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ABSTRACT

Conventional numerical methods, when applied to the ordinary
differential equations of motion of classical mechanics, conserve
the total energy and angular momentum only to the order of the trun-
cation error. Since these constants of the motion play a central
role in mechanics, it is a great advantage to be able to conserve
them exactly. A new numerical method is developed, which is a
generalization to arbitrary order of the "discrete mechanics" described
in earlier work, and which conserves the energy and angular momen-
tum to all orders. This new method can be applied much like a
"corrector" as a modification to conventional numerical approxima=
tions, such as those obtained via Taylor series, Runge-Kutta, or
predictor-corrector formulae. The theory is extended to a system

of particles in Part II of this work.
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1. Introduction

The theory of the motion of a system of particles is dominated by
the concepts of the conservation of the total energy and linear and angu-
lar momenta. These quantities are unique in the sense of being the only
extensive constants of motion: i.e., simple additive functions of the
individual particles [1]. Furthermore, they are directly related to the
fundamental transformational invariances of the equations of motion
[2].

Because of the importance of these additive constants of motion
in mechanics, it is particularly disturbing when their values are changed
because of truncation error in conventional numerical solutions. In
addition, since the energy and momenta are easily ascertained from the
initial conditions, it is reasonable to suppose this information could be
used to improve the solution.

In previous work [3]-[4], an unconventional second-order numer-
ical solution to the equations of motion of a system of particles was
developed for the case of a separable, radial potential. The method
was shown to be of comparable accuracy to the third-order Adams' method,
and had the desirable property of exactly conserving the additive con~-
stants of motion [4]. The major disadvantage of this new method - denoted
"discrete mechanics" - is its low order of approximation: third-order
in the coordinates; second-order in the velocities.

In what follows,the "discrete mechanics" presented previously
[4] is found to be the lowest-order member of a family of conservative
solutions. In addition, the theory to be developed shows it to be actu-
ally third-order in the velocities (explaining the comparison in [4] with
the third-order Adams' method). The general formula for an arbitrary

degree of numerical approximation is developed in Sect. 4 and is compared




with results obtained from conventional Adams' methods of orders

3 through 8 in Section 6. Attention will be directed in the present
paper to the motion of a single particle: the theory is extended to
a system of particles in Part II, to be presented in [5].

As mentioned previously [4], the only requirement for
conservation of the total linear momentum (and consequently the
center-of-mass motion) is consistency, which is a property of
every numerical method of order 2 or higher. Since all the
methods to be mentioned (including the conventional Adams'’
methods) satisfy this criterion, conservation of the total linear

momentum will not receive special attention.



2. Definitions

For simplicity, the problem will be restricted initially to the case
of the motion of a single particle in a central field. This case includes
most common two-body interactions [6]: e.g., the motion of the earth
about the run.

Suppose the particle has mass m and position vector
r=<X,Y,Z> (2-1)

—
with respect to the origin of the central field. Let v denote the velocity

of the particle

oo% X 4y dz
- - fodt 4t

dt dt g (2-2)

-

Newton's second law of motion specifies r(t) as the solution of the second-
order ordinary differential equation

= .
d —
m == = F() (2-3)
dt

L

where the force field F(r) is given as the negative gradient of a central

potential ¢(r):

Fr) = -0 (2-4a)
or
do, r -
= = (3 (2-4D)
where
8 S 9 8 -
a?‘"<ax' 8Y’8Z> (2-5)
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is the gradient with respect to r, and

e N S G T (2-6)

Y S
Therefore the exact solution for the position r' and velocity v' at any

later time t' = t4At is given by the solution of the differential equations
Y >

(2=3) and (2-4) with initial conditions r(t) and v(t).
Since ¢ is differentiable and a function of r alone, the energy E and

angular momentum L are conserved [2], i.e., are independent of t.

For the present problem,

E = }im(;?) + &(r) (2-7a)
-~ S
L = m{rXv) (2=7b)

where + and X denote the scalar and vector products, respectively.
Central potentials are the most common form of interactions. Typ=-

ical examples of &(r) that occur in practice are: (a) gravitational,

GMm
o) = == (2-8)
where GM is the gravitational constant for,e.g., the sun; and (b) inter-
molecular interaction in a dilute gas characterized by, e.g., the Lennard-

Jones potential [7],

12 g6
o) = 4e[D - )] (2-9)

r

where ¢ and care constants of the gas involved.



3. Conventional Numerical Solutions

Among the most popular techniques for solving the system of dif-
ferential eqs. (2-3) and (2-4) numerically are truncated Taylor series,
predictor-corrector, and Runge-Kutta formulae. The Taylor series so-
lution is constructed by noting that, when no explicit time dependence

occurs in the equations of motion,

d _dr 8 dv, B (3-1a)
dt ~ dt or = dt ov
—
= 0 F 0
=V oT * m ov (3-1b)
—
Egs. (3~1) may be used to obtain all higher time-derivatives of r in
terms of the initial conditions r and v: e.g.,
3.&.. -
dr dF
a3 T oat (3-2a)
2 NN
1 d¢o = 1 1de d o e v
= - (T MR - r -
(r dr)V + [r dr 2 ]( ) (3-2b)

Further derivatives may be developed recursively using egs. (3-1).
pn_ <

By writing r' and v' in the form of Taylor series, one has

= - = F (At)2 a’r (At)°
r'' = r 4+ vAt + = + + e (3—3a)
m 2 3 6
dt
-~ = F a’r )’
v o= v o+ o= oAt EED (3-3b)
m 3 2
dt
Then, because vector dependences only on r and v occur (see (2-4b)

-

-~
and, e.g., egs. (3-2)), both r' and v' can be written in the form




B

':fr+fv (3~4a)
+ f v (3-4b)

where the fi are scalar functions. This observation will be used later
in Sect. 4.
- — - -
Predictor-corrector approximations r(': and v(': forr' and v', respec-

tively, can be written in the form

r' = r' 4+ &r (3-5a)
C p C

v = v 4+ v (3~5b)
c p c

where

st = o (AEF@E') - F')/m (3-6

o= v rc b 3~6a)
BV, =y DEE(r)) - Fp)/m (3~6b)

In egs. (3-5) and (3-6), r', v', and Pi) are "predicted" approximate
values forr', v', and F' = F(r'), respectively, obtained via interpola-
tion over previous steps. (In the case of an Adams' method, rig, vi@,

P —

and Fi) are obtained using only r, v, and previous values of the forces.)

The "corrector" coefficients Yo and vy are usually chosen to eliminate
the leading terms in the truncation errors of r' and v'.
S —r — ——" p

Since Mc and 5VC are implicit in Jr('3 via F(ré), eqs. (3-5) are im~

o ~

plicit in ré and must be solved by an iterative process. Normally this

B
1

is done by simple successive substitutions, starting with r‘c = r'.

-

If this process is to converge rapidly, ri} must be a good approximation



i

tor'. Assuming the method is n-th order, i.e.,

?; + o[t (3-7a)

=
1

-—

v o= v+ O[(at

-

)™ (3-7b)

-,

the "predictors" ré) and v'p are usually at least (n-1)-st order:

f = + o[an™ (3-8a)
' 3; + ofan™ (3-8b)

< b
i

It should be noted that, if the predictor-corrector system is con-

structed using only the initial conditions and information (such as the
=N - — PC

forces) from the differential eqgs. (2-3), then rI'D, v'p, ré, and v' are
linearly dependent on r and v in a way similar to egs. (3-4) for r' and

-

v',
As an illustration of the predictor-corrector method, the lowest-

order Adams' formulae result for the case n=3, where

= 2

= T, F (4t _
rp = r + vAt + i (3-9a)
-~ - I

v = v 4+ = At (3""9b)
p m
F' = .F:—) 3=-9¢
b (r) (3-9¢c)

) - F)/m (3-10a)




sv_ = S (F(rl) - F)/m (3-10b)

Substitution of egs. (3-9) and (3-10) into egs. (3-5) gives the following

implicit equations for ré and v('j:

= 2 2 ‘
=TT F (At) oty ==, _ 3 -
rlo= 1 +vAt+m St (F(rc) F)/m (3-11a)
vio= v A+ 5 (F(rc) -~ F)/m (3-11b)

-

The truncation errors in ré and vé are given by (see, e.g., [8]):

- 4 4~
rt o= ! _ay dr + O[(At)S] (3-12a)

c 24 4

dt

3 .4~

- - 4:

v' = v - (L) (—i—l:“ + O[(At) ] (3=~12h)

C 12 dt4

In general with methods of this type, special starting and step-size
changing formulae are necessary, although of course this is not the case
for the simple n=3 formulae above.

Runge-Kutta formulae for second-order differential equations, although
easily applied, are more complicated in form, and will be of little heuris-
tic value in the discussion that follows. For this reason these methods

will not be discussed in any detail in the present work.



4, Conservative Solutions

Since conventional numerical methods of order n conserve the
values of E and —E only to terms of O{(At)n], it is of interest to
find a method which conserves E and -IT to all orders, i.e., exactly.
For these quantities to be maintained at their initial values for all steps,

AE and AL must vanish, where

AE = E'~-E (4~1a)

AL = L' - 1L (4-1b)

AE = —m(v'ev' = vev) + Ad (4-2)
where

Ap = ¢(r') = (r) (4-3)
and

AL = m(r'X v' - rX v) (4-4)

For conservation of energy and angular momentum, egs. (4-2) and (4-4)
must vanish for all values of r, v, and At,

The objective in this section is to derive formulae for numerical

i

estimates r('a and v('a for r' and v' which exactly satisfy the equations

AE = 0 and AL = 0. Suppose that r; and v'a are approximations to ?'

and v', respectively, obtained, e.g., by any of the methods of Sect.

i

3 above. In analogy with the predictor-corrector methods, define 5re
and sv_ b
6Ve y

r' = r' 4+ &r (4-5a)
e a e




-10=~

i

v' o=
e

' + 5V (4"‘5b)
a e
In the above equations, as with the "correctors" of Sect. 3, §r and

6-\;8 are of the same orders in At as the truncation errors in r; and v;,
respectively.

Two formulations of conservative numerical methods will be developed.
In Sect. 4A below, —;é = -;z'a (i.e., 5?6 = —6) and é-Je is determined so that
conservation of energy and angular momentum results. In Sect. 4B,
é?ejs expreised in terms of 6;e by assuming a truncated Taylor series
forr', and 5ve is determined via conservation of energy and angular
momentum,

For the purpose of illustration, the Adams' predictors of egs. (3=9)

will be carried through as examples for r; and vé, i.e.,

- 2
- - - At)
r' = r + VvAt + E (@ (4-63a)
a m 2
._>.I - F
v = Vv + = At (4-6Db)
a m

-

Of course, the Adams' correctors of eqgs. (3-11) would result for r'e
and v('a from the choices for 6re and 5ve from egs. (3-10), but these
values would not satisfy the conservation principles exactly. Note
that there is no requirement that ?(_'i and ;éa be obtained from explicit

formulae: only their values are needed.

A. Tirst Formulation

The equations of motion (2-3) and (2-4) are a system of second-
order ordinary differential equations with first-derivatives absent. It

is therefore possible to obtain an estimate r'e of r' independently of

—
]

that for v'. (For example, in eq. (3-11a), vC does not occur). Suppose
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—n -

r' and v', respectively,and take r'e =

P e

ré and vcji are approximations to
r 1

(i.e., set 6re = 0); vé is then given by eq. (4-5b), and the problem

is to determine &vg SO that conservation of energy and angular
momentum results.

a

——

—

The calculated change A o in L over the time step At is given by

AL /m = r' Xv' = rXvy (4-7a)
e e e
= [r'Xv' = rXv] +r' Xgsv (4-7b)
e a e e

with the unknown part 6ve of v'e isolated in the second term of eq. (4-7b).
Taking the cross product with respect to r'e from the left gives

— — — — e

r' XAL /m = [r' X(r'Xv')-—?'X(er)]
e e e e’ a e

+ort X (0! X sv )
e e e

(4-8)
The vector triple products may be decomposed via the formula
aX(bXc) = (a°*c)h - (a-° b (4-9)
giving for eq. (4-8)
FUXAL /mo= B o~ (f)P v+ ert (4-10)
e e e e
where
Y - — - —-— —
R = re>< (réxvé)-réx(rxv) (4~11a)
= [t vt = (t' - wr]
e a ¢ (4-11b)

-[e")™ v - (ré3 * r)v]
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and

c = r' -8y (4-12)

Eg. (4-10) may now be solved for the value of 5ve that makes

T'XAL /m = 0 (4-13)
e e
namely
5._. 1 - -~
v, = (ré)z [ere + 8] (4-14)

where € is arbitrary and p is given by eq. (4-11).

i,

For éve given by eq. (4-14), the components of ALe perpendicular

-

to ré vanish by eq. (4-13), and only

- -él —‘/ ' 2—‘|
ALe/m = (r«AL /m(ry)7)r ] (4-15)

remains to be considered.

-

Since 5Ve enters eq. (4-7b) only via the cross product re'>< 5ve »

this component of ALe in the r'e direction cannot be affected by the choice

—

of 5ve. It will now be shown this component of ALe vanishes from other

considerations.
Now,
r' - AL /m = r' + [r' XV -1 xV] (4-16a)
e e e e a
= - r(‘3 « (r X v) (4-16Db)
= - [re'3 rv] (4-16c)

. ]

where [r'e r v] denotes the scalar triple product of r(‘a, r, and v,
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This quantity vanishes, and consequently

r' AL /m = 0 (4-17)

e e
if and only if r'e, r, and v are linearly dependent. Assuming r‘e = r'a
is obtained by using one of the methods mentioned in Sect. 3, it was

remarked in Sect. 3 that these estimates of r' preserve the property of

the exact solution of being a linear combination of the initial conditions:

r' = f. r + f_ v (4-18)

Thus, assuming the estimate r(‘a of r' has the property given in eq. (4-18),

re'a' r, and v are linearly dependent, and eq. (4-17) is satisfied. Coupled

with this assumption, the choice of 5ve given by eq. (4~-14) leads to

e

AL = 0 -
Le (4-19)
exactly conserving the angular momentum,

In eq. (4-14), only ¢ remains unknown. The energy change over

the step At is given by

1 1\ 2_ 2 _
AEe =3 m ((ve) -v ) + A¢)e (4-20)
where
Ay, = ¢(ré) = o(r) (4-21)

Substitution of eq. (4~14) into eq. (4~5b) and squaring gives

' 2 ! 2 2 Al _‘n - Au
(vg) = (v + [e +2(r - ve+2(p" v)) (4-22)

AR
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-

since, by eq. (4:-11),1*23 * g = 0. Inserting eq. (4-22) into eq. (4-20)

gives

. . .=.| - _s' 2 '2
AE = [e" +2(c, - viet+2(8-v) + 8 /(re) ]
1 o 2 -
+ Zm((va) V) o+ Ady (4-23)

Requiring that

AE = 0 (4-24)

(4-25)

This equation may be solved for ¢ by several routes, including
the quadratic formula, functional iteration, or Newton's method.

If _\7;1 has an isso_fiated error of O[(At)n] and ;; is exact to at least
this order, then 81 B and e are all of O[(At)n], and eq. (4-25) is
only weakly quadratic for small At. Solving for e via the linear term

in eq. (4-25),

2
e = - _A_g_e_ (4-26)
where
A= 2(g+Vv) + 8 /(r')2 + (r )'Z ((v! )2 - v2 + ) (4-27a)
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B = 2r' « ¢ (4-27b)

Since A and B are independent of € and € = O[(At)n], eq. (4-26) may be
solved iteratively starting with ¢ = 0,

When ?cla . T/; = 0, eq. (4-26) breaks down, and there are two equal
and opposite solutions to eq. (4-25), given by

€ = + B (4-28)
Both solutions are physically meaningful, one corresponding to the for-
ward motion and the other to the backward motion. The correct root can
only be determined by consideration of the absolute time scale. This
phenomenon occurs because the computed solution contacts a caustic
surface of the equations of motion: the exact solution has the same
type of ambiguity at the similar point ?' . ;‘ =0, i.e., a radial turning=-
point of the motion.

Taken together then, eqgs. (4-5b), (4-14), and (4-26) represent a
complete system of equations from which _\;é may be found, given ?c;'
which a fortiori conserves energy and angular momentum. Since the

-

exact r' and v' also satisfy AE = 0 and AL = 0, the equations given above

—iin

-
also represent a complete system for determining v' givenr': i.e.,

-_—

if r'e =r' then vé = v'. This absence of truncation error in v('9 will be
discussed more fully in Sect. 5.B.
As an illustration of the use of the above equations, suppose that

r(‘e is given by the n = 3 Adams' corrector ré of eq. (3-11a), and vE'i

is given by the corresponding Adams' predictor of eq. (3-9b):

= 2 2
.;.' _ - -z E— (At) (At) é_ﬁ —.>. _
roo=r o4 v At + - g (F(re) F)/m (4-29a)
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At (4-29D)

=Rkl

The first step in the calculation is the determination of the value for ?e
by iteration of eq; (4-29a), which_:equires reevaluation of E(};) every
iteration. Once ré is found, and v; formed from eq. (4-29b), Eis cal-
culated from eq. (4-11). The potential term q)(r'e) is then evaluated,
and the constants A and B calculated from egs. (4-27).

After these preliminaries, the quantity ¢ is now found by iterating

eq. (4-26) to convergence using the starting value € = 0. The iteration

to convergence is important because energy is conserved (i.e., AE = 0)
only to the extent e is found. The value of v('a is finally obtained via

substitution of € and g into eqgs, (4-5b) and (4-14):

_\;' = v 4+ &v (4-30a)
e a e
= v+ [er’ 41/ 0)? (4-30b)
a e e

i

The quantities r'e and v'e represent the computed solution at the

time t' = t + At.

B. Second Formulation

In Sect. 4.A above, it was shown that the energy and angular

momentum conservation conditions (4-24) and (4-19) were sufficient

—

to determine 5ve (and hence vé) given an estimate ré forr'. This as~
sumption that r'e is obtained by some outside numerical approximation,

e.g., an Adams' corrector ré, led to egs. (4~14) and (4~26) for 5ve.

-l
Since, however, 5ve is an estimate of the error of vé, it is also an

-

estimate of the next term in the Taylor series of v', i.e., proportional

to drl r/dtn. This information could have been used to improve the order
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-y

of approximation of r'as follows.

Suppose that ?' and ;' are approximations to ?' and ;' with errors
of O[(At)n] and O[(At)n_l], respectively. Let 5?6 and 6-\;3 denote the
truncation errors of ?; and ;él, respectively:

—— -

r' = r' 4 or (4-31a)
a a

' = v+ v (4-31D)
a a

— -
Expanding 5ra and 5va in powers of At gives

N n=
or = AP L 4 opan™ (4-32a)
a n
dt
- n-1 dn;~ n
Sv_ = B_(At) = == + O[(At) ] (4-32b)
a n dtn

- e
where An and Bn are the truncation error coefficients of r(_'a and v;, re=-
—

spectively. Examination of eqs. (4-32) shows that, because r' and

-

v' have related Taylor series expansions,

— - 1

sr_ = (B0BV_ o[t (4-33)
where

v = A /B (4-34)

is the ratio of the truncation error coefficients. (Note that if rc_'3 =r'
and vé = V;O are a pair of "predictors", - = 'VO/VI is the ratio of the cor-

responding "corrector" coefficients). Eq. (4-33) thus gives a lowest~
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— -

order approximation for 6ra given éva.

-

Suppose r‘e and v(’a are to be constructed via

r' = r' + §r (4-35a)
e a e
v' o= v+ v ' (4-35b)
e a e

where r' and v' are as above. Clearly if &r = 6r_ and év_= dv_,

a a e a e a
eqs. (4-35) correspond to eqs. {4-31), and r(‘a and vé are exact, Sup-
pose 5ve is left undetermined, and 5re is determined via

e =

51"8 = rvAt (SVe (4:"36)

Comparison of egs. (4-36) and (4~33) shows that if 5re approximates
- n
6ra correctly except for terms of O[(At) ] or higher, satisfying eq. (4-36)

n+l -~ .
exactly generates an error of O[(At) + ]in ré, since eq, (4-36) corre-

.

sponds to truncating the error expansion of 6ra:

-

R oy (4-37)

The use of eq. (4-36) will now allow simultaneous determination of ré
and v“a via conservation of energy and angular momentum,

Substitution of egs. (4-35) and (4-36) into eq. (4-4) gives

= "Xy - *xé e o -
ALe/m [ra v rxXv] + g oV (4-38)
where

Q = r - zyAt ‘VI (4"39)
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Eq. (4-38) is the analog to eq. (4-7b). Since the form of eq. (4-38)

is identical to that of eq. (4-7b), the same method of solution for éve

suffices.

Now, since
(4—40)

- =

Q-ALe/m = 0

because ¢, ra, and v are all linear combinations of r and
cussion following eq. (4-17)), the value of éve which conserves angu-

—n
v (see dis-

lar momentum is given as the solution to the equation

a X ALe/m =0 (4-41)
Similar to eq. (4-10),
axALe/m =8 - adv tea (4-42)
where
B = aX [rax v, rx v] (4-43a)
- - < i —_ =N = =N - -
= [la-v)rl = o vr]=fla-r))v ~lg-r)v] (4-43Db)
and
€ = q° ﬁve (4-44)
is unknown, The solution to eq. (4-~41) is then given by
5_\; - L o 5 (4-45)
o = g2 lea * 8]

completely analogous to eq. (4-14).
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-

The unknown part of 5ve is now localized in the quantity e, which
will be found from the energy condition. Substitution of eqs. (4-35),
(4-36), and (4-45) into eq. (4-2) gives (after setting AE = 0) the following

equation for e:

€2 + 2(;“:7\;)6 +
+ [Z(E- 3;) + 62/012 + a2<(v;)2— v° +gﬁg)] = 0 (4-46)
where
Ap = d(r)) - &(n) (4-47)

Note that A¢ is implicit in € through r('a: in contrast to eq. (4-25), eq.
-l -

(4-46) can be solved only by iterative means. Since 5ve is O[(A’c)n 1]

from eq. (4-32b), so are € and B. Therefore eq. (4-46) is only weakly

2 —
implicit in e (i.e., to O[(A)-""2]) and

A
c = - —iBQ‘Q (4-48)

may be solved via functional iteration starting with € = 0, where

- - 2
A = 28" v;) + Bz/a2+' a (vg - VZ) (4-49a)
B = 2(g* vé) (4~49Db)
C = Zaqu)/m + ez (4-49c)

The sequence of steps necessary for computing the conservative

—-— -

—
solutions re'a and v('e are as follows: first the approximate values r'
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. — -

and v'a are calculated, and then g and g are evaluated from egs. (4~39)
and (4-43b). The constants A and B are obtained via egs. (4-49), and
C is evaluated using r(ji for r; and_\e = 0. A new approximation isAcon-
structed for ¢ using eq. (4-48), 5ve is formed from eq. (4-45), 5re

is calculated from eq. (4-36), and r'e from eq. (4-35a).  Using the new
values for € and r('a,G is reevaluated, and a new iteration of eq. (4-48)
started. This process is continued until a convergent value for e is
obtained. The corresponding values of ?E'E and “\Z} will conserve angular
momentum to within round-off error, and energy to within the degree

of convergence in €.

For the special case when n = 2 and

r:a = r + vAt (4-50a)
vl o= v (4-50Db)
a

the truncation errors are given by

2 2
- - 3
() ] (4-51a)
a 2 2
dt
. - ZPA
o= v oAt Ly ol(an?] (4-51D)
a at?

and so = 1/2+1 = 1/2, and

(4-52a)

at
+
<

-
o =

(4-52b)

ol

B::

These values of ¢ and g lead to




P

6ve = g¥qg (4~53)
where
2
e*x = ¢/y (4-54)

The value of e* is obtained via iteration of

2, 2
c% = - 2A¢/m:3 (e%) (4-55)

2(g* V)

This n = 2 conservative method represented by egs. (4-50), (4-52),
(4-53), and (4-55) is equivalent to the "second-order discrete mechanics"
of [4], where instead of 5ve the discrete mechanics "force" F* was

defined: the transformation is given by

-

sv_ = OLF */m (4-56)

—

As an additional illustration, consider r;l and v'a given by then= 3

—

predictors rp and vp of egs. (3-9):

— —— = 2
r' = r + vAt + Ean (4-57a)
a m 2
..._\| b F
v o= v 4+ — At (4=57b)
a m
For this case, = 1/6 + 1/2 = 1/3 from eqgs. (3-10), and
— A' _A‘E .A'
o = ra 3 va (4~58a)
- 2At At 2 ?
= ¢ 4 5, e F (4-58b)
3 6 m
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—

The value of p is best obtained via substitution of eqgs. (4-57) and (4-58)
into eq. (4~43b). The values of A and B are obtained from eqgs. (4-49),
and eq. (4-48) is iterated to find . At each stage the iterate for ¢

—

is found, 6-;e formed, and ré calculated from

5£e = — &v (4-59)

and eq. (4-35a). The magnitude r'('e is then found, and cp(ré) evaluated.

A new iteration is then performed.
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5. Related Theory and Remarks

The formulations given in both Sects. 4.A and 4.B conserve
the energy and angular momentum at their initial values - an ad-
vantage not enjoyed by conventional methods. In addition, these
conservative methods enjoy improved truncation error properties,
and close ties with the exact solution, which will be discussed

in the next sections.

A. Truncation Error

For the first conservative formulation of Sect. 4.A, the value

-

of r'e obtained is of course identical to that of the underlying ap-

r—

proximation r', and has the associated truncation error. For ex-

— -

ample, if ré = r(':, the n = 3 corrector of eq. (3-11a), then by

eq. (3-12a),

4 4~
—n = 5
roe g - odr oAt 7] (5-1)
e 24 dt4'

Note, that since no approximations were made in deriving

egs. (4-14) and (4-26) for "v(;, except that the r'e used was an

-

inexact estimate of r', there is no associated truncation error

PSS

in \7('3 The only error in v‘e is that propagziced from that of the
previous steps and the truncation error in r('e: this will be dis~-
cussed more fully in Sect. 5.B.

For the case of the second conservative formulation of Sect.
4.B, eqg. (4-36) holds for the exact éia and 63&1 only if ?‘ is
a polynomial of degree n or less in At (compare eqgs. (4-33) and
(4=36)). Therefore the use of eq. (4-36) in general corresponds

to truncating the Taylor series expansion of r' at the n-th term,
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1
and generates a truncation error of O[(A’t)n+ ]:
—n - 1
ro= ! o[(at™] (5-2)

Once eq. (4-36) was assumed, the derivation of vé followed just
as in Sect. 4.A , with no further approximations: As in Sect.

4.A , there is no associated truncation error in vé. The only error

e

in v' is again that propagated from previous steps or from the error

-

inr

o -0 -

=

Knowing that ré as calculated from the second formulation of
Sect. 4.B satisfies eq. (5-2), the corresponding local truncation error

coefficient En will now be derived, where

+1
+
- = ntl d r n+2
rto=rg + En+1 (At) dtn+1 + O[(At) ] (5-3)

Suppose that r; and vE'i have truncation errors given by egs. (4-32),

i.e.,
sf = r' - r' (5=~4a)
a a
n- n+ls
d . -
= A "R oA ™ I L oran™?] (5-4b)
n n n+l n+l
dt dt
and
Va =z v - Va (5~5a)
n-= n4+l-
= B (A" 191__;; + B (on)" dn+1 + o[ty (5-5p)
dt dt
where A_, A and B , B are the truncation error coefficients
- n’ _n+l n’ "n+l

of r; and vé, respectively, Comparison of egs. (4-31) and (4-35),
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together with eqgs. (5-4) and (5-5), leads to

—

or = o[an™ (5-6a)
’Je = o)™ (5-6b)

Now suppose further that the only error introduced in the calcula-
tion of —;'e and 5_\;8 in Sect. 4.B was that due io the use of eq.
(4-36): i.e., the use of an inexact value for r'e. Since by eq.
(5-2) the error in ?é is O[(At)m”1

as a Taylor series and by egs. (4-43), (4-45), and (4-47)) an

], this induces (by expanding ¢(r:3)

—
error of the same order in 5V

— —cn
bv_ = Gv_ 4 o[t (5-7)

Comparing eqgs. (5-7) and (5-5b) gives

- _ n—=> n4l =
5v = B ()"t &L 1 ()t @ + o[y (5-8)
e n dtn n+l dtn+1

The form of 6?e may now be obtained through the use of eq. (4-36):

6re = V(At)éve (5-9a)
n—= n+l-=>

=t S L B ™ L L oan™?) (5-9p)
n dtn n+l dt1r1+1

Noting that , = An/Bn'

- n> A B n+l-=>
6re _ An(m)nd:; . an+1 (At)n+1 d n+1r
dt n dt

+ of(at) (5-10)
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Comparing eq. (5-10) with the exact eq. (5-4b) for 5ra gives

- ~ n+ls
or = or + E_ (o)™ L L open™t (5-11)
a e n+l n+l
dt
where
En+1 = An+1 - Aan+1/Bn (5-12)

Finally, egs. (5-7) and (5-11) may be translated via egs. (4-35) into

-

—
error equations in ré and v(‘_}:

n+l =

= = n#l 4y |42 _
= rl 4+ E () —3 + ollen ] (5-13a)
dt
Vo= v olaty™ (5-13b)
where En+1 is given by eq. (5-12).

As an example of the use of eqs. (5-13), consider the n=2 con-
servative method of eqs. (4-50), (4-51), and following equations
of Sect. 4.B. This method, as remarked previously, corresponds
to the "discrete mechanics" of [4]. For ‘;é and -\7; given by egs.

(4-51),

- 2 2= 3 3~
r' = r'a + (A;) d Zr + (Ag) d3r + O[(At)4] (5-14a)
dt dt
2= 2 .3
- - d t d
Vo= v+ o zr + (Az) >+ o[at)’] (5-14b)
dt dt

or

A, = 1/2 (5-15a)
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A3 = 1/6 (5-15b)

B, = 1 (5-15¢)

B3 = 1/2 (5-15d)
and

v = AZ/BZ (5-16a)

= 1/2 (5-16b)

Substitution of egs, (5-15) into egs. (5-12) and (5-13) give (n=2)

3 3~

- - d

rs ! - %L =y ofnt)*] (5-17a)
dt

v o= 3{; + O[] (5-17b)

and so the "discrete mechanics" of [4] is a third- not second-order
method, This result explains the effectiveness of "discrete mechanics"”
when compared to the third-order Adams' method of egs. (3-11)
in [4a].

As a further illustration, consider the n= 3 formulae of egs.

(4-57) for r'a and Vzla' For these predictors

v ' (at)” d t
dt dt 4
.\;'— -\;' (At)z d3-; (At)3 d4—; + O A'E4 5-~18b
= Va 2 3 g 4 [(a6) 7] ( )
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or

A3 = 1/6 (5-19a)
A4 = 1/24 (5-19b)
83 = 1/2 (5~19c)
B, = 1/6 (5-194d)

Combined with egqs. (5~12) and (5-13), egs. (5-19) give

o 4 4~
ooy - dro O[(At)s] (5-20a)
e 72 4
dt
—J.I —>l 4
vi= v+ o)) (5-20b)

for the errors in the corresponding conservative solutions r' and
e

—

v'e of Sect. 4.B. Note that the use of the Adams' corrector formula
of eq. (3-10a) leads to a truncation error coefficient of - 1/24
in eq. (3-12a), while the conservative solution of Sect, 4.8B

gives a smaller truncation error coefficient of -=1/72 in eq. (5-20a).

- -

In addition, vé is a fourth-order approximation to v', while v'c

—

of eq. (3-11b) is only a third-order approximation to v'. Thus the

conservative formulation of Sect. 4.B, when used with the Adams'

-~ —
| 1

- -
predictors rp and vp for re; and ve" , 1s superior to the
Adams' correctors from the standpoint of order, truncation error,

and conservation of the constants of motion.




B. Propagation of Error

..30_.

In the case of the predictor-corrector methods of egs. (3-5),

the explicit dependences of 5rc and v on At in egs. (3-6) guar-

-

antees that any error (except round-off) made in evaluating these

guantities will be unimportant in the limit as At — 0,

r' :‘;"_"“
n( p) r

' and V= v
D ﬁ(vp)

- .
|}

—
- V;; are introduced (via truncation

Suppose errors

error, error in the initial conditions, etc.) in r' and v;, respec-

tively. Then the propagated errors in ré: and v'c, respectively,

are given by

—

n(ré)

i

n(v.)

- e 2

ﬂ(rp) + Of(at) ]

—h

n(vp) + O[At]

In the case of an Adams' method

r' =

- N
r

<
i
< |

1l

—
i

3
=
"

=
<

az
1

L VAL + O[]

+ O[At]

—

nr) + O[At]

n(v) + O[At]

egs. (5-21),

PO

n(r) + O[At]

-

nwv) + O[at]

-

(5-21a)

(5-21b)

(5=22a)

(5-22b)

(5-23a)

(5-23b)

(5—24a)

(5-24b)
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giving the errors in'rc; and vé in terms of those in r and v, respec-
tively. Therefore, for the case of an Adams' method, in the limit

— -

At -0 the errors in r and v are propagated with unit coefficients
in -rl and —\;'C, respectively. This is usually phrased in terms of
the statement that for an Adams' method, the principal roots of the
asymptotic (At -»0) stability matrix have value unity.

Because the forms of the Taylor series and Runge-Kutta
methods are similar to egs. (5-22), this property of unit feedback
of the errors in ? and \? into the calculated values for ?‘ and :'
(for small At) also holds for these methods.

The question is now whether this desirable property of unit
(and no more) propagation of the errors in ? and ; occurs with the
conservative formulations of Sect. 4 for small At. Suppose, as

-l PN
above, that r; and v'a satisfy equations similar to (5-22):

ré = r + vAt+O[(At)2] (5-25a)
v; = v + O[at] (5=25Db)

and errors 1(r) and n(v) are introduced into r and v, respectively.

—

4

Consider first the formulation of Sect. 4.A. Then ré = r('?l

and by expanding in Taylor series,
. ar' . 8_;' . i
r') = (=) - Hr) + —=) - nv) + Of Z] (5-26a)
L e or -\-; ov .;- n
- (-5}-:% L)+ (—5-5)? - n(v) + O[n’] (5-26b)

—

where a‘a/ab denotes the Jacobian matrix of a with respect to b,

with elements
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oa,
) —
.. 0b,
1] J

jeb )l Ras
U

( (5-27)

and (Br;/ar)-\-; and (a} ;/av)? denote derivatives of r; with respect

to r and v, respectively, with r; and Vela treated as functions of

ey

r and v. From eq. (5-258):

a?g

(jg;lé =1 (5~28a)
o 2

(7§§xé = (M) + Of(At)7] (5-28b)

where I is the identity matrix. Eg. (5-26b) may be written, then,

— — S e

qcl) = () + ofat + %) (5-29)

Eq. (5-29) is still satisfied for r; given by the second conser-

vative formulation of Sect. 4.B, since

—

. ?; + O[at] (5-30)

1
e

by virtue of eqgs. (4-35a) and (4-36). Therefore both conservative

formulations preserve the property of unit propagation of error of

- —

r into ré. The asymptotic (At - 0) stability properties of the con~

—

servative ré are thus identical to those of the underlying approx-

imation ré.

For the case of v' of Sect. 4.A, the error n(vé) induced by

— — — — — ——

errors 7(r) and 7n(v) inr and v is given by

A
nwy) = ( 8?)6'. nr) + (5 >? " nv) + O[n]

o

(5-31)

<o
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Since uv(‘a is given by eq. (4-5b),

9 Ve'3 av(;_l 9 &v
= = (= + =
v v
"y 2,
.= ot Gl
r r r

Because egs. (5-25) are assumed to hold,

-

ov'
a
pre ) = O[At]
v
5"
—2) - 1 + O[at]
ov -

—
r

and egs. (5-32) become

8v'e 85ve
Gel. = GFo), + ol
v v
] vé 85-\76
== )? =1+ (33 {?4+ Olat]

Relations (5-34), when substituted into eq. (5-31) give

.- . a6r . a8y

-—

- s

) = W)+ GED) a4 s )

(5-32a)

(5-32b)

(5-33a)

(5-33b)

(5-34a)

(5-34b)

(5-35)
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Since the objective is to show

— — — —

n(V'e) = n(v) + O[At+n2] (5-36)

(preserving the asymptotic stability properties of vé), all that re-

mains is to prove

ooV

(=) = O[At] (5=37a)
v

85}78

s )'F = O[At] (5-37b)

ar' 8?'
B, B e 5 . a _
G = ot T o ot Tt et ot (5-38a)
v e a
8_ 9
=33 +a‘r’é + O[At] (5-38D)
(where multiplications occur after differentiations).
Similarly,
or' oV
9. 9. o_.,__¢ 9_._a
(av)? =%y T ot ov T ov ov (5-39a)
d d
= 3ot Gor + O[At] (5-39b)
a
Carrying out the differentiations of_é via eq., {4~-11) gives
88 9B -
5?; = -o= + O[At] (5-40a)
= VF - riI + O[at] (5-40b)



where

- el
rr = 1r -°* Vv

-l
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(5-41)

and ab denotes the dyadic matrix with components

(@ab)., = a.b,

ij i7j

(5-42)

Using eqgs. (5-38) for (85/8;")? gives, together with egs. (5-40),

8. 8B . oB
(a?x§ = o% '*a?; + Ofat]

O[at]

(5-43a)

(5-43b)

— -
A similar effect occurs for (BB/BV)}“because of antisymmetric con-

-

-—
tributions from terms in v and v;:

98 9B
ov' = v T O[at]

a

— — 2
= rr - r I + O[A‘t]
and so

S - -

B, _ 9B aB
‘av?? = v T a?é + Ofat]

n

o[at]

(5-44a)

(5-44b)

(5-45a)

(5-45b)

Implicit differentiation of eq. (4-25) gives for the contributions

from ¢
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pe 8¢
ar' ot T Ofat]
e
rF
= 7= + Oat]
rm
and
ov: T T oV + Ofat]

:—‘;—V'*'O[At]

(5-46a)

(5-46b)

(5-47a)

(5-47b)

Substitution of egs. (5-46) and (5~47) into eqgs. (5-38) and (5-39)

for € gives

¢ o€ 0€
GF)~ = oF *op t OlAt]
v e
= O[At]
and
9¢ e de
3. = o5 *tay t+ OlAt]
r a
= O[At]

85\7 —
e, _ L = 08< 9B n
F L7 T2 [Fo G+ Gl 1+ ol ]
v (re) v v

and

(5-48a)

(5-48Db)

(5-49a)

(5-49b)

(5-50a)
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e, . 1 Mo L 2B _
(5= )? T [r <av‘)? + ) ]+ ol ] (5~50Db)
e

Substitution of eqs. (5-43b), (5-45b), (5-48b) and (5-49b) into

eqgs. (5~50) give (since n=2)

8536

(5= ). = O[At] (5-51a)
v

8536

(53 )F‘ = O[At] (5-51b)

These relations ensure that (viaeq. (5-35)), eq. (5-36) holds, and

.

there is only unit reintroduction of the error of v into v'e.
The development of egs. (5-26) through (5-51) also holds for

the second formulation of Sect. 4.B with substitution of r; for

-
1

re. Thus both conservative formulations preserve the desirable
asymptotic (At — 0) stability properties of the underlying approx-

- —
imations r; and v; of only unit propagation of the errors in r

-

and v. This occurs because of the antisymmetry with respect to inter-

- P -

-
change of r'e and v‘e with r and v in the conservative relations.

C. Comparison of the Two Formulations

Two conservative formulations have been proposed, those of
Sects. 4.A and 4.B. The two methods differ in the handling of
~the estimate r'e for r', and have correspondingly different charac—-

teristics.

The formulation of Sect. 4.A enjoys the advantage of using
- =

a conventional method to find an approximation r' = r;i forr',
e
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and is thus "explicit" in _;'e' maintaining the "without first—-deriva-
tives present” nature of the equations of motion. As a consequence,
eq. (4-25) is a simple, explicit quadratic equation in ¢, and is easily
solved explicitly by, e.g., the quadratic formula.

On the other hand, the version of Sect. 4.B is implicit in _;ela'
and both ?;3 and -;le must be determined via joint iteration of the
implicit quadratic eq. (4-46). This dual iteration destroys the
property of "first-derivatives absent", and requires the extra

work of redetermining ¢(r') at each iteration. On the other hand, when

o)
the same approximation ra' is used in Sect. 4.B as in Sect. 4.A,

the second formulation results in one higher order approximations

— —
1

for both r' and v' .

e e N

Thus the first formulation, being "explicit" in r('e has the ad-

vantages and disadvantages of a "predictor": the method is rela-
tively easy to implement, requires only one potential evaluation

¢(r('e) per step, and requires no iteration. The second formulation,
being "implicit" in r(’a, enjoys the advantages, and suffers from

the disadvantages, of a "corrector": an implicit (quadratic) equa-

tion must be solved, with the accompanying reevaluation of the

potential, but the final results are of higher accuracy.
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6. Numerical Examples

In this section, the results of Sect. 4 are compared with

-

conventional procedures, with the underlying approximations ra

and va being given by Adams' methods. In general with predictor-

corrector methods special starting and step-size changing proce-

dures are necessary: in the calculations below the Adams-Nordsieck

formulation for second-order differential equations was used [8]-

[9], with the control algorithms as given by Nordsieck [9]. (Pro-

grams for implementing this method for n = 3 to n = 8 are given in

the Appendices of [10]).

A comparison between the conventional Adams-Nordsieck methods

for n = 3 to n = 8 with the corresponding versions of the conserva-

tive methods of Sect. 4 are given in Tables I and II, for the example

of Sect. 7.a of [4]. Here ¢(r) is in the Lennard-Jones form of

eq. (2-9) with ¢ = 1 and o= 1. The initial conditions were

i
(=}
1

<0,1, - 20>

<0,0,,/2 >

<
e
"

The mass m was chosen to be unity, giving

E = 1.000000
L = <V 2 ? Ol 0 >
The Adams' corrector rC was used for the approximation ra

of r' for the method of Sect., 4.4 ; the Adams' predictor rp was

used for ra in the method of Sect. 4.B. Thus both conservative

(6-1a)

(6-1Db)

(6—2a)

(6—2b)
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-

formulations gave errors of O[(At)n+1] in r' and ;'. Instead of
changing the step-control procedure to take advantage of the extra
order of accuracy in ;' in the conservative formulations (which
would result in fewer steps), identical step-control procedures
were used as in the Adams' methods to control truncation error.
(Programs are given in the Appendices of [10]). The superiority
of the conservative methods is then reflected in the higher accuracy
of the results. Occasionally the conservation of E required a
slightly smaller value of At in the version of Sect. 4,B: this is
reflected in the variations in the total number of steps in Table
11.

For comparison, the calculated values of E and L at the last
steps (r> 20) of the computation are given, along with the maximum
observed derivations in these quantities. Finally, the calculated

value of the angle of deflection X, is defined by
a1 v v(o)
S N o

=

where v(0) is given by eq. (6-1a), and for v evaluated at
the last step. The correct value of y is 0.996932, and is also
listed in Tables I and II. For further details of the problem and
the evaluation of x, see [4].

Table I compares the Adams' methods with the corresponding

methods of Sect. 4.A., with iteration of the implicit equation in r'

to a relative convergence in ||r'| of 1073 . Table II compares the

Adams' and Sec. 4.B methods, with iteration of the implicit equations
inT'and v' to a relative convergence in H?' | and |[_\;' | of 10—10.
Both Tables I and II show the superior accuracy of the conservative
formulations in computing x because of the extra order of accuracy
in ;' . In addition, of course, the conservative formulations give

excellent values for E and _f
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Comparison of Adams' Methods
vs. First Conservative Formulation

for n=3 to n= 8.
No. b PinalC maxd6 e
Method Order Steps E AEX10 X
Adams' n=3 1895 1.001251 -3346  .996854
4 383  .986616 -293338  .981370
5 197 .981625 =29975 .986446
6 190 1.047371 452422 1.01762
7 204  .984948  -18296  .990096
8 235 1.152245 +153832  1.05494
Sect. 4.AY n - 3 1892 1.000000 0 .996932
4 392 1.000000 0 .996932
5 196 1.000000 0 .996932
6 141 1.000000 0 .996931
7 117 1.000000 0 .996934
8 106 1.000000 0 .996934
Exact 1.000000 0 0.996932
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TABLE 1 - FOOTNOTES

a . .
Adams' correctors and implicit equations iterated to a relative

3

convergence of 10 ~ in |r'|| - Numbers in parentheses denote

powers of ten.

bTotal number of steps necessary to reach final state when r > 20 .

. -3

cCalculated using r and v at final step.

dMaximum observed deviation between calculated value of E and

true value FE = 1.000000 during any step of the calculation.

eAngle of deflection calculated at final step.

—
f'Error in X component of the angular momentum I at the final step.

gPirst conservative formulation of Section 4.A using the Adams'

—
1

correctors for ra . (Same step size conirol algorithm as in the

Adams' methods.
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TABLE II.é1 Comparison of Adams' Methods
vs. Second Conservative
Formulation for n =3 to n = 8

No. b Finalc maxd e ]E’inalf
Method Order Steps E_ AEXIO * AL
Adams' n =13 1893 1.000003 +26  .996957 ~-.15(=6)
4 393 1.000016 +19  .996957  -.12(-4)
5 197 1.000004 421  .996957  -.55(=5)
6 140 1.000046 +48  .996993  -.16(-4)
7 120 1.000038 442 .997001 -.19(-4)
8 106 1.000046 497  .997102  -.73(-4)
Sect. 4.89 n = 3 1892 1.000000 O .996932  .62(~16)
4 395 1.000000 O .996932  .35(-16)
5 202 1.000000 O .996932  .14(-16)
6 151 1.000000 O 996932 .69(-17)
7 120 1.000000 O .996932 .21(~16)
8 132 1.000000 O .996932 .14(-16)
Exact 1.000000 0 .996932 0

TABLE II - FOOTNOTES

a . . , . .
Adams' correctors and implicit equations iterated to a relative

-10
convergence of 10 1 in H?' | . Numbers in parentheses

denote powers of ten.

b, ¢, d, e, fSee Table 1.

gSec:ond conservative formulation of Sect. 4.B using the Adams'
- I

predictors for r,o (Same step-size control as in the Adams'

methods.)
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7. Conclusion

A numerical method for the solution for the motion of a particle
subject to a central potential has been given which conserves ex-
actly the additive constants of motion. Two formulations of the
method were given, one "explicit", and the other "implicit", in
the final position vector _r-\é . The method can be applied as a mod-
ification to conventional approximation schemes, such as truncated
Taylor-series, Runge-Kutta formulae, or predictor-corrector methods.
In direct numerical comparison with Adams' methods of order n = 3
to n = 8, the conservative formulations were found to be superior
from the standpoint of exact conservation of energy and angular

—

momentum, smaller truncation error in r', and an extra order of

—

accuracy in v'.
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APPENDIX
'WTEST
CACC 1.,108-C2/28/748-23222232 (0} CVIEST
1' T EE R EREEE S E RS Y R I R R R L RS A RS R RS R
RSP U —
3. c PROGRAM FOR CALCULATING TWC-BODY ORBITS CR ANGLES CF SCATTERINC
L C LSINC ALAVMS/CCNSERVATIVE ADAMS METHODS OF ADJUSTABIE ORLCER
S5e C THE CALCULATIONS ARE CARRIED OUT IN THE XY PLANE IN RELATIVE
£ o c CCORCINBTES (CRIEIN AT ONE PARTICIF).
Te C
8 e C*ﬂ**tt*#**#*w**#’[}_)*1#*******:O**=0*t**##***g**t*********:***t*t****##***
9, TMPLTCIT DOUBLE PRECISICN {(A-Hy0-2Z)
1L . CIMENSTChN Y(Z2,9)eAUXEZeil)eR(2),.0RE2)
11. DATA AUX{1s1)/C-5CC/9AUX(20:1)Y/0.500/
12, C2#2323% MNCTF TEE IMFACT CF THTS FQUIMALFNCE STATEMENT aae
13, TAUIVALENCE (Y (1o1)eR{1ID o (OREL) pY (15209 {TeY (35130 LHaY{292))
14 . 1 e (HMAY s Y( 2o )) g (FFSTToAUX(21))y (Y0,Y(2931) e (BsY(1lsl))
15, EXTEPNAL FHODM
1F . £ READ (Fo1C) M<TCh o METHCL s TORD o IP I T o IShe EPSTT ol oE o YO ok o FMAXe STEP
17, in FORMAT (5I2+sD1C-1s6F10.1)
18 . CAAIZ 3323232333 RXIIANI AR BA BB A NS I N D o X X XX BB BRI XX F I H I T TR
13, c M3ICGN - IF GE Sy INITIAL CCNDTTIONS ARE OBTAINEC FRCM BeEe ANLC YCo.
20 a C IF FMSTICEM oLTa Cs Tale ARF REAL TN, o
21, C METHOD = 1l¢ ADAMS TYPE. IF = 2¢ CONSERVATIVE TYPE I. IF = 3y TYPEZ
22 C METHCD = C TF ATAMS TYPE, = 1 TF FNFREY CONSFRVINE
23, C I0RD - CDESIRED ORDER OF METHCD (3 LE ICRD LE 8)
24 4 C IRTT -~ MNC, CF RIMARY PBITS COF ACCUPACY LESTIRFL IN SCLUTICN
25, c ISW - STEP CONTROL SWITCH .ee IF -19 NC MOCD CONTROL. IF 0O KO MOC
26 c OF TRUMCATICN CONTEROL o JF +1 MoD ANC TRUMCATION CONTROL e
27, C EPSIT - CONVERGENCE CRITERION FCR CORRECTCR ITERATION
284 C BE_ANT F - TINTITTE] CONCITIONS OF JFRF TMEFACT FRRAMETER B AN[L ENFRCY
29. _C YO -~ INTTIAL Y~-COORODINATE WHWHEN MSTGN .CE. O
2L c H -~ TINTTIAl STEFSIZE
31, C HMAX — UPPER BOUND ON STEPSIZE ‘
2. C STEP - TIMNCREMENT IN T AT WHICK FOINTS ARE PRINTECLC
33. C************************##***********#*t*****t*****t*t*********t**t****
24 o TF (MSICGM ,CE. C) €CO TC 51
25, READ (5911) (R{I)eCR(T)eIz1e2)
26 . 11 FCRMAT (4F1C.H4)
37 E = 0.5D0*{DOR{1)Y=CR(1) + OR{21%CR(2))
284 £l VREL = [DSCRI(Z.CC2F)
39, NSTEP = 10
450 o IF (TCRL .CGFa. E) NSTFE - §
41, WRITE (£920) METHOLs TORDeBeEeVREL e IBIT»YCr ISW EPSIT
. 20 FCRMAT (1H1e5%e*TEST TRAJFCTORY LSINE METHECOT*pI5¢23Xe*0F CRDER®yIE/
43, 2 10Xe"WITH B =99 F1CaSeSXe*E T"9F1045/10Xe*RELATIVE VELOCITY =9,
uy4, IFI0 /10X e *NC . CF BITS =% oTFeBXe®YC =%eF1CF/1CXe*STER CONTPOL SWI
45, 4TCH 99 TS95X e *ITERATION CRITERICN ='9D15.6/7/)
46 o TIME = 2C.CC/CM2X181.C0oVMREL )
47. IF (MSIGN oLTe 5) GO TC 52
48, DRe¢1)Y = CL.LC
43, DR{2) = VREL
0. £2 YE3s2) - HMAX/1.CHBST7EDFE
51, ANGO = R(1)*DR({2) - RI(2)%DR{1)
82 CALL FSTRART (MFTBCLoTCRPelal=EF1
5%. CALL FADAMA(Y)
ol . WETITE (£ 12) ({(Y{Tedled=1el4)leT=1,21}

55. 13 FORMAT (10Xe®Y MATRIX 200?//110%e4C18.8))
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56. WRITE (E,514) {AUX(Iy1)sI=1,3)
7. 14 FCRMAT (//1CX¥9*FIRST COLUMN CF AUX JIS*y2C18.8//)
58. T = 3.DC
£g. TEST = STEF _ o
£E0. WRITE (69y15) HeHMAYsSTEP
el it FCRMAT €ICXs*INTTIAL STEPSIZE =—*yC1E Ca8Xe"MEYe STEPSIZE =v4[15.E,
62 1 5Xe*TIME STEP =,D23.10//7)
2. CALL FThAE (KCUNT)
54, WRITE (£+25)
EF . 2k FCRMAT (EX o *STEF*yEX o *TIMEY s EXw*CELTA TYw X9 *ENEECY 95Xy *RACTUSY,
56 1 X e"X e 2X e ' X30T " s 3U» "Y' e 7Xe "YDOT 97X *YRELY/)
€7, I-c
63 RR = DSARTIRI1I*xR(1) + R{2¥xR(2))
ES. WEITE (Eo2C) ToTeHeEoRRo(REJIWDPIJ)edz192 0 VPEL
79, 3n FORMAT 14Xy I8¢ FlleGaFlle7e7F11.6)
71. CALL TIMSET (L)
72 CALL HODMIN (Y2 AUX+TORCyIBITs2+FHODMeISW»3)
72, EC 1CC I - 1,2CCCC
T4, RR = DSAIRTIRILYI*RI{L) + R(2)1x0{(2))
15 . TF (RR oCTe 1CeCC oANCe T oCEe. TIME) GO TO 2CC
76, TFE {7 oLTe TEST - 1.D-4) GC TO 10C
17 .. SC TEST = TEST + STEF o
78, TF {7 «GTe TEST - 1.D-4) GO TO 90O
19, VREL = CREI)*CRE1I)Y + DR(ZI*LREZ2)
37, CALL OFPOTI(RR+FORCESPOT)
At . F - C.5CC*yREL + FQT
32, VREL = DSQRTUIVREL)
g3, WRTITE (€»3C) IoTeHeEoRRe(RIJIEDUJ)»d192)e VEEL _
34, ino CALL HODM (Y2 AUXFHODM: )
arc T - T 4 1
86, 207 VREL = DSARTI(DRI1)I«LCR{1) + DR{21xDRI(2}))
87 a CALL TTVMCETU(TENC®T)
88, CALL FINAL (KOUNT)
29, CHY - [CACCS(LCRUZI/VREL JACSTCEN (1.0CefR(21Y))
30, RR = DSARTIR{1LI*RL{1) + R(2)*xR(2))
S1. CALL DTSFCT (RRsFCT)
92. E = D.SDO*VREL*VREL + POT
€2 WRITE (6+2C) IslsHsEeFR
94, ANG = RU{1)*DR(2) - R{2)*DR (1)
St , EANG = ANC - ANCC
3b6. WRITE (5¢40) CHIwKOUNT2ANGeZANC
€7, ye FCEMAT (Exs*ARCGLE CF CESFLECTION TS vsC15o€95X9*NOe PCTe EVAL."918/
38, 1 SXe*FINAL ANGUL AR MOMENTUM ='9yD1B.3¢5Xs '“RRCR =9y [18.8)
€9, cC TC =C
i00, END
*I CF CCMFILATICHh: NC CIAGNOSTICS.
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CFCW¥
1ACC 1,105-02/24/74-21323:3% (+3) XDFDM
1. C
2. Cesxse SUBR0OUTINE WHICH CIVES FORCES FOR DHOCM
3. c
4, SUBROUTINE FSTARTIMETHOD, ICRD,ETOL)
5' C*’U#&ﬂ#*#*ﬂ**#*tﬁ##!***#***#**#**i#*‘*‘*******t******#***:#*##t*******#*
Ge c TE METHOD = 0e AGAMS=TYPE. IF METHOD = 1e¢ THYEN CONSERVATIVE.
7. c TCRD - CRCER CF METHOL CESIREC.eos (2 LE IORC LE 8)
8. c FT0L - CONVTRGENCE CRITERION IN FUNCTICNAL ITERATION.
9, c ENEFCY WILL PE CCNSLFVED To WITHIN ETOL PER STEP
12. r***********#************t******t*tt**t****t*#!***t***t********#*******#
11. INFLICIT CCLPLE FRECISICN (A-Fs0-2)
12, DIMENSTON COCTF (2,61 AUX (35110 (3511)
12, CATA CCEF/ColGECECEEGEEEEEEEETD 2 Co50Cs o125 L0 41EECECEEEEEEEEET
14, 1D6e0a10555555555555555600¢ 027500 0.0337500,0,2486111111111111110°C
15, Ze CoCBEEIECTC2EECTI3E510C+C.72S8€6111211112111210Cs
15. 2 0.07957.753259259259300:0.315591931215693121700/
17. CATA X¥MASS/1.CC/
13, FACTOR = 2.D0/XMASS
1S. € = CCEF(ZsICRC-2)
20, GAMMA = COEF{(1sI0RD-2)/C
21. METH = METHCC
22, TND = TORD + 1
23, EFS = FACTCR2ETCL
24, RETUON
25, c
26. Ce+ssx FUNCTION ENTRY FOR DHQDM FORCES
27. c
28, ENTRY FHODM (AyX eReTSWTTS WY
29. _C#2a% FHCDM FCF MAXINMALLY CONSERVATIVE METHOD
3N. TF {TISW. _.NF. 03} G0 70 100
21, FFz CSGRT(G(1+2113G(1s2) + Q(2+2)20(2+1))
32, CALL DFPOY {RPeFN.PHIP)
23. FAN = -FN/RF
Yy, DO 20 T = 1972
35. ec ClTIs3) = FA4G(Iye1)
36, EPSLN = 0.00
27, RETURN
23, 107 R = DSORT(A(1.1)*2(1e1) + Q(2,1)%0(21))
29, CALL DFFCT (RgFNsFHI)
40, FN = —FN/R
41, CC 2CC I = 142
42, 2(Te7) = EN*Q{Ie1)
7 200  G(IsINC) = G(Is2) = AUXUI,L1C)
44, G0 TQ (21052109250) s METH
45, 21C  RETUFNK
456, c
47 c ENTRY FCIRT TC CALCULATE VELCCITIES
45, c
49, ENTRY VCALC (AUXsGsITSH)
50. DIMENSTON AL PHA(2),BFTA(2)
51, EC TC (H7TC92E5C921C)eMETH
57. 257 TTSW = 0O
52, HC = C26(252)
54, HGAM = GAMMA*Q (342}
LR

- 8

AVF = [.CC
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5E. AV = C.LC
57. AR = 0.D0
58. ARF = C.CC
53, ASG = G.00 N B
€C. CC 280 I = 12
51a IF (METHY .E2e 3) GO TO 270
€2 . BETA(I) = G(Ie1)
57, ALPHALI) = 3(I,1)
€4 . cc TC z7¢
5. 270 ALPHALZ) = AUX(Iy8) - HGAM*AUX(I,9)
€E. EETA(I) = ALY(Is8)
67 275  ASQ = AS3 + ALPHA(T)*AIPHA(T)
£8. ARP = ARF + ALFFACI)#BETA(T)
£9. AVP = AYP + ALPHA(ZYI=AUYX{I,3)
TC. AV = AV + ALFRALI)*AUYUI4E)
71. 287 AR = AR + ALPHALI)*AUX(Ie5)
72. TCF = FACTCR?(FFI - FERIF)
713 a DO 2CL T = 192
74 EETAC(I)Y = ((AVFAEETA(I) - AYAAUX (IS EY)-LARP*ALX(I»Q)-AR2AUX(IsE)))
78 1_ZASQ
764 WCRK = AUY(I9G) + PETA(I)
77. 300 JOP = TOP + (WORK — AUX(Is6))%(4O0RK + AUX(Te6)) _u
8. KCUNT = C
79. 350 DLDEPS = EPSLN
80 . EFSLN = -(TCF + EFSLN*EFSLNAASQ)/(2LCaAVF)
31. IF (METH oEQ3e 2 o00Re DABS{ZPSLN - CLDEPS) olTe 1eC~10*CABSIEPSLNY)
2. 1 6C 1C 4CC
a3. KOUNT = XKOUNT + 1
TR IF (KCUNT oLT. 1C) GC TC 25C
8s, c CALCULATZ ERROR IN ENERCY AND NEW VELGCETIES
£6 . 4CC  CELE = FACTCR#(FKI - FHIF)
87. - DO 650 T = 142
£8. : WCRK = EFSLN *ALFHA(T) + BETA(I)
83. QCIsIND) = WORK/HC
cC . C(I+2) = WCRK + AUX(IsC)
91, 450  DELE = OFELE + (3(T42) - AUX(Ts6)1% ({921 + AUX(TeE))
92, TF (CAES(CELE) oCTe EFS) ITSh = 1
93, RETURN
T 47C  ITSW = C
95, DO 480 I = 142
<G, 48T  G(IsZ) = ALX(I+S) + HC*G(IsINC)
7. RETURN
ce. c
99. Cxxxxs FORCE ENTRY FOR CLASSICAL FORCE
1cC. c
i01. ENTRY FADAM (@)
1Cc2. F = DSGRT(G(I+1)%8(1s1) + Q(2+1)%Q(2s2))
103. CALL DFPOT (ReFN,V)
1CH ., FN = - FN/F
105. DO S0C I = 142
1C6. ECC G(Is2Z) = FA#G(Is1)
107. RETURN
1C8. END
D OF COMPILATIONS NG DIAGNOSTICS.




51

HODM
"ACC 1e1CS-CZ424/3484-2123272228 (90} CHCEM
1. SUBROUTINE HODMIN (QsAUX» ICRDeIZIToMNeFsISWeNDTM)
,WWZJ,WWW,ijiﬁﬁijjti!*!’ii****’*‘******’***‘?*******************************"t?r
2. C VARTIABLE ORDER ACAMS METHCD FOR NUMERICAL INTEGRATICN
4, C SCLVES A SECCNC-CRCOFR SYSIEM OF FQUATIONS C2G(T)/0X2 <
Se C F(Xs233D3/0¥) ¢ I = 19210eeaN EY 2ND CROER NORDSTELK METHCCS
Poa C 6 - A WMATRIY CF <IZF AT | FAST A(N4T1 o TORC+1 Yo hHICE CONTAINS OCI) IN
7 C A{TIs1)e DALIV/DX IN 3{Ip2)s D2Q(II/0XZ IN Q(Te3)s ETC.
8 C AND Yok oFMINsPMAX IN G(N+19pT)y T = 1eb4. (WHERE H IS STEPSIZEs ANE
9. C HM TN AND HMAX ARE LOWER AND UPPER BOUNCS ON H )
10. C ALY - LCFK STCRACE OF ST2FE AT LFAST ICa(N+41)
11. C AUX(Ts1) SHOULDC CONTAIN WEIGHTS ASSIGNED TC EQTNS {(Su™ = 1)
12. C ALY (Tsealds o = Zo# WILL cOMTRIN A RECORL OF THE TINITIAL CONCITIONS
13, C AUX(Tsd D9 o = Se7 WILL CONTAIN STARTING CONDITICNS FCR CURRENT
14, C STCFa AUX(TXyJ)s JoB8e2C WILY CoNTAIN PRELTICTIEL FINAL CONCITICNS
15, C METHID ASSUMES THAT AUX(N+1l,1) CONTAINS ITERATION CONVERGENCE
16 . C CRITFRICK FCR FUNCTIONMAL TIERATION
i7. C TORD - ORDER 0OF METHOD DESIRED (3.LEe ICRD oLE. 8)
L18a C TEIT - NC. CF BRITS COF ACCURACY REAUTIRED 0OF LRI /Z0X. IF 1T e
13. C A MATRIX IS A3SUMED ALREADY PREINITIALIZED
.2l c h - MNUMFER CF EGUATIONS T¢ BE SO NED — I
21, c CALL F (AUX9s30JeITSH) SHOULD STORE D2Q(I)Dx2 IN G{I,3) AN ETAx
22 C (Q(Ts2) - AUY(Ie1C)) TN G(TaT0oRC+1),. J TS TTERATION NCao AND TTSW
23, c SHOULD BE ScT TC 1 IF ITERATICON CANNOT ENC THIS TINME.
24 C NCTFE TEAT TISKL IS A VECTORs WEEPE TISW(1) IS SETs ITSKEZ) IS
25, c TORD + 1» AND ITSWI3) IS NOo CF TQUATIONS.
2€ a C 7€y = ~14Ce+1s IF Co NC STFFP COMIRCL (OTHER THAN STABItITY).
27. C IF = —-1s NO STEP CONTROL MOD INITIAL STEP
284 c ANCTM - CIMEMSICAED CCOtUMN T ENCTE OF O AND AUX
29, Ty e R R 2RI R L R R LR R A R L L e R
ZC. N IMPLTICIT CCUPLE FRECISICN (A-FoC-2)
31, DIMENSION BETA(E) s BTINVITY s GINCIM» 1) s AUXINDCIMy1)» COEFLES8)y
22, 1 C(8s6) +ERVEC(E)Y ITVEC(3) —
33, FQUIVALENCE (ITSWe ITVEC(1) ) o INORO3sTTVECIZYI)» {IMp TTVEC(3))
3Y . CATA EEYA/Z.DEoH.EC:G.DC;l.EDI:B.2DI¢E.HD]/¢ETNV/C.“BC;C.ZSDCo
35. 1 0el2500sC«0625D09s0731250020C15625009 007812502/ ITER/S/
2B OATA CCEF/Co5CC9(o23333223322222233220CeL.28LCsCo2LC
37. 1 D.1lE6565665566565667D509014285714285714285700¢7%1 0092009200,
38 z Q.DC'E.CCvE.DCuC.DCvi.CE:B.CC|6.[Cr]C.EGclS.CCr?#D.EC:I.CC:Q.DC.
3%, z 10eDN920 o009 3%0e0Cp1eC095eD0915 e00s4 %00 ¢1eDC96.L095%5.0Cs1007
4C o TATA ERVEC/LSC2LCoCCEPCsCalC Lo 250 Co 50091400/
41, DATA C/C.1656665656666656670090e500220095%*0.0Cy
42, 1 [ 178 C el HICECEEEERELFERBE TN o1 a0l ol 5N o2l Ol
4z, 2 0 .1055555555555555560 0903750091009 0750090 166E656566C86E665570C
4y, 2933C D09 C.C927500sC.248861211121121113111CC¢2.0C+C.C1CEEEEEREEEEED
45, 4UE67DNs0.333323333333233332300s0.04166556666666666670092%0.00
4€ o E [ CREC1ELIOICECIQRECINC oL 22¢2F£3112111112113110C.7,0C
47, 6 1.0416665665665666700,74856111111111111111D00+C<1C416666EC66EE6E67
.48, 'H"rnﬂ-Q77777777777?'{??77\F-?.['-ﬂr.r-7q=7‘!7RC”:G7‘:Q7§Q?F—1.
49, 8 0.2155919312152%2121700¢1e05051141E65666666665670C90.62500
5l L2} r-T'?'l(‘F"""”?”?’?’?PF.['..F?EFF.(-17QQRP9FHPPFPPPFRCF—?I
51, MORD = TIORD
E2 . ACRDZ = TCRC + 1
5%. NORC = IORD - 2
5H . MNCRDZ = 23NCRT

55.

NORD4 = 4=xNORD
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56 NORDS = E#NORU
57. NFLUST = N + 3
58, HLO = 1.0000000000100«Q (NPLUS1s 3)
£Q, HLUF = 1.CCCCCCCCCCIDD*QINPLUSTI o4) i
60, MOCH = ISW
E1, XC = GINFLLS141)
62 M = N
E£7 . CC AICC o = 142
b4, Jd = J o+ 1
EX . LC ICC T =14V
EEe i0C AUXTTIeJd) = 2(TI,J)
E7. EFS = ERVECI(NCRC)/ (DAES (GUANPLLS2y2))#242TABS(TIETIT))
58. IF (ISW «NE. 3) 50 TO 250
Q. EFS = 1.C+2CC
70. HUP = «1.,DC
1. ZEr ISTEF = C
72 IF (IBIT .LT. O0) ISTEP = NORDS
72, I10v =C
T4, IDELAY = NORD
75 . IF (TBIT «LTe C) CGC TG ucCC
76 D0 260 J = 4yNORD3Z
7. CC 2EC I-14¥ - o o
T3 2580 QEIevd) = 0LDO
1S 4 €C TC 8CC
80. C ENTRY POINT FOR REVERSING STEP-3TZE
81, EMTRY HCRRVS (G wAUX9F oNLCIM)
82. 3sr TIDELAY = NORD
83 . ASSTCN BCC TC ISTAT
B4, 30 TO 1Cag
8:. C
86, C***t***#********t*****t******#****t**t*****t*t*tt*t*t*****t*t****t**t*t
£7. c
38, c NORMAL ENTRY POINT FOR INTEGRATTNG ONE STEP
€S, ENTRY HCCM (CsALX9FoNLCIM)
90. c
ct, C*a#!t!t**t&tl1***1*#1#******#*****#t*##***‘g******t****t*#tt#t*t*#t##**
9?7 . IF (IDELAY .LE. D) GO TC 370
92 . ICELAY = ICELAY - 1
94, GO0 TO 400
St . C CHECK IF STEF-SIZE CAN PE DOUBLED
9%, 370 IF (ITO0V «EQe O) G0 TO 400
S7. Eh = BETACIDI*G(AFLUS1,2)
93, T = GINPLUSI1) - X0
SSe. I = T/HM
1C03. TF (MODH*DABSH{T-I*HW) «0Te HLO +OR. DABSI{HW) «G6T. HUP) GO TC 40r
ira., ASSTC CC _TC ISTAT
102. G0 70 1200
1C3. ECC CALL FCAUX»GolvITSK)
104. 4og = RINPLUS1e2)
105, IC = C.LCE
05, 20 450 T = 1.M
AC7. C STCRE STARTING CCNCITIQNS OF STFP 1IN AUXCTwdYs J = Sy€97
108, DO 420 J = 1.3
iCa. ALXETou¥8) = G(IeJ)
110, C STORE PREDICTORS IN AUX{Ied )y J = 899,10
111. W = Ca[C
112. 00 413 K = 1sNORD
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113, 41° W = W + COEF{KeJd)sR Iy K+2)

1lb 52C ALXETsu27) = W

115. AUX{T»8) = Q(Is1) + H={(Qa(I;2) + He:AUX{Ie8) )
11€. _ALXETec) = G€Ie2) + HapuxtIee) o
117. A(Ie1) = AUX(Iy3)

112, G€8Te2) = AULX{Is°)

119. 43510 TO = TO + AUX({Is1)«DABS(A(TIs1))

120, TC = TFTCAaALX(AFL 1L S1e2}

121, RENPLUSLs1) = Q(NPLUSL.1) + H

122 HZ = C{JahCRDI#F3K

123, HW = C{2sNORD) *H

124, C CELVE CECRRECTCRS RY FUNCTIOMAL TIFRATICON
125. 0O SR0 J = 1.1ITER

12€ T = C.LC

127. CALL F {AUXeQoJe ITSH)

128, LC ECO. T = 1V

123, W = A3{Is1)

130. C(Te1) = AUX(Is8) + H23((IeMORLZ)

131, 500 T =T + AUxX{I,1)=DABS(3(Te1) - W)

13260 TFE (7TSh offa O oANDo T 1T. TIC) €C TO E26C
133, IF (ITSW G7. 1% G0 TO 555

128, BEC CCNTINLE . .
135, C TTERATION DID NOT CONVTRGE

1. EEE T¥A = C

137, G0 TO =9C

128, EeC ITA =1

133, CALL F (AUX»Qele ITSH)

14C . CAtL VCALC (AUXeGoeTTShI

141, IF (TTSW oME. 0) GO TO 555

147, Caa223 CALCLLATE FSTIVMATE CF TRUNCATIION FR2CR
143, DODA = 0.00

lul pC e T = 1V

145, 530 DOCA = DODA + AUX(I»1)=*DABS(3(IsNCRD3))
14€ « c TEST TEULNCATICA FRRCR

147, IF (DODA.GT.EPS) GO0 TG 530

148, ITe =1

149. ITOoV =1

1EC . IF _ {CCCh - BIBNV(ACRD+1)X3FPS) ECC«E€C0L9EQE
151. 59N ITB =C

182 . EQF 110V _=C

153. 507 IF (ISTEP .GE. MORCE) GO TC 605

154 , IF (TSTFF €T C)} €0 TC ESC

155, 505 IF {ITA .£&. 3) GO TO 62C

106 . €1C TF (ISTEF.FGalCR-TTB.NELL) C0 TC ESRC
157. c HALVE STEP-SIZE

158, £2C TEF (LAPS(GU(NFLUSI 2)) 1 Ta FL0) GC TC I5CC
1539, QENPLUS1+1) = Q(NPLUS1,1) - GINPLUS1.2)
el CENPLECI,2) = BRIMV(1)2G(NPL US]1,2)

151, EPS = BETA(L)=*EPS

12 . EC €20 T=-1ek

163, DO 825 J = 193

1€4 . £2F G4Teu) = AUX{T 34}

165, D0 630 J = 4,4NORD3

1EE€ . £E2C G(Teu) = BIMVEI-3)12G(Ts.)]

167. IDELAY = NORD

1688, CC _IC uyre

163, c UPDATE TMTERIPOLATEC DERIVATIVES




170. 657 ISTEP = ISTEP +1

171. IF (MCRLE LEGs 1) GO 7O 7CEH

172, S0 700 T z1i+M

173, CCCA = G6(Is3) - BUX{TIsil) B
174, DO 700 J = 44MORD

17%. k = COCAsCCLpNCRD)

176. D0 B6EC K = JsMORD

i77. EEC bk = b 4 CCEF(K-Z29d)} 01T k)

173. 700 A Ted) = W

179, irce JE_(TSTEF CT. MCFDE) RETURN

130, C TRANSFER TO SPECIAL ROUTINES FO® STARTING PROCEDURE
lg8l. TE _(ISTEF .ME. (ISTEF/NCREISNORD) €C TI0 4CC

182, IF (TISTEP .£Qe NORD2) GO TC 710

182, IF ¢TSTLF «FG. ACRDHY) GO IO ZEC

134, IF (ISTEP .ZQ. NORDE) GO TC 770

18%5. ASSTCN 8CC TC ISTAT

186. G0 TO 1G0C

187 . C RESET 1C TI.Ce ABND REVERSFEF STEP DIRECTION

183, Tin DO 750 J = 1¢3
188 . SRV S |

190, 20 750 I = 1.M

191 . JEC G Teo) = AUXCTwJJd)

192. QINPLUSIe1l) = XO

1¢2., eC 7€ _2EC

1394, c HALVE STEP-3SI7ZEZ AND REVERSE DIRECTION

1e5., i5¢ C(AFLUSTI92) = EINVILI)*Q(NPLLUSIe2)

136, EPS = BETA(1)=*EPS

1¢7. CC 765 « = 4 4NCFRD3

133, DO 785 Iz1leM

1SS, 16 £ C€Tsn) = BINVIJ-Z2)20{TyJ)

200, IF (ITBeNELT) G0 TO 7117

2C1. C “F TRUNCATICN TEST FAILEC FOR THIS STEP (ITE = C)s THFEN PESTART
202, C WITH CURRENT SMALLER STEPSIZS AS ESTIMATE

2C3 ., ASSIEN 2E5C TC ISTATY

204, G0 TO 15040

2C5 . C CCUBLE STEF-SIZE

208, 77" ASSIGN 713 70 ISTAT

2C7., €€ TC 12€CC

208, c PROCEDURE FOR REVERSING STEP DIRECTION

2C<e, 1CCC  G(NPLUSI2) = -G(NPLUS1,2)

210, 00 1100 J = 49NORDZs2

211, EC 110C TI=14V¥

212, 1130 Q{TIed) = -Q(Ie )

212 CC TC TISTAT(Z25C,4CC)

214, C PROCEDUREZ FOR DOUBLING STEP~SIZE

21%., 120C G (NFLUS3I92) = BETACL)*GUINPLULS1,2)

216, EPS = BINVI1)=*EPS

217, CC 13CC ¢ = 44NCRDZ

218, DO 1300 Iz=1+M

219. 13CC G(Isu) = BETA(J~3)2G(TeJ]}

220, IDELAY = NORD

221. GC TC TISTAT+(4CC,710)

222, C ERROR TERMINATION IF STEP-SIZE TS T0O SMALL

2232, 15CC FRINY 2CoISTEFs (GUNPLUS19sI)eI=2v84)sCCCA+EPSsTTO
224, ic FORMAT (*0#*+%HODM FATLS AT STEP'yT892Xe*X ='9L019.3/5Xsy *STEPSTZE =
22%. 1%sC1CSeCyEX9"2CUNDS =* 920155/ /EX s *TRUNCATION TEST*sD1%.995Xy "CRITE
226, PRION'$D1349/5X s *ITERATION TEST?9yD194995X9s* CRITERTICN'sL1949775Xs
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227, 3 *SOLUTION MATRIX eee?/)

228, CC 1EQC T = 1.V

229. 1570 PRINT 20+ I 12(IsJ) s J=1oNORLC3)
23Ca .20  FCRMAT (FXsIEs8015.71)

231. 20 1700 T = 1»M

222 17°0C  FRINT 2CaTe (ALX(Ted)eJd=1,10)

233, 39 FORMAT 1/5X3TI5:5D017.3/710X924D17.2)
234 4 <ICP

235, END

Mo CF CCMFILATICAZ hNC DIAGNOSTICS.
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FrFCT
MACC 1,105-02/724/74-21323247 (43) DPCT )
1. SLERCUTINE CISFCT (ReFOT)
2. o _ IMPLICIT DOUBLE PRECISICN (A-4Y,0-2)
2 CATA KCUNT /C/
4, ISW = 1
£ iccC RE = 1. EC/R#*xC
e POT = U4.DD*RE*{RE =~ 1.C3)
7. KCUNT = KCUNT + 1
8. GO0 TO (20039300331 3I5Y _
Se. 2CC FETURN
10. FNTRY DFPOT (ReFNPOT)
11. ISW = 2
12. 50_1C 100
1z, Arc FN = 48,C0*»RE*(C50C - REM/F
.14, e RETURPN e -
15. EATRY FIMAL (I
15, I = KOUNT
i7. KCUNT = C
2 A8.  ___RETURN _
i¢. END

ND OF COMPILATION: " NO DIAGNOSTICS.







