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Abstract
The main purpose of this work is to associate a wide class of

Lagrangian functions with a nonconvex, inequality and equality constrained

optimization problem in such a way that unconstrained stationary points

and local saddlepoints of each Lagrangian are related to Kuhn-Tucker
points or local or global solutions of the optimization problem. As a
consequence of this we are able to obtain duality results and two com-
putational algorithms for solving the optimization problem. One

algorithm is a Newton algorithm which has a local superlinear or quadratic
rate of convergence. The other method is a locally linearly convergent
method for finding stationary points of the Lagrangian and is an extension

of the method of multipliers of Hestenes and Powell to inequalities.

l)Supporte'fd by NSF Grant GJ 35292,

2
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3)This is a revision of Technical Report #174 dated March 1973. The

major difference consists in section 4 where the computational algorithms
are considerably simpler than before and employ a different Lagrangian.
For simplicity a smaller class of Lagrangians have been used here.






1. INTRODUCTION

In 1970 Rockafellar [21] introduced a Lagrangian for inequality

constrained convex programming problems for which an unconstrained

saddlepoint corresponded to a solution of the convex programming problem.
Moreover this Lagrangian was once differentiable everywhere if the
objective and constraint functioné of the convex programming problem were
also differentiable everywhere. In 1971 Arrow, Gould and Howe [1]
considered a general class of Lagrangians (including Rockafellar's)

for nonconvex programming problems and established local saddle point
properties for this class of Lagrangians. For their class of Lagrangians
however, the saddlepoint was in general nonnegatively constrained

just as it is in the classical Kuhn-Tucker [11] Lagrangian for nonlinear
programming. The local saddlepoint property was obtained by the presence
of a convexifying parameter in their Lagrangian which made the Hessian

of the Lagrangian positive definite for large enough, but finite, values of
the parameter. This elegant idea of local convexification was first intro-
duced by Arrow and Solow in 1958 [2] in connection with equality con-
strained problems and was later independently reconsidered in a different
algorithmic context by Hestenes [8,9] and Powell [19] in 1969 and by
Haarhoff and Buys [7] in 1970. Miele, Moseley and Cragg [14,15] have
conducted numerical experiments on these ideas for equality constrained
problems. More recently Rockafellar [22] gave an illuminating derivation
of his Lagrangian for inequality constrained problems from the Arrow-Solow

Lagrangian for equality constrained problems by the use of slack variables.

A primary purpose of this work is to relate Kuhn-Tucker points of non-

convex, inequality and equality constrained nonlinear programming problems to



unconstrained stationary points of a wide class of Lagrangian functions.

Such a relation is important because it can bring to bear all the algo-

rithms and results of nonlinear equations theory [17, 18] on nonlinear
programming. As a consequence of this relationship we present in this

work local and global duality results (section 3), a new superlinearly or
guadratically convergent algorithm (algorithm 4.7 and theorem 4.8), and

a linearly convergent extension to inequality constraints and to more general

Lagrangians of the method of multipliers (algorithm 4.9 and theorem 4.10).

The difference between our approach and that of Rockafellar [21,22,23]
is that Rockafellar's results are valid only for convex problems, whereas
in our approach convexity plays only a minor role in some of the peripheral
results. In [24] Rockafellar extends the results for his specific Lagrangian to
nonconvex optimization problems and relates global solutions of the
optimization problem to global saddlepoints of his Lagrangian. Our results
are principally aimed at related local stationary points of the two problems
and are established for a general class of Lagrangians. Also Rockafellar's
Lagrangian is differentiable only one globally, whereas ours are twice
differentiable globally. This is an important distinction in the application of
Newton type algorithms whichrequire twice differentiability. In obtaining
this twice differentiability property we lose the general concavity of Rockafellar's
Lagrangian in the dual variably y . However our Lagrangians are concave in
y for primal feasible points (see remark 2.13 below). The difference between
our approach and that of Arrow, Gould and Howe [1] is that for their general result
the Lagrangian saddlepoint is constrained by nonnegativity constraints where-
as the stationary points of our Lagrangians are completely unconstrained. Also,
the conditions imposed on our Lagrangians are different from their conditions.
In addition we give a new general formulation for unconstrained Lagrangians

together with new concrete realizations.




We shall be concerned throughout this paper with the following

problem

1.1 minimize f(x)

A
(-
[
[H
[
3

subject to gi(x)

gi(x) 0 i=m+l,...,k

where f , and gi,i=1, ..., k, are functions from Rn into R . We shall
associate with this problem a real valued Lagrangian function L in such

a way that Kuhn-Tucker points of 1.1 are related to unconstrained stationary

and saddlepoints of L . This is done in section 2 of the paper where in
addition, we give sufficient conditions different from those of [1], for the
Hessian of I with respect to x to be positive definite. This latter result

is important in establishing the local duality results of section 3 and the
convergence of the algorithms of section 4 . In section 3 we establish

duality results between problem 1.1 and an equality constrained dual

problem, problem 3.2. We establish a weak duality theorem 3.3 in the
presence of convexity, a duality theorem 3.4 and a converse duality theorem
3.10 in which convexity plays a secondary role. In particular we relate,

among other things, points satisfying Kuhn-Tucker conditions to points satisfying
second order optimality conditions, without any convexity assumptions. In
section 4 we present two computational algorithms for the solution of 1.1

based upon finding stationary points of a Lagrangian M obtained by augmenting
L . Algorithm 4.7 is a Newton method for finding a zero of the gradient of

M aﬁd for which we establish under suitable conditions a superlinear or
quadratic rate of convergence. Algorithm 4.9 is an extension of the method of
multipliers [8,9,19, 7] to inequalities and for which we establish a local linear

rate of convergence.



We shall make use of the following notation. For the point X

satisfying the constraints of problem 1.1 we shall define the following sets:

I= {1{gi(5é)=o,i=1,...,m}, T = [i[gi(}—c)<0,i=l,...,m}, E= {ili=m+1,..., k)

and K=1U E . For the Lagrangian L:Rn x Rk X (0,x) — R, VL(x,vy, )

will denote its (n+k)~dimensional gradient with respect to (x,y),

VlL(x,y,a') its n~dimensional gradient with respect to x , VZL(x,y,a') its

2
k-dimensional gradient with respect to y , V L(x,y.,@) its (n+tk) X (n+k)
Hessian matrix with respect to (x,y) . The submatrices of V&L(x,y,a)

with be denoted by V“L(x,y,a/), Vl ZL(X,Y,Q’), VZlL(x,y,oz) and

VZZL(x,y,oz) . All vectors are either row or column vectors depending on the

context. A superscript T will denote the transpose and will be used only in

denoting the transpose of a matrix or the tensor product of two vectors.




2. EQUIVALENCE OF KUHN-TUCKER POINTS AND UNCONSTRAINED
STATIONARY AND SADDLEPOINTS

A primary objective of this work is to relate points that satisfy the
Kuhn-Tucker conditions for problem 1.l to unconstrained stationary points and
saddlepoints of an appropriately defined Lagrangian L . For that purpose we

begin by defining such a Lagrangian as follows

m k
2.1 Lix,y,a) = f(x) + 2 (VI/(agi(X)nLYi) - wwi)) + 2 (V/(agi(XHYi) - wwi))
i=1 + i=m+l

where «a > 0 and

Py if £z0
Y:R—R , ‘P(C)+ = , and ¥ satisfies the following
0 if £ <0

conditions

2.2 (8) ¥ is twice differentiable on R and ¥''(£) > 0 for t#£0
(b) ' maps R onto R and #'(0) =0
()  Y(0)=0

It immediately follows from the above conditions that

2.2 (d) #' is a strictly increasing function on R

(e) % is a nonnegative convex function on R

The motivation behind the above Lagrangian is the following. For the

case of equality constraints only, it is easy to see that for
k
Lix,y.) = {(x) + 2 (?l/(agi(XHYi) - vy,
i=m+l
k
the condition VL(x,y.®) = 0 is equivalent to VE(x) + z cxz,l/'(agi(x)+yi)Vgi(x) =0
i=m+l



and ?//'(agi(x)+yi) - z(/'(yi) =0, i=m+l,...,k . Since ' is strictlyincreasing, the
last equality gives that ozgi(x)+yi =y, or gi(x) =0, i=m+l,...,k, andthe gradient

k
with respect to x becomes Vi(x)+ Z aw'(yi)Vgi(x) = 0 . These are
i=m+l

precisely the Kuhn-Tucker conditions for the equality constrained problem

with classical Lagrange multipliers u, = on//'(yi) ,i=m+l,...,k. Thecaseof
inequality constraints gi(x) £ 0,i=1,...,m, is handled by introducing the slack
variable variables zi and writing gi(x) -l-zi2 =0,i=l,...,m . Usingthe Lagrangian

just introduced for equality constraints we have

139)

Lix,z,y.2) = () + 2 (blag, (+az, “by)) - ().
i=1 |

The variable z can be eliminated now by setting the gradient of L with
respect to z equal to zero, a condition which must be satisfied by the

Lagrangian for equality constraints. This gives the condition that zi must
2 .
satisfy Zozzigl/‘(czgi(><:)+oezi +yi) = 0,i=l,...,m. This condition is satisfied if

L

oo =

1

we set zi @ 2(—crgi(x)—yi) when ozgi(x)+ Yi< 0 and z, = 0 when

agi(x) + v, ¥ 0. The Lagrangian L(x,z,y,2) becomes then
m

fix) + 2 (z//(agi(x)+yi) - ?l/(yi)), which is what is given in 2.1 for the inequality
i=l +

constraints.

Because %'(0) = 0, we have that (¢(C)+)' = zl/'((i)‘*n forall £ in R . On

the other hand (z//(C)+)" = 1//”(@)+ only for £ # 0 in R , with equality holding




for £ =0 if we assume in addition that %''(0) = 0 . This extra assumption

will be explicitly made where needed. For notafional simplicity here and
elsewhere we have used the same 9 function for both inequality and equality
constraint functions gi,i-—l, ...,k . 1In fact different ¥ functions may be used
for each constraint function gi,irl, ...,k . Occasionally we shall write 1//i

to denote the ¥ function used with a specific constraint function gi,i=l, I

Typical % functions which satisfy all of conditions 2.2 are

2.3 (a) W(E) = -&l-t—mt @ae¢R, a>0,tz 2

2

()  Y() = cosh £ = - - 1

oV |

(©)  p(t) = (cosh £ - 1)°

If the ¥ function of 2.3a with t =2 is used for both inequality and equality
constraints we would obtain Rockafellar's Lagrangian [21-24] which is not
twice differentiable globally because ¥''(0) > 0 . However, every other ¥
function given in 2.3 has the property that %''(0) = 0 and hence

(7//(C)+)" = '¢/“(§)+ for all ¢ in R . This property that ''(0) = 0 that leads

to global twice differentiability will be exploited in some of the subsequent
results such as theorems 3.4, 3.10 and algorithms 4.7 and 4.9 . A more

general Lagrangian formulation is given in [13] .

For the sake of explicitness we give below a Lagrangian based on the

function of 2.3a with t = 4 for the inequality constraints and t = 2 for equality

constraints
m k )
1 4 4 1 2 2
2.4 A3 ') = T3 - 3 XMy.) - R 5 g, v,
-4 Lix,y@) = 100 + 7= 2 ((@g (x)+yy) =y, )+ 50 ({ag, (x)+y) ~v, )
i=l + i=m+l1
m k

04

1

fix) A 4 4 @ ) 2 ,
() + o 2 ({eg(ty,) -y, )+ (9,60 +y,9,(x)

i=] + i=m+l



Every single result obtained in this paper applies but is not limited to
this specific Lagrangian which is twice (thrice) differentiable globally if the

functions f,gi,i=l, ..., k, are also twice (thrice) differentiable globally.

We begin by relating Kuhn-Tucker points of problem 1.1 and stationary
points of L , thatis (x,y) such that VL(x,y,a) = 0.

2.5 Equivalence theorem Let { and gi,i=l, ...,k be differentiable at x

and let o be any positive number. If (;c,ﬁ) is a Kuhn-Tucker point of
1.1 then x and § defined by 2.6 below constitute a stationary point of

L . Conversely if (;<,§) is a stationary point of L , then x and u

defined by 2.8 below, constitute a Kuhn~Tucker point of 1.1 .

Proof Suppose that (%,1) satisfies the Kuhn-Tucker conditions of problem

1.1 . Define }_f in Rk as follows
g
2.6 vy = i=1,...,k

The existence of a unique ;r satisfying 2.6 ig assured by assumption 2.2b.
Hence

TLE,7,@) = VIR) + Z ey'(y,) Vg (x) + B e¥(eg()+7,) Vg, (x)
s . 1
iel + ie] +

k
S a¢i(7.)Vg, (%) = VE(X) + T U,Vg.(x) = 0
s 1 1 . 1 1
ieE i=1




%%;i&,s‘z,a) = W'<agi(>?)+§ri)+ - y) = Pr) - Yy) =0 il
ST - Vieg () v =0 ie7

oL 2 7.a) = v, (R)y) - ¥ (7)) = ) -9 (F) =0 icE
Sy, x.v.@) =g (x)+y;) Py =Py - Yy = ie

1

Hence VZL(§,§,a) = 0 and (}_E,;) is a stationary point of L . To prove the
converse it will be convenient to establish the following key lemma first.

2.7 Lemma Forany @ > 0 and L defined by 2.1 we have that

< (x,y.,@)=0,i=1, > & <§i(x) =0,v,20, yigi(x) =0,i=l,...,m
L
<:5~“(x y,a) = 0,i=m+l, > > é(x) = 0,i=m+l, Lk

Proof For i=l, s

oL
v

()
g(X)+y z 0, ag; X)+Y
or
(X)+Y<Oy g(X)<0v
gi(x)éo
y, 20
yigi(X)=0

So (xiy,e) =Yg, (X)+y) - ¥'ly) =0 =>

Y
O

i
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For i = mt+l,...,k

ayi (x,y.,2) = w'(agi(X)wi) —w'(y> G <gi(}<)+yi = y> =D éi(X) = >
=0

To complete the proof of theorem 2.5 now, suppose that (}2, 37) is a stationary

=

Q/

point of L . Define u e Rk as follows

2.8 u, = oy (ag (x)+y,) i=l,...,m

+

Hence u, & 0,i=l,...,m and

K
VE(x) + £ uVg (%) = VL, y,@) = 0

By lemma 2.7 we have that, since VZL(;E,;,Q) =0, gi(x) =0, Y z0, yigi(i) =0,

i=l,...,m and gi(;:) = 0,i=m+l,...,k. Hence for i€ 7], ;r = 0,

u, = onl/'(;'i) = 0, and so Gigi(;{) = 0,i=l,...,m . Hence (;Z,G) satisfies the

Kuhn-Tucker conditions for problem 1.1,

The significance of theorem 2.5 lies in the fact that the problem of finding a
Kuhn-Tucker point of a nonlinear programming problem has been reduced to that
of finding solutions of the nonlinear equations VL{(x,y,2) = 0 for any positive
@ . In gsection 4 we shall describe two computational methods for finding

Kuhn-Tucker points of problem 1.1 based on solving these nonlinear equations.

We establish a result now which is essentially due to Arrow, Gould and
Howe [1], but under different assumptions from theirs. This result is important

in establishing some of the duality and computational results to follow. We




..,11_.

shall need the second order sufficiency conditions for problem 1.1 [5]. A

point (x,u) € R X R is said to satisfy the second order sufficiency
conditions for problem 1.1 if it satisfies the Kuhn-Tucker conditions of
problem 1.1 and if XVZLO(;{,G)X > 0 for each nonzero x in R"

satisfying Vg, (x)x = 0 for ie {ifu, > 0,9,(x)=0,i=1,...,m} UE , and

- ~ - 0
Vg, (x)x = 0 for i€ {i|ui =0,9,(x)=0,i=l,...,m} , where L~ is

k
the classical Lagrangian defined by Lo(x,u) =f(x)+ X uigi(x) . We shall
i=l ~

also use the concept of strict complementarity at (>—<,G) , that is Gi #0

for each i=l,...,k for which gi(;c) =0 .
2.9 Theorem (Positive definiteness of Vl lL(;c,Er,oz) and saddlepoint result)

(a) Let f,gi,i-':l, ...,k be twice differentiable at x , let (;c,G) satisfy the

second order sufficiency conditions for problem 1.1, and let strict com~-
plementarity hold at (x,u) . Then for x and y defined by 2.6 and for

some large enough but finite «, Vl lL(§,§,a) is positive definite and
210 L(x,y,2) £ L(x,v,e) < L(x,y,2) Vy ¢ RS Vx e N(X), x # %

where N(;:) is some open neighborhood of x . If f,gi,i—‘—l, ...,m are

convex, and gi,i=m+l ,».0,k are affine, then N(:;:) = R .

(b) Conversely, if 2.10 holds, with < possibly replaced by = , for some

a > 0, then % is a solution of 1.1 subject to the extra restriction that

Proof: (a) By strict complementarity we have that for i ¢ 1, fii > 0, and hence

Dby 2.6a ;’1 > 0 and ag, (%) + ;’i > 0. So (W(K),)'" = P (L)



-12-

for € = a’gi(i) + 371 ,1€1 . From 2.6b we have that for i ¢ 7J, 3’1 =0
and hence ag,(x) +y; <0 . So ¥(L), = W) )" = (D))" =0

for £ = agi(;c) + 371, ieJ . Thus

2.1 v L(?{,?,a):VZf(S&)+ s aa’w"(ag.(§)+§.)Vg (i)Vg.(i)T
11 . i i i i
ieIUE
k L,
+ 2 W'(agi(X)w.)V g, (x)
i=] vt

0,~ = 2 e v = =T .
=V Leu) + 2 @Yty Ve, Vg, () ] (by 2.6)
, i 74 i
ieIUE
where Lo(x,u) is the standard Lagrangian. Note that by 2.2a and strict

complementarity we have that z//"(;/i) > 0 for ifIUE . Hence by Debreu's

theorem [4, theorem 3] which states that

L+ 'yMTM is positive

<<F’O, Mx = 0 => xLx > O> >
definite for v sufficiently large

and the second order sufficiency conditions, it follows that the term in the

square bracket above is positive definite for « sufficiently large. Hence

for o large enough \71 lL(}?,;,a) is positive definite and the second inequality

of 2.10 holds for x , different from X , in some open neighborhood N(}.i) of x .
To establish the first inequality of 2.10 we have from 2.6a and 2.6b that

;fi 2 0 for i€l and §i = 0 for i €] and hence

m
Lec,y.@) - Loy, o) = S (Uleg, )ty ~¥iy,))

i=] +
k —
+ 2 (W(agi(XHYi)-—IU(Yi)) =0
i=m+l

where the last inequality follows from the fact that v//(agi(§)+yi) = z//(yi) = w(yi)
+ +
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for i=l,...,m, since gi(;c) = 0, ¥ is nonnegative and ¥(0} = 0, and from
the fact that gi(;;) =0 fori=m+l,...,k . Hence L(}z,y,a) = L(;{,}—;,a) for
all vy in R]< . If in addition f ,gi,izl,,.,,m are convex, and gi,i=m+l, .
are affine then it folléws from the convexity and monotonicity of ¥( )+ ;

the convexity of ¥ and affineness of gi,izm-i-l, .e.,k, that L(x,y,x) is

convex in x for each fixed v and « . Since V]L(Q,Q,az) = 0 , it follows

that L(.}-E,;r,a) < L(X,§,a) for all x in R",

(b) Suppose now that 2.10 holds. From the second inequality of 2,10 we

get that VZL(}'{,",a’) = 0 and from lemma 2.7 we obtain that ;’i z 0,
gi(sz) < 0, §igi(§<) =0 for i=l,...,m , and gi(;() =0 for i=m+l,...,k .

Hence x is feasible. For any other feagible point x which is also in

N(;c) we have that

0 2 Lix,y,@) - L(x,v,a) (by 2.10)
m — . — —
= f(x) ~ £(X) + 2 (Ylag,(x)+y,) ~¥lag, (x)+y,)
i=1 + 4
k - - —
tZ (lag, () ~¥leg, (x)+y,))
i=m+l

= f(x) - £(x) + = (Yleg; )ty -U(y) )+ 2 (Ulag;(x) ~Plag, (x) )
iel T+ Tt ie] + +

bE W)U S 1) - ER)
ick

Hence f(.ﬁz) < f(x) for all x € N(x) which are feasible.
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2.12 Remark 1If it is further assumed that ¥''(0) > 0 , which is the case
in Rockafellar's Lagrangian, then the strict complementarity requirement at
(;c,G) for theorem 2.9 above can be slightly weakened to the following:

Gi > 0 for i=l,...,m for which gi(ié.) =0,

2.13 Remark We observe that L(x,y.,x) is concave in y for each fixed o
and fixed feasible x if we assume that ¥''(0) = 0 and ¥''({) is non-
decreasing for £ & 0 . This follows from the facts that

2% " .
Sy.éyj (x,y,@) = 0 for i #j , and that for gi(x) £ 0,i=l,...,m

2
—a“-ZL(x,y,a) = ?!/"(agi(X)wi) - w"wi)
3y, +
= Y,'/"(<>zgi(7<:)+yi) - ?l/"(Yi) =0
+ +
and for gi(x) = 0,i=m+l,...,k
a2
L, y.e) = P ag, (x)+y,) - ¥(y,) = 0
oy.

i
It was also shown in the proof of theorem 2.9a above that if f,gi,i=l, R 11}

are convex and gi,i=m+l, .s0o,k are affine then L is convex in x for each

fixed v and o .




3. DUALITY

We observe first that as a consequence of lemma 2.7 the primal problem
1.1 is equivalent to

3.1 ; minimize L{x,v)
X, Y

subject to Y/ZL(x,y,af) =0

where I is defined by 2.1 or more specifically by 2.4 and « is any positive
number. We shall associate with this problem the following dual problem

3.2 maximize Lix,vy)
X,y

subject to VlL(x,,y,oz) =0

We shall assume no convexity in many of the following results, and hence the
standard techniques of deriving duality results such as the use of minmax
theorem {26,10,27] will not apply, nor will the elegant conjugate function

theory of Rockafellar [20] apply directly, however see [24] .

The results of this section consist of a weak duality~theorem 3.3 (for
which convexity is needed), a duality theorem 3.4 which relates a Kuhn~Tucker
point of 1.1 to a Kuhn-Tucker point of the dual problem 3.2 and toa second order
maximum of 3.2 under no convexity assumptions and finally to a global solution
of 3.2 under convexity. The converse duality theorem 3.10 similarly relates
a local solution of the dual problem 3.2 to a Kuhn-Tucker point of the primal
problem 1.1l and to a second order minimum under no convexity assumptions and

finally to a global solution of 1.1 under convexity.

Probably the most important features of these duality theorems are the

absence of inequality constraints from the dual problem 3.2 and the relations

15
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between second order optima of the dual problems obtained in theorem 3.4
and 3.10 without any convexity assumptions. Related local results for a

specific L have also been given by Buys [3].

3.3 Weak duality theorem Let x satisfy the constraints

of the primal problem 1.1, or equivalently let (x,9) satisfy the constraints of
3.1, let (x,y) satisfy the constraints of the dual problem 3.2, and let
f,gi,i=1 ,...,m be differentiable ahd convex or‘"i'?"v Rn , and let gi,i=m+1 seses K,

be affine functions. Then f(x) 2 L(x,v). &

Proof

f(x) z f(x)+ Vi(x) (x-x) ' (by convexity of f)
m ) k
= £(x) = T ay'(ag,(x)+y,) Vo, (x)(Z-x) = T ap (g, (x)+y,)Vg, (x) (X-x)
i=l + i=m+l
(since Vl L{x,y,a) = 0)
m k
2 £(x) + 3 aviag () (9,(x)-g,(R) + 2 e¥(ag, (x)+y;)(g, ()-g, (X))
i=1 + i=m+1
(by convexity of gi,i=l ,...,m, and
affineness of gi,i=m+1 r oo, K)
m k
2 i(x) + 3 ayi(ag,(x)ty,) 9, (x) + 2 't (g, (x)+y;)9, (x)
i=1 + i=m+1
(by primal feasibility of X )
m k
2 f(x) + 2 (Y(ag,(x)ty)) - Yy) )+ 2 ('W(ozgi(X)wi) ~ ¥y
i=1 . + +  i=mtl.

(by convexity of ¥( )+ and ¢ )

= L(XIYIQ) ° l
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3.4 Duality theorem Let f,gi,i:l, ...,k be differentiable at X .

(a) 1f (;«:,5) is a Kuhn~Tucker point of 1.1, and if either strict com-
plementarity holds at (kx,u) or ?l/i"(O) =0 for i eI, then (x,y) defined by

2.6 satisfies the following Kuhn-Tucker conditions of the dual problem 3.2

V,L(x,y,@) + vV ,L(x,y,@) = 0

2

3.5 v L, v,@) + vy Lx,y,@) = 0

\71L(>T:,§,oz) =0

with v =0,

(by 1If f,gi,i=1, ...,k are twice differentiable at x , if the second
order sufficiency conditions and strict complementarity hold at (}?,G) , if

Vgi(:::), i eIUE are linearly independent, then for sufficiently large o« ,

(}?, ;) determined by 2.6 forms an isolated local maximum of the dual problems

3.24f $'"(0) > 0 for i€ TUT. If 9,''(0)=0 for ieIU]J then (x,y)

forms an isolated local maximum of 3.2 subject to the additional constraints

that yi=0,i€]'=
(¢) If in addition to the assumptions of part a above, gi,izl , -0 ,M are

differentiable and convex on R” and gi,i=m+1 , ...,k are affine, then (52,37)

solves the dual problem 3.2 and the extrema f(x) and L(;E,;r,oz) are equal.
Proof:

(3) By theorem 2.5 we have that vlL(;c,{z,a) =0 and V,L{x,y,@) = 0 which

are the Kuhn-Tucker conditions 3.5 with v = 0. Strict complementarity or
d/i“(()) =0 for i €I are imposed here so that the second derivatives of 3.5 are

well defined.
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(b) By part a of this theorem, (x,y) satisfies the Kuhn-Tucker conditions
3.5 of the dual problem 3.2 with v = 0. To show that (§,§) is an isolated
local maximum of 3.2 we need to show that the second order sufficiency

conditions for 3.2 are satisfied at (i,}), that is

3.6 (v, Lz, v.2) vy L%y, @) 0 (x y)#0

Y]

implies that

3.7 x  v) VL& v,a) <0
Y]
where
ielU E
.. - - == _ _
3.8 V'L(x,y,@) = = ;
LR v L(——a) ielIUE
Vo1 (x,y.,2) 2o L%, Y,
0 0 -?l/i"(O)
L ieJ
wedd
But for (x,y) satisfying 3.6 we have that
2. - - X - - - -
3.9 (x YV L(x,y,2) = - XVHL(x,y,a)X + yVZZL(x,y,a)y

For the case where z//i"(O) > 0 for i e IUTJ, we obtain the negativity of 3.9 for
(x,y).) # 0 from the positive definiteness of V“L(;;,gr',a) for large @ (by theorem
2.93) and from —?p]."(O) < 0 . The case (x,yI) = 0 , is excluded because

by 3.6 and 3.8, YIUE # 0 and
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2 o7 Ve, ¥y, = 0
ieIUE
which contradicts the linear independence of Vgi(;i), ieIUE , since by
strict complementarity 7//"(371) >0 for i¢ IUE . We have thus established
that 3.6 implies 3.7 if ?//i"(O) >0 for ie IUJ . When 1//],”(0) = 0 for

i eI UJ we establish that 3.6 implies 3.7 under the added assumption that
y. = 0 . For this case 3.9 becomes

J

X

2 - - - -
{x yYV L(x,y,a')<) = - XV”L(X,Y,“)X
4

which is negative for x # 0 by the positive definiteness of VUL(;E, 37,@)
for large o . The case x = 0 is excluded because then YIUE # 0 and by

3.6 and 3.8

5 ety Ve, (x)y, = O
ieIUE

which contradicts the linear independence of Y/gi(i), ieIUE .,

(c) By part a of this theorem (}?,37) determined from 2.6 satisfies 3.5 with
v =0 . Hence VIL(;E,;,OJ) = 0 and (}—<,§) is a feasible point for the dual problem
3.2. For any dual feasible point (x,y) we have by the weak duality theorem 3.3

that f(x) 2 L(x,v,@). But

k
f(;() + 3 W(%) ....z//(;'i)) + 5 (W(agl(;{)) “’(//(0)) + > (W{;l)“‘?//(g’l))
iel + ic] + i=m+1

1

L(x,y,2)

i

f(x) + 2 (9ly;)=(y,) (since y, 2 0, i€, and g;(x)<0, i€])
iel

[t}

£(x)

1A'

Hence L(;:,g;,cx) = f(;{) L(x,y,a) for any dual feasible point (x,y), and (52,'3;)

02 L

W

is a global solution of
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3,10 Converse duality theorem  Let (32,}) be a local or global solution of

the dual problem 3.2, let f,gi,i=1 , ...,k be twice continuously differentiable
at x , and let either 371 >0 for el or %''(0)=0 for iel.

(@) If the matrix V”L(;E,}_f,a/) is nonsingular then x and ¢ RK
determined by 2.8 satisfy the Kuhn-Tucker conditions for the primal problem 1.1.

(b) If in addition v“L(SE,;z,a) is positive definite and ;i >0 for iel,

then x and ue Rk determined by 2.8 satisfy the second order sufficient

optimality conditions for the primal problem 1.1 .

(c) If in addition to the assumption of part a above, f is convex or

pseudoconvex at x, gi,i=1 ,...,n , @are convex or quasiconvex at x , and
gi,i=m+1 , ...,k , are affine or simultaneously quasiconvex and quasiconcave at

X , then X is a global solution of the primal problem 1.1 .

Proof:

(&) Since (;c,i;) is a solution of the dual problem 3.2, (§,§) and some

(\70,'\7) ¢ R X R" satisfy the following Fritz John conditions [12, p. 170]
vovlL(X,y,a) + VVllL(x,y,a) =0

. VOVZL(x,y,a) + Vvlzl(X,Yla’) =0

From the first and third equations above and the nonsingularity of K7“L(§,§,a)
it follows that v = 0 and hence \70 Z0 . So \71L(>—<,§,oz) = 0 and VZL(;:,S;,&) =0

and by theorem 2.5, % and u defined by 2,8 satisfy the Kuhn-Tucker conditions
for1.1 .
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(b) By part a above ¥ and u determined by 2.8 satisfy the Kuhn-Tucker

conditions for 1.1. As in the proof theorem 2.9 we have since ;/:i > 0 for

i € 1 that

- - 0. - 2 - -~ -
3.12 v, Lx,y,2) =V, L (x,u)+ 2 « 7//‘'(Y.)V@r.(>~:)\7g.(~><>T
11 11 {cIUE i i i

where LO is the standard Lagrangian. We establish now the implication
3.13 <Vg,(R) = 0,340, 1elE> = xv”LO(SE,G)x > 0

For if not, then for some x # 0, Vgi&)fc =0,ieIUE and >E\711L0(.;:,fi)>7: <0
which by 3.12 gives that .;:V”L(i&,a)fc < 0 which contradicts the positive
definiteness of VIIL(§,§7,Q) Implication 3.13, which because of 2.8 and

E}i > 0 for iel, is the second order sufficient optimality condition for 1.1.

(c) This part follows from the sufficiency theorem of the Kuhn-Tucker

conditions [12, theorem 2, p. 162].
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4, LOCAL COMPUTATIONAL ALGORITHMS

We shall present in this section two local algorithms for the solu-
tion of problem 1.1 which are based on reducing the problem 1.1 to
that of finding solutions of the n + k nonlinear equations VL(x,y,a) = 0 .
The first algorithm 4.7 is a Newton algorithm for which we establish,
under suitable conditions, local superlinear or quadratic convergence
rates. The second method is an extension of the method of multipliers
investigated by Arrow-Solow [2], Hestenes [8,9] Powell [19] Haarhoff
and Buys [7] and Miele, Moseley and Cragg [14,15] for the case of
equality constraints. Our extension is to inequality constraints and
to a general Lagrangian. We establish linear convergence for the
algorithm and indicate under what sort of conditions we may expect
fast or slow convergence of the method. 1In [3] Buys gives, for a
specific Lagrangian, a dual algorithm which is related to our stationary
point problem. One specific implementation of his algorithm, for
equality constraints only, turns out to be the method of multipliers
[8,9] and for which he establishes local convergence. For inequalities
however, a particular case of his algorithm gives a relative to a
special case of our algorithm 4.9. He does not however establish

convergence nor a rate of convergence for that algorithm.

In both of the computational methods to be considered here, in
order to establish convergence we need to have a nonsingular Hessian
at the solution point. TFor that purpose we shall employ another
Lagrangian M(x,y,c¢) which is obtained by augmenting L(x,y,x)
in such a way that VZM(§,§7,Q) is nonsingular and VM(x,y,d) = 0
is equivalent to VL(x,y,d) = 0 . (The feasibility of augmenting L

to obtain another Lagrangian M which has identical stationary
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points as L , presents the intriguing possibility of generating a still

wider class of unconstrained Lagrangians with possibly better

properties than L . This possibility has not been investigated in

depth here.) We define

m
4.1 M(x,y,a) = L{x,y,q) -~ 2 Yy gb(~gi(x))+
i=1 '
m 2
=f(x) + = (q/(agi(X)-+yi)+ - gu(yl) b w(-gi(><))+)
i=1

+ 2 (-zp(ozgi(xnyi)w//(y.l))
i=m-+1

We establish now immediately the equivalence of stationary points
of L. and M .

4.2 Lemma  VL(X,v,q) =0 <==> VYM(X,¥,a) =0

Proof {

>} By lemma 2.7 we have that §igi(.>_<) =0 ,i=1,...,m .
Hence
m 2 '

V. X,y = Xy | Y -
My, a) 71L(><:,y,a) Fi?l v, ¥ (-9,(x) Vo,

= 9. N
) o
Cyi Cyi
— O, M(‘;—{'Ig;ic{) = ._._G'_\’_, L(;{I§IW) =0 I i‘:ll°'
vy, Ay,
1 1

(<==) We will first show that VZL(,§,§,Q) =0,

3 ME, 0 =9 LET,® - 27, 99, (&), =0, i=1,..



24

1
=
[}
Q
i
+
L.<

-+

We will now show that vy, z/; -g SE))Jr = 0 for i=1,...,m , and hence

VZL(E,S/“,(:() = 0 . Suppose not, then for some i , y # 0 and 9, (x)<0 .

Two cases can arise.

)=0
Case 1: §i<o , gi(§)<o
Zyz// >‘< <O

—_ V(g (X) +§) - 2!/'(?i) - 291w<~gi<§<>>+ > 0> ==

Contradicts Q-M— {(x,v,a) = 0

)%

s P'(ag(R) +7) < Y
Case 2: \371 >0, gi(i) <0 = - - '

Contradicts %I\f* (X,v,a) =0

Hence VZL(E,Y/,O!) = 0 . By lemma 2.7 we have that §igi(5i) =0,

i=zl,...,m , and hence

71L(>7:,§7,Ct) = ‘711\/1(35,?,(‘1) +

- w'(yi) - Zyi¢(~gi(x)) =0, i=1,.

.,m
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We establish next the positive definiteness of 7111\/{(%,57,(1) ,

A
the nonsingularity of V" M(x,y,2) and the saddlepoint property of M .

4.3 Lemma {a) Let the assumptions of theorem 2.9a hold. Then
for sufficiently large but finite o , VUM(E,?,Q) is positive definite,

721\/[(5&&,0!) is nonsingular and

- - k - -
4.4 M(X,y,a) £ M(x,y,a) < M(x,v,a) VyeR , ¥xeN(X), x#£x
where N(X) is some open neighborhood of X .

(b) Conversely, if 4.4 holds, with < possibly replaced

by =, then X 1is a solution of 1.1 subject to the extra restriction

that x ¢ N(X) .

Proof (a) As in the proof 2.9a we have that

o - - -2 - -
711M(x,y,cz) = V“L(x,y,a) -5 V. zp"(O)Vg_(x)Vg_(x)T
jep L i i

- - - - 2 - -
=V PED s 0BG - 7,510V, Ve, (D)
iGI 1 1 1
b3 %y §, Ve, RV, ()
ieE

It follows again by strict complementarity, the second order sufficiency
conditions and Debreu's theorem that for large enough o , Vlll\/.[(;c,'if,cx)

is positive definite and hence the second inequality of 4.4 holds. The first
inequality of 4.4 holds because

M(R,y,a) £ L(%,y,Q) s L(X,y,Q) = M(x,y,q)

To show that VZM(S&,{/,O{) is nonsingular we observe that
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-
, VllM(S'c.9,a) m/}”(yi)Vgi(X) 0
4.5 V"M(X,v,q) = ieIUE
ﬂ?ﬁ"(?i)Vgi(Fc) 0
ieIUE
0 0 -g/»i"(O)-Zzp.(—g (X))
L. iEI

A
The nonsingularity of V M(x,y,a) for large a follows from the positive

definiteness of V“M(S?:,S?,u) , the linear independence of Vgi(fc) ,

[ ] - 1 - ; - - ( .
] (yi) >0, ielUE , and vpi (0) Zz/Ji( gi(x))+ 0 ,ie T.

(b) From 4.4 we have that VM(X,y,0) = 0 . By lemma 4.2 it
follows that 7L(x,y,0) = 0 and by lemma 2.7 we have that {/igi(i) =0,
i=1,...,m . Hence M(X,y,a) = L{X,y,a) . From 4.4 we also have that

for xeN(X)

0= M(X,;’,Q) - M(XIYIQ) z L(Xlg}lq) - L(;{,.};,C\l)

The rest of the proof is identical to that of 2.9b.

We observe that if in 4.1, ¢''(0) = 0 for the y function explicitly
stated therein and for the 1)[;i ,1e{l,...,m} associated with the
inequality constraints then M 1is globally twice differentiable provided
that f and gi , i=1,...,k are also twice differentiable. To be
specific we state explicitly a recommended globally twice differentiable

M function associated with problem 1.1

1 m 4 4 2 4
4.6 Mx,y,a) = f(x)+,= 2 ((ag;(x)+y,) =y, -y, (-9,(x) )
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We are prepared now to state and establish the convergence and

rates of convergence of our algorithms

k
4,7 Newton Algorithm Choose o > 0 and (xo,yo)e Rnx R .

1 141 .
Determine (><:hL ,yH) from (xJ

,y‘]) as follows: Linearize VM(x,y,a) = 0

,v’) and solve for (le ,yJ+l)

J

around the point (x

4.8 Local convergence and rate of convergence of the Newton

algorithm
- - k
(a) Let (x,u)e Rn>< R satisfy the Kuhn-Tucker conditions

of 1.1, let £ and 9, i=1,...,k , be twice continuously differentiable
at each point of an open neighborhood of X , let Vgi(fi) ,1elUE

be linearly independent and let the assumptions of theorem 2.9a hold.
Then for large enough but finite « there exists an open neighborhood
N(x,y) of (X,¥y) in R™ % Rk , where vy is determined from u by 2.6,
such that for every (xo,yO) e N(X,y) , the Newton algorithm iterates

of 4.2 are well defined and converge superlinearly to (x,y) in the

sense that
. j+l =
lim ||z lem -0
j= e || 2)-2]]
where z = (x vy) .
(by If in addition f and 9, i=1,...,k are three times

;'"'(0) = 0 for ie {1,...,m} , then the Newton iterates converge
quadratically to (X,vy) , that is for some constant d and some

integer j0 depending on zO

|2

1 - j -y 2
—zHgdeLzH for j gjo
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Proof Since (X,y) e Rnx Rk is obtained from (X,u) by 2.6 it follows
by theorem 2.5 that VL(X,y,2) = 0 , bylemma 4.2 that VM(X,y,a)= 0 ,
and by lemma 4.3 a that VZM(}E,§,O{) is nonsingular. The convergence

properties stated in the theorem follow then from the local convergence

theorem of Newton's method [16, p. 148].

We present now a second method which is an extension to
inequality constraints and to more general Lagrangians of the method
of multipliers. Originally this method was proposed for equality
constraints by Arrow and Solow [2] by using differential equations
to determine a small stepsize algorithm. Later and independently
of Arrow and Solow and of each other Hestenes [8,9], Powell (19]
and Haarhoff and Buys [7] used a similar Lagrangian approach for
equality constraints and proposed a large stepsize method. Miele,
Moseley and Cragg [14,15] made numerical tests of the algorithm
and variants of it. More recently Buys [3] and Wierzbicki [28]
considered extensions to inequality constraints. Buys suggested
a dual problem approach for a specific Lagrangian function but did
not give any convergence rates. Wierzbicki considers another

specific but different Lagrangian.

0
4.9 Method of Lagrange multipliers Choose o > 0 , >0,y ¢ Rk
0

0 C
and xo € Rn satisfying Vll\/{(x VY ,9) =0 . Having (x],yj) determine

(x”h1 ,yJH‘) as follows

(a) Determine le such that M(XHl,yJ,a) = minimum M(x,y),c’x)
n
xeR
. j j i+1
or Vll\/l(le,yJ,u) =0, If xJ+ is not unique, take a closest
j+1 j

X , in any norm, to x
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4.10 Local convergence and rate of convergence of the method of

Lagrange multipliers Let the assumptions of 4. 8a hold, and

let v be determined from U by 2.6. Then for large but finite « ,
there exist open neighborhoods No(fc) and NO (y) in Rn and Rk

0 -
respectively, such that for each y ¢ No(y) there exists a unigque
0

xo in the closure lﬁo(;c) of NO(E) satisfying \711\/1(x0,y Q) = 0

and such that the iterates of 4.9 are well defined and converge

linearly to (x,y) for ge (O,—é) for some (;; >0 .

proof As in the proof of theorem 4.8 we have that VM(X,y,a) = 0 by

theorem 2.5 and lemma 4.2. By lemma 4.3a 77111\/1(32,'37,(1) is positive
definite for sufficiently large but finite o . It follows by the implicit
function theorem [17, p. 128] that for some open neighborhoods
N(y) in R* and N(x) in R | there exists a function e:Rk SRY

which is continuously differentiable on N{y) and such that

For vy « ﬁ&), x = e(y) is a unique solution of '1711\/I(x Y,y =0

4,11

in N(x); X =e(y) and e(y)e N(X)
Detfine
4.12 N (X) = N(X)

For y] e Ni(y) algorithm 4.9 is well defined and is equivalent to

'-—l ] - . 3 M
4.13 y“ =y + & \/ZM(e(yJL v o)

j+l

if we assume for the time being that x of step 4.9%a is unique.
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k
Consider now the mapping G.:Rk - R underlying the iteration 4.13 and

defined by

4.14 Gly) =y + BVZM(e(y), y.Q)

and its gradient evaluated at

4.15 /G(Y) = T+ gV, M(X, ¥, )V(y) + g7, M(X,v,0)

Differentiating 711\/I(e(y), y, a) = 0 with respect to y and evaluating

at ¥ gives

V“M(x,y,a)Ve(y) +V12M(x,y,0t) =0

and hence
- - - -1 - -
\V/ =V
e(y) =V, M(x,vy,q) Vl SM(X,¥,0q)
Substitution in 4.15 gives

- - - N | - - .
4.16 VG(y) = 1~ 5[V21M(x,y,a)V11M(x,y,a) V) M,y 0=V, M(X, ¥, a)]

By referring to 4.5 this expression can be rewritten as

4.17 VGy)=1-8 ieluE
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Tt follows from the linear independence of Vgi(?:) , ie TUE , the
positive definiteness of Vlll\/[(i,g},a) and  ¥,''(0) + 2z//i(--<_:]i(>’<)).’r >0,
i € J, that the matrix in the square brackets is positive definite.
Hence for some E{ > 0, the eigenvalues of VG(y) are less than

one in magnitude for p € (O,E) and hence the spectral radius

p(VG(y)) <1 . It follows by Ostrowki's point of attraction [16, p. 145]
that there exist open neighborhoods N1(37) , NZ(§) with
Nl(37) c NZ(§7) < N(y) and such that when yO € N1(§) the iterates
of 4.13 remain in N2(§7) and converge linearly to y . Since e is

j-1
= e(y] )

differentiable on sz the iterates {XJ} defined by %

are also well defined and converge linearly to X = e(y) if we choose
any NO(§7) c Nl(i}) . Hence the sequence ((x’,y")) converges
linearly to (X,y) and the theorem is established for the case when

P41
x’H of 4.9a is unique.

i+1
Suppose now that X'H of step 4.9a is not unique and that there
~j+1 j+1 j ~j+1
also exists an =1 £ P e(yJ) such that Vl L(XJJr ,y‘],q) =0.
j+1 ~j+1 i j+1
We will show that xH is closer than XJ+ to x] and hence x]+

will not appear in the sequence {x:]} generated by the algorithm.
~j+1 o
We have from 4.11 that 21 £ N(%X) and hence

"j”f‘l__ }-Zl

4.18 || x > 8

where & is the radius of some open ball B(S(;() around x which is
contained in N(X). It follows again by Ostrowski's point of attraction
theorem that for the sequence {yJ} obtained from 4.13 and starting

0
with any v ¢ Nl(Y)

1Y-3] 1= /|1y%-5]]

4.19
i+

1y -] = 20109
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where V= p(VG(Y)) + 26 <1 for some €& >0 and c¢ is a positive

constant depending on € and the norm employed. Also since e is
j-1 j+1 J

*

J

differentiable we also have for =e(y ) and x = e(y’) that
- .
[10=%]] = e |y 3|
4.20
127 | = 207 (1y%-7]
where c¢' is some positive constant. Define now
No(@) = {y|yeN, (), []y-7]] <70
0 -
Hence for v ¢ No(y)
4,21 ij—;‘cj[ <-§~ Vi 21
and
4.22 12 <—‘§- Vi > 1
It follows from 4.18 , 4.21 and 4. 22 that
~j+1 ] ~j+l o~ i~ I i+l
1272 = ||R7 x| - 1¥-%]] >o5=5> [|F 7]
Hence xj+1 is closer than }?Hl to xj . So xj+1 = e(yj) will be

i+l

picked up in step 4.9a rather than x and iteration 4.13 will again

represent algorithm 4.9 for the nonunique case also. The remainder

of the proof is the same as for the unique case.
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We make some remarks here about the relation between the size
of p and the speed of convergence. Since the size of f was determined
from the requirementthat some normof VG(y) as given by 4.17 is less
than one, it follows from 4.17 and this requirement that for some

5€e(0,1)

On
v

= || 7GH)]] 21~ Bv

Y

and

4]

v

| VGE) || = Bv =1

Y

where v is the norm of the matrix in the square brackets of 4.17.

Hence

for some & e (0,1)

<
<

o . . . 1
Fast convergence is obtained when 5 is close to zero and hence B = e

2
On the other hand when B8 = 0 or B = , B will be close to 1 and hence

N
slow convergence is to be expected.

Another possible source of slow convergence is the condition
number of Vlll\/l(;{,i},c;r) which affects step a of algorithm 4.9.
It can be shown that if k < n where k is the number of active
inequality and equality constraints (that is the solution % of 1.1
lies on a manifold) then the condition number of ‘{7111\/[(32,37,@)
approaches » as a @ approaches » . However for the special case

when k = n (that is the solution X lies on a "vertex") then the
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condition number of 7111\/1(32,_'37,(1) remains finite when o approaches
« . On the other hand when o is not large enough, VllM(§,§,a)
may not be positive definite then and again it may be difficult to
implement step a of algorithm 4.9. In summary it may be stated

that in general convergence problems may be expected for small

values of either o and B and also for large values of either «

and B . Best results should be at intermediate values of a and

B . Numerical results of Miele, Mosley and Cragg [14, table 2,
examples 6.2 and 6.3] where B =a (k in their notation) slow
convergence occurred for both small and large values of B and

fast convergence occurred for intermediate values of 8.

In conclusion we make some remarks about possible enlargement
of the region of convergence. Basically we are finding an unconstrained
saddlepoint of M(x,y,a) or a root of VM(x,y,a) = 0 . Since there
are no global methods for splving these problems in the absence of
convexity, there is little hope in the present state of the art for a
foolproof global algorithm for solving our problem here. However
practical improvements may be achieved by introducing a stepsize
which is determined by either minimizing the function |[UM(x,y,a)|] 2
or using an Armijo procedure [17, p. 491] on the same function

i+1
7=,y -y

such that ||VM(x,y,a)|] 2 decreases sufficiently along that direction.

along the direction ( or along a related direction

Such a procedure would lead to a point satisfying VeM(X,y,@)VM(X,v,e) = 0 .
If YM(X,v,a) = 0 we are done, if not the procedure would have to

be restarted again either at (X,y) or elsewhere.

Another acceleration procedure is to ignore all e-inactive in-

equality constraints, that is for some € > 0 delete at iteration j
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the inequality constraints such that g{(xJ) <-e,ie {1,...,m},

L
from consideration. It can be shown [13, lemma A.17] that for some
neighborhood of X and for some e such a procedure would not

remove any of the active constraints gi , 1 el from the problem.
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