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Abstract. A multivariate generalization of the Strong Licuville
Theorem due to Risch is presented. The result is an abstract version
of the following; Let K be a subfield of the field of complex

numbers. Let each fj(xls.‘.,x ), 1<i<n , be any function in a

n
field € obtained hy algebraic operations and the taking of loga-
rithms and exponentials over K(x]?...,xn} . If there exists a

function g obtained by algebraic operations and the taking of
Togarithms and exponentials of elements of L such that
vg = (Sg/ﬁxi,..,,ég/Hxn) = (f13».. )

1
'

then o wmust be of the Torm

D
(Sl



where dO is in E , the c; are constants in, and the di are

elements in, E(a) where a 1is a constant algebraic over E .

*
This research was supported in part by NSF Grant GJ-30125X.




1. Introduction

The main vresult of this paper is a multivariate generalization
of the Strong Liouville Theorem of Risch [5] on integration in finite
terms. The motivation for this work comes from the authors' investiga-
tions into transcendental function algorithms, i.e., algorithms for
symbolic computations with transcendental functions.

The main result can be roughly interpreted in the following way.
Ltet K be a subfield of the field of complex numbers and let each
fi(x]g...,xn) , 1<i<n , be any function in a field E obtained by
algebraic operations and the taking of exponentials and logarithms
over K(x],..,,xn) , 1.e., each fi is an elementary function. If

there exists a function g obtained by algebraic operations and the

taking of exponentials and logarithms of elements of E such that
Vg = (ag/3x1,...,ag/8xn) = (f],...sf )
then g must be of the form
dg + ) c; log d;

where dO is in E , the c, are constants in, and the di are elements
in, E(a) where a 1is a constant algebraic over E .

Although the results are obtained in the abstract setting of
differential rings and fields, all the arguments are quite simple
and require only elementary concepts from algebra.

In section 2 some standard definitions from differential algebra

are introduced. 1In section 3 some Temmas basic to the proof of the



main results are derived. These lemmas are primarily concerned with
the behavior of derivatives of elements in a differential overring
of a given differential ring.

Section 4 is devoted to the statement of some known results
about differential fields and section 5 contains the main results of

the paper.




2. Differential Rings

Let R be a commutative ring with unity and let D]""’Dn

be mappings from R to R with the properties that for any a ,

b in R and for 1<i , j<n

D;(at+b) = D(a) + Dy(b) (1)
D, (ab) = bD.(a) + aD,(b) (2)
and Di(Dj(a)) = Dj(Di(a)) . (3)

R is called a partial (ordinary) differential ring if n>]

(n=1) with derivation operators D 5D

12e
For a in R and positive m in Z , the ring of rational

n°

integers, it follows by induction that
D.(am) = ma D.(a) , I<i<n . (4)

If R is a field (4) holds for non-zero a 1in R and non-zero m
in Z . Furthermore it follows from (4) that Di] = Di12 =
2°]°Di1 and hence that D11 =0 . Thus if R 1is a field, a a

non-zero member of R then (4) holds for all m in Z . If there

exists b ' in R such that b = 1 , then for any a in R

ui(ab“) - [bDi(a)—aDi(b)](bw])z . (

(@]
~—

The terminology differential field is used for a field F that

satisfies (1) - (3).
Let S be a subring of the ring R . We say that S 1is a

differential subring of R or that R is a differential overring




of S if DiS c S for lI<i<n . Let Ci(R) = {a: a is in R and
Di(a) = 0} and let C(R) = 0121 Ci(R) . It follows from (1) and (2)
that Ci(R) and C(R) are differential subrings of R . They are

called respectively the constant ring of R with respect to the i-th

variable and the constant ring of R . If R 1is a field it follows from (5)

that Ci(R) and C(R) are differential subfields of R . We have
previously remarked that 1 is in C(R) , and in case R 1is a field,

o(R)

also contains the prime subfield of R .

Let R and S be differential rings with n derivation op-
erators D]""’Dn and E]""’En respectively. Let o be a
homomorphism from R to S with the additional property that
G(Di(a)) = Ei(c(a)) for all a in R and for 1<i<n . Such a
homomorphism is called a differential homomorphism. The concepts
of differential isomorphism, differential automorphism and differ-
ential embedding can be defined similarly.

Let Byse e be elements of the differential ring R and
let Nyseessny be in Z+ , the set of positive rational integers.
For any derivation operator D on R , it follows from (4) and
induction on m that
n. n.-1 n

D(m." Ty =g 0 a. J . i L)
(Moq ay ) = L=y (nja; #j a; Day) (6)

If R is a field and each a; is non-zero, (6) may be written

n.
D(HT a. 1) Da.
- 1n ) j21 ng L (6")
m ‘ i J aj




In fact (6') holds when each n is in Z . (6) and (6') will be

called the logarithmic derivative identity.

The intersection of any family of differential subrings of the
differential ring R 1is a differential subring of R . If S is a
differential subring of R and p is a subset of R , there exists
a smallest differential subring of R that contains both S and o

and is called the differential subring generated by p over S and

is denoted by S{p} . p 1is called the set of generators for the ring

S{p} over § . A differential overring of a differential ring S
is said to be finitely generated over S if it has a finite set of
generators over S . If S and R are differential fields, the
smallest differential field containing S and p will be denoted

by S<p> .



3. Elementary Overrings of Differential Rings

Throughout this section S 1is assumed to be a differential
subring of the differential ring R with derivation operators
D ’Dn . We also assume that the characteristic of R 1is zero

(s)

’-],c--

which implies that C contains a subring isomorphic to 7 .

Let us consider R" = {(a],...,an): a; is in R for 1I<i<n} .
R" s a commutative ring with identity when addition and multiplica-
tion are inherited in a component-wise manner from R . In fact R"
is a differential ring with derivation operators D]""’Dn inherited
component-wise from R , i.e., D.(a],...,an) = (Dia1"“’Dian) . R"
contains a subring ﬁ = {(a1,...,an): a; = a; for 1<i , j<n} and
R is differentially isomorphic to R . It will be convenient to

A~

abuse the language and not distinguish between R and ﬁ . In a
similar fashion S may be considered as a differential subring of
R" . The constant ring of R" is just (C(R))n .

We now introduce a new derivation operator V on R" , called

the gradient operator, defined by V(a;,...,a_ ) = (Dqays...,0 a )
1 n 171 nn

for all (a],...,an) in R" . It is a trivial matter to verify that
vV satisfies (1) and (2) on R" and that \7D_i = Div for l<i<n .
Hence R" is a differential ring with derivation operators V ,
D1,u..,Dn . With these derivation operators the constant ring remains
(C<R))n . However R and S are no longer necessarily differential
subrings of R" since they may not be closed under V .

The constants of R may be characterized in terms of V , namely
for a in R, a s in C(R) if and only if va =0 . Also for a,

R)

b in R and ¢ in C(

1 , C]Va = vb if and only if cqja = b + ¢y where




c, is in C(R) . This is true simply because V(c1a—b) =0 . We

also need to know the relationship between a and b when there

exists m in Z' and d in R" such that Va = ad and Vb = +mbd .

Lemma 1. Let a , b be members of the differential ring R as

defined above, let d be in R" and let m be in Z+ . If va = ad

m

and Vb = -mbd then a'b =c¢ for ¢ in C(R> . If R s an integral

mbd then a" = cb for ¢ in C(F) where

i

domain, Va = ad and Wb

Fis the quotient field of R .

Proof. If either a or b is zero both conclusions may be trivially
satisfied by choosing ¢ =0 . So assume a and b are non-zero.

Va = ad and Vb = -mbd implies that V(amb) = 0 and the first con-
clusion follows. In the case Va = ad and Vb = mbd we have that

m

bva™ - a"™b = 0 and passing to the quotient field of R , V(amb~1) =0,

i.e., amb-1 = ¢ in C(F) )

L]
Suppose that a s in R . a s said to be primitive over S
if va s in s" . If there exists a non-zero b in S such that

bva = Vb then a 1is called a logarithm over S . If S 1is a field,

a lTogarithm over S s also primitive over S . If there exists b

in S such that va = avb , a 1is called exponential over S . If

a is algebraic, logarithmic or exponential over S, a 1is said to
be simple elementary over S . Let T be an intermediate ring between
S and R, i.e., ScTcR. Then a in T and T are said to be

elementary over S if T = S{a],...,am} where each a; is simple

elementary over S{a;,...,a; 1} . If T 1is elementary over S and
1 i-1

C(T) = C(S) then a and T are said to be regular elementary over S .
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let a be transcendental over S . Ue want to consider the
ring of polynomials s"[a] . First of all note that a is trans-
cendental over S" if and only if a 1is transcendental over S .
Clearly transcendence over sh implies transcendence over S since

HER Suppose a is transcendental over S and there exist
n

sj in S such that
k J 2
Zj=0 Sja - O . (7)
S, = (S.i4u00.s5: y i i
Let 5 ( i1 Jn) then (7) implies that

’-ﬁ S.. aJ =0 for T<i<n .
j=0 “ji —_

But since a 1is transcendental over S , =0 for 1I<i<n,

S..
ji
0<j<k , which implies that Sj =0 for 0O<j<k and that a is

transcendental over s"

For the proof of the next lemma we need to know that the additive

group of S is torsion free, that is, that if a 1is a non-zero element

of S and m is a non-zero integer in Z , then ma # O .

Lemma 2. Suppose that the additive group of S 1is torsion free. Let
a in R be transcendental over S and let P(a) = 2150 Py a' be a
member of S[a] of degree k >0 . If a 1is primitive over S and

S) R)

C( = C( then the degree of V¥P(a) is k or k-1 (in s'ral).

If the degree of VP(a) = k-1 then Py is in C(S) .

-1

i

k i, . i
y (Vpja +ip;a’” va) (8)

Proof. VP(a) i=0

.i

i

k - »
Vpka + 2§=é <Vp1+(1+])D1+]Va)a

If vpy = 0 then Vpk~] + kkaa # 0 for otherwise Vpk_.i = ﬁkkaa
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S) . Since

which implies that Peoq © ~kpka + ¢ where ¢ 1is in C(
the additive group of S is torsion free —kpk # 0 and hence a 1is

not transcendental over S which is a contradiction. (]

Lemma 3. Let a 1in R be transcendental over S and let P(a) be
a non-zero member of S[a] of degree k . If a is exponential over

S , and C(S> = C(R) then the degree of VP(a) is k .

Proof. If k = 0 the result is trivially true, so assume k > 1
Since a 1is exponential over S there exists b in S such that

7a = avb . Thus from (8) we have that

vP(a)

il

k . i
Zi=0 (Vp1+1p1Vb)a1 )

If VP * kpkb = 0 then VP ® «kkab which by lemma 1 implies that

pkak = ¢ where c¢ 1is in C(S) . The Tast implication contradicts

the transcendence of a and hence the degree of VP(a) is k. U

Lemma 4. Let R be an integral domain. Denote the quotient fields

of R and S by E and F vrespectively and assume that C(E) = C(F)

Suppose that a in R is transcendental over 5 and is either pri-
mitive or exponential over S . Let P be a member of S[al with

degree of P =k >0 . If P|VP (in Sn[a]) then a 1is exponential

and P = pak where p 1is in S .

Proof. If P|VP then degree P = degree VP and there exists d

n k i

in s" such that VP =dP . Suppose P = ). p;a

If a s primitive it must be the case that Vpk # 0 and
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comparing leading coefficients of VP and dP we have that pkd = VP -

1

Thus p, VP - PVp, = 0 and V(Ppk' ) =0 . Hence P =cp, where c

is in C(E> = C(F)

which contradicts the transcendence of a over S .
Thus a is not primitive.

Suppose a is exponential, i.e., there exists b in S such
that a = avb . It follows from comparing coefficients of VP and dP
that dpi = Vpi + ipivb for O<i<k . [If there exists j <k such that
pj # 0 (otherwise the desired result holds) then dpj = ij + jijb .
Thus dpkpj = pj(Vpk+kpkvb) = pk(ij+jijb) which implies that

- [ . -1y .
ijpk - kapj = (3—k)pkijb or equivalently that V(pkp:j ) =

(j—k)pkpj_]Vb . By lemma 1 ak=d 2 cpkpj~1 where ¢ s in C(R)=

o(8)

and hence a 1is not transcendental over S which is contrary

to the hypotheses. We must conclude that p; = 0 for O<i<k . 1[I
Suppose a in R is transcendental over S and that P s

in Sn[a] . P is called square-free if there does not exist Q 1in

s"[a] with degree Q > 0 such that Q2|P .

Lemma 5. let R, S, E, F and a be as in Temma 4. Let P,
Q) be relatively prime members of S[a] with degree of Q >0 . Let
P, Q be relatively prime members of Sn[a] such that 5/6 = y(P/Q) .

is square-free if and only if a 1is exponential over S and

e Lo

= sa where s 1is in S .

Proof. If a 1is exponential and Q = sa it is easy to verify that

Q 1is square-free. So suppose that Q is square-free. Then

w(P/Q) = (qvP-PWQ)/0° = P/Q .




Thus
-2_.—
PQ™ = Q(QVP-PVQ) .

Since Q 1is square-free Q|(QVP-PVQ) which implies that Q|VQ
which implies by lemma 4 that a is exponential and Q = sa" , s #0
in S . Now it is necessary to show that m = 1

Suppose Va = aVb where b is in S . If P = ziio piai where
by i in S . then P/Q - sTh/a" . et sTlP=p=7K Ba .
Then 9(P/a") = P/Q implies that a"® = Q(VP-mwbP) . If m > 1,
a[(vﬁ-meE) which implies that Vﬁo - meﬁO =0 . Thus by lemma 1
am = cPy where ¢ is in C(F) = C(E) . But this contradicts the

transcendence of a and hence we must conclude that m = 1. 0
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4, Differential Fields

Throughout this section we assume that F s a differential
field of characteristic zero with n derivation operators D]""’Dn .
This section contains well-known results that are needed later.

Llet U be a differential extension field of F (i.e., a dif-
ferential overring that is a field) with the property that any finitely

generated differential extension of F can be differentially embedded

in U . We call U a universal extension of F . Kolchin proves

[2, p. 92] that every differential field of characteristic zero has a
universal extension. (Kolchin calls such extensions semiuniversal
fields and reserves the terminology universal field for a stronger
concept. )

The following lemma is taken from Kaplansky [1, p. 33].

Leima 6. Let U be a universal extension of F . Let {fi}ljﬁfm

and g be members of F[x],...,xr] . If there exist cq....,C

in C<U) such that fi(c1,...,cr) =0 for 1I<i<m and g(c],...,cr) #0

then there exist k],...,k in C(F) , the algebraic closure of

r
c(F) such that f,(kpse..nk ) = 0 for 1<ian and g(kpse..sk) # 0

r

Lemma 7. Let G = F(a) be an algebraic extension field of the field

jTO rjaJ be the monic, irreducible polynomial of

minimal degree over F that is satisfied by a . Let P(a) =

F. Let R=)

ZjEO pjaJ be an arbitrary member of G , i.e., P is a polynomial
over F with k <m . Then each of the derivation operators Di R

l1<i<n , may be uniquely extended to G to give G a differential
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structure compatible with F by defining
yad + (15 (3+1)p ., ad)0.a (9)
IS j=0 TP

where
Dja = (-XJ.‘_‘_] (Dir.)aj) / (2’3‘;5 (J"”)Y‘jﬂaj) : (10)

The proof of Rosenlicht [6, p. 965-6] for ordinary differential
fields can be easily generalized to partial differential fields.

We want to observe that for any arbitrary o in the Galois
group of automorphisms of G relative to F that o(Dia) = Di(aa)
for 1<i<n and for a in G . This fact follows in a straight-
forward way from (9) and (10).

It is an immediate corollary of lemma 7 that when a is

algebraic over F , F<a> = F(a) .
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5. Multivariate Liouville Theorems

The main results of the paper are presented in this section.
Throughout this section F will denote a differential field of
characteristic zero with n derivation operators D]""’Dn ;
U will be a universal extension of F . The subfield G of U
will normally denote a differential extension field of F which
is either elementary or regular elementary over F . As in section
3 we will introduce G" , F"  and the derivation operator V .

Using the natural (differential) embedding as before, we will con-
sider G and F as subfields of G" .

Now we present a multivariate generalization of the Ostrowski

generalization [4] of a theorem originally published by Joseph Liouville [3].

Other proofs of the Ostrowski generalization have been given by

Risch [5] and Rosenlicht [6, 7].

Weak Liouville Theorem. Let G be a differential field that is regular

elementary over the differential field F . Let a be in oIf
there exists b 1in G such that Vb = a , then there exist constants

.,d_in F such that

CyseeesC in F and elements d. , d1,..
m

m 0

- m

Proof. Since G is regular elementary over F , there exist

t1,...,tk in G such that G = F<t],...,tk> and each ti is
(6 _ (F)

simple elementary over F<ti,....ts 4> . Furthermore
The proof is by induction on k . If k = 0 the result is

trivial since G = F and one may choose ¢y = 0, 1<i<m , and
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d0= b . So assume that k > 0 and that the desired result holds

for k - 1 . By the induction hypothesis we have that
= m 1
a = Uy *+ Lioq Yq V8;/6; (11)

where §.
(F) T
C =

, O<i<m , is in Fy = F(ty) and y; , I<i<m , is in
F) .
It is necessary to show that a can be written in the form
(11) where the 8, 's are in F . We have three cases to consider,
namely (1) when t, is algebraic over F , (2) when t is a
Togarithm over F and (3) when t] is an exponential over F .
First assume that t] is algebraic over F . Let TyseensOy
denote the elements of the Galois group of automorphisms of the
normal field belonging to F1 relative to F . Since UiDjé = D-aié

J

for all & in F] , it follows that giVG = Voié for all & 1in

Fy - Applying Tr = 2121 oy to (11) we obtain

ga = VIr(§,) + Zif1 Y; Zj§] ij(ﬁi)/Gj(Si) . (12)

Applying the Togarithmic derivative identity to (12) we obtain
. m

where do = Tr(8o)/¢ and di = Hji] Oj(di) = norm(&i) for
1<i<m . Of course Tr(ﬁo) and norm(éi) , 1<i<q , are in F as
required.

Now assume that t1 is either a logarithm or an exponential
over F . Since the case where ty is algebraic over F has

already been considered, we may assume that t1 is transcendental
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over F . Each 61 ,» 0<i<m , in (11) is a rational function in

t. over F . Each 51 , Ociem , can be written as a power product

1
of a non-zero element of F and monic, irreducible polynomials

in t] over F . Then using the logarithmic derivation identity
ZTT] y; V8;/8; may be rewritten in a similar form with each §;
cither a member of F or a monic, irreducible polynomial in t]
over F . Thus we assume that each &, , 1<i<m, is a distinct
element of F or a distinct monic, irreducible member of F[t]] .
Furthermore we may assume that each Y; #0 .

Now multiply (11) by P = Hif] §; to obtain

- m
aP = PV, + ij] vy V85 I 8 (13)

gy

Thus P8, is a member of Fn[t1] . But by lemma 5 this is possible
only if either 60 is in F[t1] with ty logarithmic over F
or t,8, is 1in F[t]] with t exponential over F .

Now it is convenient to divide the argument into the case
when t] is logarithmic over F and the case when t is exponential
over F . First suppose t] is logarithmic over F , i.e.,
vty = ve/e where e is in F . Since 4§, is in F[t1] » V8,
is also in F[t1] . Thus for each j = 1,2,...,m (13) implies
that 6;[V6 ; in F[t,] . But this is impossible unless & is
in F . ‘Thus each & for 1<j<m must be in F . But then (13)
implies that VGD is in FN . If Ve, is in F7 then lemma 2
implies that either 60 is in F or &5 = Yoty * dg where g
is 1in C(F) . Now we have shown that (11) has the desired form

when t1 is logarithmic over F , i.e., a = Vdg t YOVe/e +

m
Lizt Yi 753784 -




Suppose that t1 is exponential over F , i.e., th = t1Ve
where e s in F . (13) implies that 51|v51 for l<i<m . Thus
by lemma 4 61 is in F except for possibly one 61 ,» say 6] » in

which case we must have 61 = t] . Hence
a = USy +yq Ve + Tl v V/8s (14)
0 1 i=2 ' irvy

(14) implies that Vé, is in F" . Now 60 must either be a polynomial

or a rational function in t If 60 is a polynomial, lemma 3 implies

1
that 60 must actually be in F since vao is in F" . If 60 is
not a po1ynomia1 we have shown that it must be of the form Q/t1 where
Q= Z o 94t s in Flt;] . Since Vs, is in o t][(VQ—QVe) which
implies that VqO - qOVe = (0 . Thus by lemma 1 dp = ct1 where ¢ 1is
in C(F) thus contradicting the transcendence Zf t1 over F . Hence
8, must be in F . Now a = V(§ +y1 + Z = Y Vai/di is in the
desired form. [

The condition that G be regular over F can be removed
for the multivariate case just as Risch [5, p. 171] did for the

univariate case. The proof is similar to the univariate case and

is sketched here.

Strong Liouville Theorem. Let G be a differential field that is

elementary over the differential field F . Let a be in F" ;
if there exists b in G such that yb = a , then there exist a

constant k algebraic over C(F) , constants  Cq,...,Cp and

elements d1,..,,dm in F(k) and dO in F such that

- m
a = vdy + Li=p CiYd3/dy -

Proof. Since G is elementary over F , there exist t?""’tk in G

such that G = F<ty,. ..ot > - If t, s transcendental over F, =

Fetyse sty 47 and  F. = Fy <ty” is not regular over F. q then there
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(F.)

exists a constant ¢ in C' i’ such that t; is algebraic over F1_1(c) .
This follows since F_i not regular over Fi—] implies that there

exists a constant ¢ in Fi - Fi—] , i.e., ¢ = R(ti) where R s
a rational function over F. . which implies that t. fis algebraic
over Fi_](c) .

Hence it follows that since b 1is elementary over F there

exist constants YiseeesYy such that b is regular elementary

over F(y],..,,yﬂ) . Now we can apply the weak Liouville theorem
to obtain polynomials PO,...,ﬂ“,Q in Y1seeesYy OVEY F and
. . (F)
polynomials Pyseeesly s SyseeesSpy in yys...oy, over C
such that
- 2 m
a = (QWP,-PgVQ)/Q° + T4y (ry/sy) (WP3/P4) (14)

Note that it is sufficient to consider the Pi‘, 1<i<m , as polynomials
instead of rational functions for if they were rational functions

they could be reduced to polynomials by employing the logarithmic
derivation identity.

The relation (14) may be written as
P(yl,...ayﬁ)/Q(Y],...,YQ) =0

with

Ot
t

_ Al m
Q"M oy 3Py 70

and

P = (QVPO-POVQ)<§Q—) £ QTN (ry/s;)(TPy/Py) - aQ = 0
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Now Q s in ’F[YP...,YQ] and P s in F'[vy,...0v0 .
Suppose P = (P1""’Pn) where each P, is in FLYseeosYel ™
Now apply lemma 6 to obtain k],n,.,kz algebraic over C(F)
such that Pi(k13...,k£) =0 and Q(k1,,,.,kz) £ 0.

Let k be algebraic over C(F) such that (1) C(F)(k) is
a Galois extension of ¢(F) , (i1) C(F)(k) contains kq,....kp
and (i1i1) C(F)(k) is the smallest field satisfying (i) and (ii).

Backtracking we obtain

. V(PO(k1""’kk)) . Z.m ri(k1,...,k
Q(k],...,kz) i=1 si(k1,...,k%) Pi(kl”"’

Apply the trace function associated with the Galois groub of F(k)
over F to (15) and then divide by [F(k):F] to obtain the desired
result. For example if [F(k):F] = 2 and oy and o, are the two

automorphisms in the Galois group we have that

VoqP. Vo,P .
s = /29T () + 1/2EY, Ty (ri/sg) 0 % oy r /sy )—lpt
O]Pi 21

Note the following condition that is necessary for the existence

of b in the Liouville theorems. Call a = (a],...,an) in F' exact

if Djai = Diaj

a must be exact since Dj<Dib) = Di(Djb) implies that Djai = Diaj .

for 1§j, j<n . 1f there exists b such that Wb = a ,
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