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ABSTRAGT

An algorithm by Buzen to find the normalizing constant and mar-
ginal probabilities in a closed queueing network is generalized to the
model of Muntz and Baskett. A technique involving the iterative solu-
tion of a closed queueing network to implement queue dependent
completion time distributions is presented. An accurate model of a

paging drum for queueing networks is given as an example.






1. Introduction

Queueing network models have been studied in various forms as models
for multiprogrammed computer systems. These models have generally taken
one of two approaches. The first consider only twé or three of the major
interacting elements of a computer system in order to present a solution
derived from accurate service and customer interarrival time distributions.
The second approach assumes Poisson interarrival time distrubutions and
exponential service time distributions to study larger, more generalized
models. Recent work by Chandy [C1] and Muntz and Baskett [B3,M2]
has opened the possibility of studying more generalized service time
distributions in larger models by the use of the method of stages and
various scheduling d‘isciplines. Section II presents a generalization of
an algorithm first suggested by Buzen [B4,B5]. This algorithm allows
the efficient computation of the normalizing constant and marginal
distribution of the closed network model developed by Muntz and Baskett.

Section III is addressed specifically to the accurate modelling of a
paging drum within a network model. The derivation of the model is
presented along with a discussion of its use in both open and closed
network models. The use of this model in closed networks involves an
iterative solution first suggested by Pinkerton [P1]. The algorithm

and proof of convergence are both presented.



II. Solution of Closed Network Models

The classic solution of a closed queueing network model was
presented by Gordon and Newell [Gl]. Their model assumed an
exponential service %:ime distribution at all service centers, each
of which could have a fixed number of parallel servers. Using the
method of local balance Muntz and Baskett have been able to
generalize the model of Gordon and Newell [G1]. These generalizations :
include the addition of classes of customers, last-come-first-served |
and processor sharing scheduling disciplines, as well as a restricted

structure of exponential stages to represent generalized service time

distributions.




The structure of stages for the model is shown in fig. I. A customer

enters at the first stage and proceeds to the ith of K stages with
probability a,_; or exits with probability bi~1 =1 - a,_ - The use
of stages was considered by Moore [Ml] in modelling a large scale time-

sharing system. Stages with bi = 0 for i < K were used by Pinkerton

[Pl] to model a drum in a central server model of a paging system.

Fig. 1: A network of stages

The generalizations made by Muntz and Baskett may be used to
model more accurately the various service time distributions of the
components of a computer system. The solution of a closed network

as given by Muntz and Baskett is

M
-1
P(ZI'ZZ""'ZM) = G (N) .II Fi(zi) (1)
i=1
In eq. (1) P(ZL’ZZ’ e ,ZM) is the probability of the state described

by all the Zi and each Zi is the description of the state of service

center i . The particular form of Zi depends on the absence or
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presence of classes of customers or stages. The F‘,(Zi) are functions
dependent on the scheduling discipline of service center i . Define
S(N,M) to be the set of possible states of a closed network with M
service centers and number of customers, N . The normalizing constant,
G(N) , may be written
M
G = ) I @) (2)
S(N,M) i=l

In his analysis of a central server model Buzen [Bél]'developed an extremely
efficient algorithm for the evaluation of G(,N), As an extension he also suggested
an algorithm for service centers with parallel éervers which he further emphasized
in [B5]. In his development Buzen was primarily concerned w:ith the model of
Gordon and Newell. The generalizations _c;f Muntz and Baskett preclide the direct
application of Buzen's algorithm to find G(N) as given by equation (2). How-
ever, assuming a constraint concex‘ning the classes of customers and performing
some relatively simple precalculation, the algorithm may be applied.

Buzen's second algorithm may also be speeded up and extended to provide not

only the normalizing constant, but the marginal probability distributions at the




individual service centers. To derive the modification to Buzen's algorithm con-
sider the definition of G(N) given by equation (2). Since the individual com-
ponents of the vector Zi appear only in Fi(Zi) equation (2) can be written as:
M .
GIN) = ) T () FZ)) (3)

i=1
Zn.:N S(n.ll)
1 1

Step 1 of the algorithm is to calculate

f(n) = >“ Fl(Z) (4)
S(ni,l)

for 1<i<M and 0< ni < N. The remainder of the derivation follows the work

of Buzen. Define the auxilliary function gl(m,n) to be the normalizing constant

for a closed network with m service centers and n customers. gl(m,n) is re—

cursively defined by
N

(m,n) = ) £ (g, (m-1,n=i)
i=1

—_
Ut
=

9

Equation (5) is valid for m>1 and n > 0. The necessary boundary conditions

are

9,(,0) =1 1<j<M

g(l,i)=f1(i> 0<i<N

The normalizing constant for a network of M service centers with N

customers, G(N), is just g. {(M,N). There is one constraint which must be

1

placed on the model of Muntz and Baskett such that the above derivation is
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valid in the general case. Customers must be allowed to change classes in such

a manner as to allow any individual customer to potentially become a member of
any class. This arises from the computation of fi<ni) which removes any designa-
tion of clags from the customers. Given this constraint the normalizing constant
may now be calculated by the following algorithm, which uses an array H with

two rows and N columns.

Algorithm 1
1. Calculate f,l (ni) for 1<i<M and 0< ni <N .

2. H(@i,L) <= fi(L) for 0OKLLEN; i<=1;j<=2; x<=2.
L __
3. H(,L) <= ) £ (k)H(i,L~k) for 0< L<N.
k=0

4., x<=x +1; interchange i and j; if x<M go to step 3 otherwise the

algorithm is complete.and gl(I\/I,N) is in H(@i,N).




This algorithm may be compared with the procedure of evaluating

all possible states of the network. Since (1) we do not know a

priori the scheduling discipline of the various service centers

and (2) the values of f[1 [(N[I ]) would most likely be evaluated
beforehand in both cases, ‘the computations are compared after the
evaluation of f[I](N[I]). To evaluate (2) requires M-1 multiplications

for each of

M+N=-1

states and the same number of additions to sum the products. A
network with five service centers and eight customers would have
495 states. The evaluation of G(N) would require 1980 multiplications

and 495 additions. Step 3 of algorithm 1 uses
N
Z (T+1) = (N+1)(N+2V/2
1=0

additions and multiplications for each of M~1 iterations. Tor
the suggested network this totals 180 multiplications and additions.
In regard to step 1 note that this computation is subjecct to
similar constraints as the evaluation of G(N) . The total number
of customers of different classes and at different stages of service
must total N[I]. A sequence of stages, for instance, may be considered
as a network and algorithm 1 used to evaluate f[I}(N[I]). This
ability arises from the product form of F1){Z]|I]) where Z[I] represents

classes of customers and service distributions with stages.



gz(i,N-k) represents the normalizing constant for the netwosk cbtained by re-
moving service center i and k cusiomers.

Thus, the normalizing constants of M+1 different networks are needed
for all numbers of customers from 0 to N. M of the normalizing constants
are found over a network with one service center of the original network removed.
The M+1st normalizing constant is found for the entire network. Buzen suggested
M repetitions of Algorithm 1 with the first M-1 repetitions over M-1 service
centers and the last over M, however the amount of computing involved can be
significantly reduced.

Algorithm 1 can be exten{iéd to generate an array, N by M+l, containing
all values needed to find the mafginél probabilities of the network. Examination
of step 3 of Algorithm 1 reveals that the value H(j,L) required only those values
of H(i,k) for k < L. By calculating gl(i,N) first,‘ then gl(i,N—l) and so on
through gl(i,O) successive gl(i,L) may be calculated using a single column
of the array. Now note that the calculation of the normalizing constant for the
network with the ith service center removed proceeds identically to the calcu-
lation of the normalizing constant for the entire network until x reaches i at
step 4 of Algorithm 1. Algorithm 2, given below will generate an array of M+1
rows. The ith row, 1 £1i< I\/I,‘will be the normalizing constants for the network
with the ith service center removed. The M4+1st row will be the normalizing
constants forthe complete network. As the algorithrﬁ proceeds the calculation

of gz(i,n) will be started when x = i.



Algorithm 2

1. Calculate fi(ni) for 1 <i<M and &< ni <N .

2. gz(l,k) &= fz(k); gZ(Z,k) <& fl(k) for 0<k <Ny, x<&= 2.

= 2 go to step 5 else

X
k
g,(x' k) & Z f (j)gz(x',k—j) for k= N,N-1,...,0

Go to step 4

tias

5, gz(x+1,k) <& fX(j)gZ(x,ke-j) for k= N,N-1,...,0
j=0

x <= x+l. If x< M go to step 3, otherwise the algorithm is complete.

In Algorithm 2 step 4 calculates the next step of Algorithm 1 for all normal~
izing constants for which a service center has already been skipped. Each
computation proceeds uniquely from this point. Step 5 calculates the next
iteration of Algorithm 1 for all normalizing constants for which a service center
is yet to be skipped. The intermediate values of these normalizing constants
are identical at this point. The marginal probability of k customers at service

center i is given by equation (7) with gl(M,N) = gZ(MJrl JN).

To evaluate the amount of computation necessary to compute
the entire array gZ(M+1 ,N), consider first the summation appearing

in steps 4 and 5. The analysis of algorithm 1 revealed that this
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summation requires (N+2){N+1)/2 additions and multiplications to

compute the entire row. In algorithm 2 step 4 is performed

M

Z (1-1)

I=3

times, step 5 is performed M-2 times and thus the calculation

of a row is done a total of

M
1+ Z I= (M+3)(M=-2)/2
I=3 -

times. The array gz(l\/I+1 ,N) may be computed in (N+2)(N+1)(M+3)(M=-2)/4
multiplications and additions. For the previous example (M=5 and

N=8) the total is 450 multiplications and additions. Even though

this total incréases as N squared and M squared the method is
immensely improved over the method‘of evaluating each state, which

grows with M and N factorial. It also shows a significant improvement
over the 720 multiplications and additions it would require to do M
iterations of algorithm 1 as suggested by Buzen. The array g2 requires
(M+1) X N words and a second array to hold f[1]}(N[1]) requires M X N

words.
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In many cases it is desirable to compute more than the normalizing constant.
Virtually all information which may be obtained from such models depends on know-
ledge of the marginal probability distributions at the individual service centers.

To find the probability that ni = k customers at service center i sum over all
states with ni fixed at k and let the nj, j #1, take on all possible values
with the remaining N-k customers. This problem is analogous to that of finding
the normalizing constant, except for the removal of a service center and the k;

customers known to be at that center.

= fj(k) g,(1,N-k)/gy (M, N) (7)
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1II. A Drum Model for Queueing Networks

One of the drawbacks of gueueing networks as models of computer
systems has been the restricted scheduling and service time distribution
for which solutions have existed. Very few input-output devices have
an exponential service time distribution. TFirst~come-first~served
queueing is hardly the orily algorithm used in scheduling within a com=-
puter system. A significant amount of work has appeared in which the
scheduling aﬁd service time distribution of a processor have been studied
[Bl, B2]. However very little attention has been given to the service time
distribution of devices such as drums and disks in queueing network
mod‘ev'ls. Frequently a central server model is_built to study the
effects of parameters at the processor and an exponential service

distribution tossed in to represent a paging drum or other I/O device.




1. A PAGING DRUM MODEL

To develop a model of a drum, or any other device, it is necessary
to define a standard device representation for the purposes of comparison.
The standard may represent either a service or queueing time distribution,
whichever may be more suitable for modelling. Pinkerton [Pl] developed
a drum queueing time distribution based on the number of outstanding
requests currently at the drum. These requests were assumed to be
uniformly distributed over the sectors of the drum at a given instant in
time. Denning [D1l] has shown that this assumption is invalid. The
probability of a request being present is smaller for sectors which have
just passed the read/write heads. The standard representation must
be developed in a manner which avoids this problem, since it should
be as realistic as possible. Coffman's [C2] generating function for
the queue length probabilities is derived independent of this assumption.

His assumption concerned the



distribution of sectors requested rather than the diswibution of outstanding
requests.

A queueing time distribution may be obtained from Coffman's results.
Let Pn , nh 2z 0, be the probability density function (pdf} obtained by

repeated differentiation of Coffman's generating function. P is the

n
probability in continuous time that n requests are queued at a given
gsector. The pdf for the queueing time conditioned on n previous requests
in the queueb is given by:

0 t < nr +r/m

‘ wl(t]n) = {1/r nr+r/m <t < (n+l)r+r/m (8)

| 0 .(n+1)r +1r/m <t

\

In eq. (8) m is the number of sectors and r the rotation time of the drum.

This conditional pdf is uniformly distributed over a single rotation which
occurs n rotations after the request initially enters the queue. The standard

gqueueing time pdf is thus given by:

o«

wl(t) = n}_—;o P wl(tf[n) ()

Pinkerton [P1 ] has suggested an Erlang distribution as a model for
the queueing time distribution of a drum. He employed a linear sequence

of exponential stages imbedded in a cyclic model to generate this




distribution. The parametiers of the Erlang distribution weve adjusted
as a function of the number of requesis at the drum. This led to an
iterative procedure to find the solution. The generalized model of
Muntz and Baskett may be used to improve upon this approximation. A
gervice center with infinite servers is used to prevent queueing and a
distribution with stages used to model the queueing time distribution at
the drum. Parameters of this distribution may be adjusted to fit the

pdf given by eq. (9) .

Fig. 2: A staged distribution for the drum model.

The network of stages in fig. 2 is similar to that in fig. 1. The
values of aj are g forall j except the final stage. Each individual
stage has an exponential service time distribution with mean 1/ . The
queueing time pdf of the service center in fig. 2 may be found by
initially considering two pdfs. wz(tlj) is the completion time pdf for
exactly j stages and is obtained by :th’e convolution of j exponential
pdfs with mean 1/4 . wz(t\j) is an Frlang~-j pdf. The probability of

executing exactly j stages is given by:



el =

@t 1=23i<K
! j =K (10)

0 : otherwisge
" K is the number of stag’es"ét'.the service center. With
I I e | . ' !
w,(t]3) = Wt exp(-ut)/(-1)! 0= t (1)

the completion time pdf for the service center of fig. 2 is
K K~1

win = (L @I G-n - ) T -1 exp(-m (12)
=1 =1

The pdf given by eq. (12) contains three parameters which may be varied
to find a best fit of eq. (9), the number of stages K , the service rate
I , and the probability g . In attempting this fit the entire domain of
the pdf is relevant. It is desirable to obtain a better fit than obtained
by matching only the expected values or variances of the queueing time
distributions. An error measure can be defined over the entire domain as
« 2
m.s.e. =~J (w,(t) - w_(tf)) dt (13)
0 1 2
This result does not lend itself to analytic minimization procedures.
However, the effect of varying the parameters of eq. (12) may be studied.
The number of variable parameters can be reduced to two by constraining
the optimum approximation, wz(t), to have the same mean as Wl(t).

The mean queueing (and service) time for the model is -
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Thenif g or i is set to a specific value the other is also determined.

2. FITTING A MODEL TO A DRUM

Now consider the problem of selecting K, K and q to produce the
best fit for a particular drum. A drum can be characterized by a rotation
time, r and the number of sectors, m . The usage of the drum,
measured by the expected sector queue length, will also effec£ the value
of the parameters of the model.

The effect of the rotation time of the drum on selecting an optimum
model is nil. The magnitude of the m.s.e. decreases for drums with
longer rotation times but the optimum values for the number of stages and
a choice of L or q reméin the same. To totally remove the effect of
the rotation time define a normalized error:

n.m.s.e. = (m.s.e. of model)/(m.s.e. of one stage model)
The one stage model is just an exponential service time distribution
with an infinite number of servers.

The effect of q on the magnitude of the n.m.s.e. is shown in
fig. 3a and fig. 3b for light and moderate loading. These figures reveal
that improvements to the drum completion time approximation are obtained

with values of @ <1 . With q equal to 1 the queueing time distribution
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becomes Erlang-K. Fig. 3a indicates that at light loading models with
more stages are increasingly sensitive to changes in g in terms of how
well they fit the desired pdf. Since the minimum n.m.s.e. appears to
be approximately the same regardless of the choice of the number of
stages some simplification in defining a model might be obtained by
fixing the number of stages. -If two stages are selected the sensitivity
to g at light loading is minimized. Of course only considering a model

with a fixed number of stages may cause some accuracy to be lost.

1.0 6 stages
] 4 stages
n.m.s.e‘:
05 L
_ 2 stages
.0 .5 1.0
q

Fig. 3a: Normalized m.s.e. vs. 8
40 sectors
Exp. queue length = .128




1.0+
n.m.s.'e.‘ 6 stages
] 4 stages
- 2 stages
.0 .5 1.0
q

Fig. 3b: Normalized m.s.e. vs. q.
40 sectors
Exp. queue length = 1,157

Fig. 4 shows the effect of loading on the choice of g for models
with different numbers of stages. Note that models with a greater
number of stages are not as sensitive to changes in loading. Finally
fig. 5 indicates how the choice of an optimum g for a given number

of stages is affected by the number of sectors of the drum.



1.0

w2 (e

— 6 stages’

4 stages

2 stages

¥ " Y ]

1.0 2.0 3.0
Exp. queue length

Fig. 4: Optimum q vs. loading
40 sectors
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4 gtages

] ¥ v T ¥

.0 10 20 30 40 50
sectors

Fig. 5: Optimum q vs. sectors
Expected gueue length = .36
The optimum model for a drum can vary in several aspects depending
on the drum and its utilization. In a network model the utilization of
the drum will not be known until the network has been solved. This
suggests that the network will need to be solved repeatedly as the

variables in the drum model are adjusted to reflect the correct utilization.
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A practical aspect of such a solution is the minimization of the number

of variables in the drum model. To this end it is of interest to consider the
pdf obtained at optimal values of g and K and the pdf obtained by
selecting values.for K and g which give low, but not necessarily
minimum values of the n.m.s.e. over a wide operating range. Fig. ba

and fig. 6b make just such a comparison. Also included is a more
conventional drum model. This is an exponential service time distribution
with mean equal to one half of the rotation time plus the transfer time.
With FCFS queueing itrepresents the service presented by a single sector
queue, and thus a service center would be needed for each sector.

As would be expected the staged approximations are more realistic
than the exponential service distribution. This improvement increases
with the loading of the drum. This is the effect of the increasing service
time seen by customers queued at the drum. The exponential distribution
does not react to this Change. Also note the improvement gained at light
loading by choosing the optimal configuration for the drum model. This is
not seen at heavier loading since the optimum model is near the model

chosen to be representative at all levels of yloading..




1. 1 Request
Completion
probability

Standard pdf
ceess0.. Best apmoximation {6 stages, q=.88)
-------- 2 stages, q = .85

-om=o~s—. gxponential service

0 10 20 30 40 50
Time (msec.)

Fig. 6a: Drum model pdf approximations
40 sectors
Rotation time = 25 msec.
Exp. queue length = .128
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4 Request
Completion -
probability pee T
. ./‘
.
Ve
‘/
‘ /./ Standard pdf
J <2s0000. Best approximation (2 stages,
g = .68)
——=-—-=-- 2 stages, q = ,85
e=s=~°—3~ Exponential service
L
0 10 20 30 40 >0

Time (msec.)

Fig. 6b: Drum model pdf approximations
40 sectors

Rotation time = 25 msec.
Exp. queue length = .737

3. NETWORK MODELS WITH QUEUE DEPENDENT SERVERS

The previous section developed a parameterized model for a
paging drum. However the actual specification of the model's para-
meters required a priori knowledge of the expected queue length E(n[i]).
Of course this measure will not be known until the network has been
solved. This suggests an iterative approach to find an eventual

solution.




An iterative approach has been used successfully by Teorey [Tl1] and Pinkerton
and Teorey[PZ] for single server models, and also by Pinkerton [Pl]to solve a
cyclic network. 1In this approach the mean service time or queueing time,
tqueue’ is expressed as a function of the expected gqueue length. In turn the

expected queue length may be derived from the model as a function of the mean

service time or queueing time. Let h be the function relating tqueue to E(ni).
t =
queve = NEM)) (15)

Once the function is found the model may be repeatedly solved until t Leue

converges.

3.1 Convergence

Before considering algorithms for the iterative solution of closed queueing
network models it ig important to insure that these algorithms will indeed converge.
Consider the model, with k stages, for a device with a gqueue dependent server in
Figure 2, It is assumed that g and g are the same for all classes. Note that

eith o) , given b
either py or tqueue gi Yy
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tqueue (1A kg + =) ) (16)

may serve as the variable of iteration. Consider the nature of the marginal

queue length probability distribution at the gueue dependent service center.

) represent the marginal distribution where

Let the vector p = (po,p p

IEERRRR SN

pJ. is the probability of exactly j customers being present in the queue at

the service center. pj for service center M may be written:
‘ M

Z [nI£1 Fm(zm)
S(N,M) &n_ =j
pj = MM (17)
Z mzl I~m(Zm)
S(N,M)

Define the auxilliary function b(nM) by

n

)= (/4w ™ b ) (18)

F M

Z
M( M
This factorization is possible regardless of the number of classes or number

of stages at the service center. pj may now be written to reflect the effect

of u on its value.

i M-1
ATy by I Pl
. S(N,M)&HM:J'
i R kT M-1
) o ) b (k) 1 F (Z) (19)
M mm
k=0 S(N,M) & n_ =k m=1

M

Lemma 1. For the marginal probability distribution given by p = (po,pl, P o)

and equation (19) there exists a k, 0<k< N, such that

N

)




(1) If |, is decreased pj is not dacreased for § >k and not increased for
j<k.
(2) If . is increased pj is not increased for j > k and not decreased for

j < k.

Proof. Consider case (1). Let p'= (106,10‘1 P ’pll\l) be a new distribution
and G'(N) a new normalizing constant resulting from a decrease in po to pf.
A decrease in |, will increase all terms of G(N) for k > 0 and leave the
initial term unchanged. Therefore G'(N) > G(N). pJf may be written in terms
of p,.
p] |

D = (G(N)/G' (V) (w/")’ J (20)

Since G(N)/G'(N) is independent of j and u >p'

] j l ] ] ~
Wy s w21 (21)
and
3 1 Z«Z)
P, +l/pj Rike p‘]./p). (22!

Both pj and pJf are density functions, thus

From equation (200 with §j =0, p' <« po and thus

N
j21
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Equation (24) implies the existence of some | such that [s)

P> p.. From
j J

equation (22) for'any L >j it must also be true that p}d > p}_ . k is just
the minimum j such that pJ? > pj., Case (2) proceeds with identical arguments.,

Q.E.D.

‘The convergence of t can now be shown.
queue

Theorem 1. The iterative solution of a closed queuing network model with a
single queue dependent server is convergent provided (1) the function h of
equation (151 is monotonic over the interval 0 < E(ni) < N and (2) the initial

value of t . t., is in the interval h(0) <t _ < h(N).
, queue’ 0 o

-

Proof. Since E(ni) is an expected value it is certainly true that 0 < .Ee(‘ni) <N

and thus for the iterative variable t :
gueue

h(0) < t < h(N)

queue
Since the sequence of values of tqueue is bounded it is sufficient to show the
sequence is monotonic, i.e., the sign of the difference of any two consecutive
values is the same as the sign of the difference of the initial guess and the
first iteration.
Without loss of generality assume h is nondecreasing over the interval
{0,N) and the initial iteration causes tqueue tov increase. . must be decreased

to make this adjustment. Let 'p = {p,,. ) be the original marginal distri-

1Py

bution and p' = (p'1 . ,pi\y) the marginal distribution obtained with the new

smaller value of ;. From Lemma 3.1 there exists a k such that
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k=1 N
d = Z Py =Py = Z g>j~pj>0 (25)
]:O s
Let E'(nM) be the new expected queue length.
N N
E (nM) - E(nM) = i ipy - >_‘ jpj
j=0 j=0
k-1 N
= J‘(pg-pj) 4 Z J(p]'—pj)
J:O j:k
N k-1
> ) k(p‘~p)~}:k(p—p)
L i j
j=k j=0
> dk -dk = 0

Since h is nondecreasing tqueue will again increase. The proof of the cases

for nonincreasing h and an initial decrease in tqueue follows immediately in

the same manner. Q.E.D.

Since tqueue is the iterative variable in Theorem 1 the number of

stages or value of g may be altered and the iterative procedure resumed with

a new initial value.

3.2 Algorithms for the Solution

Algorithms are presented for two cases. The first algorithm employs

Algorithm 2 and is thus subject to the same constraint. All customers must have

a non-zero probability of becoming members of all classes. The second algorithm
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is designed to vield an efficient iterative procedure when Algorithm 2 is not
applicable and the normalizing constant musi be constructed with a brute force
approach.

Algorithm 3, presented below, performs an iterative calculation on a
queueihg network model with a single queue dependent sérver. Consider Algo-
rithms 1 and 2. The parameters of the Mth service center are never used;
until the final pass of both algorithms. To iterate on a parameter of the Mth"
service center Algorithm 3 uses Algorithm 2 to solve a network of M-1 serviée""
centers. The iteration is then performed with the Mth service center finding
only gZ(M+l,j), 0<j« N";,af each iterati()n’. After the procedure converges

the final values of g_(i,j), 1 <i< M and 0<j <N, are found. The amount

2
of additional computation due to the iteration is independent-of the number of -

service centers in the model.

Algorithm 3
1. The gueue dependent server.is the Mth service center.

2. Calculate fi(»ni)- for 1 <1< M~=1 and 0<% ni < N.

3.0 9,01,0) = £,G) 95(2,9) S £0) for 03 <Ny x &= 2.

4, x' <& x -1,

If x'=0 or x=2 go to step 6 else

w

g, (x',j) & £ (1)9,(x}3-1) for j=N,N-1,...,0

2

s

i=0

x' <& x' - 1, repeat step 5.
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11.

12.

w3 ]

gz(xH,j) &= } f}(i)g,,(x,m:) for j = N,N~1,...,0
d2 L &

i=0
x<&Ex+1. If x<M go to step 4, otherwise step 7.

Select an initial value of t .
queue

) for 0<n__<N.

Calculate f__(n M

M"M

j
g, (M+1,]) = Y £ (i)g,(M,j-i) for j=N,N-1,...,0
i=0

M 2
Solve for a new value of t using the Mth and M+lst rows of g
queue 2
and the function h of equation (8). If the new tqueue and the previous

value differ by less than some specified parameter continue to step 11,
otherwise repeat steps 8, 9, 10 with the new value of t .
queue

x' &< M-1.

If x'=0 stopelse

g

J
Z(X Jj) <& ‘ZO fM(l)ga(x ,j=i) for j = N,N~1,...,0
1=

L~

x' <= x'-1 goto stepl2.

Not all networks with more than a single class of customer will satisfy

the constraint necessary to use Algorithm 3. In the case of such networks the

normalizing constant and summations needed to find the marginal probability

distributions (see equation (17)) may be found by evaluating each term of the

appropriate summations. To make an iterative solution feasible for moderate

size models it is important to ‘short cut this procedure, at least during the
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iteration.

Using the function bM(nM) defined in equation (18) write the normalizing

constant as a function of the service rate at the queue dependent server, w e

Again this is the Mth service center.

M-1
Y ) by (k) nor, Z )
: S(N,M) & n_ =k =

Algorithm 4 evaluates N+1 constants, Tk’ independent of p and then

iterates using these constants and succesive values of .

Algorithm 4

1. [Initialize the temporary array. Ti < 0, 0< i< N, and pick an initial .

2. For k=0,1,...,N

T, <= Z b (n
S(N,M)&n. =k m=1

3. Find the normalizing constant.

E(ny,) = (1/G(N) Z 1/ T,

ll
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5. Solve for a new value of t . I the new and the previous

t
queue queue

£

value differ by less than some specifiad parameter continue o step &,
otherwise repeat steps 3 and 4 with a new | derived from the new
t .
gueue
6. TEvaluate the necessary summations to find the remaining marginal prob=-

abilities as given by equation (17).

In Algorithm 4 as in Algorithm 3 the amount of extra computation for the

iteration is independent of the number of service centers in the network.
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3.3 Open Networks

Hine and Fitzwater [HI] have shown that an open network
developed from the model of Muntz and Baskett may be factored
and treated essentially as a collection of single service centers.
In this case the iterative approach of Teorey and Pinkerton [T1]

may be applied. The function H is derived usting Little's result.
t[queue] = (1/ ) E(N[I]) (26)

N is the mean arrival rate of customers at service center I.
The iteration involves only the single service center. Since the
expected queue length is essentially unbounded some other
bounded variable such as utilization; must “be identified to

prove convergence.




IV, Conclusion

=
o}
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This paper has demonsirated ther resulte o
peripheral devices may be applied to queueing network models of multi-
programmed computer systems. The resulting device models should
improve the representation of the device in system models and lead to
more accurate results from these models. Although the specific model
presented was a paging drum with sector queueing the technique of
approximating a service or queueing time distribution with a network
of stages can be extended to other peripheral devices and scheduling
disciplines.

An algorithm for the solution of a queueing network model with a
queue dependent service time distribution was also presented. The
algorithm allows the distribution of the service center representing this
device to be adjusted to reflect the loading at various levels of multi~ |
programming. The amount of camputation added by the iteration, while
dependent on the level of multiprogramming, is independent of the num~
ber of service centers in the network model. This should encourage
the use of more accurate modelling of devices in large network models.

The extension of algorithm 3 and theorem 1 to allow more than a
single queue dependent server would be a welcome advance. However
there is a serious question concerning the effect of a temporarily in-

correct value of 1 at one service center causing itself or another to



move to an exitreme, acting as a bottieneck. If Theorem 1 was wvalid
in this situation the service center would remain a bottleneck even
though it might not have been had it not been for the temporary

imbalance during the iterative process.
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An Implementation

€3

A Fortran program for the iferative solution of a closed queuveins
network with the paging drum model developed in section 2 was
implemented.

This program was used to check convergence rates and demonstrate
the practicality of the solution technique. Many complex problems
may now be studied with only minor amounts of computations. Since no
closed form was known for identifying the optimum parameter values
at a specific operating point, interpolation from a table was employed.
A program was written to accept a drum description and an operating
range. Using Coffman's analysis a sector queue length PDF was
determined. From this information expected queue lengths and
queueing times were produced.

The program continues to tabulate values of the N.M.S.E. at
points over the operating range for a variety of values of K , the
number of stages, and g , the probability of continuing to the next
stage. The suitable values of K and q are readily obtained from
the tabulation. The data is tabulated with specific operating points
defined by the expected queue length. Values of X , @ and expected
queueing time are obtained by linear interpolation. With K and q
selected, p is obtained by

K-1
-1 j-1
b= O /quene ka7 v )L g g (27)
j=1

+
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i is plotted as a function of the expected queue length (at each

e

sector queue) infigure 7. To achieve maximum accuracy the operatin

«Q

points from which the table is constructed should be denser where
the plot is nQn—linear. L is bounded because the minimum expectec%
queueing time is one half a rotation plus the t;"a_r;sfer ti{meT :;'hga
relationship shown in figure 7 ig monotone satisfying the convergence
requirement.

Using linear interpolation, algorithm 3 converged with accuracy
of . OOOQOI in four to eight iterations. The number of iterations

was only slightly affected by the accuracy of the initial values.
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