FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

WIS~-CS-74~202

Computer Sciences Department
The University of Wisconsin
1210 West Davton Street
Madison, Wisconsin 53706

Received January 9, 1974

FUZZY: A PROGRAMMING LANGUAGE

FOR FUZZY PROBLEM-SOLVING

by
Rick LeFaivre
Technical Report #202

January 1974

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING
by

Rick LeFaivre

ABSTRACT

A new AI programming language is described which provides
facilities for the storage, retrieval and manipulation of fuzzy
information. The language (called FUZZY) contains such standard
features as an associative data base and a pattern-directed data
access and procedure invocation mechanism. These basic facilities
are extended, however, by "fuzzifving" the associative net, and by
allowing fuzzy procedures and "procedure demons" to be specified
for the control of fuzzy processes. The paper discusses some of
the major features of FUZZY in the context of previous AI language
efforts, presents a simple fuzzy question-answerer as an example,
and then summarizes the complete language as it now stands. FUZZY
is currently being programmed in LISP on a UNIVAC 1110 computer.

This research was supported in part by a grant
from the NMational Science Foundation (GJ-36312).

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~SOLVING 1

INTRODUCTION

As artificial intelligence begins to expand its domain into
that mysterious realm we term the "real world," it is clear that
we must at some point consider the problem of manipulating fuzzy
information. In simple worlds, it may be sufficient to store only
exact concepts like (AT FRED (23,76)), or (COLOR BLOCKl RED). But
in more complex worlds--even worlds which do not vet begin to
approach the real world in complexity--we must contend with state-
ments like: "I'm fairly certain that FRED is quite close to the
center of the room:" or, "BLOCK1l is pretty red, but not as red as
BLOCK2." MNote that "fuzzy information" is not a particularly
well-defined concept. Although the term "fuzzy" has traditionally
been associated with the logic of fuzzy sets [8,9], we extend the
usage here to include any knowledge which is in some way impre-
cise, uncertain or probabilistic--in essence, any knowledge which
has a numeric weight associated with it, regardless of its seman-
tic interpretation. This paper addresses the problem of represen-
ting fuzzy knowledge by describing a LISP-based AI programming
language for fuzzy problem-solving (called FUZZY).

The design of FUZZY has been strongly influenced by other AI
languages which have appeared in the past few years, particularly
MICRO-PLANNER {71, COMNIVER [3,6] and QA4/QLISP [4,5]. Many of
the standard features of these languages are present in FUZZY,
including an associative data base and a pattern-directed data
access and procedure invocation mechanism. A question immediately
arises as to whether one of these languages wouldn’t be usable,
either as-is or in an extended form, for fuzzy problem-solving.
For example, CONNIVER and QLISP both allow property lists to be
associated with data items, so that a fuzzy truth value could
easily be associated with a particular assertion. QLISP, in fact,
already uses a MODELVALUE property, although I have not seen any
usage of this feature other than for completely "true" or "false"
assertions. During 1972 Rob Kling and myself began to discuss
gsome of the modifications which might be made to MICRO-PLANNER to
allow it to handle fuzzy problem-solving. The resulting language
(FUZZY-PLANNER) was described bv XKling in [2], although it was
never implemented. Although the purpose of this paper is chiefly
to describe FUZZY, not to examine its origins, let me briefly
state several reasons why I chose to design a new language rather
than making do with an existing system:

(1) I felt that merely tagging fuzzy truth values onto assertions,
as could be done in CONNIVER or QLISP, would provide for fuzzy
control at only a local level. I desired a more global method
of controlling fuzzy processes.

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

(2) I was not particularly comfortable with any of the existing
languages. For example, I desired a control structure which
gave the user more direct control over backtracking than

MICRO-PLANNER, yet was not as general (or complex) as that of
CONNIVER.

(3) Extensive usage of MICRO-PLANNER led me to believe that an
efficient, well-conceived implementation is an important goal
in the design of a programming language. With this in mind, I
wished to design a control structure which did not require a
special interpreter, and hence could he embedded directly in
LISP (unlike the other AI languages mentioned).

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 3

MAJOR FEATURES OF FUZZY

This section describes some of the major features of FUZZY by
roughly paralleling the discussion by Bobrow and Raphael in their
recent survey article [1]l. By so doing, I hope to make it relati-
vely easy to compare FUZZY with the existing AI languages dis-
cussed by Bobrow and Raphael. The areas to be covered include:

Data Types and Storage Mechanisms
Control Structures
Pattern—-Matching

Deductive Mechanisms

—~ o~~~
> w N
— o —

A complete listing of the FUZZY primitives may be found in Appen-
dix B.

DATA TYPES AND STORAGE MECHANISMS

FUZ7ZY is embedded in LISP, and thus allows access to all LISP
primitives and data structures. In addition, FUZZY maintains an
associative net of assertions similar to that of other AI langua-
ges. Any arbitrary LISP list structure may be entered into this
net. An assertion, or any sub-part of an assertion, may also have
a numeric value associated with it which we will call its fuzzy
truth value, or Z-value. Truth values traditionally fall in the
range [0,1]1, although in FUZZY other ranges may be used if desired
(the lower and upper bounds of the Z-value range are specified by
the LISP variables ZLOW and ZHIGH). FUZZY makes no assumptions
about the interpretation given to a particular Z-value, although
again it is traditional to equate ZLOW with "false" and ZHIGH with
"true". Internally, Z-values are stored by CONSing (appending)
the numeric value to the assertion or sub-assertion modified.

Thus

[(MADE-OF MOON CHEESE) . 0]
[(CERTAIN JOHN [(PRETTY MARY) . 0.9] . 0.6]

are both valid fuzzy assertions. (The second example might be
interpreted "John is relatively (0.6) certain that Mary is very
(0.9) pretty."). Assertions or sub-assertions which have no fuzzy
truth value associated with them are given a default Z-value
(ZHIGH) by the system.

Standard primitives are available for accessing this fuzzy
associative net. For example,

FUZZY: A PROGRAMMIMNG LANGUAGE FOR FUZZY PROBLEM-SOLVING

(ADD (PROUD MARY) 0.9)

adds the assertion [(PROUD MARY) . 0.9] to the net, and
(REMOVE (PROUD MARY))

removes it. The statements

(FETCH (PRETTY ?X)) or (FETCH (PRETTY ?2X) [ZLOW,ZHIGH])
(FETCH (PRETTY ?X) 0.9) or (FETCH (PRETTY ?X) [0.9,ZHIGH])
(FETCH (PRETTY ?¥X) [0.0,0.57)

all retrieve something which is® PRETTY within a specified range,
binding the object to the FUZZY variable ?X (the pattern-matcher
will be discussed in a later section). When a FETCH-pattern
matches several assertions with Z-values in the proper range, the
one with the highest Z-value is normally returned. However, by
reversing the order of the range elements, the assertion with the
lowest Z-value in the range may be requested. TFor example,

(FETCH (PRETTY 2?2X) [0.5,0.01])
will return the most "unpretty" object in the net.

A data context mechanism is also available in FUZZY via the
SAVE and RESTORE primitives. SAVE saves the current associative
net, along with any variables specified, and RESTORE restores
things to a previous state. For example,

(CSETQ STATE (SAVE !X Y))

(RESTORE STATE)

will save and then restore the associative net, the FUZZY value of
¥, and the LISP value (and property list) of Y. As will be seen
in the next section, there are several situations where FUZZY
automatically saves and then restores the net, relieving the user
of this responsibility.

CONTROL STRUCTURES

FUZZY provides two major types of program control: a rather
standard fail-succeed mechanism with user-controlled backtracking
and state restoration capabilities; and a fuzzy control structure
which appears to be unique to FUZZY. Each FUZZY statement returns
both a value and a fuzzy truth value--the Z-value is CONSed to the

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 5

value as with fuzzy assertions. The primitives VAL and ZVAL
return the value and Z-value portions respectively (a default
value (ZHIGH) is returned by ZVAL if no truth value is present).
1f VAL or ZVAL is called with no arguments, the value or Z-value
portion of the last FETCH (or GOAL) expression is returned. Thus

(ZVAL (FETCH (RED BLOCK1l)))
and

(FETCH (RED BLOCK1))

(ZVAL)

both return the same Z-value.

If the value portion of a result is the atomic symbol *FAIL,
the original expression is said to have failed (*FAIL, which is
pound to itself, is thus similar to NIL in LISP and MICRO-PLANNER).
Any other value causes the expression to succeed.

Local Success~Failure Control

Local control of success and failure is provided via the
several if-statements in FUZZY:

(IF <exp> THEN: <sl> <s2> ... ELSE: <fl> <f2> ...)

evaluates the "THEN:" or "ELSE:" expressions as a function of
whether <exp> succeeds or fails (a value of NIL is interpreted as
failure in this case so that standard LISP predicates may be
used); IFALL takes a number of <exp>s, and requires all of them to
succeed (actually, IF is identical to IFALL); and IFANY is similar
to IFALL, except it reguires only one of the <exp>s to succeed.

Local Fuzzv Control

FUZZY equivalents of the standard AND, OR and NOT predicates
are available as ZAND, ZOR and 2ZNOT. ZAND returns a Z-value equal
to the minimum of those of its arguments, and ZOR the maximum.
7ZAND and ZOR may also be given a threshold, such that if any
7-value falls below the threshold the ZAND or ZOR immediately
fails. Using the standard [0,1] Z-value range, ZNOT simply re-
turns a Z-value of one minus that of its argument. This may be
changed for other Z-value ranges, e.dg., the negation of its argu-
ment for the range [-1,+1].

Backtrack Control

Following the lead of Sussman and McDermott [6], backtracking
in FUZZ2Y is under the direct control of the user. This seems to
provide for more efficient, controllable and understandable pro-
grams, as well as allowing for a much more efficient implementa-

6 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~-SOLVING

tion of the language. 1In addition to allowing the user to con-
struct his own backtrack mechanisms using the SAVE and RESTORE
context primitives discussed earlier, FUZZY provides several
system backtrack primitives: the FOR statement iterates through
an explicit list of alternatives in a manner similar to THAMONG in
MICRO-PLANNER; the FOREACH statement iterates through all asser-
tions in the net (obtainable via the FETCH primitive) which match
a given pattern; and the FORALL statement iterates through all
assertions obtainable via the GOAL primitive (to be discussed
under Deductive Mechanisms) which match a given pattern. For
example, each of the following will print all blocks which are
either veryvy pretty, very red or very big:

(FOREACH (BLOCK ?X)

(IFANY (FETCH (PRETTY !X) 0.9)
(FETCH (RED !¥X) 0.9)
(FETCH (BIG !X) 0.9)
THEN: (PRINT IX)))

(FOREACH (BLOCK ?X)
(FOR ?REL (PRETTY RED BIG)
(FETCH (!REL !X) 0.9)
(PRINT !X)))

(FOR ?REL (PRETTY RED BIG)
(FOREACH (!REL ?2X) ZVAL: 0.9
(FETCH (BLOCK !X))
(PRINT !¥X)))

Upon entry to one of the for-statements, the current state of
the associative net and the "accumulated Z-value" discussed in the
next section are saved for backtrack usage. If any of the expres-
sions within the for-statement fail, or if (BACK) is evaluated,
the net and accumulated Z-value are automatically restored and the
next alternative is tried. The next alternative may also be tried
without backtracking via (NEXT), or the loop may be exited via
(EXIT). A default (NEXT) is placed at the end of the loop, so
that:

(FOREACH (RED ?X) (REMOVE (RED !X)))
will indeed remove all the red objects from the net, whereas:
(FOREACH (RED ?X)
(REMOVE (RED X))
{BACK))

would have no effect because of the backtracking. Note that
FTOREACH automatically orders the alternatives in increasing or

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 7

decreasing order by Z-value, and that the value and Z-value por-
tions of the assertions retrieved are available via the expres-
sions (VAL) and (ZVAL) until the next FETCH or GOAL expression.

Fuzzv Procedures

Up to this point we have outlined several of the forms of
local control which are available in FUZZY: success or failure of
individual statements or groups of statements may be monitored via
VAL, IF, IFALL and IFANY; fuzzy truth values may be manipulated
via ZVAL, ZAND, ZOR and ZNOT; and iteration through a set of
alternatives with user-controlled backtracking is available via
FOR, FOREACH and FORALL. The next step is to specify a general
formalism for combining these various primitives into units of
procedural knowledge, or procedures.

A FUZZY procedure is much like a MICRO-PLANNER theorem or
QLISP QLAMBDA function: it takes a single argument which is
matched against a procedure pattern, the procedure is entered, and
a result is computed. For example, the following simple procedure
reverses an ordered pair, i.e., (SWITCH (A B)) returns (B A):

(PROC NAME: SWITCH (2?X ?Y) (SUCCEED (!Y !X)))

The "NAME:" field is optional--if absent a unique name will be
generated by the system (this name is returned as the value of the
PROC statement). Procedures may either succeed (returning both a
value and Z-value) or fail, just like standard system primitives.
Success is caused by (SUCCEED <val> <zval>) or simply (SUCCEED),
which returns the instantiated procedure pattern with the
"accumulated Z-value" discussed below. Failure may be caused by
simply (SUCCEED *FAIL). However, in this case we typically want
to restore the net to its state before the procedure was entered,
which may be accomplished via (RESTORE). Thus we normally do
(FAIL), which is equivalent to (RESTORE) followed by (SUCCEED
*FAIL) .

It should be noted that FUZZY operates in a kind of "inverse
declaration mode"--all variables are assumed to be local to the
procedure in which they appear unless explicitly declared global;,
€.g.:

(PROC GLOBAL: (!X 1Y) ...)

Since in most cases variables are used only locally, this relieves
the user of much of the burden of making variable declarations.

Global Control

The major difference between FUZZY procedures and units of

8 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

procedural knowledge in other programming languages is in the
amount of global control a procedure exercises over its local
computations. For example, LISP functions and PROGs exercise no
global control--all decisions (e.g., when to exit from the func-
tion or PROG) are made at a local level by statements within the
routine. On the other hand, MICRO-PLANNER monitors the execution
of its theorems, looking for statements which fail (return NIL)
and taking some global action when necessary (backtracking or
causing the theorem to fail). We are faced with the question of
what form of global control (if any) should be built into a FUZZY
procedure. Consider a typical example: we want a procedure to
succeed only if each of its local statements succeeds with a
72-value above some threshold value. Now, this could of course be
done with only local control:

(PROC <pat>
(IF (LT (ZVAL <el>) THRESH) THEN: (FAIL))
(IF (LT (ZVAL <e2>) THRESH) THEN: (FAIL))

(SUCCEED))

but this becomes quite messy. We would like to just specify the
threshold value and have the system perform the necessary chec-
king:

(PROC THRESH: <n> <pat> <el> <e2> ...)

A fixed procedure mechanism of this form would be the FUZZY equi-
valent of theorems in MICRO-PLANNER. However, there are other
forms of global control which might be desired~-for example:
ignore all failures; succeed only if at least n of the statements
succeed; succeed only if some function of the individual truth
values exceeds a threshold (e.g., a threshold operator); etc.
FUZZY procedures allow all of these forms of global control (and
more) via the specification of procedure demons.-

Procedure Demons

A procedure demon is a LISP function which is associated with
a procedure, and which is given control after each "interruptable
statement"” of the procedure is evaluated. (An interruptable
statement is a statement which returns a value [e.g., a GOTO is
not interruptablel, and which occurs either at the top level of
the procedure, in the "THEN:" or "ELSE:" portions of an
if-statement, or in a for-statement [the initial implied FETCH or
GOAL of a FOREACH or FORALL statement is considered to be an
interruptable statement]l.) The demon is passed the result of the
evaluation, the threshold value associated with the procedure, and

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 9

an "accumulated Z-value" which may be dynamically computed by the
demon. For example, consider the case of succeeding only if all
the interruptable statements in a procedure exceed a certain
threshold. A procedure demon which exercises this form of global
control might be defined as follows (this is in fact FUZZY s
standard default demon):

(CSETQ DEMONI1
(LAMBDA (D-VAL D-THRESH D-ACCUM)
(COND [<EQ (VAL D-VAL) *FAIL> <FAIL>]
[<LT (ZVAL D-VAL) D-THRESH> <FAIL>]
[<LT (ZVAL D-VAL) D-ACCUM> <ZVAL D-VAL>]
[T D-ACCUMI)))

Note that the value returned by a procedure demon is saved by the
system and becomes the new accumulated Z-value. Thus in addition
to checking for statements which fail or fall below the threshold,
DEMON1 keeps track of the lowest Z-value encountered. This value
may ultimately be returned as the truth value of the procedure
call via (SUCCEED). A procedure which uses DEMONl might be de-
fined as follows:

(PROC DEMON: DEMON1 THRESH: 0.5 ACCUM: 1.0
<pat> <el> <e2> ...)

This indicates that the demon for this procedure is DEMONLl, the
threshold is 0.5, and the initial accumulated Z-value is 1.0. The
"DEMON:", "THRESH:" and "ACCUM:" fields are all optional, with
standard default values used if omitted. Various other standard
procedure demons are supplied by the system, or the user may write
his own to specify unigue forms of global control.

PATTERN-MATCHING

FUZZY’s pattern-matching capabilities are similar to those of
OLISP, although FUZZY offers more built-in pattern functions.
Like other AI languages, FUZZY operates in "inverse quote mode",
i.e., constants stand for themselves and variables and expressions
are flagged as such. However, in FUZZY this concept is extended
to include functional arguments as well as patterns. Each primi-
tive function specifies whether its arguments are to be evaluated
in the normal LISP sense, or instantiated, with flagged variables
and expressions replaced by their values. The user may overide
the default interpretations via use of the instantiation operator
(1) or evaluation operator (&). The standard LISP QUOTE operator
() is also available to overide both instantiation and evalua-~
tion. For example, the primitive SUCCEED specifies that its first
argument be instantiated and its second argument be evaluated.

10 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~SOLVING

Thus

(SUCCEED (BIG !OB) (TIMES (ZVAL) !BIAS))
may be written instead of

(SUCCEED ! (BIG !OB) &(TIMES (ZVAL) !BIAS))
However, one may overide the default interpretation:

(SUCCEED &(CAR L) !X)

The "!" and "&" operators may also be used within patterns,
e.g., (A !¥X &Y) instantiates to (A B C) if X has FUZZY value B and
Y has LISP value C. "Segment" instantiation and evaluation opera-

tors are also available for use within patterns, e.g., 1if X has
FUZZY value (B C) and Y has LISP value (D E), (A !!X &&Y) instan-
tiates to (A B C D E) [whereas (A !X &Y) would instantiate to

(A (B C) (D E))I.

FUZZY variables may be assigned values via the "?" (item) and
"22" (segment) operators. For example, Using the primitive MATCH:

(MATCH (?2X 22Y) (A B C))
binds ¥ to A and ¥ to (B C). "?2" and "??" may also stand alone to
match an item or segment with no variable assignments. Note that
in addition to MATCH, which instantiates both of its arguments,
there is a more conventional BIND primitive which evaluates its
second argument. Thus

(BIND ?2X (CAR L))
is equivalent to

(MATCH ?X &{(CAR L})

Several additional features of FUZZY s pattern-matcher are illu-
strated in the following examples:

TIC-TAC-TOE Example

Consider the problem of checking whether a TIC-TAC-TOE board
stored in the form

((X 0 =) (0 X -) (X0 X))

is a winning board for ¥. A LISP expression to do this might look
like:

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~-SOLVING 11

(OR [MEMBER (X X X) BOARDI
[LINE CAAR CAADR CAADDR]
[LINE CADAR CADADR CADADDR]
[LINE CADDAR CADDADR CADDADDRI
[LINE CAAR CADADR CADDADDR]
[LINE CADDAR CADADR CAADDRI])

where LINE is an auxiliary function:

(CSETQ LINE
(LAMBDA (F1 F2 F3)
(AND [EQ (F1 BOARD) “X]
[EQ (F2 BOARD) “XI]
[EQ (F3 BOARD) “XI1)))

Although this is relatively compact, the necessary CAADR’s and
CADDADDR s make it a headache both to program and interpret. The
corresponding FUZZY pattern, however, is quite straightforward:

(*OR [?? (X X X) 27?]
[(*REP (X ? ?)

3)1
[(*REP (2 X ?) 3)]
[(*REP (2 2 X) 3)]
[(X 2 ?2) (2 X ?2) (2 2 X)1
[(2 2 X) (2 X ?2) (X2 2)])

*OR and *REP are pattern functions, *OR signifying that only one
of its arguments must match, and *REP that its pattern is to be
repeated n times.

Pattern Recognition Example

As another example, consider a pattern recognition program
where a grid is stored as a list of rows, e.g., "I" might appear
as:

_ O OO
— O OO -
— e

)

We wish to scan a 3 x 3 characterizer, e€.g.,

across the grid, noting the row and column position of its upper
left corner if it matches. This would require a fairly complex

12 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

LISP program, but in FUZZY we merely define the characterizer as:

(??2/ROW (?27?2/COL 21 2 27?)
((*REP ? ICOL) 0 1 0 2?)
((*REP ? ICOL) 1 1 1 22) ?2°?)
Here ?2?2/X (like 22X and ??), matches a segment of zero or more

items, but assigns the length of the segment matched to the FUZZY
variable X.

DEDUCTIVE MECHANISMS

The deductive capabilities of FUZZY are similar to those of
MICRO-PLANNER. In addition to ADD, REMOVE, FETCH and FOREACH,
which operate only on the associative net, FUZZY supports ASSERT,
ERASE, GOAL and FORALL primitives, which can call procedures via a
standard pattern-directed invocation mechanism. Such procedures
are added to the data base via (ADD <type> <proc>), where <type>
is "ASSERT:", "ERASE:" or "GOAL:", and <proc> is a procedure name
or a PROC statement. For example,

(ADD GOAL: (PROC (DISHONEST ?2X)
(FETCH (TRICKY !X))))

establishes a "goal procedure" which says in effect that all
tricky people are dishonest. If (GOAL (DISHONEST DICK)) is ever
evaluated and (DISHONEST DICK) is not stored explicitly in the
net, the above procedure will be called. The original GOAL state-
ment will then succeed if (TRICKY DICK) can be found in the net.,
returning a Z-value equal to that of (TRICKY DICK).

Like MICRO-PLANNER, FUZZY must also contend with the more
complex case where the GOAL pattern is not fully instantiated,
e.g., (GOAL (DISHONEST ?)). The ?X in the procedure would then be
unbound, and (TRICKY !X) would not be instantiated properly. As
might be expected, FUZZY handles this situation by treating the
1" (or "!1") operator as identical to the "?" (or "?2?") operator
when applied to an unbound variable. A tricky person would thus
be retrieved from the net and returned to the original GOAL state-
ment as being dishonest.

Finally, consider the case where a goal procedure is activa-
ted by a FORALL statement (FORALL is identical to FOREACH, except
that FORALL uses GOAL to retrieve assertions which match the
pattern, whereas FOREACH usesg FETCH):

(FORALL (DISHONEST ?Y)
(PRINT 1Y)

FUZzY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 13

This is exactly the case where we want our goal procedure to act
like a generator in the CONNIVER sense. We would like it to
iterate through all of the dishonest people it knows about, which
in this case are all tricky people, returning one at a time until
the original FORALIL exits from its loop. This may be accomplished
in FUZZY via the SUCCEED? statement. SUCCEED? is identical to
SUCCEED, except that it saves the current state of the procedure
so that it can be restarted by a higher-level FORALL if necessary.
Our example now bhecomes:

(ADD GOAL: (PROC (DISHONEST °?X)
(FOREACH (TRICKY !X)
(SUCCEED?))))

When called from a GOAL statement, this procedure will return the
first tricky person found as being dishonest just as in the ori-
ginal version. When invoked by a FORALL statement, however, the
procedure will act like a generator, returning one tricky person
at a time until it runs out or the FORALL is satisfied. It should
be noted that the state suspension and restoration mechanism
described here is not nearly as dgeneral as that of CONNIVER. It
does allow generators to be written however, and by restricting
this capability somewhat a much more efficient implementation of
the language is made possible.

14 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

COMCLUDING REMARKS

FUZZY is a first attempt at combining some of the Good Ideas
which have appeared in AI languages over the past few years with a
usable method of accessing and manipulating fuzzy knowledge. The
major design goal was that of attaining an efficient, usable, yet
powerful fuzzy programming language. The decisions to allow only
recursive backtracking and to restrict the generality of the state
suspension and restoration mechanism have resulted in an efficient
implementation which does not require the extensive control tree
maintenance necessary in other AI languages. In particular,
unlike MICRO~PLANNER and CONMNIVER, a special interpreter is not
required--FUZZY is embedded directly in LISP, and LISP and FUZZY
primitives may be freely intermixed. This ability to invoke FUZZY
primitives from LISP functions (which may be compiled) allows the
user to write far more efficient programs than would be possible
in a language like MICRO-PLANNER.

One of the major goals of artificial intelligence research is
the search for powerful and efficient representations for Xknow-
ledge. Certain types of knowledge are best represented in tradi-
tional forms, e.g., as strings, arrays or lists. In other situa-
tions net structures which are accessed associatively seem to
provide more power and flexibility. It is now becoming apparent
that much knowledge is of sufficient complexity to be best repre-
sented procedurally. One of the major contributions of the new AI
languages is a shift in viewpoint from the programming languade as
a manipulator of knowledge, to the programming languagdge as a
representation of knowledge. With this view in mind, it 1s my
hope that FUZZY will allow us to begin to consider the problem of
representing the gray, along with the black and the white.

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 15

REFERENCES

[1] Bobrow, D. and B. Raphael, "New Programming Languages for AI
Research," SRI AI Center Technical Note 82, August 1973.

[2] XKling, R., "Fuzzy Planner: Computing Inexactness in a Proce-
dural Problem-Solving Language," Technical Report No. 168,
Computer Sciences Department, University of Wisconsin,
February 1973.

[3] McDermott, D. and G. Sussman, "The CONNIVER Reference Manual,"
MIT AI Memo No. 259, May 1972.

[4] Reboh, R. and E. Sacerdoti, "A Preliminary QLISP Manual," SRI
AT Center Technical Note 81, August 1973.

[5] Rulifson, J., J. Derksen and R. Waldinger, "QA4: A Procedural
Calculus for Intuitive Reasoning.," SRI AI Center Technical
Note 73, November 1972.

[6] Sussman, G- and D. McDermott, "Why Conniving is Better Than
Planning," MIT AI Memo No. 255A, April 1972.

{71 Sussman, G., T. Winograd and E. Charniak, "MICRO-PLANNER
Reference Manual," MIT AI Memo No. 203A, December 1971.

[8] Zadeh, L., "Fuzzy Sets," Information and Control, vol. 8,
338-353, June 1965.

{91 zadeh, L., "Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes," IEEE Transactions
on Systems, Man and Cvyvbernetics, vol. SMC-3, pp. 28-44,
Januvary 1973.

16 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

APPEMNDIX A: A SAMPLE FUZZY PROGRAM

In this appendix a simple guestion-answerer is presented
which illustrates some of the features available in FUZZY. The
program answers questions about the information stored in a seman-
tic network built out of the relations ISA (class membership) and
IS (fuzzy set membership). ISA is transitive, so that 1f (HORACE
ISA HORSE) and (HORSE ISA MAMMAL), then {(HORACE ISA MAMMAL) .
Similarly, IS is transitive over ISA, e.g., if (DUDLEY ISA PET)
and (PET IS HOUSEBROKEN), then (DUDLEY IS HOUSEBROKEN). IS is
also a fuzzy relation--dogs and horses may both be pretty., but
dogs might be considered prettier than horses. (Note that addi-
tional relations could be added to the net if desired with very
little change to the program).

A net of sufficient complexity to illustrate the workings of
the program may be generated by the following FUZZY statements:

ADD
ADD

HORACE ISA HORSE))
HORACE IS BIG) 0.8)
ADD (DUDLEY ISA DOG)) ADD (SNAKE ISA REPTILE})
ADD (DUDLEY ISA PET)) ADD (SNAKE IS PRETTY) 0.01)

(((ADD (
((((
((((
((((
(DD (DUDLEY IS BIG) 0.6) (ADD (PET IS HOUSEBROKEN))
((((
((((
((((
((((

ADD

DOG ISA MAMMAL))
DOG IS PRETTY) 0.9)

ADD (SIDNEY ISA SNAKE)) ADD (MAMMAL ISA ANIMAL))

ADD (SIDNEY IS BIG) 0.4) ADD (MAMMAL IS HAIRY) 0.85)
ADD (HORSE ISA MAMMAL)) ADD (REPTILE ISA ANIMAL))

ADD (HORSE IS PRETTY) 0.75) ADD (REPTILE IS SCALEY) 0.95)

Pictorially, the resulting net looks like:

PET L3 HOUSEBROKE%) <HAIRY}
3 p
IS10.85

ISA

DUDLEY

SA
ANIMAL
¥ SCALEY

IS O-4

SIDNEY

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 17

The program, which may be found at the end of this appendix.,
answers questions of the form "Is an X a ¥Y" (X ISA Y) or "Is an X
Y" (X IS Y). The answers generated by the program are somewhat
more complex, attempting to give additional information when
relevant. For example, consider the following sample dialogue:

(QA)

HI
(IS DUDLEY A MAMMAL)

(YES, DUDLEY IS A MAMMAL)
(IS HORACE PRETTY)

(YES, HORACE IS RELATIVELY PRETTY)
(IS AN ANIMAL HAIRY)

(POSSIBLY: MAMMAL IS VERY HAIRY)
(IS HORACE SCALEY)

(DON’T THINK SO, BUT REPTILE IS EXTREMELY SCALEY)
(IS SIDNEY BIG)

(NO, SIDNEY IS NOT VERY BIG)
(IS A MAMMAL HOUSEBROKEN)

(POSSIBLY: DUDLEY IS HOUSEBROKEN)
(IS A SNAKE PRETTY)

(NO, SNAKE IS NOT PRETTY)
(IS A SMNAKE A MAMMAL)

(POMN’T THINK SO, BUT DOG IS A MAMMAL)
(IS AN ANIMAL A PET)

(POSSIBLY: DUDLEY IS A PET)
(IS DUDLEY A DADDY)

DON’T KNOW
(WHAT IS LIFE)

HUH?
STOP

GOODBYE

Considering the simplicity of the program, these responses
appear to be relatively sophisticated. Obviously, small changes
could be made to make the output more stvlized--for example, nouns
could be checked to see whether an "A", "AN" or nothing should
proceed them. More important, however, is the ease with which
variant question and answer forms may be added to the program.
Fach valid input form is represented by a procedure which trans-
lates the input into an internal representation--for example,
TRANS1 transforms (IS DUDLEY A MAMMAL) into (DUDLEY ISA MAMMAL).
The various answer tvpes are also represented by procedures. To
add a new input or output form, one merely defines the proper
procedure and adds it to the TRANSTYPES or ANSTYPES list. For
example, suppose we want to handle questions of the form (WHAT IS
HAIRY) or (WHO IS A DOG). Note first that fill-in-the-blank
guestions can already be asked, although the guestion and answer
are not in the desired format:

18 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~-SOLVING

(IS WHAT HAIRY)
(DON"T THINK SO, BUT MAMMAL IS VERY HAIRY)

To handle such questions directly, we need only do the following:

(PUSH TRANSTYPES
(PROC ((*OR WHAT WHO)
(SUCCEED (ISA !
(PUSH TRANSTYPES
(PROC ((*OR WHAT WHO) IS ?Y)
(SUCCEED (IS !'Y))))
(PUSH ANSTYPES
(PROC (?R ?2Y)
(GOAL (2?2 R 1Y) 0.5)
(SUCCEED (!Z "IS"™ &&(ADJ (ZVAL)) !'¥Y))))

IS (*OR A AN) ?2Y)
))

Y))))

Other more complex question types (e.dg., conjunctions and disjunc-
tions) could be handled in a similar manner.

Several points should be made about the type of information
which appears in the semantic net. Note that the present net
specifies that all mammals are very hairy. Consider adding an
exception to the general rule, however: whales are mammals which
are not hairy. One solution to this problem is to remove the
hairiness attribute from the class of mammals and add it to each
individual mammal which is hairy. However, a more elegant solu-
tion is to simply add exceptions directly to the net, e.g.:

(ADD (WHALE ISA MAMMAL))
(ADD (WHALE IS HAIRY) 0.0)

All mammals but whales would then retain their hairiness. Making
use of the deductive apparatus of the system in this way allows
the user to keep the number of relations which must be stored
explicitly to a minimum.

Consider also the problem of making ISA a fuzzy relation like
IS. For example, we may not be too sure of SIDNEY s heritage-~we
think he is a snake, but it is also possible that he is a lizard.
Due to the presence of procedure demons, the present program will
handle fuzzy ISAs without modification. When making deductions
over a chain of ISAs, the Z-value of the deduction will automati-
cally be bounded by the minimum of the Z-values of the individual
relations (recall the standard default demon discussed earlier).
To specify other forms of control over such fuzzy chains of
inference--perhaps the average of the individual Z-values--we need
only change the procedure demon. This flexibility at least hints
at the power of the procedure demon fuzzy control structure.

Finally, note that the programmer has complete control over

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~-SOLVING 19

the way in which searches are made through the net (without having
to explicitly program them). TFor example, the transitivity proce-
dure for ISA works fine when searching in the "forward" direction.,
€egey

(GOAL (HORACE ISA ?))

Consider, however, searching backwards through the net as is done
by the procedure ANS2:

(FORALL (?Z2 ISA !X) «..)

The given transitivity procedure will handle this case, but it
will thrash around a lot before it hits upon the correct path. If
we are concerned about efficiency (as we certainly would be with a
larger data base) we might consider breaking the transitivity
mechanism for ISA into two more efficient sub-cases:

(ADD GOAL: (PROC ((*INST ?X) ISA ?2Y)
(FOREACH (!X ISA ?2%)
(FORALL (!Z ISA !Y)

(SUCCEED?)))))
(ADD GOAL: (PROC (2X ISA (*INST ?2Y)
(FOREACH (2% ISA !
(FORALL (!X ISA !

(SUCCEED?)))))

)
Y)
7)

The search would then start at the node which is given and proceed
forward or backward as necessary.

This simple example was intended both to demonstrate the
structure of a complete FUZZY program and to hint at what might be
done in a more realistic setting. Fuzziness was used here in only
a superficial wav. A more powerful guestion—answerer would almost
certainly allow fuzzy questions as input ("What is very pretty,
relatively big and is housebroken?"~--"Why, Dudley the dog, of
course!"). Fuzzy problem-solving technigues also allow learning
to take place in a natural way--tentative facts can be added to
the net with relatively low Z-values, and then modified as a
function of subsequent information. We might also consider other
uses for Z-values, e.g., as strength indicators which allow the
program to wander through a fuzzy net, generating pertinent res-
ponses during a "fuzzy conversation." The point to be made is that
FUZZY allows the program designer to think about problems like
this without having to worry about lower-level details like
storing and retrieving fuzzy data, searching through a fuzzy
associative net, or iterating through sets of fuzzy alternatives.

0 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~-SOLVING

; A SIMPLE FUZZY QUESTION-ANSWERER
;**-k*********************** MONITOR E A I I I A I
(CSETQ QA (LAMBDA NIL
(PROG (QUES)
(PRINT "HI")
LOOP: (IF [EQ (SETQ QUES (READ)) “STOP]
THEN: (RETURN "GOODBYE"))
(IF [SETQ QUES (TRY &TRANSTYPES &QUES)]
THEN: (IF [SETQ QUES (TRY &ANSTYPES &QUES)]
THEN: (PRINT (VAL QUES))
ELSE: (PRINT "DON’'T KNOW"))
ELSE: (PRINT "HUH?"))
(GO LOOP:))))
pR¥ Kk kxkkkkk DATA BASE (TRANSITIVITY) PROCEDURES *#*% %k k &k k&
(ADD GOAL: (PROC (?X ISA ?Y)
(FOREACH (!X ISA ?27)
(FORALL (!Z ISA !Y)
(SUCCEED?)))))
(ADD GOAL: (PROC (?X IS ?Y)
(FORALL (!X ISA 2%)
(FORALL (172 IS !Y)
(SUCCEED?)))))
;**************** INPUT TRANSLATION PROCEDURES FaR I b I I P B I I
(PROC NAME: TRANS1 (IS &ARTICLE ?X (*OR A AN) ?Y)
(SUCCEED (!X ISA !Y)))
(PROC NAME: TRANS2 (IS &ARTICLE ?2X ?Y)
(SUCCEED (!X IS !'Y)))
(CSETQ ARTICLE ‘(*OPT (*OR A AN)))
(CSETQ TRANSTYPES ‘“ (TRANS1 TRANS2))
;7\'*************** ANSWER"GENERZ—\TING PROCEDURES khkkkhkkkhkrkhbh ki h ki k
(PROC NAME: ANS1 (?X 2R ?Y)
(GOAL (!X 'R 1Y))
(BIND ?ANS (IF I[GE (ZVAL) 0.5] THEN: “"YES," ELSE: "NO,"))
(SUCCEED (!ANS !X "IS" &&(ADJ (ZVAL)) !Y)))
(PROC NAME: ANS2 (?X ?R ?Y)
(FORALL (2?7 ISA !X)
(IF [GOAL (!2Z 'R !Y) 0.5] THEN: (EXIT) ELSE: (BACK))
(SUCCEED ("POSSIBLY:" !7Z "IS" &&(ADJ (ZVAL)) !Y)))
(PROC NAME: ANS3 (? ?R ?Y)
(GOAL (?2Z 'R 1!Y))
(SUCCEED ("DON'T THINK SO, BUT" !Z "IS"™ &&(ADJ (ZVAL)) 1Y)))
(CSETQ ANSTYPES “(ANS1 ANS2 ANS3))
;******************** ADJECTIVE GENERATOR XAk XA XX AR A XA AR A X%
(CSETQ ADJ (LAMBDA (%)
(IF [EQ !R °“ISA] THEN: “(A)
ELSE: (FOR ?PAIR &ADJECTIVES
(IF [GE Z (CAR !PAIR)] THEN: (EXIT (CDR !PAIR)))))))
(CSETQ ADJECTIVES “((1.0) (0.95 EXTREMELY) (0.8 VERY)
(0.5 RELATIVELY) (0.1 NOT VERY) (0.0 NOT)))

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVIMNG 21

APPENDIX B: FUZZY PRIMITIVES

This appendix briefly describes each of the primitives cur-
rently available in FUZZY. The complete calling seguence for each
primitive 1s given, with <pat> and <skel> indicating arguments
which will be instantiated by the system. All other arguments
will be evaluated unless indicated otherwise. Default values for
missing arguments are indicated where appropriate. Note that the
default value for a missing <zval> argument is always ZHIGH, and
the default value for a missing <zrange> argument is always
[ZLOW, ZHIGH] .

FUNCTIONS:

(ADD <skel> <zval>») or (ADD <type> <proc>)

Adds (<skel> . <zval>) to the associative net. If the
first argument is "GOAL:", "ASSERT:" or "ERASE:", the
second argument should be a procedure name or an expression
which evaluates to a procedure name (usually a PROC
statement) .

(ASSERT <skel> <zval>)

Adds (<skel> . <zval>) to the net and calls all assert
procedures which match <skel>. Fails if any of the assert
procedures fail (in which case <skel> is removed).

(BACK <val> <zval>)
Causes the current for-statement to backtrack and try the
next alternative. If no alternatives remain, a value of
(<val> . <zval>) is returned as the value of the
for-statement. Default <val> is *FAIL.

(BIND <pat> <exp>)

Matches <pat> (usually ?<name>) against the value of
<exp>.

(BOUND <var>)

Fails unless the FUZZY variable <var> (2?<name> or !<name>)
is currently bound.

22 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~-SOLVING

(ERASE <skel>)

Removes <skel> from the net and calls all erase procedures
which match <skel>. Fails if <skel> is not in the net, or
if any of the erase procedures called fail (in which case

<gskel> is restored).

(EXIT <val> <zval>)

Exits from the current for-statement with a value of
(<val> . <gzgval>). Default <val> 1s the instantiated
for-pattern.

(FAIL <context>)
Executes (RESTORE <context>) followed by (SUCCEED *FAIL).
(FETCH <pat> <zrange>)

Fetches an assertion from the net matching <pat> whose
Z-value is in the proper range. <zrange> may be either
[<lower>,<upper>] (return assertion with highest Z-value),
[<upper>,<lower>] (return assertion with lowest Z-value),
or <lower> (assume an <upper> of ZHIGH). Default <zrange>
is [ZLOW,ZHIGH].

(FLUSH <flag>)

(FLUSH) removes all assertions from FUZZY s associative
net. (FLUSH T) also removes all procedures.

(FOR <pat> <list> <el> <e2> ...)

<list> should instantiate to a list. <pat> will be
matched successively against each item of <list> and, for
each successful match, the <e>s will be evaluated. Back-
tracking upon failure or (BACK).

(FORALL <pat> ZVAL: <zrange> <el> <e2> ...)
Iterates through all assertions obtainable via GOAL which
match <pat> and have a Z-value in the proper range.
Backtracking upon failure or (BACK). See FETCH for a
description of the <zrange> parameter.

(FOREACH <pat> ZVAL: <zrange> <el> <e2> ...)

Same as FORALL except iterates only through assertions
obtainable via FETCH.

FOZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 23

(GOAL <pat> <zrange>)

First performs a FETCH--if unsuccessful calls relevant
goal procedures until one succeeds.

(GOTO <tag>)

Transfers control to <tag> in the current procedure.
<tag> is evaluated if it is non-atomic.

(IF <exp> THEN: <sl> <s2> ... ELSE: <fl> <f2> ...)

Evaluates <£fl> <f2> ... if <exp> returns *FAIL or NIL,
otherwise evaluates <sl> <s2> ... Value is the value of
the last expression evaluated. If the "THEN:" is missing
and <exp> succeeds, the value of <exp> is returned. If
the "ELSE:" is missing, "ELSE: *FAIL" is assumed.

(IFALL <el> <e2> ... THEN: <sl> <s2> ... ELSE: <fl> <f2> ...)
Similar to IF, except all of the <e>s must succeed.

Similar to IFALL, except only one of the <e>s need suc-
ceed-

(MATCH <pat> <skel>)

Matches <pat> against <skel>. Succeeds (with value
<skel>) only if the match succeeds.

(NEXT <val> <zval>)

Causes the current for-statement to try the next alterna-
tive (like BACK), except no backtracking is performed.
Default <val> is the instantiated for-pattern.

(NOHASH <atl> <at2> «..)

The indicated atoms will not be hashed into the associa-
tive net. Saves space and time for heavily-used but not
significant atoms.

(POP <var>)

<var> should be a LISP or FUZZY variable which is bound to
a list. The first member of the list will be removed.

24

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~-SOLVING

(PROC NAME: <name> GLOBAL: <list> DEMON: <name> THRESH: <n>
ACCUM: <n> <pat> <el> <e2> ...)

Defines a procedure and returns its name. The "NAME:"
through "ACCUM:" fields are all optional--a unigque name
will be generated by the system and a standard default
demon will be used if missing. <list> should be a list of
FUZZY variables which are global to this procedure, e.g.,
(1X 'Y 1Z). TEach <e> is either an expression to be eva-
luated or, if an atomic symbol, a tag which may be trans-
ferred to (via GOTO).

(PUSH <var> <exp>)

(REMOVE

<var> should be a LISP or FUZZY variable which is bound to
a list. The value of <exp> will be CONSed on to the front
of the list.

<skel>) or (REMOVE <type> <proc>)

Removes <skel> from the net, failing if <skel> is not
present. If the first argument is "GOAL:", "ASSERT:" or
"ERASE:", a second argument should be present giving a
procedure name, e.g., (REMOVE GOAL: PROCl).

(RESTORE <context>)

<context> should evaluate to a context as returned by
SAVE. The net will be restored to its previous state.
Default <context> is the state of the net upon entry to
the current procedure.

(SAVE <v1> <v2> +..)

(STATE)

Saves the current net and the value of each of the <v>s
{may be either LISP (X) or FUZZY (!X) wvariables). The
context which is returned should be saved for later re-
storation via RESTORE.

Prints out the current state of the associative net.

(SUCCEED <skel>» <zval>)

Exits from the current procedure, returning a value of
(<skel> . <zval>). 1If <skel> and <zval> are absent, the
instantiated procedure pattern and accumulated Z-value are
returned.

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING 25

(SUCCEED? <skel> <zval>)

Identical to SUCCEED, except the procedure may be restar-
ted if invoked by a FORALL. SUCCEED? may only occur at
the top level of a procedure or in an if- or
for-statement.

(TRY <list> <skel>)

<list> should instantiate to a list of procedure names.
Each will be called in turn with <skel> as its argument
until one succeeds, at which time its value will be re-
turned as the value of TRY. If none succeeds, TRY fails.

(VAL <exp>)
Returns the value portion of <exp>. If <exp> is missing,
the value of the last FETCH or GOAL statement is returned
(the value portion of the latest instantiated procedure
pattern or for-pattern may also be retrieved via (VAL)
until the first FETCH or GOAL statement is evaluated).

(ZAND THRESH: <thresh> <el> <e2> ...)
Evaluates each of the <e>s, returning the value of the
last <e> evaluated and a Z-value equal to the minimum of
all the <e>s. Fails if the Z-value falls below <thresh>
or anvy of the <e>s fail. Default <thresh> is ZLOW.

(ZNOT <exp>)

Returns the value of <exp> with a Z-value of ZHIGH minus
(ZVAL <exp>).

(ZOR THRESH: <thresh> <el> <e2> ...)

Similar to ZAND except returns the maximum of the
Z~-values.

(ZVAL <exp>)

Similar to VAL, except returns the Z-value portion of
<exp>.

26 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

PATTERN FUNCTIONS:

(QUOTE <stuff>) or “<stuff>

Serves to stop instantiation just as it stops evaluation
in LISP. Thus if !X is bound to A, ("!X IX) instantiates
to (!X A).

(*! <name>) or !<name>

Returns the FUZZY value of <name>. If <name> is unbound,
acts like ?<name>. May also be used with a skeletal
argument to cause instantiation where evaluation would
normally occur-.

(*¥*!1! <name>) or !!<name>
If <name> is bound to a list, it is spliced into the
skeleton at this point. If <name> is bound to an atom,
"11" has no effect. If <name> is unbound, acts like
??72<name>.

(*& <exp>) or &<exp>

Returns the LISP value of <exp>. Mayv be used to cause
evaluation where instantiation would normally occur.

(*&& <exp>) or &&<exp>
If <exp> evaluates to a list, it is spliced into the
skeleton at this point. If <exp> evaluates to an atom,
"&&" has no effect.

(*?2) or 72
Matches any single item.

(*¥*?2 <name>) or 7?<name>

Matches any single item, binding the item to the FUZZY
variable <name>.

(¥?22) or 27

Matches a segment of zero or more items. Subsequent
failures by the matcher cause another item to be matched.

FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM~SOLVING 27

(*?? <name>) or ??<name>
Matches a segment of zero or more items, binding the
segment matched to the FUZZY variable <name> (<name> is
initially given a value of NIL).

(*2?2/ <name>) or ?2?/<name>
Matches a segment of zero or more items, binding the
length of the segment matched to the FUZZY variable
<name>.

(*AND <patl> <pat2> ...)

Succeeds only if each of the <pat>s match. For example,
(*AND ?PAIR (?X ?Y)) will match an ordered pair, assigning
the pair to !PAIR and the first and second items to !X and
'Y respectively.

(*ANY <pat> <list>)
<list> should instantiate to a list. *ANY will attempt to
match <pat> only if the matchee is EQUAL to a member of
<list>.

(*CON <pat> <object>) or (*CONTAINS ...)
<object> should instantiate to an arbitrary LISP object.
*CON will attempt to match <pat> only 1if the matchee
contains <object> at some level. For example,

(FETCH (*CON ? RED))

will retrieve the assertion with the highest Z-value which
contains RED.

{(*INST <pat>) or (*INSTANTIATED ...)

Attempts to match <pat> only if the matchee is fully
instantiated.

(*LEM <pat> <n>) or (*LENGTH ...)
Matches <pat> against a segment of length <n>, e.g.,
(MATCH [A (*LEN 2X 2) D]l [A B C DI)

binds !X to (B C).

28 FUZZY: A PROGRAMMING LANGUAGE FOR FUZZY PROBLEM-SOLVING

(*NOT <pat> <test-pat>)

Attempts to match <pat> only if <test-pat> does not match.
For example, (*NOT ?X (*OR A B)) will match anvthing
except A or B, binding it to ?X.

(*OPT <pat>) or (*OPTIONAL ...)

Indicates that <pat> is optional. If it doesn’t match it
is ignored.

(*OR <patl> <pat2> ...)

Succeeds if one of the <pat>s matches.
(*R <pat> <fnl> <fn2> ...) or (*RESTRICT ...)

Applies each <fn> (a LISP function) to the prospective
matchee, and then attempts to match <pat> only if none of
the <fn>s return *FAIL or NIL.

(*REP <pat> <n>)

Matches <pat> against the next <n> items. Fails if <pat>
fails to match an item. For example, (*REP ? 5) will skip
the next five items. If <n> is missing, *REP continues
until <pat> fails to match, e.g., (*REP X) will span a
string of X s.

