and cooperating of processes,
which might become part of our future design tools.
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