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SOME PROPERTIES OF TOTALLY POSITIVE MATRICES
by

Colin W. Cryer®

ABSTRACT

Let A be a real n x n matrix. A is TP (totally
positive) if all the minors of A are nonnegative. A has an
LU-factorization if A = LU where L 1is a lower triangular

matrix and U 1is an upper triangular matrix.
The following results are proved:

Theorem 1: A is TP iff A has an LU-factorization such that
L and U are TP

Theorem 2: If A 1is TP then there exists a TP matrix 8
and a tridiagonal TP matrix T such that: (i) TS = SA ;
and (ii) the matrices A and T have the same eigenvalues.

If A is nonsingular then S is also nonsingular.

Theorem 3: If A 1is an n x n matrix of rank m then A is

TP iff every minor of A formed from any columns

p
Bl,...,Bp satisfying .E IBi—Bi_ll < n-m
i=2
is nonnegative.
Theorem 4: If A 1is a nonsingular lower triangular matrix then

A is TP iff every minor of A formed from consecutive

initial columns is nonnegative.
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1. INTRODUCTION

let A be a real n X n matix. A is TP (totally
positive) if all the minors of A are non-negative. A
has an LU-factorization if A = LU where I is a lower

triangular matrix and U 1is an upper triangular matrix.
The main results of the present paper are:

Theorem 1.1

A 1is TP iff A has an LU-factorization such that
I, and U are TP.

which is proved in section 4.

Theorem 1.2

If A is TP then there exists a TP matrix S and a
tridiagonal TP matrix T such that: (i) TS = SA ; and
(ii) the matrices A and T have the same eigenvalues.

If A is nonsingular then S 1is also nonsingular.

which is proved in section 5, and

Theorem 1.3

If A 1is an n x n matrix of rank m then A is TP

iff every minor of A formed from any columns

Bl""’Bp satisfying iizlsi—Bi_ll <n-=-m

is nonnegative.

Theorem 1.4

If A is a nonsingular lower triangular matrix then A
is TP iff every minor of A formed from consecutive initial
columns is nonnegative .

which are proved in section 6 .



2. NOTATION
We use multi-subscripts (Marcus and Minc [8,p. 9]). If
1 < p <n then Q(p,n) denotes the set of strictly increasing
seguences o = {ul,...,ap} of p integers chosen from
l,eee,n « If o ¢ Q(p,n) we set
p-1
d(a) = Z (a, -0, -1) = o, = og= (p-1)
k=1
0
with the convention that r =0 .
k=1

In particular, d(a) = 0 iff the integers ul through ap

are consecutive. If Bl""'B is a sequence of distinct

p
integers chosen from 1,...,n then following Koteljanskii [7]

we denote by

(Byreeerbyd

the corresponding ordered sequence in Q(p,n) « The null

sequence is denoted by ¢ .
Let A = (aij) be an n x m matrix. The minor of A

formed from rows o € Q(p,n) and columns B « Q(p,m) will

be denoted by A(ul,...,up;el,...,ﬁp) or A{o;BR) or
Ol.l,o..,OLp

Bll'°'lsp

The matrix A will be said to be TP (totally positive) if

all its minors are nonnegative, and will be said to be STP
(strictly totally positive) if all its minors are strictly

positive. We observe that Rainey and Habetler [16] call TP

matrices CNN matrices (completely nonnegative matrices).




-3

(p,n)

The submatrix of A formed from rows o € Q and

columns B ¢ Q(q,m) will be denoted by
A[al,...,ap; Bl,...,Bq] or Ala;8] or
Qyreeesa
A Byr-e-iBg |

When considering submatrices the original numbering of the
rows and columns will be used; thus, if B = Afa;B], then by
row a. of B will be meant the row of B corresponding
to row oy of A .

The absence ol rows or columnsof a matrix or elements of
a sequence will be indicated by means of a hat. Thus

~

(B revesByreeasByrenn B}

3 p
denotes the sequence obtained by deleting Bi and Bj from

B ; the possibility that i = 3j or i > j 1is not excluded.

i N
A [j kJ or A[i;j,k]

denotes the submatrix of A obtained by deleting row i and

Similarly

columns j and k , while

N ¢ N
A [j] or Al¢;7i]

denotes the submatrix of A obtained by deleting column j

Ir will denote the r x r unit matrix. If ¢ =2 0

14
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will denote the r X r matrix with ones in the upper left
and lower right corners, ¢ in the upper right corner, and

zeros elsewhere.

will denote the r x r matrix with ones in the upper right

and lower right corners, and zeros elsewhere.

will denote the r x r matrix with one's on the diagonal

immediately above the main diagonal and zeros elsewhere.

We observe that the matrices 1I_,

r , G, and Hr

F
r r

are TP matrices. If U is a block diagonal matrix with the
matrices Ir’ Fr' Gr’
U is a TP matrix. Moreover, premultiplication

or Hr as diagonal elements then

(postmultiplication) by U is equivalent to performing

elementary row (column) operations.
For example, if ¢ 2 0 then
U = diag (Ip,Fq(c),Ir)
is a TP matrix, and postmultiplication by U is equivalent
to adding c¢ times column p + 1 to column p + g

and then setting columns p + 1 through p + g - 1 equal

to zero.




3. PRELIMINARY RESULTS

The first lemma is a generalization of a determinantal
identity which is often used in the theory of TP matrices.
We give two proofs: the first proof involves row
and column interchanges and the use of the usual identity
(Karlin [ 6, p.8]); the second proof, which is somewhat more
elegant, involves the use of the quadratic relations
between the subdeterminants of an array (Marcus and Minc
[8, p. 15]).

Lemma 3.1

Let B = (bij) be a matrix with n rows and n + 1
columns, where n = 2. Let i be any row of B and

let jl'jz’j3 be three distinct columns of B . Then

B, Y. B )p(3,,30p(G, 34 +
31,32 33 17-3 273

/\i’\q) . + 2
+ B(, ~. )B(: , +
(31,33) (Jz)p(jl J,)P(35/3,)

o i ~ b . . _
+ B(jzer)B(jl)P(JZIJl)P(J3:Jl) =0 .
where
o B +1, if j2 >,jl ’
p(3y,3,) = . . .
First Proof: For the special case i = n , jl =1, j2 =n ,
j3 = n + 1 the result to be proved takes the form
~ n ~ ~ n ~ q) ~ n ~ d)
B(l,n)B(n+l) - B(l,n+l)B(n) * B(n,n+]_)B(1) =0 (1)

which is proved by Karlin [6, p.8].



Now assume that jl < j2 Denote by C the
array obtained from B by

(F1) moving row i to position n

(F2) moving column jl to position 1
(F3) moving column j3 to position n + 1
(F4) moving column j2 to position n

Then it follows from (1) that

n ~ .0

~ n ~ ¢ _ ~ n ~ q) ~ - .
C(l,n)c(n%-l) C(l,n+l)c(n) + C(n,n+l)c(l) 0. (2)
But,
R s n-j n+l-j, .
¢ = 1P TP B,
J1
&% = (—1)““1<—1>Jl_1<-1)n jzfa(“’)
n+l j3 '
A - j "'l n+l j ~
¢ = 1 eEnTt e By,
J2
~ n jl_lA i
C( ) = (-1) B(, T: )
n,n+1l 32,]3 '
~ rl_j2/\ i
c(, 2.y = (-1) B(, T, ) ,
1,n+l jll_]3
n+l-j P
o, n — 32 i
C(l,n) - ( l) B(Jlljz) o

To illustrate how these relations are derived, we consider
C(¢;n). We can obtain ﬁ[¢;32] from C[é;nl as follows:

(R1) moving row n to position i (n-i interchanges),

(R2) moving column 1 to position (jl—l interchanges),

jl’

(R3) moving column n + 1 to position j3 .
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To count the number of interchanges in step F3 we observe
that, in constructing C , steps F3 and F4 do not involve

the first jl columns; thus, step F3 requires n + 1 - j3

interchanges. To count the number of interchanges in step R3 we
observe that Cl¢;n] is obtained from C by deleting

column n so that the effect of step F4 is negated and the
relative position of the last columns of a[¢;n] is as

though step F4 had never occurred; thus, step R3 requires

n+ 1 - j3 interchanges.

Substituting the above expressions into (2) we find that

B. Yt - B Y)B®) +BL Y )BLE) =0,
S PR IS FR P s P P Y
or, equivalently,
Bl B pGy30p 0,00, +
B PR I
+BC B ) PG 304, 3,) +
BT R P 1°-2 372
+BG Y B )P (,.30p(3034) = 0 (3)
j2133 jl 2’ l 3' l ° h

Since (3) is invariant to interchanges between the

numbers jl,j2,j3, the lemma holds for arbitrary jl’jz'j3

Second Proof: Let A denote the (n+l) X (n+2) array obtained

from B Dby adjoining on the right the column vector with zero
elements except for a 1 in the i-th position.

Let s =n ,

o = {l,...,jl,...,j3,...n,n+l,n+2},

B = {l,....,jz,....,n,n+l}
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Applying the quadratic relations given by Marcus
and Minc [8,p.15] and ignoring determinants with two

identical columns, we obtain
l,...,jl,...,j3,...,n,n+l,jl

1, . . e e o e e n
A N +
l,...,jl—l,n+2,jl+l,...,j2,...,n,n+l

l,...,j3—l,n+2,j3+l,...,j2,....,n,n+l

which, for convenience, we write in the form

DlD2 = D3D4 + D5D6 .
Now,
D, = ﬁ(Jlfj3)<—1)“'i :
D, = ﬁ(jz) ’
D, = §<;2>p<jl,j3><—1>n—jl :
D, = é(jlsz)p<jl,j2>(—1)n—jl(-1)n v
D, = §<53>p<j3.jl><—l)n-j3 :

6 = (j3,j2)p(33,32)(-l) - .




Q-

Substituting these expressions for Dl""’D and

.. 6’
cancelling out the common factor (-1)P"1, we obtain

>
(=8

N 2n—2jl
jl,jz)B(j3)p(31,33)p(31,32)(—1) +
i 2n-2j
i ~ b . ) . . 3
+ . ) . _ .

B3, B IPG503)R G503y (1)

Multiplying by p(jl,jz)p(j3,j2) and bringing all the
terms onto the left hand side, we obtain

A -i A~ ¢ . s R . _
B(jl,jB)B(jz)p(31,32)9(33,32)
i

- B(. t.
jlljz

A (i) . . . . —
)B(j3)p(31,33)p(33,32)

~ i AR . C
- B(. )B(." )P (34,3 )p(F7,35) =0,
33,32 jl 3'"°1 17-2

which is eguivalent to the desired result.

The next lemma is a generalization of Sylvester's
identity (Gantmacher and Krein [5,p.16]) which is stated by
Koteljanskii [7,p.7] and Karlin [6,p.3] . For completeness

we give a proof.

) be an m X n matrix. Let o ¢ Q(k’m)

and B ¢ Q(k’n) . Let C = (cst) be the (m-k) x (n-k) matrix

for 1 <s s<m , s ¢o and 1l <t <n , t ¢ B.
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Q(r,m) € Q(rln)

Let U e and v be such that

puna=¢ and v .n B = ¢ . Then

Cluiv) = [Ba;®) 17T B(G'H)
/v
N
Proof: Let B be obtained from B by reordering rows

and columns so that the first k rows and columns of ﬁ

consist of rows o and columns B8 of B . Let
C = (Est) be the {(m-k) x (n-k) matrix defined by
- Qyyeces® ;8
Sy = B 1 k ,
Bl,""Bk’t

for 1 <s<m, sé¢éa , and 1 =<t

n, t¢8B
From Sylvester's identity applied to B ,

¢IA

~ Ull'-°lur B r-1 ull"'laklull"‘lur
<, v = [B(a;B)] B 8 8 v v
l,oco,r l,-o-, k, l,ooo,r

Let I(s) denote the number of interchanges needed
to reorder al,...,ak,s in increasing order. Let J(t)
denote the number of interchanges needed to reorder
Bl,...,Bk,t in increasing order. Then

~ I(s) + J(t)C

c = (-1)

st st

Thus,

[I(ui) + J(vi)]

= (-1t C(u;v)

I

L

\)l,...,\)r

Since o,B8,u, and v are ordered sequences, the number of

interchanges needed to reorder OpreverOprlysescrty and
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r
Bl,...,Bk,vl,...,vr in increasing order are Y I(v.) and

r
)X J(vi) , respectively. Hence
i=1

r
ILT(ug)+T(v;)]

) _ o _q,i=1 oz,u)
B (B,v)N (1) B(B,v )

The lemma follows.

Lemma 325

Let B = (bij) be an m x (n+l) matrix with

m=2n 2 2 . Assume that the first n columns of B form
a TP matrix, and that the last n columns of B form a
TP matrix. Also assume that for some a Q(n,m) and
some Kk such that 2 <k <n , -

Oy faesssoaoe , O

gt A n><0.

1, Ky oo ,n+l
Then
(i) Columns 2,...,&,...,n of B have rank n-2 and

column k of B depends linearly upon columns
2,...,ﬁ,...,n of B . (If n = 2 +then column k of

B is zero.)

(ii) All minors of B of order less than n are nonnegative.

Proof:  Set

OqyeeerC
_ l 14 I n
¢=B8B [l,...,n+l]

so that C consists of rows o of B .
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From Lemma 3.1,

A (xi ~ q) ~ Q‘i A q) ~ u’i A ¢
COICG) — Gl py)CG) + €l )C) =0,
for 1 £ i £ n . 8Since the first n columns of B form

a TP matrix the minors a(ai;l,n+l), a(ui;k,n+l), and

6(¢;n+l) are nonnegative. Similarly, the minors

a(ai;l,k) and 6(¢;1) are nonnegative. Finally,

l,...,ﬁ,.,,,n+l

We can thus conclude that é(ai;l,n+l) = 0 for 1 < i < n;:

that is, columns 2,...,n are linearly dependent. Since
6(¢;k) < 0 columns 2,...,%,.,.,n of C are linearly
independent. Thus columns 2,...,n of C have rank

n - 2 and column k of C depends linearly upon columns
2,...,@,...,n of C

We now assert that columns 2 through n of B have
rank n - 2 and that column k of B depends linearly
upon columns 2,...,@,...,n, of B . We first consider the
case n =2 . Then k=2 and C is a 2 x 3 matrix with

zero middle column. Since B(al,uz;l,B) < 0 it follows that

b and b . are strictly positive. Thus B has the
al,3 uz,l
form

b1 byy b3

b 0 b > 0

(xlll all3

b > 0 0 b

uz,l a2,3

b b b
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Since the last two columns of B form a TP matrix,

B(al,1;2,3) = _bul,Bbi,z >0

for i > Gy from which it follows that bi 5 = 0 for
i,

i»> ay Since the first two columns of B form a TP
matrix,

B(l,uz;l,Z) = —bi,2ba2,l = 0
for i < P from which it follows that bi 5 = 0 if
i< ay - Thus column k = 2 of B 1is zero and the assertion
is true.

We now consider the case n > 2 . It has been sh

that columns 2,...,@,...,n of C have rank n - 2 .

Thus there exist «o and «a with o > «a such that
u A v u
5 (ul, ,au,.. ,av, ”%1) - g
2 e eenan P N
with g # 0 . Since the first n columns of B form a
TP matrix, g > 0 . Let D = (dst) be the [m - (n-2)] x 3

matrix defined by

4 . OprecerOureeerQureee 0,8
st £
2, ........ YRR N, t N
for 1 <s <m, s ¢ {ul,,..,&u,...,&v,...,an}
and t = 1,k,n+l . From Lemma 3.2 we have that

5 Syre--rS, -1 Oy reverOuyenerOoyeeesa
tl,...,tr 'k

own
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for ¥ = 1,2,3 . Since the first n columns of B form
a TP matrix, the first two columns of D form a TP
matrix. Similarly, the last two columns of D form a TP

matrix. Finally,

1,n+l l,,..,ﬁ,...,n+l

Thus D satisfies the conditions of the lemma, and since part
the lemma has already been proved for n = 2 we can conclude

that the middle column of D is zero.

Now let B denote the matrix consisting of columns

0
2 through n of B . Since
Oiqgeeerll Oy oo o
17 14 14 4 7 o6 o g
g =8 “ . " # 0
2 i iieaceeaan Keeeoooaoo sl

~ ~
rOWS ul,...,a poeerO 4oee,0 of B are linearly

independent. On the other hand,
sk

for 1 < s <m and s ¢ {al,...,a
so that rows Oqreesrl

linearly dependent for 1 < s <m . We conclude that B0

has row rank n - 2 .

Using the well-known equivalence between row rank and
column rank (Mirsky [13,p.139]) it follows that B0 has
column rank n - 2; that is, columns 2 through n of B
have rank n - 2. Since columns 2,...,ﬁ,,..,n of C
are linearly independent, columns 2,...,%,...,n of B must
be linearly independent. The only possibility therefore is
that column k of B depends linearly upon columns
2,...,@,...,n of B . The proof of part (i) of the lemma

is therefore complete.

(1) of
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We now prove part (ii) of the lemma. If n = 2 ,

part (ii) follows immediately from part (i), so that it

suffices to consider the case n > 2 . Suppose that
B(u;v) < 0 for some 4y ¢ Q(q,m)’ Vo€ Q(q,n+l)’ with
1 < g<n . Since the first n columns of B form a TP

matrix, and the last columns of B form a TP matrix,

n
we conclude that g 2 2 and that v, =1, v =n+ 1.

1 q
Assume that 2 < £ < n and that 2 ¢ v . Set

T = {vl,...,vq,l}N ; then Ty = 1 < £<<Tq+l =n + 1 .

Let C be the m x (g+l) matrix consisting of columns T
of B . The first g columns of C are a subset of

the first n columns of B and thus form a TP matrix.
Similarly, the last g columns of C form a TP matrix.

Finally,

u y " *vecoo oo ,u

1

C . % T 9 = B(u;v) <0
preenr ke Toy

Applying part (i) of the lemma to C we conclude that column

2 of B depends linearly upon columns R A of

Tore Tq
B . Since this is true for each £ such that 2 £28< n
and & £ v , it follows that columns 2 through n of B

have rank at most g - 2 < n - 2 in contradiction to the

fact that, from part (i) , columns 2 through n of B have
rank n - 2 . The truth of part (ii) has therefore been
established.

Lemma 3.4

Let B = (bij) be an m x (n+l) matrix with
m==n = 2 . Assume that all the assumptions of Lemma 3.3

hold. Assume furthermore that
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Then column k of B 1is zero.
Proof:

If n =2 then the lemma is true by virtue of
Lemma 3.3. We therefore assume that n 2 3

Applying Lemma 3.3 we observe that columns 2 through
n of B have rank n - 2 . Also, column k of B
depends linearly upon columns 2,..,,ﬁ,..,,n of B
Finally, all minors of B of order less than n are

nonnegative.

Denoting the j-th column of B by Ej we have

that
n
LI
L#k
where the u, are constants.
If all the u are zero, then column k of B is

2
zero and the lemma is true. We thus assume that uj # 0

for some j satisfying 2 < j <n , j #k .

Then

B | = (-1)
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The minor on the left of this equation is nonnegative,

and the minor on the right is strictly negative so that

Since columns 2,...,k,...,n of B have rank

(n-2,m)

n-2 , there exists B ¢ Q such that

2,ece/Ksee.,n

Since the minors of B of order less than n are

nonnegative, g > 0 .

Now,
Blyevernnn '8 - Blreeeennn /B
B = (-1) Ju. B
2,0007] 7o, 2,0,k
k+1—1
(-1) Juj g .

The minor on the left of this expression is nonnegative

and g > 0 so that

-1)5 34, <0 .

]
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We have thus arrived at a contradiction, and

the proof of the lemma is complete.

Remark 3.1

The example
1 1 1 0
B = 1 1 1 1
0 1 1 1

with k = 2 satisfies the conditions of Lemma 3.3 but

column k 1is not zero.

Remark 3.2

Gantmacher and Krein [5,p.108] prove a related result namely
that if B is an n x (n+l) TP matrix and B(¢;n) = 0 then
either column n + 1 is zero or the first n columns are

linearly dependent.
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4. LU-FACTORIZATION OF TP MATRICES

The purpose of the section is to prove Theorem 1.1,
namely that an n x n matrix A i1is TP iff it has an
LU-factorization such that L and U are TP matrices.
The proof is constructive: the off-diagonal elements of
A are successively reduced to zero by row operations (pre-
multiplication by upper triangular matrices) and by column
operations (postmultiplication by lower triangular
matrices). This approach is a modification of methods
used by Rainey and Habetler [16] and Metelmann {11,12].

We begin by considering an n X n TP matrix A which
is of the form

ajy 0 o . . . 0 0 ... 00 .0 ... 0
aZl a22 o . . . 0 0 ... 00 0 ... 0
akl ak2 ... akk akg 0 ... 0 akm 0 ... 0 (4.1)
qk+1,1 %k+1,2 " %k+l,k " Zk+l,2 0 0 Z%k+1,m "7 Zk+l,n
a q a . see @y -eeay . a --a
where
l sk £ 28 <m=<n.
That is,

1l <i<k and i < j

A

’

IA

= 0 if or i =k and m < j '

or k<i<n and £ < j < m.

In words: the first k - 1 rows of A are in lower triangular
form, in row k the elements in columns m + 1 through n

are zero, and columns & + 1 through m - 1 are zero.
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Lemma 4.1

Assume that A 1is a TP matrix of the form (4.1) and

that a g 0. Let A be obtained from A by subtracting

~

a / a times column £ from column m . Thus A = AU
km k2

where U is the TP upper triangular block diagonal matrix

U = diag(Ty ;) Fp_giq @rn/3p) 1 Tnom) -
Then
(1) A is of the form (4.1) and akm = 0 ,
(ii) If A is upper triangular then so is A . If A is

~

upper Hessenberg then so is A ,
(1ii)A is TP ,

Proof: Parts (i) and (ii) of the lemma follow immediately

from the definition of A

We now prove the hard part of the lemma, part (iii).
This is a generalization of a result due to Rainey and
Habetler [16,p.125] . Presumably the proof of Rainey and
Habetler could be generalized, but instead we prove (iii)

by induction upon the following hypothesis:

H(s): A(a;s) 2 0 for all «ao,B € Q(r,n) where 1 < r < s .
Hypothesis H(l) is certainly true since aij = alj

if j #m , ai,m = 0 if i < k , and
dim = %im T 2i0%n” 2ke

v

i

_l_. A k’ i 0
I 2,m !

if 1 >k
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Now assume that H(s) is true for s < t - 1 but that
H(t) is not true. Then there exist «,8 ¢ Q(t’n)
A(a;B) < 0 . Clearly me¢ B and £ £ B since otherwise

A(a;B) = A(a;B) =2 0 . Set

Vo= {Blr---lstrl}
N

} e Q(t+l,n)

={Blr°--rB IQqur---rBt.

g-1

Since m

m

v and 2 < m we know that 1 £ g < t ; the
cases g =1 and 1 < g < t + 1 will be considered

separately.

Case 1: g = 1

That is, Bl > & . Then oy > k since otherwise the
first row of i[a;B] is zero in contradiction to the
assumption that ﬁ(u;e) <0 . Set

T {k,ul,...,at} € Q(t+l’n) .

Expanding ﬁ(u;v) by its first row we obtain that
A(u;v) = ay A(a;B)

But

i(u;v) A(uiv)

o~

since A is obtained by subracting a multiple of column

2 ¢ v from column m e v . Thus
A(a;B) = A(u;v)/akz >0
contrary to assumption.

Case 2: 1l < g< t + 1

Let B be the t x (t+l) array B = Afa;v]. Then
fs(vq;) = A(a;B) < 0

By hypothesis H(t~l) all the subdeterminants of B of

such that

order less than t are nonnegative. Furthermore, if j # g

then
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A “t)
\)l,...,\)j,...,vt+l

17 ao e ,at
A ~ =2 0 .
\)llo..’\)j,..ol\)t,‘l'l

Applying Lemma 3.4 we conclude that column vq = % of

B is zero; that is, a;, = 0 if i e oo . Hence

a. = a,. - a, _a.,./a = a, if i o
im im km 11/ k& im ' € &

so that

~

A(a;B) = A(a;B)

[\
(]

contrary to assumption.
The proof of the lemma is therefore complete.
Lemma 4.2

Assume that A is a TP matrix of the form (4.1)
with & = k , that column k of A is zero,
and that A 1is upper triangular. Let A be
obtained from A by interchanging elements ak,k and A

Let U be the upper triangular TP block diagonal matrix.

U= diag(Ty 1/Cpgyrrtnom! -

Then A = AU and

-~

(i) A is of the form (4.1) and ékm =0 ,

~

(ii) A is upper triangular,
(iii)A is TP .
Proof: Assertions (i) and (ii) are obvious, so that we need

(p,n)

only prove that A is TP . That is, if a,B € Q then

we must show that ﬁ(a;e) = 0 .
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If k ¢ a then ﬁ[u;B] = Afo;R] and hence
A(a;B) = A(a;B) = 0 .

Since A 1is upper triangular, of the form (4.1), and has
columns k through m - 1 equal to zero, the only nonzero

element in row k of A is CI and the only nonzero

element of row k in A is a = a . Hence, if
k,k km
k e a but k ¢ B8 then A(a;B) =0 .
Finally, let Xk € a and k ¢ B so that k = oy = Bt

for appropriate s and t . Set
v = min(s,t), o = {ll""k} r

1 2
OL( ) = {@lro'-lav}r 0"( ) = {(Xv_*_ll-'-lap}‘l

(1) _ (2) _
B = {Bl""’Bv}’ B = {Bv+l""’6p}‘

Since the first k rows of A are in diagonal form, we have that
~ ~ l 1 ~
Al ) = A ;) A ;2),,

with the convention that £(¢;¢) = 1
Two cases arise:

Case (a): s # t

Since a = Bt it follows that o, # Bv . Remembering
that Afo;0] 1is diagonal we can conclude that

i(a(l);s(l)) = 0 which implies that i(m;B) = 0 .

Case (b): s = t = v

(2) _

Then either o = ¢ or o > a._ =k ; in either
case, A[a(z);ﬁ(z)] = A[a(z);B(z)] so that

A5y = a@®;82)) 2 0

. Moreover,
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(1) akk = akm >0, 1f v

o o o s g O
. A(Bl’ ' v—l) .
ll---rBV_l

i(u(l);ﬁ

2

Thus,
Afa;p) =AM ;e K@)y 50,

and the proof of the lemma is complete.

0,

1

’

if v > 1 .

We now consider an n xn TP matrix A of the form

all 0 0 . 0 .o. O 0
a21 2,9 0 . 0 ce.o O 0
akl ak2 . e akk . e akm 0

apt1,1 3k+1,2 "0 Zk+l,k 7 Zk+l,m Zk+l,mel

° . o o - 2 o o ° -

aqy a oo a ee- @ .
where
l £k <mz=<sn.
That is,
1 <i<k and i< j

I
o
-
Hh

a. .
ij

or i k and m < j

In words: the first k - 1 rows of A are
form, and in row k the elements in columns

n are zero.

<
<

in

. 0
. 0
cee O , (4.2)

*+ 41,n

n .,
n .

lower triangular

m + 1 through
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Lemma 422

If A is a TP matrix of the form (4.2) then one

of the following three possibilities must hold:

1. akm = 0,

2. am >0 and A 1is of the form (4.1) for some
2 , with 3y > 0 ,

3. ay. > 0 and columns k through m - 1 of A are
zZero.

Proof: Suppose that (i) does not hold so that aym >0 .

If i >k and j < m then

A (3 l) >0 ,
j m
so that if a,. = 0 then a.,. =0 for i > k . The lemma

kJ 1]
follows.

Lemma 4;3

Let A be a TP matrix of the form (4.2). Then there

exists an upper triangular TP matrix U and a TP matrix

~

A such that:

~

(1) A = AU ,

~

(ii) A is of the form (4.2) and an =0,

(iii) If A 1is upper triangular then so is A .

Proof: According to Lemma 4.3 three cases can arise. We

consider each case separately.
Case 1:

akm = 0. Set U=1 and A=A . All the assertions

of the lemma are trivially true.
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Case_g:
A 1is of the form (4.1l) with a0 > 0 . Define U
and i as in Lemma 4.1. Then the assertions of the lemma

follow from Lemma 4.1 .

Case 3:

Columns %k +through m - 1 of A are zero. It is
necessary to proceed differently according to whether or

not A is upper triangular.

If A is not upper triangular we define A to be
the matrix obtained from A by interchanging columns m
and m -1 . Since column m - 1 of A 1is zero,
A = AU where U 4is the TP block diagonal matrix

U = diag(I _,/G,,I _)

~

It is obvious that A 1is TP and that assertions (i)

and (ii) are satisfied.

If A 1is upper triangular then the matrix obtained by
interchanging rows m and m - 1 may not be upper
triangular. 1In this case we define A and U as in

Lemma 4.2 .
We can now consider

Theorem 1.1

A 1is a TP matrix iff A has an LU-factorization such
that L. and U are TP .

Proof: It follows from Lemma 4.4 that a TP matrix A can

reduced to a lower triangular TP matrix L by postmultiplica-

tion by a sequence U(r) , r=1,...,N , of TP upper
triangular matrices. Thus A = LU where
N
u= zuf |

r=1
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On the other hand, if L and U are given TP

matrices, then A = LU is also a TP matrix.

Remark 4.1

Theorem 1.1 was conjectured by Cryer [2, p. 91].

Remark 4.2

The matrices Fr and Gr can be expressed as the

product of TP upper tridiagonal matrices. Thus it follows
from the proof of Theorem 1.1 that a matrix A is TP
iff

N M
a= 115 1ygls

(r)

where each L

(s)

is a TP lower tridiagonal matrix and
each U is a TP upper tridiagonal matrix.

Remark 4.3

We recall (Cryer [2, p. 84]) that a triangular matrix
is said to be a ASTP matrix if it is a TP matrix and

if all "non-trivial" minors are strictly positive.

Let L be a triangular TP matrix which is lower

triangular, say. As in Remark 4.2,

(r)

where each L is a TP lower tridiagonal matrix. For
any s > 0 the matrix L(r) + (1/s)I is a nonsingular

TP lower tridiagonal matrix, so that L(r) can be
approximated arbitrarily closely by nonsingular lower

triangular TP matrices. As shown by Cryer [2, p. 87]
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every nonsingular TP lower triangular matrix can be

approximated arbitrarily closely by lower triangular ASTP

matrices. Thus there exist lower triangular ASTP matrices
L;r) such that Lér) > L(r) as s » «® ., Then
N
L, = 1 L;r)
n=1
is a ASTP matrix and Ls - 1L, as 8 » « , We have thus

shown (as conjectured by Cryer (2, p. 90]) that a triangular
TP matrix can be approximated arbitrarily closely by

ASTP matrices.

Remark 4.4

Lemma 4.4 provides a very efficient method for determining

whether a matrix A with given numerical coefficients is

TP . Given A one attempts to construct the sequence of

upper triangular matrices U(r) , r=1,...,N , which

reduce A to a triangular matrix L . One then applies

Lemma 4.4 to LT and attempts to construct the sequence

of upper triangular matrices L(S)T , s=1,...,M , which

reduce LT to diagonal form D . If any of the matrices
(r) g (s)," . _

U , (L ) , D dis not TP then A is not TP ; other-

wise A 1s TP

The number of arithmetic operations required to
determine whether A is TP can be computed in the same
way that the number of arithmetic operations required to
solve n equations by Gaussian elimination is computed
(Fox [3] ) . To reduce A to the lower triangular matrix

L requires
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n-1
y 12 = %n(n-l)(Zn-l)

1

1

multiplications and subtractions. To reduce LT to

the diagonal matrix D requires

n-1, 1
T ii(i+l) = g(n—l)(n)(n+l)
i=1
multiplications and subtractions. In addition, n2

sign tests must be made.

When implementing this procedure on a computer one
would first scale A so that its coefficients were

integers. When eliminating a coefficient am using
column £ one would not subtract akm/akz times column
2 from column m , but multiply column m by a g and

then subtract column & . It should be borne in

mind that the number of digits in the coefficients may
grow as the computation proceeds so that the operation
counts given in the preceding paragraph may not give a

realistic indication of the amount of computation needed.

Remark 4.5

If A is a TP matrix and A is obtained from A

by subtracting a multiple of column £ from column m

~

sOo as to make 51m = 0 , then A 1is not necessarily
TP . This is illustrated by the example £ =1, m = 2
1 1 1
A=1{1 2 3
1 3 6

for which
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Remark 4.6

If A is TP with all > 0 and if A is obtained

from A by subtracting multiples of column 1 from columns

~

2,...,n , then, as shown by Cryer [2, p. 91], A = AU

where A 1is TP but U 1is not necessarily TP




-3 ] -

5. TRIDIAGONALIZATION OF TP MATRICES

In this section we prove

Theorem 1.2

If A is TP +then there exists a TP matrix S
and a tridiagonal TP matrix T such that: (i)
TS = SA ; and (ii) the matrices A and T have the same

eigenvalues. If A is nonsingular then S is nonsingular.

Theorem 1.2 follows immediately by repeated applica-

tion of the following lemma:
Lemma 5.1

et M be an n xn TP matrix of the form

m) 4 my, 0 0 ... 0 0 0 ... O
m21 m22 m23 0 0 0 0 .. 0
mk—l,l mk_l,2 mk—1,3 e e e 0 0 0 ce. O (5.1)
Myeq ) My 3 Mk Mo M,p+r O
Met1,1 ®k+1,2 Mk+1,3 © 00 Mkel,k 000 Tk+l,p Tk+1l,p+l Mk+1,p+2 "7 Mk+1l,n
m m m . m e s o I . . e e o 1IN
nl n2 n3 nk np nn
where
1 <k <p<n.
That is,
l <i <k and i+ 1 < 3j <n ,
mi. = 0 1if
] or i =k and p + 1 < j < n

Then there exist TP matrices S' and M' such that
(1) S'M = M'S'

.. , . . -
(ii1) M is of the form (5.1) and mk,p+l o,
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(iii) if M is upper Hessenberg so is M' .

(iv) if M is nonsingular then S' is nonsingular.

Proof: If m. D # 0 then the lemma is proved by Rainey

s 7

and Habetler [16, p. 124]. If m, p+l = (0 we set M = M'
[4
and S = I and the lemma is trivially true.
Finally, if mk,p = 0 and mk,p+l # 0 we define

S' to be the TP block diagonal matrix

| - ;
S diag (Ip_l,H )

n+l-p

and let M' be the matrix obtained by deleting row p

and column p of M and then adjoining a zero column at
the right and a zero row at the bottom. It is clear that
S'M = M'S' , while it is shown by Rainey and Habetler

[16, p. 1241 that M' is TP and has the same eigenvalues

as M . (It should be noted that we denote by M' the
matrix denoted by M by Rainey and Habetler). Finally,
since M 1is TP , mkp = 0 , and mk,p+l > 0 it follows

that column p of M is zero. Hence, the fact that §8'

is singular does not invalidate the lemma.

Theorem 1.2 partially answers the conjecture of Rainey
and Habelter [16, p. 12371 that if A is TP then there
exists a nonsingular TP matrix S and a tridiagonal matrix
T with the same eigenvalues as A such that SA = TS
This conjecture is not true even if the condition that T
have the same eigenvalues as A 1is removed, as is shown

by the following lemma:
Lemma 5.2

Let A be the TP matrix

o
i
oOC o
o OO
[Nl o
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A nonsingular TP matrix S and a TP tridiagonal matrix
T such that SA = TS do not exist.

Proof: If S8 and T exist then

511 £11 12 O $11 S12 S13
SA = Sa1| T IS T |ty Eyy tyy S31 S22 S23 |
S31 0 t3, t33 S31 S32 S33
Y11 Y12 Y13
= | W21 Wop Vo3| 1 SAY .
W31 Y32 V33

Since S and T are both TP matrices, they

have nonnegative coefficients. Since S is nonsingular

) 2 3 123
511%22%3 = S(l) S(z) S<3) > 5(123> >0

so that the diagonal elements of S are strictly positive.
But

Wip T B11811 t EypSyy T 0
Wip T Ep1S1p T tpS,, T 0
so that tll = t12 = 0 .
But then,
S11 T Wy3 T EppSy3 t ty,8,5 =0

which contradicts the fact that Sll > 0 .
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6. DETERMINATAL CRITERIA FOR TOTAL POSITIVITY

The main purpose of this section is to prove Theorems 1.3
and 1.4.

Theorem 1.3

If A is an n x n matrix of rank m then A 1is
TP iff every minor of A formed from any columns B satisfying

d(B) < n - m is nonnegative.

Proof: We assume that A has rank m and that A(o:;B) =2 0

for all «o,B € Q(q,n) , 1 £ g =sn , such that d(8) = n - m .

We prove that A(a;B) =2 0 for all o,B ¢ Q(r,n) , L = r < n .

The proof proceeds by induction upon the following

hypothesis:
(r,n)
Hl(p): A(a;B) 2 0 for all a,B € Q , 1 <r<p.

Hypothesis H1 (1) simply states that the elements of A
are nonnegative, which is certainly true. We assume that
Hl(g-1) is true for some g = 2 and prove that Hl(g) 1is

true.

The proof of Hl(g) proceeds by induction upon the
hypothesis.

H2(s): A(a;B) 2 0 for all o,B ¢ Q(q,n) satisfying
d(B) = s

Hypothesis H2(n-m) 1is true by assumption. We assume that

H2(t-1) is true for some t 2z n - m + 1 and prove H2(t)

If H2(t) is not true then there exist ao,B ¢ Q(q,n)
such that d(B) = t and A(a;B) < 0 . Thus there are t
columns of A s Uprlgreeesly, SAY, which lie between columns
Bl and Bq and do not belong to B .
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Let v ¢ o(@tl/m)

be obtained by adjoining Mg to
B so that for some k satisfying 1 < k < g+ 1 we have
vk = UZ and
B = {vl,...,vk,...,vq+l}

Clearly d(v) =d(B) -1 =t -1

We denote by B the n x (gt+l) array

B = A l1,...,n
.\)l’..‘,\)q‘*‘l

consisting of columns v of A .

By Hl(g-1l) all minors of B of order less than ¢
are nonnegative. Since

d (v

<

l,...,vq) < d(vl,...,vq+l) <t -1

it follows from H2(t-1) that
al,...,aq

\)l’.-.’\)q

Thus the first g columns of B form a TP matrix.
Similarly, the last g columns of B form a TP matrix.
Finally,

B ~ = A(a;B) < 0 .

Applying Lemma 3.3 we conclude that column Vi of B

depends linearly upon columns vz,...,Gk,...,vq of B .
That is, column Mo of A depends linearly upon columns
BZ,...,Bq . Since this is true for 1 < £ < t we conclude
that A has rank at most



-36-

n -t <n- (n-m+tl) = m - 1

which contradicts the assumption that A is of rank m .
It follows that H2(t) is true and the proof of the

theorem is complete.
We now prove

Theorem 1.4

If A 1is a nonsingular lower triangular matrix then A
is TP iff every minor of A formed from consecutive

initial columns is nonnegative.

Proof: We assume that A 1is nonsingular lower triangular

matrix satisfying
OiqgonsesO
A( 1 &) 2 0
l,...,9
for all o e Q(q,n), 1 <gs<n.

Since A 1is lower triangular and nonsingular the

diagonal elements of A are nonzero. Since

g
Al 9) = ga.. 20
l,...,9 =1 ii

the diagonal elements of A are strictly positive.

suppose that a,8 ¢ 0™ and that d(g) = 0 . We
assert that A(o;B) =2 0 . To prove this assertion we observe
that if aq < Bl then A(o;B) = 0 because A is lower
triangular. If 0y = Bl and B] = 1 +then

Ol.l,...,O(.q
A(o;B) = A 2 0
1,...,9

by assumption. Finally, if 0y 2 81 and Bl > 1 set

T = {l,...,Bl - 1}. Then
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T,0 1[ e B 1,04, r O
A -2 1 1
T,R 1, . . . ,Bq
Bl—l
= A{a;B) rzl a_ .
> 0 ,
since d(t,B) = 0 , from which it follows that A(a;8) = 0 .

The theorem now follows immediately from Theorem 1.3.

Remark 6.1

It is an immediate consequence of Theorem 1.3 that if
A is nonsingular then A is TP iff every minor of A

formed from consecutive rows is nonnegative.

Remark 6.2

Theorem 1.3 was suggested by the result (Gantmacher
and Krein [5, p. 299]) that A is strictly totally positive
iff every minor formed from consecutive rows and consecutive
columns is strictly positive. Theorem 1.4 was conjectured
by Cryer [2, p. 86] .

Remark 6.3

The matrix

0 01
A = 100
010
is nonsingular and all minors formed from consecutive initial
columns are nonnegative, but A is not TP . It is also

the case that all minors formed from consecutive rows and

consecutive columns are nonnegative.
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The matrix

0010
o001
A=11000
0100

is nonsingular and all minors formed from consecutive initial
columns or consecutive initial rows are nonnegative, but

A is not TP .

The matrix

1000
_[o100
A=1loo010
1001

is nonsingular and lower triangular and all minors formed
from consecutive initial columns and consecutive rows are

nonnegative, but A is not TP .

Remark 6.4

If A 1is singular then all elements of A may be zero

except for two elements aij = 1 and a.g = 1l say. 1In

this case A is TP iff

A (%’g) 2 0
j ’ N

It is therefore clearly not sufficient to examine minors of

A formed from consecutive rows or consecutive columns.

Remark 6.5

It is not clear how to generalize Theorem 1.4 to the case

of singular matrices. The matrix
0 0 00
_ 0L 0O
A=1loo01o0
0101

is lower triangular and of rank 3. Furthermore, A(%;B) 2 0

for all a,8 ¢ 09 guch that B; =1 . But A is not TP
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