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ABSTRACT

In previous work, a new numerical method--"discrete mechanics"~--
was presented which conserved exactly the additive constants of
motion. The basic formulae of "discrete mechanics" were originally
derived for the case of a separable, radial potential. In the
present work, "discrete mechanics" is extended to include nonseparable
potentials with separable, radial arguments. Application to the

LEPS potential form, common in modeling chemical reactions, is
discussed.
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1. Introduction

In the study of a system of particles moving according to the
laws of classical mechanics, conservation of energy and angular
momentum is of fundamental importance. In previous work [1]-[3], a
new numerical method--"discrete mechanics"--was developed which
exactly conserved the additive constants of motion. In [1], the
basic conservative formulae were obtained for a general separable,
radially dependent potential ¢ . In [2], "discrete mechanics" was
extended to include anisotropic potentials 1In [3], the theory was
extended to an arbitrary numerical order of approximation.

Although the potentials in fundamental physical interactions
are representable by separable, radial forms, certain approximate
theories of molecules lead to nonseparable functionalities. A
notable example is the London-Eyring-Polanyi-Sato (LEPS) potential
form [4], which involves a square-root of a sum of radially dependent
functions. This LEPS form is in common use in the study of three~-
body exchange reactions [5].

In the present work, "discrete mechanics" is extended to the
case of a nonseparable potential which has a separable argument.
The theory is developed in Section 3, and is applied to the case
of the LEPS potential in Section 4.
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2. Discrete Mechanics Equations for a Separablie
Potential

For convenience and compieteness, the basic formuiae developed
in [1], which will be needed below, will now be summarized. For the
motion of a system of particles, the "discrete mechanics" formulae
of [1] are based upon explicit use of the functionality of the
potential ¢ of interaction of a system of particles. Suppose that
¢ 1is a separable function of the n distances r; ; i.e., is of

i
the form

[e.0]

o(rysrpseear,) = ] 0
£=0

Typically rs is the distance between two particles, although from
the theory of [1]-[2] the mathematical form of the succeeding equa-
tions below is preserved if r; is the distance of particle 1 from
the origin, or is equal to the scalar product of two vector distances
from the origin. For convenience of notation, assume that r; de~

notes the distance of particle i from the origin.

For a giQen system, let E denote the value of the energy as
calculated from the initial conditions and E' the value of the
energy calculated from the final conditions at the end of a time step
At . (In general, primes will denote evaluation at the end of the
time step.) For conservation of energy to occur, E and E' must
have the same value, or

4]

AE E' - E (2a)
=0 (2b)
From equation (5.50) of [1], AE can be written

AE = AT1 + L\T2 +oL. ATn + Ad (3)




where
Ao = olrysrssenasry) = d(rysrg,.eoor) (4)

is the change of potential over the time step, and ATi is the i-th
component of the change in the total kinetic energy T over the

time step. The explicit forms of the ATi in terms of the numerical
solution will vary with the order of approximation and the identifica-
tion of the ri - For example, for the low-order discrete mechanics
of [1], and r; the distance of particle i from the origin

(equation (5.24) of [1]),
AT, = F, < AY, (5)

—Jdc -
where Fi is the discrete mechanics' "force", and

AM"’ v.—bl —t
P N
Y"I Y‘1 1

(6)

Here 'ri denotes the vector radius of particle i from the ovigin.

Whatever the explicit form of ATi in terms of the numerical
method, from equation (5.62) of [1], if ¢ 1is given by equation (1)
above, then

AT = - ofo Aqi(f) (i=1,2,...,n) (7)
Q,z

where A$<§) is given by the symmetrized product

()0 - 40 g "

(i=1,2,...,03 1S#i)



In equation (8),

.

and the second sum is over all possible combinations of products of
the n-1 functions ¢<%) for which 1S#i , and of which k are

»] 9
evaluated at the new argaments rs and n-1-k at the old arguments

S

i

r.
i
s
Examples of equation (8) are as follows: For n=1,
~(e) o () L (8)
A¢ 1 - (b 1 (b 1 ) (9)
for n=2 ,
(2), (2)
Se) P T (), (8)
R B (I R (104)
. (2), _ (%)
and, for n=3,
T \
ACB(%) - 2 3 [(b(z)'(b ’é ‘+%(¢(%)l¢(§l

(11)
(2) (8) 1y, (2), (%)
AL AP A )+o 5 ¢ 3 ]
The formulae for A$(§) and A$(§)~ are obtained from equation (11)
via cyclic permutation of the indices 1, 2, 3.
As an illustration, the use of the above formulae for ATi and
%)

A5(i will be shown for the Tow-order discrete mechanics of [1].
For this case equation (5) holds. In [1] it was found that the




“5e

¥k . — -
"force" Fi must Tie along r% + rs for conservation of angular
momentum to occur. This condition, along with equation (%), ieads
to

e P (12)
1 1 i
where
= ! _ ,

Substitution for ATi via equation (7) now gives

~(Q)) -, -
oAb P, + r,
Fr= J —te -t 1 (14)

1 Ar., [
2=0 i r1 r1

Equation (14) for f? , coupled with equations (5.3) of [1], are ali
that is needed to numerically calculate the trajectory of motion.

For example, if }1 is the vector distance of particle i of mass

m; from the origin, and 7} is the velocity of the particle,
i.e.,
L dr,
TT e r\
Vi T aE (15)

then the new position and velocities are determined via the equations

B2
T = "y vl .._.j_. .(_[_X_..t‘_),.u_. i
r g T v At m, 5 (16a)
-k
V,i = ; + ﬁ*—é\t (]6b)

*
where At 1is the time step and Fi is given by equation (14).
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3. Discrete Mechanics Equations for Nonseparahis Potentials

In what follows, the discrete mechanics equations will be
developed for the case of a nonseparable potential function o(u) .
where u 1is a separable argument. For heuristic reasons, u will
be limited to the cases u = S18 and u = r T, in Sections 3.A
and 3.B, respectively. The results are then generalized in Section 3.C.

In each of the subsections below, ¢(u) 1is assumed to be a
general function of u , and is not required to be separable. For
example,

or

1/2

are possible choices.

A, Product of Radii Argument

Suppose that ¢(u) 1is a given, nonseparabie function, n=2 ,
and

u=ryr (17)

2
The problem is to find the forms of AT] and AT2 so that equation
(2b) is satisfied. While it is entirely possible to derive the results
below via the rigorous approach of the method of undetermined coef-
ficients used in [1], a heuristic argument which is easier to follow
will be presented here. The solution, of course, is easily verified

to be rigorous.

-k ik
Since F] and F2 are related to AT1

(12), discovery of their forms will lead to those for the ATi .

and ATZ via equation

X4 e
Now the Fi must reduce to the exact forces Fi as At » 0 .
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Therefore the form of the exact forces will give an indication of the
ok

form of the Fi . From the laws of mechanics, ?} is given by the

F} gradient of the potential:

F,=-2% (18)

Assuming that ¢ = ¢{u) , with u given by equation (17), then, by
the chain-rule,

= d

Fpo=- 02 (19a)

ar.

;
__do du i (19b)

T du dr. v, ’
i i
Using equation (17),

Fo=-3r, r} (20a)
“":"‘ d(b r? ! "}\
}2 - ~d'[;|" Y._l rz 200

A%

ke
Both F] and FZ as given by equation (12) must reduce to equations
(20) as At - 0 . This leads (via equations (12) and (20)) to the
qualitative statements that

2

Ay qu T2 Arq v OL(AE)T) (21a)
SO CoF e
/\T:, T Ty Y‘1 [\\f‘2 + O[(At) 1 {(21b)

Replacing the derivative with a difference quotient and symmetrizing,
reasonable forms for the ATi are given by
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t

r2+r2

_ A
ATy = - (59) Ry (22a)
retr
- 11, A

It is easy to verify that equations (22) for the ATi lead to
conservation of energy via equations (2):

rotr
- D2 2 -
ATy + 8Ty = - 5y (575) ()
ritr
A 1T -
AU( % )(Y‘z Y‘z) (23a)
— 1 A¢ ( ] ] 1 [}
= - 5 == (riritr ri-rir,-r,r
2Au V271721721 21 (23b)
I t 1 t
MRS LS LPRELPY
= Db .
o (r1r2 r1r2) (23c)
Since u is given by equation (17),
Au=u' - u (24a)
= r'ré - r, (24b)
and equation (23c) becomes
ATy + AT, = - A (25)

Equation (25) impiies AE = 0 in equation (2b) and energy is con-
served.

As mentioned above, a more rigorous derivation of the ATi also
leads to equations (22), so that these formulae are not limited to
the low-order case. Conservation of angular momentum occuvrs, however,
due to the explicit direction of the forces ?? » Which varies with
the order of approximation [3]. Luckily conservation of angular

momentum as given previously ([1], [3]) is free from explicit dependence
on the form of ¢ .




B. Sum of Radii Argument

In Section 3.A above, the product form for u was discussed.

Suppose now that the argument u of ¢ 1is given by
u=rytor,

Following the approach of Section 3.A, the exact forces
by

Fo= . 46 du fﬁ-
i du dr, r.
i
= (i=1,2)
__de i
du r

i

Comparison of equations (12) and (27) yields

. d : 2 ‘o
AT, = - a%—Ari + 0[(At)%]  (i=1,2)
leading to the guesses
= . b
ATi Au Ari

—l

F.

1

(26)

are given

(27a)

(27b)

(28)

(29)

As in Section 3.A above, it is easy to verify equations (29) for

the ATi lead to conservation of energy:

_ A )
Au Ar1 Au A'"2

_ A -
g (Pprytra-ry)

it

AT] + AT2

1!

it

CDBG e
A (PpHrmryory)

- 52 (u'-u)

A)
A Au

i

:..A(b
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giving AE = 0 1in equation (2b).

~
)

With the ATi given by equation (28), the discrete mechanics
S
forces Fi from equation (12) become

i,
A R
1

e, (1F12) (31)
1 1

As in Section 3.A, equations (29), could be derived rigorously,
and are valid for all orders of approximations; conversely, equations

(31) are valid only for discrete mechanics of [1].

C. General Separable Argument

Except for the factor A¢/Au , equation (29) for the ATi
resembles equation (9), and equations (22) resemble equations (10),
if the radii 8 and r, are treated similar to the ¢ of Section
2. This suggests, via equation (8), a general form for ATi .

Suppose

o(rysros.easry) = ou) (32)

and the argument u 1is given by the separable form

where the ugl) are arbitrary functions. Then ATi is given by
= - é_@. v y i =
AT, i REO Aug (i=1,2,...,n) (34)

where




(n=7y
; REATINGE) a0 e
U, T —omommrmemmns e TN ')
! n k=0 (nk]) 1 s=1 s
n“-l Y
< (1 _uld) (35)
s=k+1 s

(i=1,2,...,n5 i_#1)
similar to equation (8) with u(é) substituted for w(é) .
Since A¢/Au in equation (34) is a constant factor of each
ATi , conservation of energy is easily shown. Conservation in
Section 2 gives, by substitution of the separable form of u for

¢ s

n e

A=Y ) Au(%) (36)
i=1 2=0
Thus, using equations (34) and (36)
23T (372)
AT, + AT, + ... + AT = - =& Au, 37a
1 2 n Au Ly gZg

- 22 () (37b)
= - A (37¢)

so that AFE = 0 in equation (2b).
For n=2 , equations (22) result when

u = u(?)(r])u(g)(rz) (:

LAy
[se]
~

and



u(?)(r1) = vy (39a)
( 5
_u‘g)(rz) =1y (39b)
Similarly, equation (29) is obtained from equations (34) and (35) for
the case
u = u(?)(r])u(g)(rg) + u(q)(r])u(;)(rz) (40)
where
(0) -
u'y (r1) = r (41a)
(0) o .
U ) (Y‘2) = (‘“L}
and
ey =1 (423)
D ry) = v, (42b)
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4, Application to the LEPS Potential

The London-Eyring-Polanyi-Sato (LEPS) potential form [4] for
the interaction of three particles is frequently used in the qualita-
tive theoretical study of chemical reactions [5]. For this potentiatl

¢(r],r2,r3) , the r, are the distances between the three particles

ry = P1p (43a)
Py = Po3 (43b)
r3 = py3 (43c)

and has the form

q’(r]srzsrB) = Q] + Q2 + Q3

- [9B05008-0,0,-0,0,-0,0,1 2 (44)
In equation (44),
(i=1,2,3)
\MERRES (45b)

are two-body potentials, which may be described by standard forms.

The part of ¢ represented by the Q,i is handled easily by the
formulae of Section 2; the Tlast term involving the square-root is,
however, nonseparable and requires the use of equations (34) and (35).
Concentrating attention on the square-roct term, let

[J§+JZ+J2-J J.=dyd

172
pt3=0q05=0pd 370,04 ] (46)

1

¢

and

_ 2, 42 2 ~ .
u = J1 + J2 + J3 - JTJZ J1J3 J2J3 (47)
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For the first three terms in u , n=1 but the subscript on the r
varies. For the last three terms, - n=2 since two radial dependences
are involved. Thus, via equation (35),

Jq-d
N i\ 2 2 1 l '
Au1 = (J]) - J] - =5 (J2+J2)
Ji-J1
- (Jé+J3) (48a)
Ji+J,  JAHd
(11 ' o2 373 f
(J]—J])(J1+J] 5 5 ) (48b)
where
Ji = Ji(r%) (49)
with r% being the value of r at the end of the time step.
Similarly,
Ja+d Ji+d
o — | g - ’! ] 3 3 [
Bugy = (J2~J2)(J2+J2 5~ % ) (50a)
Jq+d Ji+d
T - 1 1 - 1 1 - 2 72 /
Au3 = (J3—J3)(J3+J3 5 5 ) (50b)

Finally, using equation (9) for the Qi terms in equation (44),
and via equation (34) for the contribution from ¢ ,

AT] = 1 ur:% Au (51a)
- (Q2-0y) - H (34-37)
(51b)

Iy, 04K
U A B 1
AT A 7o)




where
o' = ¢(u’) (52a)
u' = u(Ji,Jé,Jé) (52b)
and
Q; = Q(r3) (53)

Similar results for AT2 and AT3 are obtained from equations (51)
via cyclic permutation of the indices 1, 2, 3.

When applied to the low-order discrete mechanics of [1], equations
(51) lead, via equation (12), to the discrete mechanics "forces"

N L
F] C T [r'—r T UTTu vier
11 11 (54a)
JA+d Ji+d ri+r
' 2 2 373 11
pid (J1+J1 - 2 - 2 )] Y\{.*.Y«
A A e
2 r2~r2 u ~u rz—rz (54b)
I 4 J+d T
: Yitdy o YT s o'
] l__
SO I R
3 r3—r3 U ~u r3~r3 (54¢)
Jad, JiHd, AT
L 1791 92 T3t
A (J3+J3 - 5 2 )J Y‘%+Y‘3

As a comparison, the exact forces required by conventional numerical
methods may be obtained by differentiation of equation (44):



2 9
Fyo= - (55a)
8!"1.
aq.
=- -2 (55b)
ar ar.
i
dq T
e[l dedug
L& * qu ar.] T (55¢)
i i i
Since u 1is given by equation (47), then, e.qg.,
dJ ddJ ddJ
du__ 1 1 1
TN I oL P ol P o (56a)
1 1 1 1
dJ1
= [201-05-03] g7 (56b)
Since ¢ = u”2 s
do _ 11
du- 2% (57)
Combining equations (55c¢), (56) and (57), the formula for, e.g.,
f} is given by
dq d, T
o=y L e
Fp=- [dr] gy (20179, J3)dr]] z (58)

Several comments can be made concerning a comparison of equations
(54a) and (58). Firstly, it is clear ?? »~?} as At -~ 0 . Secondly,
the amount of new information per step that is required to evaluate
f? is: Qi¢, Ji . Jé , Jé , and the derived quantities u' and
$' . For F1 » the corresponding information is dQ]/dr1,, J] s
J2 ) J3 ) dJL/dr1 , and the derived quantities u and ¢ .
Therefore, since the dominant factor in computing time is usually
the evaluation of the complicated functions iid derivatives of Qi
and Ji , the discrete mechanics "forces" Fi require slightly less

computational effort to find than the exact forces ?} .




5. Conclusion

The energy and angular momentum conserving formulae of [11-{3]
have been extended to include the class of nonseparabie potentials
with separable arguments. Application was made to the case of the
LEPS potential commonly used in studies of exchange reactions. By
recursive use of the formulae of Section 3, aimost any potential
can be handled which is at the lowest level separable. The formulae
of this work, coupled with those of Section 2, cover all known forms
of model potentials in use in physics at the present time. Although
formulae for certain functionalities, such as ¢(r1,r2) = r1r2 have
not yet been developed, such functionalities fortunately do not

occur in the treatment of physical problems.
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