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Abstract

Previously, a viable numerical method for the Navier—
Stokes equations was developed and applied to two-dimensional,
steady state problems, to three-dimensional, axially sym-
metric, steady state problems, and to a class of nonsteady
problems which had steady state solutions. The method applied
for all Reynplds numbers. Among other things, it required
the construction of a double sequence of strgam and vorticity
functions and an appropriate selection of smoothing parameters
to assure convergence . Both these complexities are eliminatead
in the method of this paper. Moreover, illustrative examples
show that the new method is faster than the previous one and

more accurate for physically sensitive problems.
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1. Introduction

In this paper we will develop a new method for the numerical
solution of a class of Navier-Stokes problems. This new method
is a significant improvement over the one applied by D. Greenspan
to a variety of temperature independent problems for arbitrary
Reynolds number [%,4,5,6,7] and extended by D. Schultz [10] to
problems which include temperabture dependence. The new maethod
has been found to be approximately ten times faster than the
original method. In addition, the new method requires legs
computer storage, does not require smoothing, and has been

found to be more accurate for physically sensitive problems.

2. General Description

The numerical method to be developed is a finite difference
method and is applicable to nonlinear coupled systems of dif--
ferential equations similar in structure to Navier--HStokes

equations which have a "stream-vorticity" formulation.

In the previous method, we would have started with some
initial numerical estimate of the solution of the system. Then
the algebraic system of equations which approximated only the

first differential equation would have been solved completely.

Next, this new solution would have been smoothed (averaged)



with the initial approximation° Using these results the next
differential equation would have been solved and the new solution
averaged with its initial approximation, This process would

be repeated for all diffgrential equations of the system, in
order. After all equations were solved, one would then return

to the first equation and repeat the process. This step-by-

step iteration for €ach equation continued until the results

converged to within some tolerance.

Analytically, the above numerical method was shown to be
convergent for the biharmonic problem (Reynolds number zero)

by J. Smith [11].

In the new method we have found that convergence can be
increased by a factor of ten (or more) by solving all equations

simultaneously. In this manner, we will eliminate the need

for smoothing and reduce the amount of computer core required.
For example, if we have n coupled differential equations to
solve, the old method required 2n + 1 storage arrays while
the new method requires only n + 1 arrays. Since the step
size h 1is limited by the amount of computer core available
we can now work with a much smaller h and thus increase the

accuracy of our results.

The general procedure described above will be illustrated
next, in detail, by considering sewveral problems of physical

interegt,




5. The Eddy Problem in a Rectangular Cavity

This problem is defined over a rectangle with interior R
and boundary 8. The vertices of the rectangle are taken
to be (0,0), (a,0), (0,b) and (a,b). The equations of

motion are

A\l] = i) (:;))q.-:L)

A+ R(%—}%%—?f- - %%) = 0, (3.2)

where | 1is the stream function, w is the vorticity and

R is the Reynolds number. On S the boundary conditions are

¥ = O, %% = 03 on x = 0O (%.%)
v = 0, -%% = 0y on v =0 (%,4)
o= 0, %% = 0; on X = a (z.%)
b= 0, %% = -1; on vy = b. (h.6)

In general, the boundary value problem (3.1) to (3.6)

cannot be solved by existing analytical techniques.



4.1 Numerical Method for the Lddy Problem

£

Consider the particular case a = b = 1 (other cases can
be treated in a completely analogous fashion). For a fixed
positive integer n, set h = %, and construct and number

the set of interior grid points Rh and the set of boundary

grid points Sh in the usual way. Initially, set

w<O) = C on R

,(0) _

Then, as in [6], at each point of Rh of the form (h,ih),

i = 2,...,n=2 approximate (3.3) by

y(n,in) - L2in) (3.7)

At each point of R of the form (ih,h), 1 = 1,2,0e.,0n-1

h
approximate (%2.4) by

§(ih,h) = Mﬂé’-ﬁl (%.8)

At each point of Rh of the form (Il-h,ih), 1 = 2,3,0ee,0-2

approximate (3.5) by

¥(1-n,in) = LI=2i) (5.9)




At each point of Rh

approximate (3.6) by

¥(ih,1-n) = B, LR 1-2h)

At each remaining point of Rh write down the following dif-

ference analogue of (3.1):

=i (x,y) + $(eth,y) + y(x,y+h) + ¢(x-h,¥y)

+ §(x,y-h) = mhgw(xvy)c

As in [6], to obtain ® on the boundary Sh’ set

w(ih,0) = — EﬂﬁigLﬁl i=0,1,2,...,0

h
w(0,ih) = - 2¥(h,ih) i=1,2,...,m-1

iy
u-)(l)ill) = - 2w(l—:k2171h) i = ljgjoauyn"‘]-

h

) I :

w(ih,l) = % - C—Uj<l]2—71"11) i = C>,l7eoo )Ile,

hﬁ,

Of the fOI‘m (ih,l*—h)y j_ = 17290.5«711-—1

(%.10)

(%.11)

(%.1%)

(H.14)

(%.15)

Finally, to assure diagonal dominance of the difference equation,

at each point (x,y) in Rh set



U(x+h,y) - ¥(x-h,y)

KR
It

W
1

b (x,y+h) - ¥(x,y-h)

and approximate (3.2) by

4w (x,y) + w(x+h,y) + w(x,y+h) + w(x-h,y) + w(x,y-h)

h2

UGerh,y) - y(x-h,y)a  v(x,y+h) - y(x,y=h)., _
+ R( = F = G) =0

where

- w(x,y+h)h— w(x,y) S r e
p - LKy “h§<x’y“h) if e
o - wxy) —hw(x—h,y) iy o« > 0
¢ - 2xhyy) - wx,y) if « < O.

(3.16)

(3.17)

(2.18)

(%.19)

To start the method applied previously [6], make an initial

W(O) on R and w<o) on R

h + 5

guess n

ne From these initial

guesses two sequences of discrete stream and vorticity functions,

called outer iterates, are produced. The iterations performed




in getting each one of the outer iterates ars called inner

iterations. The sequences

b0 @

LY

w(0) @) (@)

90 v 0

are calculated in the indicated order until the differences
th

between the k—= and (k—l)EE outer iterates agree to within
fixed, positive tolerances. Thus, to obtain w(l) solve
equations (%3.7) to (%.11) with w = w<o> by succegsive over-
relaxation (SOR) and denote this solution by 'W(l), Then

+1) would ve defined by

w(i) _ pw<o) N (1_p)m<l>
where
0 < o<1,
Using ¢ = w(l)’ one now finds E<1) on the boundary from

equations (3.12) to (%.15) and E<1) on Rh by solving system

(3.16) to (%.20) by SOR. Finally, w(l) ig defined on R

D,

h h

by the smoothing formula



where

O0<u<l.
w(2> and then w(g) are now calculated in the same fashion
as were w(l) and w<1). This process is continued until

the outer iterates have converged, that is, when

lw(k) - w(k+l)l < g on R

b
and
(k) (k+1)
’UJ - W I < €, on Rh + Sh’

for fixed positive tolerances EW and €.

In the new method we solve the system of linear algebraic

equations generated by (%.7) to (3.20) simultaneously by SOR

with overrelaxation factors rw used in the inner ¢ iterations

and Ty used for the inner w iterations. This procedure
eliminates the need for smoothing and the necessary search
for adequate smoothing parameters, since there are no longer

any outer iterates.
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5.2 Results

For h = 0.1, R = 10, aw = €, = 0.001, Ty, = 1.0,

rp = 1.8, p = 0,03, o= 0.95, w(O) =0 on R and

1 h’
w(o) =0 on Rh + Sh the old method converged in %6 seconds.

The new method with the same parameters converged in

one second. For h = 0.05, R = 10, EW = €, = 0.001, Ty, = 1.0,
r, = 1.8, p = 0.03, u = 0.95, 19 2 0 on R, and 0% -0
on Rh + Sh the old method did not converge in 2 minutes.

The new method converged to EW = g, = .0001 in 6 seconds.

For h = 0.05, R = 100000, Ty, = 1.0, rw = 1.0, Ew = €, = 0.005,
o = 0.0%, 1= 0.70, W(O) =0 on R and w<o) = 0

h?

the old method converged in one minute %0 seconds. The new
method converged in 16 seconds. The results obtained by the
new method are shown in Figures 1 and 2. Note that the rw
and T, used above were those which were relatively optimal
for the old method, so that it is possible that the new method

could have been made to converge even faster if a search had

been made for new optimal rw and LU

4,  Biharmonic Problem

In the recent literature [1,2,9,11] there has been a Te-
newed interest in numerical techniques for biharmonic problems.

In our method [9], the biharmonic problem wasg treated as a

on Rh + bi
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system of second order elliptic equations in the spirit of [61.
We will show how to improve the speed of this method by a

factor better than 10.

We will not make any attempt to rank the different types
of fast new methods now available for the biharmonic problem.
The differences between methods, computers, programs, languages,
and the like make it difficult, if not impossible, to compare
computer times. In addition any comparisons couid not take
into account the amount of work needed to implement the varioué
procedures. However, it is worth noting that the existence of
several, viable fast methods provides the computer user with
some means for increasing the reliability of his numerical’

output against machine and program errors.

The problem to be considered is to find a function (x,y)
which is a solution of the biharmonic equation over the region
described in.Section %3.le The equation is

ANy = O (4.1)

subject to the boundary conditions

§(x,0) = £1(x), g (x,0) = g (x); 0<x<1
V(1,y) = 530 4, (1,y) = 85(3);3 0<y<1
1061) = £5(x), 4, (x01) = g3(x0); 0<x<1
1C0,y) = £,(3)s 1,(0,y) = g,(y); 0<y< L.
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We replace equation (4.1), as in [9], by the system of

coupled equations.

Ay = - (4.2
o =0 (4.3)

Physically, one can interpret ¢ and w from, say, the
fluid dynamics point of view, as stream and vorticity functions
respectively. Indeed, for & = O, equations (%.1) and (%.2),
reduce to (4.2) and (4.%). Therefore, the new method des—
cribed in Section % can be used for the biharmonic problem
also. The only difference will be that the biharmonic problem
does not require the special inner boundary equations for the
stream function, i.e., (%.7) - (3.10) are not used and (%.11)

is applied at all interior grid points.

4,1 Example

Using the boundary conditions f1 = ng f2 = 2y + 1 - 5y23
f5 = Xa + 2% - 3, f4 = mﬁya, 8 = 230 Bs = 2y -+ 5, g5 = 2% - 6
and g = 2y, the methodgs of Section % were executed with
R =0, h=0.05 p=0.2pu=0.85¢c =107, g = 1077,
r,=1.8 and 1, = 1.0, 19 _ o, w®) L0, Using the original
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method [9], convergence resulted in approximately & minutes

on the Univac 1108. Using the new method the problem converged
in 24 seconds on the same computer. Both methods yielded
results which agreed with the exact solution u = x5 - 5y2 + 2XY

to at least three decimal places.

5. Heated Cavity Flow

Consider now convective flow in a heated cavity [10].
Again, the region of interest will be the square cavity. The

equations of motion are

By = —w (5.1)

3y 96 Oy 06+ _ .

86 + (x5 - 55 5 - O (5-2)
10y 3w _ 0y Owy | 400

Mo+ S T - T w) Ay = O (5.3)

where 1§ 1is the stream function, w is the vorticity, 6 1is
a measure of temperature, o0 is the Prandtl number, and A 1is

the Rayleigh number. The boundary conditions are

4 =0, %% -0, 6 =0 on y =0 (5.4)
y = O, %% = 0, 6 = v; on x = L (5»5)




d!:O) %:O, e:l,’, on y::l (566>
b =0, %E%ZO’ 6 =7 on x = O, (5.7)

5.1 Numerical Method

To solve the problem numerically approximate (5.1) by

(3.11). Equation (5.2) is approximated by

—4eo+81+82+65+64 U=

St e - e o (5-8)

where F and G are defined in (3.17) to (3.20) with W

L

replaced by 6, - To approximate w®w on the boundary use (%.12)

to (3.14) with (3.15) replaced by

w(ih,1) = “2"’(111;1‘“}3‘)@ (5.9)
hﬁ.
Finally, the approximation to (5.%) is of the form
B M =S At N L bk SR -k 0 Oo-0y e
kg + —C-J_- 2h 2R . 2h J> -+ A -—E"ﬁm = O K;)OJ-[\))
1

where T and G are defined as in (%.17) to (%.20). The
subscripts in (5.8) and (5.10) refer to the same points as in

(%.16).



The old numerical method for generating the numerical
solution is analogous to the old method described in Section 3.1l.
To apply the improved method, equations (3.7) - (3.11), (5.8),
(%.12) to (3.14), (5.9) and (5.10) are, in the spirit of
Section 3.1, simply solved simultaneously for 1§, 6, w. Note,
of course, that in equation (%.10) the term % will not appear
for this problem.

5.2 Regults

FPor h = 0.1, A = 500, o = 0.7%, sw = €y = 0.0002, Ey = 0.001

wco) = 0, 9<O) = 0, w<o) = 0, the original method converged
in 11 seconds. The new method converged in 1 second. For

h = 0.05, A = 500, 0 = 0.72, g, = 0,001, ew = &4
w(O) = O, G(O) = 0, w(o> = 0, +the original method converged

= 0.00001,

in 2 minutes. The new method converged in 1% seconds. For

h = 0.025, A = 10, 0 = 0.7%, €, = 0.002, Ew = £4 = 0.0000%,

¢<O> = 0, e<o) = 0, w(o) = 0 the original method converged
in % minutes. The new method converged in 4% seconds. For

h = 0.1, A = 10000, 0 = 0.7%, €y = 0.001, EW = Eq = 0.00002,

W(O) = 0, G(O) = 0, w<o) = O +the original method converged
in 25 seconds. The new method converges in 2.4 seconds. For

h = 0.05, A = 10000, €y = 0.001L, g, = 0,00002, w(O) = 0,

]
e<o) 0, w(o) = O, the original method converged in 10 minutes.

The new method converged in %6 seconds. For h = 0.1, A = 20000,




le.

o = 0.7%, €, = €

) 0
w(o> = 0, the original method converged in 25 seconds. The

= 0.000002, £, = 0.001, 10 Lo, (0 o,

new method converged in 2.4 seconds.

The graphsof the case A = 10000 are the sgame for both

the old and the new methods and are shown in Figures 3, %4, 5.

©. Rotating Coaxial Digks

The problem we consider now is the steady motion of a
viscous, incompressible fluid between two rotating, infinite
coaxial disks [8]. The first disk is, in (x,y,z) space, in
the plane =z = 0O with its center at (0,0,0) and has an
angular velocity Ql’ The second disk is in the plane = = 1
with its center at (0,0,1) and has an angular velocity an
If the cylinderical coordinates of (x,y,z) are (r,8,2),
and if the fluid at (x,y,2z) has velocity components (u,v,w)
then the substitutions

u o= - %TH'(Z), v = rG(z), W

1l
L_Ll
e
N
N

transform the dimensionless, steady state Navier-Stokes equa-

tions to
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H' = M y 0 5_ Z S_ 1 <6°l>
G" + R(GH' - G'H) = 0 , 0<z<1 (6.2)
M" - R(HM' + 4GG') = O, 0<z< 1, (6.3)
where differentiation is with respect to z. The boundary
conditions are
G(0) =0a;, G =0, (6.4)
H(O) = O , H(1) = O (6.5)
H'(O) = O , H'(1l) = 0. (6.6)
To obtain the solution we subdivide O <z <1 into
n equal parts of length h = Az = %, Let the points of sub-
division be O = Zy < Zq < Zn < e <z, = 1. For convenience

define Fi = F(zi)o The original method [8] again approximates
H, G, M by generating three sequences H<k>, G<k), and M<k)
of outer iterates and requires smoothing. The difference

equations used were

H - 2H. + H.
i

i+l haMi<k)’ 1= 252500002 (6.7)

i-1
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M, = H, (6.8)
4}]:1’1““1' = Hn—— 2 ® ( 6 “ (}

" (k+1) LT (k+1)
Gi-l + [-2 + RhHi ]Gi + [1 - RhHi ]Gi+l

(6.10)

@hg(k)[ﬁ(k+l> - H§k+1>] if H§k+l) <0y 1= 1325000 0~1
i-1 1

i4+1

R TS o R O

1+1
(6.11)
?ﬁhC(k>[H<k11> Dy e w8 0,4 2 1,2,00000
(k+1) o) -
MO = ———}?—m K("_)ul().)
k+1)
2H<
(k+1) n-1 .
Mh = ““EE““* (6.17%)
o (K1) (el |
Mi—l + [-2 + RhHi jMi S I RhHi JMi+l
(6.1.4)

]

2Rhc(k4l)fg(k+l) G§%11>J’ g H§k+1) P

fl - i = ].7;27;&0031’].":‘

(k+1) - A (kkl)
(1 + @hﬂi JMi~l + [=2 - ﬁhﬂ - Mi+l
(6.15)
- +1)
- 2me{ D (L) _ o)y, iy Hgk*l/'z 0, i = 1,2y.0.,0-L.

Tor the new method, we simply solve (6.7) and (6.10) - (6.15),

simultaneously, with (6.7) extended to the range i = 1,2,...,n-l.
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6.1 Results

For each of the following cases the original method re-
guired approximately 30 seconds of computer time on the
Univac 1108. The parameters for the first case are R = 10,

e e - & = 0) _
=8 = &y = 0.005, H = 0,

= 0. The parameters for the second case are

Ty = 1.8, Te = 1.0, rM = 1.0, €
¢(0) _ o, n©)

€y = 0.05, H<O) = 0, G(O) = 0, M<O) = 0., The parameters for

the third case are R = 1000, r

= 1087 . = 1,eo, I‘M = 1057 E‘H: = L( = O&OO:}.,

= la8) = lol-) I‘M = 1«5,

H ge
eq = 0.03, gy = 0.3, HO) _ 0, a0 _ 0, m®) _ o,

) 1
For all three cases h = =5 Ql =1, Q2 = 0, The new method

&g = 0.005,

with o = Iy = 1.0, Ty = 1.8, €y = By = By = 0.001 converged

in a total of 7 seconds for all 3 cases.

For h = é@, Ql = 1, Q2 = -1 the old method converged
in a maximum of %0 seconds and yielded spurious results for
each of the cases R = 10, 100, 1000, (see [8] for the para-

meters). In the new method with ® = 10, h = é@, fﬁ = 1,

Uy = =1, Tn =1y = 1.5, 7y = 1.8 and ¢ = 0,0002

m T e T M
the problem converged in fewer than 5 seconds. For the case

R = 100 with = =1.0, r;, = 1.8, 8 = 0,0002 for all

¢ = ™ H

parameters the new method converged in approximately 5 seconds.

Por the case R = 1000 with 0.8, Ty = 1.8, € = 0.001

e T M T
for all variables the method converged in 2.7 seconds. In

addition the new method gave correct results (see Fig. [6]).
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The fact that the computer results by the old method
for the sensitive class of problems with Ql = wQQ were in-

correct has now been established analytically (personal com-

munication from S. V. Parter).

7. Conclusions

The new method hag been found to work on all problems
tegted. It has been found to be faster, and thus more econo-
mical, to require less storage space and to free the researcher
from the problem of trying to find the correct smoothing
parameters necessary for convergence. In addition, because
it requires less space one can go to much smaller grid sizes
and thereby improve the results. Finally, and perhaps most
importantly, it has been found to give more accurate results
in at least one area of sensitive problems, that is, the

case of counter rotating disks with Ql = ~02,

It is worth noting, in addition, that other computer
centers also are experimenting with the new method described
in the paper and have noticed the increased speed of con-
vergence (personal communication from M. Friedman), but no

published results are as yet available.
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Fig. | Eddy Problem, R=10
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Fig. 2 Eddy Problem, R=10’
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Fig. 3 Heated Cavity, A =10
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