WIS-CS-199-Th

COMPUTER SCIENCES DEPARTMENT
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

Received December 27, 1973

A HIERARCHICAL NET-STRUCTURE LEARNING SYSTEM
FOR PATTERN DESCRIPTION

by
Harold Addison Williams, Jr.

Computer Sciences Technical Report #199

January 1974

A HIERARCHICAL NET-STRUCTURE LEARNING SYSTEM
FOR PATTERN DESCRIPTION

by
Harold Addison Williams, Jr.

ABSTRACT

This thesis discusses a computer program that recognizes and
describes two-dimensional patterns and the subpatterns composing those
patterns, outputting names, locations and sizes of both patterns and
subpatterns. The program also recognizes all patterns in a scene
consisting of several patterns.

Patterns are stored in a hierarchical, net-structure permanent
memory, which is completely learned as a result of simple feedback
from a trainer. Weighted links between memory nodes represent subpattern/
pattern relationships. The memory is homogeneous, for subpatterns are
represented in terms of primitive features in the same manner that
patterns are represented in terms of subpatterns. A short term memory
is used to store instances of permanent memory information during
recognition.

Pattern recognition is accomplished with a serial heuristic-search
algorithm, unusual for a pattern recognition program, which attempts to
search memory and compute input properties efficiently. Without special
processing, the program can be asked to look for all occurrences of a

specified pattern in an input scene.

A HIERARCHICAL NET-STRUCTURE LEARNING SYSTEM
FOR PATTERN DESCRIPTION

Harold Addison Williams, Jr.

Under the supervision of Professor Leonard Uhr

This thesis discusses a computer program that recognizes
and describes two-dimensional patterns and the subpatterns
composing those patterns, outputting names, locations and sizes
of both patterns and subpatterns. The program also recognizes all
patterns in a scene, for it does not distinguish between recog-
nition of parts of a single pattern and recognition of whole pat-
terns that are part of a scene.

Patterns are stored in a hierarchical, net-structure
permanent memory, which is completely learned as a result of
simple feedback from a trainer. Weighted links between memory
nodes represent subpattern/pattern relationships. The memory is
homogeneous, for subpatterns are represented in terms of primitive
features in the same manner that patterns are represented in terms
of subpatterns. A short term memory is used to stlore instancen of
permanent memory information during recognition.

Pattern recognition is accomplishéd with a serial heuristic-
search algorithm, unusual for a pattern recognition program. Thia
algorithm, which attempts to search memory and compute propertics

of the input in an efficient manner, uscn lenrned information

P

- stored in permanent memory as well as information accumulated in
short term memory during_‘th'e course of recognition, ‘;ﬂithout
"special processing, the program caﬂ be asked to look for all
occurrences .of a specified pattern in an‘inpuf scene.

The program learns by both adding informatién to and delet-
ing information from the memory net, énd.adjusting weights ass6ci»
ated with information already stored in memory. Learned weightis
indicate the importance of a part in describing a whole, and the
probability of a whole, having found?a part. The program tries to
discover combinations of memory nodes that will perform weil in
describing patterns. New memory nodes, stored in an intermediate

memory, are generated to represent such combinations. After a

testing period, they are either added to permanent memory or
discarded. Learning depends on both the trainer-supplied feedback
and the information accumulatea du;ing recognition, |
The program does not assume that any specific primitive
feature tests will ge used to compute properties of input patternn.
Rather, any primitives meeting certain general requirements may be
used., The program has been tested using threc different types of
. primitives: letters of the alphabet, matrix templates, and straight
line segments. Straight line drawings of simple geometric objects,
patterns containing such objects as subpatterns, and scenes con-
taining whole patterns have been recognized.

The program is implemented in LISP 1.5 on a Univac 1108

.

computer at the University of Wisconsin. In addition to those
features already included in the running program, several
extensions are described in detail, including mechanisms to

handle context and imperfect patterns.

e, .0 (.,

Leonard Uhr

Professor in charge of thesis

ii

ACKNOWLEDGEMENT

I wish to express my deep gratitude to my thesis advisor,
Professor Leonard Uhr, for his insightful guidance and encourage-
ment over the past three years.

I am also grateful to my thesis readers, Professors Larry
Travis and Raymond Moore for their helpful suggestions.

In addition, I would like to thank Rick LeFaivre and Eric
Norman of the Madison Academic Computing Center staff for their
conscientious response to my LISP suggestions and questions.

Finally, I am indebted to both my wife Cathy, for her patience

and aid in correcting my more unusual grammar, and our cat Arthur,

for carefully inspecting the manuscript.
This research was partially supported by NSF grant number

GJ-36312 and NIMH grant number MH-12266.

I.

It.

iii

TABLE OF CONTENTS

INTRODUCTION

1. An Introduction to the Program HPL
1.1 Examples of Pattern Recognition by HPL . .
1.2 Primitives . .+ ¢ ¢« o ¢ o o o« o o« o o o o o
1.% The Memory Structure of HPL . « . ¢ « « &« .
1.4 The Recognition Algorithm . . . « . . . « &
1.5 Learning .« ¢ o ¢ o & 2 % o & 2 o o o @
1.6 The Current Status of HPL . « . « ¢ « « « &

2. Motivating Pactors in the Design of HPL . . .
2.1 Learning . . ¢« o« o« o « o o o 5 s o s s o
2.2 Memory Structure . . « ¢ + o o o o o o s
2.3 Efficiency « « o o o o o o o o o 0 0 o o s

2.4 Human Perception . . « ¢ ¢ o o « o & » o &

REVIEW OF PREVIOUS RESEARCH

1. Classification Techniques of Pattern Recognition .

1.1 The Parallel Classification Technique . . .
1.2 The Sequential Classificntion Technique .
2. Desériptive Techniques of Pattern Recognition .
2.1 Syntactic Techniques of Pattern Recognition
2.2 Scene Analysis Programs . « o o o o s o+ o

3. Net-Structure Approaches to Pattern Recognition

. 2
- 4
5
7
. 8
9
9
9
.10
. 10

12

.12

L4 28

iv

2.1

The Winston Program . ¢« s o o o o o« o o » o 28
3.2 Pattern Recognition Techniques of Uhr 29
3.3 Becker's Model of Intermediate Level

Cognition . 4 & o o ¢« o o v o o o o o » - 32

IITI. A GENERAL DESCRIPTION OF THE PROGRAM HPL
1. An Introduction to HPL & & v v ¢ o o s o o o o o o 34
2. Informatién Flow Diagrams of the Pfocesses of HPL 36
3. The Memory StructuTe ¢ o « o o « o o o o ce e e 38
4. The Recognition Process « o & & o o » . . 44
5. The Learning Process . « o o 2 o s o o o « o » « o 47

6. The Context Problem .« o v o « o + o o o o o » o o 48

Iv. THE MEMORY STRUCTURE
1. The Characterizer . . « ¢« + ¢ o « o« s « o o o o o 90
1.1 The Description-Set « . v v o « « « o o o « . 5f
1.2 The Implication-Set v v o v v o » . . 56
1.3 The Relationship between Descriptors and
Implicands « v v v o 4 o 4 4 46 e w .. . 90
1.4 Additional Information Associnted with a
Characterizer Name . . « . « v v o o o . . 21
1.5 Differences in the Representation of
Primitives, Compounds and Goals 00
1.6 Some exumples of Characterizers 60

2. The INSLANCE o 4 4 v v v v v o v n v e e e .. 2

v
2.1 The Description~Set of an Instance 63
2.2 The Implication-Set of an Instance 64
2.3 An Example: Matching Instances to

Descriptors and Implicands S 1
2:4 Tolerance: Not Requiring an Exact Match . . . 7

2,5 Additional Items Stored in an Instance . . . 68

V. THE RECOGNITION PROCESS
1o Introduction o . v 4 v 4 ¢ o o o o o s s o o o« o 09
1,1 Definition of Terms « « o « o o o s o o » « » 60Y
2s An Ovefviéw of the Recognition Process 71
3, An Example of the Recognition Process T3

4, Weights Associated with an Instance T4

5. Implicand=Processing . « « + o « o o o o o o o o « A7
6. Deseriptor-Processing . . « « v = &+ o o « o o o . 81
7. Starting the Recognition Process « . . . 83
8. Terminating the Recognition Process B85

9, Response and Feedback . . . v v & ¢ ¢« o « &+ &« o o 85

VI. THE LEARNING PROCESS

1e Introduction « ¢ o o 4 &+ o ¢ o o o ¢ o o o « o o

(03]
G

2. The Significance of Compounds . « + o o « « o « » 89

2.1 Conditional Probabilities and Compounds . . . 90

W,

vi ‘%’

2.2 Compounds and Allocation of Effort« 9%
2.3 Compounds May Be Good Characterizers . . o« s 94
2.4 Compounds Provide Flexibility 95
2.5 Compounds versus Goals . . o o . o e s+ » 95
3. Inductive Weight Adjustment o o . . « o s 96
4. Adding and Deleting Links e s« o 5 o 98

5. Compounds: Their Formation and Evaluation a9

VII. EXAMPLES OF PATTERN RECOGNITION BY HPL
1. The Choice of Primitives e o o s+ s + o . 102
1.1 Letter Primitives o e« o s o & 102

1.2 Submatrix Primitives ., . . e o o s a o s o » 103

1.3 LINE Primitives . . . v v v o o . . o o o s o 107

1.4 The Relationship between LINE and Submatrix
Primitives 109
2. Simple Pattern Recognition « v 111
3. The Representation of a Pattern 114
4. Recognition of Complex Patterns 116
5. Scene Analysis 4 4 4 v 4 o w19
6. Overlapping Patterns119

7. Attending to a Pattern: The Needle in the

5

Haystack . . « o o o o v v v o o e e e . 12%

5. DLvaluation of Results v v v v v v o o . 124

vii

VIII. EXTENSIONS OF HPL
1. Introduction . o« « o o o s o o s e s e s e e e n e 127
2, Expanding the Structure of the Characterizer . . . 127
2.1 Absolute and Relative Attributes 128
2.2 Multi-Valued Functions . . « « « « « « ¢ « « 131
2.3 Comparison of Characterizers . . . « « « « - 133
2.4 Weighted Characterizer Arguments o+ ¢ 135
3, Partially Found Characterizers . . . « « « . ¢« = = 136
3.1 Occluded Patterns + « « o o « o o o o » = « = 140
A. Relations . « o« o o o o o o o o o o o o o 0 = oo 140

5., The Context Problem . . « o« o o o o o o = o = o = 144

5.1 Guzman's Approach to Context « o « o o o o « 144
5.2 An Approach to Context within HPL » + « « o » 145

5.3 Learning Context Weights « « « » o o « =« 148

IX. CONCLUSIONS AND FURTHER EXTENSIONS OF HPL
1. Introduction « « « « o s o o « « o o o o o = o o 151
2. A Comparison of HPL with the Work of Winston . . . 1%1
2.1 Unweighted Links versus Weighted Links
in a Net-Structure . « ¢ « o o o » ¢ o o = 156
2.2 Negative Description Weights . . . o « « « - 157
3, Further Extensions of HPL . . o o v o ¢ o o s o 160

7,1 Curved Lines .« o « o ¢ o o o o o o o o = o0 160

viii

352 -Pwo-Dimensional--Projections-of Three-

Dimensional Patterns .« . o « o o+
3.3 General to Specific Recognition . . .
3.4 Language Facilities Used in HPL , . .

4, Concluding Remarks & c e e e

REFERENCES . . + ¢ o & 5 « o s o & a s o o o =

161
163
165

167

170

CHAPTER 1

INTRODUCTION

1. _An Introduction to the Program HPL

This thesis discusses an adaptive pattern recognition program
called HPLT that recognizes and describes patterns and subpatterns
composing those patterns, outputting names, locations and sizes of
both patterns and subpatterns. HPL will also recognize all patterns
in a scene, for HPL does not distinguish between recognition of
parts of a single pattern and recognition of whole patterns that are
part of a scene. Patferns are stored in a unified, hierarchical
net-structure memory which is learned as a result of feedback from
a trainer. Weighted 1inks’between memory nodes represent subpattern/
pattern relationshipa. The recognition process is a serial heuristic
search algorithm, which attempts to efficiently search memory and
compute features of a pattern. Besides recognizing all patterns and
subpatterns, HPL can be asked to look for all occurrences of a
specified pattern in a scene. HPL is a running computer program.

It is also a general framework for discussing further issues in pat-
tern recognition, including context and explicitly-named relations
between parts of o pattern.

In this section, we shall briefly describe the components of
HPL, including examples of patterns HPL has recognized. The follow-

ing section discusses several factors that motivated our work.

*The acronym meons "iHierarchical Pattern Learner".

1.1 Examples of Pattern Recognition by HPL

HPL recognizes idealized straight line drawings exhibiting
subpattern/pattern (or part/whole) relationships. The input is
simplified so that we may concentrate on specific issues, including
part/whole recognition, memory representation, context, and the
recognition algorithm. In Chapters 8 and 9, we discuss extensions
to increase HPL's recognition power. Chapter 7 examines and
discusses the examples of pattern recognition shown here, along
with additional examples.

Figure 1-1(a) shows the simplest type of pattern HPL recog-
nizes, containing no named subpatterns. The name associated with

each pattern is given to HPL as feedback.

HPL can be taught that TRIANGLE1, TRIANGLE2, and TRIANGLE3 are
examples of a more general pattern concept called TRIANGLE, shown in
Figure 1-1(b). After suffici;nt training, when given an example of
TRIANGLE1, HPL will respond "TRIANGLE!1" and then "TRIANGLE".

Figure 1-1(c) shows more complex patterns containing the
simpler patterns as subpatterns, which HPL can learn and then
recognize. There is no limit on the level of hierarchical com=-
pounding of patterns. When given the patiern named FACE, HPL
will respond with the name of each subpattern it recognizes,
its location, and its size, for example, TRIANGLE at location
(5,5) of size 0.2, etc., and finally FACE at location (0,0)

of size 1.0, Recognized subparts of a scene having no

/\/\N

SQUARE TRIANGLE! TRIANGLE2 TRIANGLE? RECTANGLE!1 RECTANGLE?

(a) Simple patterns without subpatterns

TRIANGLE = TRIANGLE!1, TRIANGLE2, or TRIANGLE3

(b) A simpie concept

e TRIANGLE

g o
ESQRUARE A L l l

HOUSE FACE ARCH TABLF~-AND-CHAIRS

(c) Patterns with simpler patterns as subparts

.- --NOSE
a}- -~ MOUTH

[[Ce--—BYE
Lo

FACE
(d) The context problem

O

\A*""" * = --w. TRIANGLE

-
-
-

(e) The needle in the haystack problem

Figure 1-1. Some examples of pattern recognition by HPL.

overall name will in a similar manner be output, for example,
CHAIR, TABLE and CHAIR, with their respective locations and sizes,

Figure 1-1(d) illustrates the "context problem". Subparts of
the pattern FACE, such-as EYE or NOSE, might be represented by a
square or triangle. We do not want HPL to respond "NOSE" whenever
it recognizes a triangle in any pattern, but only when FACE is
recognized as well. A modification of HPL to handle this impor-
tant problem is described in Chapter 8.

Figure 1-1(e) shows the "needle in the haystack" problem. HPL
may be instructed to look for any specific pattern, e.g. TRIANGLE,
in a scene and will respond witﬂ.the location and size of each
TRIANGLE it finds. No special mechanisms are necessary in order

to handle this problem.

1.2 Primitives

Primitives (or primitive features) are built-in (unlearned)
functions which extract information from the input, interfacing
between the input and the processes of HPL. HPL mukes few assump-
tions about the form primitives must have. A primitive can be any
" function which computes whether a property ic cither present or not
present in the input at a specified location with a certain size.

Although HPL can be used with any primitive meeling the above
requirements, some specific primitives had to be chosen in order to

demonstrate recognition. Two different typec of primitives were

3

used in most runs of [HPL, submatrices and ntrﬂiuht linen. (A

third type, létters of the alphabet, was used for initial testing.)
~ Submatrix priﬁitives ére Mx XN matrices consisting of cellé‘

of O'or 1. They are templates that are compared %ith an M x N

region ofvthe input pattern, which is represented as a larger'

matrix of cells of O or 1.

Straight line primitives are built-in straight line recog-
nizers. Because of 1imifétionsvin computer time, most compﬁter
runs were made with this type of primitive; corresponding inputs
were well-formed two-dimensional straight line drawings, such as
the examples in Section 1.1. These inputs were presented in a
special'coded format: a list of vertices in the pattern or scene,
their locations, and a list of vertices to which they are cénnected

i

by straight lines.

143 The Memory Structure of HPL

HEL'S memory is a net-structure in which patterns are fepre-
sented as nodes and subpattern/pattern félationships are represented
as weighted links between nodes. The memory is unified, for there
is;no structural difference between the way information is stored.
at the lowest level, e.g., describing a TRIANGLE in terms of the
straight lines which compose it, and at higher levels, c.g.,
describing a HOUSE as a TRIANGLE, RECTANGLE, and SQUARE in certain

relative positions. Tigure 1-2 shows a HOUSE and its memory

representation, in simplified form.

3

HOUSE

TRIANGLE RECTANGLE

R \NO

Line primitives

Figure 1-2. A HOUSE and its simplified memory representation.

Two weights are associated with memory links. One weight
indicates the importance of a npde'in describing a node connected
to it. For example, the RECTANGLE in the patterh HOﬁSE might be
less important thanvthé SQUARE and TRIANGLE in determining whether

' HOUSE is present, Another weight indicates the probability of a
node, given thgt 2 node connected toﬁit has been found. F;r
example, if a SQUARE'has been found, a weight gives the probability
of HOUSE., This information is used by the recognition algorithm in
deciding what to do next.

HPL contains both a permanep% (learned) memory énd a short
term or ;éctiVe" memory. In permanent memory, locations and sizes

are relative to one another. In active memory, location and size

are absolute as stored in instances of permanent memory information.

This approach saves permanent memory space by not using permanent

¢

étorage for each possible absolute location and size in the input.

1.4 The Recognition Algorithm

HPL's recognition pfocess is a serial heuristic search algo-
rithm. The use of a heuristic search technique is somewhat
unusual for a pattern recognition program, although common in game
playing and theorem proving programs. HPL tries to search memory
and compute primitives in an efficient and cffective order. Itu
decision as to what step to take next depends on what information
has already been discovered in the input and what in wtored in

memory. For example, if a SQUARE has been found, there will be a

high probability that patterns containing SQUARE, such as HOUSE,
will be investigated.. If HOUSE is investigated, then subpatterns
of HOUSE, e.g., TRIANGLE, will have a high probability of being
investigated. The probability of a node, its computation cost and

value in contributing to recognition, and the degree of success in

attempting to find it, all contribute to the decision-making proc-
ess. Short term instances of long term memory information are con~
tinually updated to reflect the course of the recognition process,
By increasing the value of a node representing a desired pat-
tern, the recognition algorithm is easily biased to look for that
pattern in an input, for example, looking for all occurrences of a
TRIANGLE in an input (the "needle in the haystack" problem)° Thus
HPL is influenced in both a top-down manner by patterns to which it
is attending and a bottoé—up manner by the information found in the

input scene.

1.5 Learning

Except for primitives, HPL's memory is entirely 1éarned.
Learning consists of forming memory nodes and links beiween nodes,
and adjusting weights associated with links,.

The operation of HPL consists of a sequence of "frames", each
of which is the following sequence of events. A pattern or scene
is presented to HPL as an input. HPL begins the recognition proc-.
ess and outputs the nuwe, location and scise of each patltern or

subpattern it can identify, or "I DON'T KNOW". After euch response,

the trainer may give feedback to HPL, either "YES" or "NO", or the
name and location of some pattern in the input, depending on the |
correctness of HPL's response or the failure to name a patfern

that was present. Following the recognition process, HPL enters
the learning process, modifying its memory by use of the infor-

mation accumulated during recognition and feedback.

1.6 The Current Status of HPL

HPL is a 1500 line computer program written in the list-
processing language LISP 1.5 [McCarthy, 1962], running on the
Univac 1108 computer (which has a 750 nanosecond cycle time) at the
University of Wisconsin. The program operates interactively with a
human trainer providing feedback or in a batch mode in which the
trainer ié's}mulated.

In additf@p, HPL proviaes a framework for discussing ideas not
implemented in tﬁ\ current program. These ideas concern ways to
improve'HPL's desj>iptive ability, e.g., handling general relations

N

and context, and are @isoussed in Chapters 8 and 9.

N

2. Motivating Factors in the Desgign.of HPL

2.1 Learning

A primary motivation in designing HPL was that it should be
adaptive, that its knowledge about patterns and their structure

should be learned rather than built-in. First of all, we are

10
interested ir adaptive mechanisms for their own anke, Oecondly,
aving the program learn pattern deucriptionm frees its designer
from having to decide the nature of suéh descriptions. Finally, we
believe a redundant, weighted, flexible net-structure memory is
very appropriate for storing descriptive information about pat-

terns, and such a memor& is particularly amenable to learning.

2.2 Memory Structure

We desired a simple, general memory structure capable of
expressing information about pattern descriptions in terms of
subpattern/pattern relationships. We wanted a unified memory,
structurally the same whether simple patterns are described in

terms of primitives or complex patterns are described in terms of

subpatterns. The memory should be general enough to allow for
possible extensions. Finally, the memory should be amenable to
learning., These requirements suggested o weighted nel-structure

memory.

2.3 Efficiency

Adaptive programs may reguire luarge amounts of computler time
in order to exhibit any interesting behavior. We wnnted o profram
which would be efficient enourh Lo recognize idealised patterns
without excessive computing coots.

The iswoue of efficiency i not irrelevant to artificial

intelligence recenrch, 10 prosrams could perform unlimited seonrch

"

without regard to time or memory, many artificial intelligence
problems would already be solved. For example, chess is finite
and easily handled by an exhaustive search. There is an important
difference between the theoretically possible and tﬂe practically
possible. Although it may be argued that one should not be
overly concerned with such issues since present hardware will
undoubtedly improve, it is obvious that even current hardware is
not fully utilized, and future hardware will never be cood enough
for exhaustive algorithms.,

Efficiency is especially important in pattern recognition,
where an input potentially contains a very large amount of infor-

mation, and there are many possible patterns.

2,4 Human Perception

HPL is not a simulation of human perception; however, attri-
butes of human perception provide good working goals for a mechan-
ical recognizer. Our work has been influenced by our intuitions
about human perception, including the following: Human memory is
a hierarchical net-structure which contains descriptive infor-
mation about patterns and is largely }earnod. Attention and con-

text are important aspects of perception.

12
CHAPTER 2

REVIEW OF PREVIOUS RESEARCH

1. Classification Techniques of Pattern Recognition

Pattern classification programs attempt to assign a single

unique name to an input. They have been either parallel or serial
with respect to the computation of primitives, the lowest level
"tests" on the input. The most common pattern recognition paradigm

is the parallel classification technique.

1.1 The Parallel Classification Technique

The parallel classification technique is illustrated in Fig-
ure 2-1(a). The input pattern may first be preprocessed to elimi-
nate noise, smooth edges, enhance contours and the like. Then a set
of primitive functions or tests is applied to the pattern. The
values of these functions are usually real numbers indicating the
presence or absence of some feature. There is usually one "descrip-
tive function" associated with each possible pattern name. The most
common form of this function is a linear evaluation function

dj = E:cij - ay

*where each a, is the value of a primitive function, and the coefficients
c; . define the descriptive function whose value is dj' The "decision
Tunction" may pick the descriptive function having the highest value,
or all such functlions having values above ceme criteria; the progsram

outputs the pattern nume associuted with the selecled function. This

13

e

* . : ECISION RESPONSE
U N o K »
INPUT PREPROCES . . . FUNCTION

PN DM

PRIMITIVE DESCRIPTIVE
FUNCTIONS FUNCTIONS

(a) Simple parallel classification paradigm

DECISION POINT

PRIMITIVE
FUNCTIONS
Possible
outcomes

DECISION
POINTS

PRIMITIVE
FUNCTIONS

(b) Simple sequential classification paradigm

Figure 2-1. Simple classification paradigms.

14 ‘%'
paradigm is parallel in the computation of primitive functions and
of descriptive functions; all the primitive functions and descrip-
tive functions are computed, and the order of computation is
unimportant,

There are literally hundreds of papers describing work which
use this paradigm for such applications as recognition of hand
printed letters, handwriting, clouds, and bubble chamber events.
Dominant themes concern preprocessing techniques (e.g., noise re-
duction and image enhancement), primitives for use on various
pattern elasses (feature extraction), and mathematical properties
of the paradigm, particularly with respect to learning the coeffi-

cients of the evaluation function. Surveys of the work include

Nagy [1968], Rosenfeld [1969a] and Rosenfeld [1973]. A more com~
prehensive treatment is presented in Nilsson [1965], Rosenfeld
[1969v], Duda and Hart [1973] and Unhr [1973].

As in the classification technique, HPL uses both linear eval-
vation functions with learned coefficients and decision functions;
they are employed at each memory node to decide when that node has
been found. But HPL also computes additional information at each
node, including effort expended and likelihood of occurrence, which
is used by the recognition algorithm in deciding what step to take
next, In addition, HPL's memory is hierarchical, not single-level,

as in the most common parallel classification technique.

1.11 A Comparison of HPL's Memory and a Single Level Memory

Figure 2-2(3) shows an abstracted form of the memory struc-
ture of the simple parallel classification technique. It is a
“single level" structure because the primitives Pi link directly in
memory to the possible pattern names. Figure 2-2(b) shows an ab-
stracted form of HPL's memory, a multi-level or hierarchical struc-
ture in which primitives need not link to pattern names (although
they may), but may instead link to intermediate nodes such as Ci’
called compounds. Also, pattern names, called goals, may link to
other compounds and goals. HPL's more complex structure allows it
to describe and recognize patterns in terms of subpatterns, rather
than just classifying an input.

Also, HPL's hierarchical memory may save memory space over a
single level memory, because information is "chunked" in the psycho-~
logical sense, Suppose that 20 primitives were used to recognize
1000 words of 5 letters or less. In a single level memory,

20 x 1060 = 20,000 links may be needed. In HPL's memory, individual
letters could be represented as memory nodes, and they, rather than
primitives, would link to the words. At most 20 x 26 = 520 links
would describe the letters, and another 5 x 1000 = 5000 links would
describe the words, a total of only 5,520 links, With more complex
pattern sets, the saving is difficult to estimate, but the more sub-
patterns of patterns and subpatterns of subpatterns, etc., the
greater the memory saving., With a serial computer, each link

requires additional processing; thus, the fewer thce links, the

TRIANGLE

Pn .. '

(a) The single level classification memory

P1

p2 HOUSE

Pn

(b) HPL's hierarchical memory

Figure 2-2. Abstracted versions of the simple classification
memory and HPL's mewory.

16

17

greater the saving in computer time, as well,

1,12 Uhr and Vossler's Primitive Learning Program

Uhr and Vossler [1961] described an adaptive parallel classi-
fication program which learns primitives of a certain specific type
(submatrices of O's and 1's that are swept across the input matrix),
extracting them from the inputs that are presented., This is one of
the few examples of learning applied to the discovery of primitives.
In HPL any primitive satisfying certain properties can be used, but
it must be built-in. Uhr and Vossler's technique fof learning
priﬁitives could be easily added to HPL.

Among the'primitives that Uhr and Vossler use are "combina-
torial operators”, new primitives created from combinations of
other primitives. The compound characterizer of HPL is analogous,

a combination of characterizers that may be valuable in recog-
nition. Both ideas are approaches toward a similar end consistent

with their respective memory structures.

1.13 NAMER, a Relation Recognizer

The NAMER program of Londé and Simmongs [1965] ("A pattern-—
recognition system for generating sentences about relations beilwcen
line drawings") begins to extend the classification approach into
pattern description. NAMER is presented a line drawing of one or
two patterns, and outputs a description such as "The square is

above, to the left of, and smaller than the circle".

~

e

18

For each pattern, NAMER-préduces a 96 bit "attribute list"
using a set of built-in primitives, e.g., "the number and location
of appendages". A similar attribute list and 96 bit "relevance
mask" is stored for each pattern in memory. A match score is com-
puted for each pattern as a percentage of bits in the input attri-
bute list which are the same as the corresponding bits in the stored
attribute list and which have a corresponding relevance mask bit set
to 1. The pattern with the highest score is considered to be the
input pattern name. This is a variant of the parallel classifica-
tion approach with a linear evaluation function. Relevance masks
are analogous to the coefficients cij of the evaluation function
and are learned in a similar manner.

The most interesting aspect of NAMER is that relations between
two patterns, such as ABOVE and LEFT OF, are learned and recognized
in a similar manner, using a separate set of attributes, attribute
lists, and relevance masks. In a genéral sense, NAMER treats rela-
tions as another kind of pattern. The output of the pattern and
relation naming processes is fed into a simple grammar to produce
the final output.

NAMER's recognition ability is limited because of its reliance
on a simple classification structure, which does not store struc-
tural information about patterns and their relation to subpatterns.
For example, although NAMER can recognize the relation ABOVE, that
knowledge does not in any way improve its pattern recognition abili-

ty. (The Sauvain and Uhr program discussed below, in contrast, does

19

use explicit relations in higher level constructs.) Nevertheless,
’storing simple relations in the same memory format (albeit a simple
one) as patterns is suggestive, a precursor of Winston's [1970]
program in which both relations and patterns are stored within a
net-structure (see Section 3.1). HPL does not store explicitly
named relations, although it does store implicit part/whole,
location and size relations. In Chapter 8, we discuss extending

HPL in this important direction.

1.2 The Seaquential Classification Technigue

In the simple serial or sequential classification paradigm,
after each primitive has been computed, a decision is made to
either terminate the process and output a pattern name, or to
continue; the latter requires deciding which primitive to compute
next. Decisions are made on the basis of the outcomes of all the
primitives computed so far. Figure 2-1(b) illustrates the basic
sequential paradigm. A comprehensive discussion of sequential‘

classification methods is given in Fu [1968].

1.21 The Sequential Technique of Slagle and Lee

Slagle and Lee [1971] propose that the decision tree in a
sequential pattern recognition approach may be handled using tech~
niques originally derived for game~-playing programs, such ao mini-
maxing and dynamic ordering of nodes. At each decision point in

Figure 2—1(b), the risk (cost) of continuing the nrocess is compared

R

20

Gith tﬁémfisk 6f>terminating the érocess and naming a-ﬁarticulur
pattern. The risk at an& node is éomputed as o "Backed-up" val;e
of the fisks of ﬁédes cdnnec%ed to it'in the deéiéidﬁ—tree, uéing
the probabilities of the possible outcomes of any primitiVe function.

The use of cost and value of nodes in HPL's recognitidn algo=-
rithm is conceptually similar to that suggested by Slagle and Lee.
The value of a node in HPL, for example, is a backed-up quantity
computed as a function of the values of the nodes linked to it in
memory.

Slégle and Lee's work is stricfly a classification approach
and is limited to cases where there are only a small number of
features and patterns. As in most of the sequential research, they
assﬁme that all relevant probabilities at every level of the deci-
sion tree are known, a very limiting assumption, and they make no
mention of memory structure. We, on the other hand, make no such
assumption about prqbabilities and are quite concerned with memory
structure. All possible probabilities are not stored in HPL,
only the most relevant ones, using a mechanism that attempts to
discover combinations of memory nodes (called compounds) that make
good characterizers. The recognition algorithm of HPL has been
designed to work with a memory which is assumed 40 be inexact and
incomplete, for all information is not known by HPL, and ihe mcemory

would be unmanageably large if it were.

21

2. Descriptive Techniques of Pattern Hecornition

Human perception obviously involves more than assigning

‘names to pratterns. Humans can identify subparts of patterns and

how they relate to the whole pattern or describe how the pattern
relates to the scene of which it is a part. In many mechanical pat-
tern recognition applications, for instance robot vision, a descrip-
tion or structural analysis of the scene is of great importance.
Descriptive techniques go beyond just naming a pattern.

Bvans [1969a] remarks that any classification approach is a special
case of a descriptive approach in which the outputs of the primi-
tives are the description, although this description is rarely used

as such.

2,1 Syntactic Technigues of Pattern Recognition

Probably the greatest effort in descriptive pattern recog-
nition has been in the application of syntactic or iinguistic tech~-
niques to pattern analysis. A review of the area is given in Miller
and Shaw [1968]. Some of the important issues involved are dis-
cussed in Evans [1969a, 1969bJ. In brief, a phrase structure gram-
mar with rewrite rules or productions is used to describe a particu-
lar class of patterns. The terminal symbols of the rules are what
we have called primitives., The non-terminal symbols, or at least
gome of them, correspond to parts of the paltern. Paraing the
input pattern, a set of terminal symbols, is the process of recop-

nition, and the resulting parse is the description of the pattern.

e e e

22

Frequently, the pattern is preprocessed before the primitives are
applied.

It is difficult to find pattern sets sufficiently well-
structured to be described by a grammar. Consequently, applications
of this technique have been limited to certain restricted pattern
sets, inéluding chrémosomes, fingerprints, and letters of the alpha-
bet. It may be quite difficult to find grammars general enough to
process a variety of pattern sets.

The syntactic approach changes the emphasis of recognition
from classification to description. However, the present céncep-
tion of a grammar seems overly restrictive, For example, matching
the left hand side of a grammatical production generally requires
an exact match of all its components. If the production indicates
where components are located, they must be located exactly as
specified for the rule to succeed. Real world patterns often do
not exhibit such nice properties. It is unlikely that all problems
of inexactness can be handled by preprocessing. It is possible
that grammars can be generalized to allow for probabilistic,
inexact, or incomplete matches. Evans [1969&] suggests combining
statistical clacsification techniques with the syntactic approach,
using the former_to determine the presence of constituents, which
would then match parts of grammatical rules. Since a central prob-
lem in syntactic pattern recognition is describing a suitable
grammar, it might be of great use to develop techniques for

learning grammars. Grammatical inference, however, is still in its

.1,12?%5

23

early stages. (See Feldman, et al. [1969].)

The central memory construct of HPL, the characterizer, may
be thought of as a very loose, flexible type of grammatical rule.
However, HPL's recognition algorithm is not based on any conven-
tional parsing algorithm, and so it is probably unwise to stretch
the analogy too far.

Guzman [1971] discusses a syntactic approach to the recog-
nition of cartoon drawings and how the "context problem" may be
handled by parsing and backtracking within this framework. We
contrast this approach with our suggested approach in Chapter 8.

2.12 The Sauvain and Uhr Program

A precursor of HPL is the adaptive pattern description pro-
gram of Sauvain and Uhr [1969] (which we shall call SU). One of
our aims has been to achieve the goals of SU in a more general
framework.

A line drawing is presented to SU as lists of numbers repre-
senting the length, slope, curvature, and location of lines in the
pattern, the primitives of SU. SU outputs the names of patterns
and subpatterns in the input and relations between them, for
example, "HOUSE CONSISTING OF TRIANGLE ABOVE‘SQUARE".

SU's memory is a set of "inference rules” of the form:

OBJECT1 S~RELATION OBJECT2 = NEWNAME.
OBJECTi may either be a primitive or a name appearing in the

NEWNAME field of some other rule. NEWNAME is a renaming of either

the entire left-hand side of the rule or only of OBJECT1, the
remainder of the left-hand side serving as context. Each OBJﬁCTi
is enclosed within a horizontal rectangle. S~RELATION specifies
the relative location of the rectangle enclosing OBJECT! with
respect to the rectangle enclosing OBJECT2. It is represented as

a list of number pairs, e.g., [2—3,0-99,...], meaning that the
difference between the leftmost coordinates of OBJECT! and OBJECT2
must be at least 2 and at most 3, etc. One or more S-RELATIONSs may

be given a name, such as ABOVE or BELOW. Inference rules and

S-RELATIONs are created when feedback is given by a trainer.
SU and HPL both attempt to describe a pattern in terms of sub-

patterns. SU appears to have a greater descriptive ability, for it

can output TRIANGLE ABOVE SQUARE, whereas HPL would output TRIANGLE,
its location and size, and SQUARE, its location and size., SU's
relation ABOVE, however, is just a renaming of a particular
S-RELATION, a comparison of relative locations. HPL implicitly uses
relative location (and size, as well) within its basic memory unit,
the characterizer, although relative location is not part of the
output. SU's ability to name relations meaningfully would be more
powerful and significant if general relations could be learned

from lower-level relations (e,g., allowing new relation names on
the right-hand side of an inference rule). HPL's "associated
rectangle" comes directly from the similar concept in SU, althoush

generalized to include size.

25

The memory of both HPL asnd SU is hierarchical., However,
HPL's characterizer is more general than 3U's inference rule. It
contains any number of components; furthermore, weights are associ-
ated with components and thresholds with characterizers, allowing
HPL to recognize patterns of greater complexity than SU. In
addition, SU assumes a particular kind of primitive; HPL allows any
primitive‘meeting certain requirements. We believe HPL's structure
is more amenable than SU's to extensions.

SU learns through several types of explicit feedback,
indicating, for example, that a particular pair of patterns in a
certain S-RELATION should be renamed, or that a particular pattern
should be renamed in the context of the other patterns present.
Feedback in HPL is intentionally less specific, for we feel that
the less required of a trainer, the better. Names of patterns and
their locations, YES and NO, are the only kinds of feedback HPL uses.

SU's use of a special context-sensitive inference rule is
interesting, although dependent on giving exactly the right feed-
back, In Chapter 8, we suggest a method of handling context in HPL
without defining a special context-sensitive characterizer.

SU's recognition algorithm finds all possible inference rules
that might apply to the input, starting with the primitive strings.
HPL's algorithm is considerably more complex, attempting to search
memory and compute primitives in an efficient order. It does not
necessarily compute all primitives or accest all potentially rele-

vant characterizers.

2.2 Scene Analycis Programs

The dominant trend of current scene analysis programs has
followed the lead of Guzman's [1968] program. A good summary of
the MIT work in this area is presented in Winston [1972].

The main concern of this work is segmentation of possibly
unknown objects in a scene, usually two-dimensional line drawings

Ea

oxlgeometric solids, rather than object identification. The
programs have a syntactic flavor (e.g., labelling components of
scenes) but have generally not used explicit linguistic rules.
Except for VWinston [1970], these programs have not used learning
techniques,

Guzman [1968} segments line drawings of scenes of geometric
solids by identifying vertex types and linking regions together
using the vertex information and heuristics concerning the occur-
rence of parallel lines, lengths of edges, etc. The heuristics are
grouped into "strong" and "weak" evidence, with the former directing
the process.

The most significant extension of Guzman's work is that of
Waltz [1972J, which serments scenes of cometric objects containing
shadows. His work is more powerful, simpler, and less ad hoe than
Guzman's. As in Guzmun, identification of basic vertex iypes ia
important. The.progrum attempts to "label"™ the lines in the drawing
according to their illumination and physical CHUSBE, Coffe, & line wmary
be a shadow or the interccction of two visible surfaces, Uging a

"Tiltering™ technique which compares the information thal adjncent

27

vertices imply about the labelling of particular lines, Waltz is
able to efficiently label most lines by eliminating conflicts.
Similarly, labels are generated for regions, depending on the
information stored with line labels. Waltz's program is both
efficient and effective on fairly complex scenes.

HPL's simple scene analysis ability is not directly comparable
with that of the work just cited. The Waltz program, in particular,
segments scenes including shadows of much greater complexity than
HPL can handle. However, unlike HPL, the Waltz program does not
attempt to recognize objects, nor does it learn.

The Guzman and Waltz pfograms are strictly "bottom-up".
+uilt-in knowledge about vertex types ana their implications in
combination with the information in the input scene are used to
generate a scene description. HPL is neither strictly top-down
nor bottom-up, using information from the input and what is
expected about the input to drive the recognition process.

Falk [1971] is interesting in this regard, for he gives his
Guzman-style scene analysis program a slight top-down flavor.
Objects are recognized, following sersmentation. The recognition
itself is rather simple, for only a small number of pattern types
are allowed; sets of features associated with named patterns are
compared against features actuaily found. Following recognition,
a scene is generated and compared with the input., Significant
discrepanciesvdirect the recognition process to re-recognize un

object., This, however, is limited to assipgning an alternate name

ro
o

to an object where more than one name was assigned by the recog-
nition process initially, The idea is appealing, however, if
extended more generally to affect details of the recognition
process (as expectation directs recognition in HPL).

The Guzman type of approach and our rather different
approach are not necessarily completely mutually exclusive, For
example, in Chapter'B, we suggest how some vertex information may

be built into HPL's primitives.

3. Net-Structure Approaches to Pattern Recognition

In the classification paradigm, an internal description of
each possible pattern is implicit in thebcombination of primitive
and descriptive functions pertaining to that pattern. In syntactic
approaches, the internal description of patterns is contained in the
grammatical productions, In what we call net-structure approaches,
the internal description is contained within a net-structure
memory, that is, a memory in which nodes are implicitly or explicit-~

ly linked to other nodes.

3.1 The Winston Program

Althourh Winston [1970] may be considered an extension ol the
Guzman type of scene analysis program, his concerns arc closer to
our own, including pattern description, recognition and learning
with an explicit net-structure memory. Wincton applies various

heuristics to the output of Guzman's scene analysis program to

29

produce a net-structure description of objects within the scene.
Links between nodes express relations between subparts of objects
and between whole objects, for example, "supported-by", “a—kind—ofh
and "has-property-of". A column consisting of three cubes sitting
on top of each other might be represented as a graph with cubes

as nodes and "supported-by" links connecting them. Pattern con-
cepts are formed by comparing net-structure descriptions of two
different instances of a concept to form a more general net-
structure description of the pattern. Recognition is accomplished
by comparing previously stored descriptions>with the description
generated for the current pattern., While the descriptive ability
of Winston's program is impréssive, its recognition ability is
time-consuming and cumbersome. HPL differs from Winston's program
in several basic respects. A comparison of HPL with Winston's
program raises some important issues, which are discussed in

detail in Chapter Q.

3.2 Pattern Recognition Techniques of Uhr

HPL has been greatly influenced both in structure and philoso-
phy by the work of Leonard Uhr, summarized in Uhr [1973J. Uhr has
extended the classification paradigm in several continuing and
important directions and is greatly concerned with learning and
memory structure. His extensive work is difficult to summarize, for
he emphasizes the great range of possibilities inherent in his neét-

structure programs.

30 ‘%’

The basic unit of Uhr's memory is cn]je: s orinracterizer,
as is the similar (but far from identical) comseprict ir HPL'S

Ak

memory. As typically defined, a characteris, » ¢ +aif. throe
components, a description component, an fmplicntior comjponent, and
an action component.* The description compornent jiterally
"describes" the characterizer in terms of otivy ¢l wr.clterizers.
It is a list of items of the form:

[characterizer name, location, derccrijtiar h@ifht}a
The implication component indicates pattern none:r “implied" if
this characterizer is found. It is a list or iters of the form:

[pattern name, threshold, implied Hciﬁht}.

The action part indicates what characterizer: to "look for" if

this characterizer is found. It is a list of items of the form:
[characterizer name, locutiOn}.

Recognition proceeds as follows: For cvery charucterizer, a
tally is kept of the sum of the description wei;his of churacter-
izers in its description component which have :lrendy been found.
If that sum exceeds the threshold of an implica puttern name in the
implication component, then the characteriucr itaelf i added to
a list of characterizers which have been found, nnd the implied
rattern name is added to a list of possible o t'orn e, olong
with iis implied weight. Characteriwcrs ia 'ho otic . componont,

- f

nre added to a 1list of charncterizers to be leokod Uar, VWhern the

"The terminology uced here ic luryi 1y oor cwe ol cxounplon are
in LISP-like list notation rather than the netaticn uood by Uhe,

31

cumulative implied weight of a pattern name exceeds some fixed
eriterion, then it is output by the program. Feedback in the form
of YES, NO, or the appropriate pattern name causes the description
weights and the implied weights to be adjusted.

This basic idea is subject to many variations in Uhr's work,
particularly with respect to learning, generality, and flexibility.
Learning may be inserted into thisvstructufe at many points. For
example, in Uhr and Jordan [1969], characterizers are generated,
rather than being built-in. GCenerality is stressed in relating
pattern recognition to concept formation and language learning.
"Flexibility" is a term used by Uhr connoting ways to allow for
variability and inexactness in determining when a characterizer is
found.

Uhr typically describes a set of programs, Or more accurately,
prototypes of programs, emphasizing the many variations that can be
made in them. We, in contrast, have developed a detailed,
extensi&e”program, concentrating on specific problems.

Uhr's general memory structure has served as the starting
point for HPL's structure, and there are basic similarities between
them. HPL's memory is also made up of characterizers, which contain
a description component and an implication component, but no action
component. (HPL'S recornition algorithm uses the implication compon-
ent as if it were an action component, indicaling characlerizers to
look for.) HPL uses the description weight of Uhr (which is also

similar to the coefficient oij of the linear evaluation function

32

used in parallel classification programs). Many of the differencen
between HPL's memory and Uhr's memory arise becausec of HPL's
sequential recognition algorithm. For example, HPL's use of
implication weights (a measure of the probability between nodes),
cost, value, and other parameters associated with memory nodes is
not part of Uhr's structure, nor is the use of active memory and
instances. Extensions of HPL discussed in Chapters 8 and 9 diverge

to an even greater extent from Uhr's approach.

3.3 Becker's Model of Intermediate Level Cognition

Becker [1970] proposéd an adaptive net-structure model of

"intermediate level cognition" called JCM. It is more akin to

robot and simulated robot work than it is to pattern recognition
(which he barely mentions), and so we shall discuss the work only
briefly,

JCM's basic unit of long term memory is the "schema", which
has the form:

[EVENT1 IMPLIES EVENT2],
where each EVENTi is a list of "kernels" ordered in time. Each
kernel has the form:
[FN ARC1 ARG2 ...],

where FN cuan either be the name of a primitive (eog., a motor
cémmund such as "move hand up one unit") or a "secondary kerncl”,
which is a method of numing schemata. Weights are uzsed abundantly

in JC¥; for example, there are weights associated with kernels and

33

arguments of kernels. Except for the time ordering, a schema is
similar to the characterizer of HPL (and of Uhr), and kernels
resemble the method used to reference characterizers in HPL.

In JCM, secondary kernels naming schemata are used to build
a hierarchical structure. However, the process by which JCM creates
such kernels is admittedly vague. 1In contrast, the creation of a
hierarchical structure is essential to HPL's éperation. All
ch;raqterizers have names and may participate in higher level
characterizers, and a specific mechanism is described that
decides which characterizers actually participate in>higher level
characterizers.

An important process in JCM is "schema-application", a
heuristic search method used to determine what kernels and schemata
the model will process next. Although HPL's recognition algorithm
is quite different than Becker's schema-application process, they
both share the important concept of treating memory as a graph and

using heuristic search techniques to process it.

34

CHAPTER 3

A GENERAL DESCRIPTION OF THE PROGRAM HPIL

1. An Introduction to HPL

In this chapter we describe the organization and operation
of HPL in general terms. In the following three chapters, we
discuss HPL in more detail. This chapter serves as a necessary
introduction to those chapters. We first describe the net-
structure memory of HPL and its components, then the processes of
HPL, and finally the context problem.

HPL consists of a net-structure memory and the processes that
operate on that memory. The memory greatly influences the form of
the processes of HPL. It is a unified structure, built up froﬁ a
single type of unit. HPL's memory is learned; its processes, the
recognition process and the learning process, are built-in. The
learning process follows the recognitioﬁ process. The recognition
process could function alone in recognizing patterns if IHPL were
provided with a built-in memory, but this was not desired.

HPL's memory consists of three parts, long-term memory (LTM),
intermediate-term memory (ITM), and active or short-term memory
(STM). (The cognitive model flavor of these names is meant to.be
suggestive but nothing more.) The basic unit of memory is the
characterizer. LIM is the reservoir of information retained over
time through learning. ITM is structurally identical to ITM, but

serves a special purpose in the learning process. It is the

35

storage area for new characterizers created by the program, which
may eventually be transferred to LTM if they are "good" enough.
STM is a temporary storage area used to storé the information in
LTM in a more specific form applicable to the current input
scene, 3TM instanées are created of LTM and ITM characterizers.
One LTM chafacterizer may correspond to several different instances.
The instance contains all of the information accumulated during
the recognition process. The current state of 3TM helps deter-
mine what step HPL will take next in the recognition process.

STM changes continuously during recognition. In the learning
process, STM changes no further but is kept as a record of what
occurred during recognition. The information in STM in conjunc-
tion with feedbaék determines what learning will take place.

The input to HPL is one or more pattepns given in a format
which depends on the type of primitives used. With submatrix
primitives, the input is an M x N matrix of O's and 1's. With
line primitives, the input is a list of vertices and their x,y
coordinates (see Chapter 7). The input does not have a time
component; that is, inputs are isolated snapshots. We will often
call the input a "scene" whether we are speaking about ouc pattern
or more than one. A "frame" is the following seqﬁence ol evenle:
A scene ic presented to HPL. I[PL recognizes patterns in the scene
as best it can aﬁd is given feedback during the recognition

process as to the correctness of i1ts responses. After the

H
o
!
!

recosnition procecs has terminated, the learning process modifion
the memory using the information accumulated during recognition,

including feedback.

2. Information Flow Diagrams of the Procesces of HPL

An information flow diagram of the recognition process is
shown in Figure 3-1. Arrow 1 indicates that the only communica-
tion between the input scene and the rest of the program is via
the primitive functions, which compute properties of the input.
Thus, there is an intimate connection between the form of the input
and the form of the primitives. The results of primitive evalua-
tion are sent to the récognition process (arrow 2),

Arrow 3 in the opposite direction is of particular importance,
for it indicates that the recognition process controls the evalua-
tion of primitives by deciding what primitive to compute next. 1In
a parallel system in which all possible primitives are computed
simultanecusly, this arrow would not exist. (It would exist, how-
ever, in g combination parallel-gerial system.)

The recognition procescs accumwlates information in STM, alter-
ing its structure ac more is learned abg;t the input (arrow 7). The
information in STM, in turn, is used during recognition to help
decide whut primitive {o computc next and what patterns are
present in the input (urrow 6). The recoguition process deter-
mines waat information is trancferred from LTM and ITM to STM
"

o > 5\ -,) 1 N . . K
(urrows 5 and g). Althousn most memery information comes to ihe

37

Tnout 1 Primitive 2 Recognition 4 Efﬂf
P 7} functions [€z process s TN

Y N ' () (K3

o et
—— Y e

{Feedback i i Output;J

Figure 3-1. An information flow diagram of the recognition
Numbered arrows correspond to the description in

process.
the text.
LTM
- 2 %
ST 1 Learning 5
process

1) \
. ITH
4

Figure 3-2. An information flow diagram of ithe learning process.

38
recognition process via STM (arrow 6), a small amount comes
directly from LTM and ITM (arrow 4). This arrow could easily have
been eliminated by incorporating the information into STM, but
with a corresponding increase in the memory size of STM.

The end result of recognition is HPL's response, the names of
the patterns in the scéne (arrow 9). After HPL responds, feedback
external to the program may optionally be given indicating its
correctness, and providing the names of any patterns in the scene
that should have been ocutput but were not (arrow 10).

An information flow diagram of the learning process is shown in
Figure 3-2. The information accumulated in STM during recog-
nition, including feedback, is used by the learning process to
determine what learning shall occur (arrow 1). The learning
process modifies the permanent memory, LTM and ITM (arrows 2
and 3). Information in ITM is occasionally analyzed to determine
whether it should be permanently retained and transferred to LTM
or whether it should be discarded from memory completely (arrows 4

and 5).

3. The Memory Structure

The basic unit of memory is called n charucteriser becaune it

"characterizes" or describes some "meuning{ul" part of a pattern.

Characterizers ure of three types: primitive, compound, and goal.

They have the same form but are treated in different ways.

Primitives are built-in functions which compute properties of

the input. They are the simplest characteriners, for ithey are not
described in terms of any other characterizers. Primitives may
represent sfraight léne segmehts of a certain slope or M x N
submatrix templates of O's and 1's.

Compounds and goals are described in terms of other charac-
terizers of any of the three types. They are identical in strue-
ture but are distinguished in the following way. FEach goal
represents a unique pattern name; that is, there is a one-to-one
correspondence between goals and pattern names. Whenever a new
pattern name is given to HPL in feedback, e.g. HOUSE or FACE or
LETTER-W, a goal characterizer will be created to uniquely
represent that name. Recognition is the process of deciding which
goal characterizers are present in the input; when HPL finds a
goal in the input, the pattefn name associated with it is output
as a response. Compounds in contrast do not represent anything
defined -externally by the trainer; they are formed internally in
the hope of discovering combinations of characterizers which are
more valuable in describing patterns than the individunl charnc-
terizers by themcelves. TFor examplc,ﬁu compound representing
two ctraight lines meeting at a right angle may be 1 more "valu-
able" characterizer than either line alone. (The meaning of
"value" is explained in the next chapter.)

Every characterizer has an internal name by which other

characterizers may reference it. We will use these names when

discussing characterizers: primitives will be called P1, P2, ete.,
compounds C1, C2,..., and goals G1, G2,.... Wheﬁ some other letier
such as A or X is used, we will usually mean a characterizer of any
type. Occasionally, we will use a meaningful name for a primitive
(e.g., LINE-4 represents a straight line having a discrete slope

of 4), but this is irrelevant to HPL's operation. More frequently,
since every goal has an external pattern name associated with it,
such as CAT or FACE, we may refer to the goal by that name rather
than its internél name.

Figure 3-3 illustrates HPL's memory structure as a graph*.

How the graph is explicitly stored within characterizers is
explained in the next chapter.

In Figure 3—3(3), each straight line in the pattern LETTER-W
is represented as a separate primitive; for example, P1 is the
left-most straight line in the pattern. Primitives are terminal
nodes in the graph. Compounds and goals are non-terminal nodes,
defined (i.e., described) by their successor nodes. For example,

if P! and P2 are both tound®* in the input, then C1 is found as

*In the graph representation of memory, characterizers are
e oY
nodes. Connecctions between nodes are "links". Downward links from
one node to another wure "successor" links, upward are "parent

links™. "Upward" and "downward" refer to o graph oriented so that
primitives sre at the boltom. A node X is "hicher-level" or "lower-
level™ with respect to node Y ns there is s downward or upward path

from X to Y.
*Mhen HPL decides that o characterizer is present in the input,
I
we shall eay it is "found in the input" or simply "found".

G1: LETTER-W

5y o1
P2 P3
LETTER~W

(a) Individual lines as primitives

(g1 11]

[c1 11]

[p1 L1;\ [P LS;\

[p2 12] [P2 14] [P1 11] [p2 12] [P 13] [P2 L4]

(b) Primitives as lines of a particular slope
[p2 16 s2]

G2 L1 St
z{,,fp1 L5 53]
(P2 14 53] (61 15 83
[P1 13 s2]
P1 L1 S1] P1 L1 S1] [P1°13 82 f\ [15 5378
: [p2 12 s1jF : ipz’iz s1] [re 16 s2] [p2 L4 53]

(c) P1 and P2 are vertical and horizontal lines. There are six
locations L1 through L6 and sizes S1 through S3. Goal G1
is a CORNER, G2 a BLOCK-L.

Figure 3-3. The memory structure of HPL represented as a graph.

well. Similarly, if both C1 and C2 are found, then G1 is found,
and since G1 is a goal, the external name associated with it,
LETTER-W, will be‘output. In this example, the highest-level
node is G1, which has no parents. This is not usually the case,
for goals may describe higher-level compounds 6r goals,

From this example, it would appear that a compound or goal is
a logically AND'ed combination of its successors; hence, the
graph could be represented by syntax rules such as

"P1 AND P2 = Ci"™, "C1 AND C2 = G1", etec.

This is a simplification, for the links actually have weights
associated with them, as well as a threshold at each node. The
weights are bidirectional; there are separate weights for upward
and downward links, called the description weight and the impli-
cation weights The description weight determines the importance
of a node in deciding that its parent is found. The implication
weight measures how'likely a node is, given a successor node.

We shall now move a step closer to HPL's a;tual menory. Many
primitives would be necessary to represent cvery straight line in
every possible locuation; memory would be very large, since each
characterizer requires memory storage. To handle this problem, a
primitive is a fTunclion thal computes a property at a location
which is given to it as an argument, rather than a funciion that
computes a property «l a fixed location. For example, in

Figure 3-3(L), LETIER-V is reprosented b two primitives, each at
: 3 i Y f y

42

two different locations, [P1 L1], [P1 L2]* etc., rather than Cour
separate primitives, Similarly, a location mny be associated with
any characterizer: [CHARACTERIZER-NAME, LOCATION]. TFor a non-
primitive, this location can be thought of as the location of its
leftmost successor. (The actual relation of the location of a
non-primitive to its successors is somewhat more complicated and
is explained in Chapter 4.) The graph of LETTER+~W now contains
only one compound C1 at two locations, rather than two compounds.
[¢1 11] is at the top of the graph, so if it is found, HPL can
output its location as well as its name.

In HPL's memory representation, size is also associated with
a characteriger, effeéting an additional saving in memory space,
and allowing HPL to include size in its output. This is repre-
sented by: [CHARACTERIZER-NAME, LOCATION, SIZE]. (Additional
arguments not presently implemented in HPL are discussed in
Chapter 8.) Figure 3-3(c) illustrates the use of size. The
straight lines meeting at a right angle are called a CORNER,
The pattern BLOCK-L contains two CORNERs as subpatterns at two
locations with two different sizes. This example also illustrates
that a goal may have parents.

Fiéure 3—3(b) introduced location as an argument of a charac-
terizer. How is location stored in memory? If [C1 L1] and

[01 L3] are stored as geparate nodes in permanent memory, then

*For readability, we shall use pareniheses or brackets inter-
changably to decignate lists.

43

44 @
there is no saving of memory space over storing the separate
characterizers C1 and €2 of Figure 3—3(8). In order to effect a
saving, only one node representing C1 is stored in memory. C1 is
defined in memory in terms of its successors P! and P2, and their
relative locations and sizes with respect to each other. BEven-
tually, these relative attributes must be related to absolute
attributes indicating actual locations and sizes in the input.

The short-term instuances of long-term characterizers which
are created during rccognition contain absolute location and sigze,
For example, in Figure 3-3{(b), C1 appears twice in the graph. The
structural definition of C1 occurs only once in permanent memory;

however, during the recognition process, two instances of C1 will

be created, one for each absolute location. In fact, an instance

will be created for each node in the graph.

4. The Recognition Process

The recognition

O]

tage attempts to access mewory and compute
primitives efficiently, using learned informntion, with the
overall aim of determiring what goal characterizers are present
in the input. Recosmition proceeds by finding characterizers in
the input (nodes in the g"aph), moving upward in memory 1o their
parent nodes, and downward from the parcut nodes 1o succensor

nodes which huave not yetl been found. The ordor in whlch nodos

arc accessed depernds on several [uctors (moc Chapler 5), butbt in

i, G i R

45

general, HPL tries to investigate characterizers that seem

likely to succeed, are not extremely costly, and are valuable in
providing information about the occurrence of foals. There are
two main sources of this information: the weights associated with
the links between characterizers in LTM and the record accumu-
lated in STM during the course of recognition as to what success
H?L has had in finding characterizers which describe higher-level
characterizers. For example, if some characterizer X is described
by characterizers A, B and C, and A has been found and B has not,
then there is less chance that HPL will investigate C than if both
A and B had been found.

After HPL responds with the name of some goal it has found,

feedback may be given indicating "YES" or "NO" or the correct name
of some part of the pattern either misrecognized or not recognized
at all. The feedback affects further recognition immediately. For
example, if HPL responds "SQUARE", and feedback is "NO", HPL will
not continue to look for patterns containing a SQUARE. Infor-
mation indicating whether or not an instance is found is stored
within the instance and is accessible by the learning process.

We shall give an example of how the rccognition process works,
postponing a detailed explanation tovChapter 5. Suppose HPL is
given the pattern shown in Figure 3-3(b) and has already found
P1 at location L1, i.e., thé leftmost straight line. Finding P1

may cause all parents of P! in memory, that is, all charactlerizers

whose descriptions include P1, to be accessed; instances will be
formed of each parent and put on a list éalled the ACTIVE list.
C1, representing the V shape consisting of P1 and P2, is such a
characterizer; an instance of it will be formed at absolute
location L1, and also put on the ACTIVE list. HPL “investigates"
the first instance on the ACTIVE list, removing it from the list.
When C1 is investigated, the characterizers which describe it,
namely P1 and P2 at the proper locations will be inspected. HPL
will realize that P! has already been found; but since P2 at
location L2 hés not been found, HPL will form an instance of it.
There is then a chance that P2 will be investigated; since P2 is

a primitive, the function it represents will be computed, that is,
a straight line of the proper slope will be sought at location L2.
After P2 is found, HPL will decide that C1 is found, since both
its succeésors have been found. This may in‘turn cause parenfs

of C1 to be accessed. In a similar manner, instances will be
created of [G1 L1], then [C1 L3], then [P1 L3], etc. When [P1 L3]
and [PZ L4} are eventually found, then [C1 LB] and finally [G1 L1]
will be found, and at that point the pattern name LETTER-W
associated with G1 will be output, The Formation of instunces of
successors of nodes is analogous 10 creating subgoals as steps in
the process of achieving some highgr level goul. A record of

these subgoul/goul links is maintained within the instance.

46

4'f

5. The Learning Process

The learning process adjusts the weights associated with links
between characterizers in permanent memofy (LTM and ITM), creates
new links, forms new compound characterizers, and analyzes com-
pounds to determine if they are worth saving.

There are two kinds of weights stored in a characterizer.

One indicates the importance of a characterizer within the
description of a higher-level éharacterizer; the other is the
;elative probability that having found a certain characterizer we
may expect to find its parentu. The weights are adjusted upward
or downwara depending on which characterizers have been found and

which have not. For exanple, if the description of HOUSE contains

a rectangle, and no rectangle was found in a HOUSE presented to
HPL, the weight associated with rectangle in the description of
HOUSE will be lowered. If the weights reach zero, links will be
discarded., ‘Weight adjustment, although rather straichtforward, is
very important. Other sections of the learning process are more
problematic, and our approach wus more experimenial.

One part of the learning process decides when fto create new
links betweew characterizors. Shouldulinks be established
between a new goal or compound and every other charancteriscer in
mewory? This is inadvisable becanse o very laryse number of linko
would have to be handled (althoush if they could be handlod, the

welght adjustment process would, in time, weced outl the lenst

48

valuable links)., Our algorithm (see Chapter 6) picks a few new
links to be formed at appropriate times.

Goals are created because of external_feedback, but com-
pounds are creéted internally. They attempt to represent valuéble
combinations of lower-level characterizers. We are confronted
with a problem similar to the one just mentioned, Should com-
pounds Be formed for every possible cémbination of lower-level
characterizers? This would create a large number of compounds,
although‘the compound analysis pfocedure would theoretically,
over time, weed out bad compounds. Again our approach has been to
sample some but not all possible compounds. Such compounds are
placed into ITM. After a period of residence in ITM, compounds
are assessed as to their value in contributing to recognition.

If certain criteria are met, compounds are transferred to LTM,

otherwise they are discarded.

6. The Context Problem

It may not be possible to uniquely name a particular pattern by
its chape alone; the environment in which that shape is found, the
"context" associated with that shape, may be necessary to resolve
the ambiguity in naming the pattern. This i:: the "context prob-
lem". In the ideslived patterns HPL handles, a circle, or even a

square, might represent an eye in the context of a face, but a

49

wheel in the context of a wagon. We sought an approach to this
problem which would not require great modification to the existing
memory structure. A new weight associated with links between
characterizers was introduced which is treated much like other
weights. Our approach to context has not yet been implemented

in a running version of HPL, and is discussed along with other

extensions in Chapter 3.

CHAPTER 4

THE MEMORY STRUCTURE

1. The Characterizer

The characterizer is the unit of information storage in

permanent memory, i;e., LTM and ITM. (Unless we are discussing
the learning process, we shall refer to LTM loosely, including
both LTM and ITM.) Tt corresponds to a node in the éraph repre-
sentation of memory used in the previous chapter. The instance,
~ the unit of short-term memory storage, is described in Section 2.
BEvery characterizer has a unique internal name, the charac-

terizer name, which other characterizers use in referring to it.

The stored information which defines a characterizer is only
accessible from its name. (In LISP, this information is astored
on the property list associated with the atomic symbol specifying
the name.)

The couponents of a characterizer which describe the net-

structure are the description~set and the implication-gset. The

description-set specifies the conditions that must be satisfied

to determine if a characterizer is found in the input. If a
characterizer is found, its implication-set specifies whnt charac-
terizers to expect. The description-set and implicution—net are
analogous to a premise and conclusion. The structures of the

description-set and implication-set are identical but are

50

51

interpreted differently. In addition to the description-set and
implication—set,'seVeral additional items are associated with each
characterizer name. These components will now be described in

detail.

1.1 The Description-Set

The description-set of a characterizer is'a list of
descriptors. Each descriptor is a link'between the characterizer
and other characterizers (successor nodes in the memory graph).

" The descriptors of a characterizer define it. When enough descrip-
tors have been found (as explained in‘Section 1.13), then the
characterizer itself is considered found. Primitives are the on}y‘
4characterizers with no description~set; for they are not defined in
terms of other characterizers. They are considered found if the
function defining them succeeds.

The form of a descriptor.of some characterizer X is:

[(NAME 1OC SIZE) DWT].

(NAME LOC SIZE) is called a characterizer reference, for it refers

to a characterizer NAME, having relative location ILOC and relative

size SIZE with respect to X. DWT, the description weight,

indicates the importance of this descriptor in describing X, i.e.,

in determining when X is found.

52 ‘%’

1.11 The Associated Rectangle, Location and Size

An implied rectangle is associated with every characterizer,

called the associated rectangle. It is the smallest horizontal

rectangleﬂthat(compléteiy surrounds the characterizer; for a non-
primitive, this means the smallest horizontal rectangle surrounding
the associated rectangles of its descriptors. LOC and SIZE in a
characterizer reference signify the location and size of the
associated rectangle.

The associated rectangle is specified by location, height to
width ratio, and size. Its location is the (x,y) coordinate of
its lower left-hand corner. The height to width ratio is the

ratio of the length of the vertical side of the rectangle to the

horizontal side, and is stored as one of the additional items
associated with a characterizer name. Size is the length of the
horizontal side of the associated rectangle. Figure 4—1(a) shows
the rectangles associated with two line primitives, P! and P2, and
Figure 4-1(b) shows the associated rectangle for the goal G1

(LETTER-V) composed of the two primitives,

1.12 Relative and Absolute Attributes

Location and size as stored within the description-sct (and
implication-set) of some characterizer X are relalive attributes,
specifying the location und siue of deseriptors wilh rezspect Lo
the location and size of X. During the recognition process, these

relative attributes are related to absolute attributes by matching o

53

(2,8) (6,8) | (2,8)

{
(454) (4537 ~T6,4)
Pattern LETTER-V, Loc=(2,4) LOC=(4,4)
with (x y) coordinates SIZE=2 SIZE=2
indicated HEIGHT/ HEIGHT/
WIDTH=2 WIDTH=2
Primitive P1 Primitive P2
and its associ- and its asnoci-~
ated rectangle ated rectangle

(a) Rectangles associated with primitives P! and P2

) (6,8)

|
Goal G1, LETTER-V~" |
]
(2,4 _ _
L0C=(2,4)
SIZE=4
HEIGHT/WIDTH=1

|
l
l
|
|
|

(6,4)

— o—— -

(b) Goal G1 composed of P! and P2, and its associated rectangle

Figure 4-1. Associated rectangles.

54 G%’
instances to descriptors and implicands (see Sectior 2,3),
Figure 4-2 shows the pattern LETTER-V Tepresented by the primi-
tives [P1 (2,4) 2.] and [P2 (4,4) 2.], where location and size
are absolute quantities., Descriptors of G1, however, apecify the
relative locations and sizes of P1 and P2 with reapect to G1. The
relative location of P1, for example, is (0,0). This indicates
that if G1 is found at absolute location (x,y), then P1 must also
have been found at absolute location (x,y),

More generally, suppose a characterizer has been found with

absolute location(x,y) and size s and has a descriptor with rela-

tive location (Xr, yr) and size S .. The absolute location (xa, ya)

and size S, of that descriptor are computed as follows:

X =X+ X 38 = -+] 8 =8 e« 3
a r 3 ya y yr‘ 9 a r

1.13 The Description Weight

DWT, the description weipght of NAME in the description-set

of X, indicates how important NAME is in describine X. During

the recognition process, HPL looks for descriptors., If NAME is
found at LOC with SIZE, then DWT, a non-negative integer, is

added to an accumulated sum, the cumulative deascriplion weipht
(CUM-DWT), associated with an instance of X. When this um
exceeds the THRESHOLD of X, then HPL concludes that X iz found

in the input. The description weights and THRESHOLD arc initinlly
set when a characterizer is created or structurally modilied and

are adjusted in the learning stage.

3

55

1.14 Weighted Links with Threshold for AND and OR Operations

A characterizer is found when the sum of the description
weights of its descriptors that have been found exceeds a thresh-
‘old. HPL has no AND'ed or OR'ed combinations of links, only
weighted links. Weighted links, however, are more general than
AND/OR links. For example, if the THRESHOLD of a characterizer
equals the sum of the description weights of its descriptors, then
in effect the description-set is an AND'ed combination of descrip-—
tors; all must be found for the characterizer to be found., If
THRESHOLD equals the description wgight of one descriptor, and if
all description weights are equal, then the description-set is
an OR'ed collection of descriptors. Intermediate values of
description weights describe more logically complex conditions.
For example, suppose some characterizer has a THRESHOLD of 10 and
four descriptors, a, b, ¢, and d, with description weights of 5,
5, 3, and 3, respectively. The characterizer will be found if
either a and b, or a, ¢, and d, or b, ¢, and d are found.

A disadvantage of weighted links iz that they are not inter-
preted as easily as AND/OR links. A significant advantage, how-
ever, is that a weighted structure is especially amenable to
learning. Weights may be adjusted in small increments with a cumu-
lative effect approximating an AND or OR ;ink. Learning a struc-—
ture with explicit AND/OR links is more difficult. Forming a
link is an act of much greater consequence than a small adjustment

of welghts. (We compare one learning program that does use

explicit links [Winston, 1970] with HPL in Chapter 9.)

1.2 The Implication-Set

The implication-set is a list of implicands. Each implicand,
like a descriptor, is a link‘between the characterizer and other
characterizers, but? unliike the descriptor, is a link to parent
nodes, rather than successor nodes. An implicand of some charac-
terizer X is a characterizer which may be expected if X is found.

The form of an implicand of some characterizer X is:

[(NAME LOC SIZE) IwT].
The characterizer reference (NAME 1oC SIZE) is identical in mean-

ing to the characterizer reference in the descriptor; LOC and SIZE

are both relative with respect to X. IWT, the implication weight,

indicates the probability of this implicand, having found X.

1.21 The Implication-Weight

IWT is a2 non-negative integer reflecting the probability of
finding (NAME LOC SIZE), given X. This probability is not IWT
itself but is easily obtained from it by dividing IWT by USE, onc
of the additional items associated with NAME. USE is the numbcor of
times NAME has been found in prior inputs. As discussed in the

next chapter, IWT figures prominently in the recognition proce..:.

1.3 The Relationship between Descriptors and Implicands

Descriptors and implicands are closely related. If

57

characterizer A is a descriptor of characterizer X then it must fol-
low that X is an implicand of A. For example, if SQUARE is a des-
criptor of HOUSE, then HOUSE, in turn, is an implicand of SQUARE.
This means that links between characterizers are bidirectional.

The implication-set could theoretically be eliminated,

incorporating IWT into the degcription-set, e.g. T

[NaME (LOC SIZE) DWT IWT],
where DWT is the description weight of NAME with respect to X, and
IWT is the implication weight of X with respect to NAME.

The implication-set is important, however, in terms of effi-
ciency. During recognition, when a characterizer X is found, its
implication-set determines which characterizers are expected. If
it were possible to efficiently search memory to determine what
characterizers contain X in their description-set (e.g., with a
content-addressable memory), the implication-set could be elimi-
nated as described above. Explicit storage of the implicntion-set,

then, saves computer time but uses additional permanent memory spuce.

1.4 Additional Information Associated with a Characterizer Name

There are geveral additional items stored in memory and
associated with each characterizer ;ame but not part of cithexr the
description-cet or implication-cet. We shall enumerate them here,
but will elaborate on several of them when describing the recog-
nition and learning processes.

The TYPE of characterizer X indicates whether it is primitive,

P e
et

compound or goal,

The PRINTNAME of a goal is the external name which HPL
outputs when the goal is found. It is learned as a result of
feedback.

INSTANCES is a list of all instances of characterizer X
created during the recognition process. At the end of the
learning process, this list is erased.

RECTANGLE is a list of quantities defining the associated
rectangle: (RATIO LOC SIZE), height to width ratio, relative
location, and size. The latter two quantities are not essen-
tial but savehcomputation time, defining the relative location
and size of the associated rectangle with respect to X. When a
characterizer is first formed, its relative location and size are
the same as that of its associated rectangle, However, at some
later time, a new descriptor ﬁay'be added to its description-set,
enlarging the associated rectangle. Rather than recomputing all
relative locations and sizes within the description-set and
implication-set to renormalize the characterizer so that it has
relative location (O, 0) and relative size 1.0, the associated
rectangle is given an offset to accomplish the same purpose.

THRESHOLD has already been mentioned, It is a non-negative
integer that iz determined in the learning process as a function
of the description weighis in the descripLiOH—uei. When the
cumulative description weight of an instance exceeds THRESIOLD,

that instance is found.

58

59
TOTAL-DWT is the sum of the description weights in the

description-set of X. It is used in the recognition process in
determining how much effort has been expended on an instance,
compared to how much progress has been made in finding it.

USE is the number of times characterizer X has been found in
prior inputs, used in converting implication weights to probn-
bilities.

BIRTHDATE is the frame number when X was first formed. It
is used in determining the age of a compound characterizer. In the
learning process, compounds are analyzed and removed from ITM after
a certain age, to be discarded or added to LTM.

The COST of a characterizer influences when it will be
investigated during the recognition process. The COST of a
primitive is a number reprecenting its relative computation cost
and is determined by the programmer when the primitive is written.
The COST of a non-primitive is the number of descriptors in its
description-set times a constant, a rough measure of iis process-
ing cost during recognition.

VALUE also influences when characterizer X will be investi-
gated. It measures the worth of X in characterizing its impli-
cands, and ultimately in characterizing goals. The VALUE gf a
goal is specified by the_trqiner fo; each external pattern name, or
arbitrarily set to 1. The VALUE of a non-ponl is o function of the
VALUEs of its implicands, their implication weights, and the

description weights of X in the description-sets of its implicands.,

60

(The actual function is the maximum over all implicands Ii of

(IWT(Ii) / USE(Ii)) . VALUE(Ii) « (DWT(X) / maximum DWT),)

1.5 Differences in the Representation of Primitives, Compounds,
and Goals

There are only minor structural differencés between primi-
tives, compounds and goals, for we have attempted to keep memory
as homogeneous as possible. Primitives have a null description-set,
since they are not defined in terms of other characterizers. Goals
have a PRINTNAME and other characterizers do not.

The recognition process treats the three characterizer types
identically, except for the following: Primitives are computed,

but non-primitives, instead, have their description-sets investi-

gated. When goals are found, in contrast to non-goals, their
names are output and feedback may be given.

The learning process handles implication-sets of all three
characterizer types identically, but distinguishes between them

when modifying description-sets.

1.6 Some Examples of Charscterizers

Figure 4-2 shows some simple characterizers; goal G1 repre-
sents LETTER-V, which has only two descriptors, line primitives
P1 and P2, (We shall explain line primitives at length in

Chapter 7.) Description weights of P1 and P2 ure Y% and 6, and

[¢1 (2,4) 4.]

(2,8) (6,8)

(4,4)
[P1 (2,4) 2.] [P2 (4,4) 2.] (1 (2,4) 2.7 [P2 (4,4) 2.]

[(¢1 (0,0) 2.) 6]
[(¢1 (-1,0) 2.) 2]
[(P1 (0,0) .5) 5], [(P2 (1,0) .5) 6]

10

Implication-set of P1

Il

It

Implication-set of P2

Description-set of G1

il

THRESHOLD of G1

Figure 4-2. The representation of LETTER-V, described by
primitives P! and P2.

61

62

the THRESHOLD of G1 is 10; therefore, both primitives must be
found in order that G! be found.

In terms of the graph representation of memory, links between
nodes have been shown as undirected, but it is more accursate to
consider a link as two'bidirectional links, an implicand link and
a descriptor link. The previously mentioned redundancy between
implication-set and description-set is reflected in the fact that
there are no unidirectional links.

2. The Instance

The instance is the unit sf information storage in STM. STM
does not, in fact, exist as a separate list. It is simply what we
choose to call the set of all instances created during recognition.
The primary function of the instance is to record the ongoing pro-
cess of recognition. Suppose, for example, a HOUSE consisting of
a SQUARE and TRIANGLE occurs in the input. Because HPL is not a
parallel program, HOUSE will not be recognized "all at once". A
part of SQUARE may be recognized, then perhaps 5ll of SQUARE. An
instance of HOUSE may be formed at this time, but this inuatance is
not yet found; it only represents some characterizer which nay be
present in the input. The instance of HOUSE will record that
SQUARE has been found., When TRIANGLE is found, that informalion
will also be recorded within the instance of HQUSE, and then tunt
instance will finally be found.

As stored in LTM, a characterizer describes only relative

—gy

63
location and size relationships. An instance, in contrast, always
corresponds to the occurrence (possible or actual) of a charace
terizer with some particular absolute location and size in the
input. Thus one LTM characterizer may correspond to several
instances. Suppose a word such as EYE has been presented. Only
one LTM characterizer will represent ﬁhe letter E, but there will
be two instances representing each occurrence of E in the pattern.,

The instance is similar in structure to the LTM characterizer,
but contains additional information in order to record the recog-
nition process. It consists of a description-set, implication-set,

and miscellaneous data.

2.1 The Description-Set cf an Instance

The description-set of an instance is a list of descriptors.
(our terminology is the same as that used for the LTM character-
izer. When confusion might arise, we shall explicitly say "descrip-
tor of.an instance", for example.) A descriptor contains, in
addition to the same information as a LTM descriptor, a link to
another instance. The form of a descriptor is

[((NAME LOC SIZE) DWT) MATCH],

The ((NAME...) DWT) part is identical in meaning to the LTM des—
criptor, (In fact it is identical in structurc. In our LISP
implementation, the LTM descriptor is not recopied in the instance;
rather, there is a direct memory reference to the corresponding LTM

descriptor. This reduces the size of an instance.)

_ MATCH is a link from the descriptor_?p aﬁ instance of NAME,
Since a descriptor specifies relative location and size and an
instance specifies absolute location and size, the MATCH link
establishes a correspondence between relative and absolute
quantities. Forming this link is called matching an instance
with a descriptor., Before we give a simple example using the
MATCH field, we shall describe the implication-set, which has a

similar field.

2.2 The Implication-Set of an Instance

The implication-set of an instance is a list of implicands,
each of which has the form

[((NAME LOC SIZE) IWT) IMATCH].

((NAME...) IWT) is identical to the implicand of a LTM character-

izer (and again is representeﬁ by a memory reference to the actual

LTM implicand).

IMATCH is a link from the implicand to an instance of that

implicand. Our earlier comment about the theoretical redundancy

of the implication-net applies to the IMATCH link as well, but

using IMATCH ic more effTicient than recovering the link from the

corresponding description-set MATCH field.

Both MATCH and IMATCH fields allow for only one instance to

match.

65

2.3 An FExample: Matching Instances to Descriptors and Implicands

An instance corresponds to one characterizer with a particu-
| lar absolute location and size. We shall frequently use the
characterizer reference [NAME LOC SIZE], where LOC and SIZE are
absolute, in referring to an instance, keeping in mind, however,
its underlying structure.

The MATCH aﬁd IMATCH fields play an important role in the
recognition process; for example, an empty MATCH field may indi-
cate that a new instance sﬁould be formed. This role will be
described in the next chapter.

Figure 4-3 illustrates thé matching process. The input is

the pattern shown in Pigure 4-2, LETTER-V (goal G1), having two

primitives P1 and P2 as descriptors. Suppose instance

[P1 (2,4) 2.] has already been found.. [G1 (0,0) 2.] is an impli-
cand of P1; hence, there is a chance that an instance of G1 will
be created, namely [G1 (2,4) 4.] (the absolute location (2,4), for
example, is computed from the absolute location of P! and the
relative location of C! using the formula given in Section 1,12).

In Figure 4~3(a), a MATCH link is formed from the description~set

of instance [G1 (2,4) 4.] to the instance [P1 (2,4) 2.1, as well
as a corresponding IMATCH link from the implication-set of P1 to
the instance of C1. Once the instance [G1 (2,4) 4.] has been
formed, its absolute location and size are fixed, and hence the

locations and sizes of all its descriptors are fixed. Instance

e [G1 (2,4) 4.] has an unmatched descriptor, [P2 (1,0) .5]. (The

Instagfe [P1 (2,4) 2.] with

Implication-set = [({61 (0,0) 2.)j§!?]

Instanggﬂfé1 (2,4) 4.] with

Description-set = [((P1 (0,0) .5) 5)é1, [((p2 (1,0) .5) 6) *]

(a) Matching between an instance and descriptor of P1

Instance [P2 (4,4) 2.] with
~__

Implication-set = [((G1 (-1,0) 2.) ?2/’]

| .
Instance [G1 (2,4) 4.] with
Description-~set = [((P1 (0,0) .5) 5)e], [((PZ (1,0) .9) ©)
(b) Matching between an instance and descriptor of P2. Thu

descriptor of Pl is assumed matched from (u).

Figure 4-3. Matching instances against descriptors nnd
implicands (see text).

OO

67

null MATCH field is indigated in the figure by an asterisk,)
When [G1 (2,4) 4] is investigated{ that unmatched descriptor will
be detected and an instance [PZ (4,4) 2] will be formed.
Figure 3-%(b) shows the new MATCH and IMATCH links between P2 and
C1.

We shall describe when MATCH and IMATCH links are formed in

tﬁe next chapter.

2.4 Tolerance: Not Requiring an Exact Match

We believe that flexibility, allowing variability and
inexactness in pattern matching, is important.(See Uhr [1973]
for several approaches to flexibility.) HPL embodies flexibility
in two respects. The first has already been mentioned, the descrip-
tion,weight/threshold structure. Depending on the relation between
the threshold and the description weights, one, all, or various
combinations of descriptors may "fire" a characterizer.

A second way in which HPIL exhibits flexibility is in the
TOLERANCE mechanism., Although our examples have not shown this,
HPL does not require an exact match between the location and size
of a descriptor and the location and size of an inctance, They
need only be closer than a certain fixed percentage, called
TOLERANCE, for a match to succeed. For example, if a desccriptor
specifies a location of (4,2) and a corresponding iunstance is

found at (4.2, 2.1), the match will still succeed.

68

2.5 Additional Items Stored in an Instance

Several items stored in an instance are part of neither the
description-set nor the implication-set. Most of them are used in
the recognition process; they will be explained in detail in the
next chapter,

The characterizer reference [NAME LoC SIZE] specifies the
characterizer name; absolute location and absolute size of the
instance,

STATUS indicates the membership of an instancé in one of
three disjoint lists, ACTIVE, WAITING and COMPLETED, used during
recognition. | |

LEVEL is a flag which is true if I is found but has no impli-

cands that are found; that is, I i¢ at the top level of the current
graph of found characterizers. LEVEL is used in the learning proc-
ess when forming new compounds and links.

Several interacting "welghts" or tallies called instance
weights, stored within an instance, are continually updated during
the recognition process. They are CUM-DWT (cumulative description
weight), REM-DWT (remaining description weiﬂht), AWT (nctive
weight), FOUNDWT (found weighit), IMPWT (implied weight) und COMPWT
(composite weight). These weights and the MATCH and IMATCH {ields
direct the recognition process, record its current state, and

determine whether an instance is found.

69

CHAPTER 5

THE RECOGNITION PROCESS

1. Introduction

The main function of the recognition process is determining
what characterizers, especially goals (patterns), are present in
the input. In so doing, it attempts to search memory efficiently
and minimize the cost of computing primitives.

Memory search proceeds both upward and downward in terms of
the g?aph representation of memory introduced in Chapter 3. Down-
ward search occurs when a non-primitive characterizer is investi-

ated, expanding its description-set into instances. Upward search
occurs when a characterizer is FOUND, cauéing the formation of
instances of its implicands. Downward and upward search correspond
to the two subprocesses of the recognition process, degscriptor-

processing and implicand-processing.

First, we shall define some important terms, then present an
overview and an example of recognition. We next give a detailed
description of implicand-processing and descriptor-processing, and

finally discuss some related issues.

1.1 Definition of Terms

The purpose of the recognition process is determining what
instances of characterizers are FOUND in the input, in particular,

what goals are FOUND. HPL also determines when instances are

70 e
definitely-not present or NOT-FOUND, for it can then stop looking
for them, Note that if an instance is not yet FOUND, it is not
necessarily NOT-FOUND, for HPL simply may not have collected
enough information to make a decision. An instance whose STATUS
has been determined as either FOUND or NOT-FOUND is called a
COMPLETED instance,

An instance of a primitive is FOUND when the feature or
property it represents is present in the input. An instance of a
non-primitive is FOUND when its cumulative description weight
(CUM-DWT) exceeds its THRESHOLD. CUM-DWT, in turn, is the sum of
the DWTs of its descriptors which have been FOUND.

An instance of a primitive is NOT-FOUND when the feature it

represents is not present in the input. A non-primitive instance
is NOT-FOUND when its remaining description weight (REM-DWT) is
less than the total addition;l description wéight needed to exceed
THRESHOLD (i.e. THRESHOLD - CUM-DWT)., REM-DWT is the sum of the
DWTs of those descriptors which have not been COMPLETED. A NOT-
FOUND instance cannot be FOUND because it cannot poszibly accumu-~
late enough additional description weight to exceed THRESHOLD.
Suppose all descriptors of instance I have been COMPLETED except
one, which has DWT = 5, hence REM~DWT = 5. If CUM-DWT is 15 units
below THRESHOQLD, there is no possibility that instance I ecan be
FOUND, for even if the remaining descriptor is later FOUND, CUM-

DWT is still 10 units below THRESHOLD.

7

2. An Overview of the Recognition Procenz

In the récognition process, two interacting subprocesses,
descriptor-processing and implicand-processing, are alternately
performed. The subprocesses operate on the ACTIVE list and the
COMPLETED list, respectively, two lists which are accumulated
during recognition. Both subprocesses can add instances to
either list.

ACTIVE is a list of all instances which have been created
but have not yet been descriptor-processed, i.e., "investigated".
Whenever a new instance is formed, it is put on ACTIVE. The order

of ACTIVE iz determined by the active weight (AWT) of each

instance composing it. The active weight of an instance is
continually updated as information about its descriptors or impli-
cands accumulates in processing the input.

COMPLETED is a list of all instances which are either FOUND
or NOT-FOUND, but have not yet been implicand-processed. It is
ordered - with respect to the VALUE of its instances.

ACTIVE and COMPLETED direct the recognition process. The
AWT of the top instance on ACTIVE is compared with the VALUE of
the top instance on COMPLETED. If t@e AWT is sufficiently large
(see Section 5), descriptor-processing will be entered; otherwise,
implicand-processing will be entered.

A third list, WAITING, is a default list of instances, After
an instance has been descriptor-processed and is removed from

ACTIVE, but before it iz COMPLETED, it ia WAITING for deuscriptors

72

to be processed.

Descriptor-processing investigates instances, computing
primitives or forming instances of descriptors of non-primitives.
Computed primitives are added to COMPLETED; néwly formed instances
of descriptors are added to ACTIVE. For non-primitives, descriptor-
processing is analogous to creating subgoals in order to achieve a
higher-level goal.'

Implicand-processing, which operates on the CQMPLETED list,

has two main concerns: updating the instance weights associated with

instances of implicands (described in Section 4) and forming new
instances of implicands where they do not already exist., After

the instance weights of an instance are updated, that instance may,

in turn, be COMPLETED.

Naming of patterns is a byproduct of the two subprocesses,
When a goal is both COMPLETED and FOUND, its name is printed and
feedback may be given.

In general, the subprocesses of the recognition process
search memory, forming instances of characterizers as they proceed.
New instances go to the ACTIVE list, COMPLETED instances to the
COMPLETED list. Implicand-processing starts from a given
COMPLETED instance and forms instances of its implicands, an
upward-moving process. There is no further upward search from an
implicand until it is also COMPLETED. HPL attempts to find descrip-

tors of an unCOMPLETED instance, by formins instances of those

73

descriptors. This is a downward-moving process, accomplished by
descriptor-processing. Eventually memory search will extend down
to the primitives, which can be computed and thus COMPLETED. The
information that a primitive is COMPLETED is sent up to its impli-
cands via the matching of MATCH and IMATCH fields and instance
weights., If an implicand is in turn COMPLETED, then that infor-

mation is fed upward to its implicands, and so forth.

3, An Example of the Recognition Process

Let us assume that goal HOUSE contains SQUARE and TRIANGLE
as descriptors and that an instance of SQUARE has just been FOUND,
That instance will be added to the COMPLETED list. If the VALUE
of SQUARE is high enough, it will be the next instance implicand-
processed. Then, instances of implicands of SQUARE, such as HOUSE,
BLOCK, and FACE, will be forﬁed ard placed on the ACTIVE list with
AWTs depending on their VALUEs, likelihoods, and COSTs. Those
instances will have MATCH fields linked to the instance of SQUARE
which caused their formation. (Similarly, SQUARE will contain
IMATCH fields linked to the new implicand instances.) If none of
the AWTs are high enough, the next instance on COMPLETED will be
implicand-processed. Suppose, however, that HOUSE has o high AWT
and that HPL switches to descriptor-processing of it.

HOUSE will be investigated. Since it is not a primitive, its

descriptors will be scanned. Its descriptor SQUARE is already

14

matched to a FOUND‘iﬁstaﬁée (in“its ﬁi&bH field), but its descrip-
tor TRIANGLE is unmatched, A new instancgwgéyTRiAﬁGLE”wiii ge
created and added to ACTIVE (and matched in the MATCH field of
SQUARE, etc.); HOUSE will be removed from the ACTIVE list and
added to the WAITING list., If its AWT is sufficiently high, then
TRIANGLE will be investigated, and instances of the straight line
primitives describing it will be formed, and so forth. Eventually,
the primitives may be FOUND. The instance weights of their impli-
cands, including TRIANGLE, will be updated, and TRIANGLE will be

FOUND. The instance weights of its implicands, including HOUSE,

will be updated, and HOUSE will be FOUND.

4, Weights Associated with an Insiance

Several weights associated with each instance, collectively

called instance weights, are continually updated during the recog-

nition process. They determine the active weight of the instance
and whether it is FOUND or NOT-FOUND. Exactly when these weights
are updated is explained in Sections 5 and 6. In general, however,
they are updated when new information is discovered. For example,
when an instance is COMPLETED, the instance weights of its impli-
cands are updated, which may in turn cause them to be COMPLETED.

We shall use the following notation: X is the instance whose
weights will be described., D' is a descriptor of X, and D is an
instance matched to D' (in the MATCH field). Similarly, I' is an

implicand of X, and I is an instance matched to I' (in the IMATCH

3
}

5

field). It is important to remember that if D' is a descriptor of
X then X is an implicand of D'. Thus we may talk about the descrip-
tion weight of D' in the description-set of X as well as the impli-
cation weight of X in the implication-set of D'.

As indicated in Section 2, the active weight (AWT) of an
instance is very important in recognition, for it determines the
order of instances on ACTIVE, which, in turn, determines the order
in which instances are descriptor-processed. Similarly, the VALUE
of an instance determines the order of instances on COMPLETED, thus
the order in which implicands are implicand-processed.

VALUE is a parameter asséciated with a characterizer name in
permanent memory, rather than an instance weight, for it does not
vary during recognition. It is a measure of the "worth" of a char-
acterizer in describing its implicands, and, ultimately, in describ-
ing goals, The VALUE of a éoal is determined by the trainer, or
else is set to 1. The VALUE of a non-goal is a function (precisely
defined in Chapter 4) of the VALUEs and IWTs of its implicands, It
is thus a reasonable quantity to use in determining when an instance
should be implicand-processed.

AWT depends on the likelihood, VALUE, and COST of an instance
and is therefore a reasonable quantity to use in determining when
an instance should be descriptor-processed, It is the product of
COMPWT, VALUE and (1 - COST ° constant). COMPWT, a measure of the
likelihood of an instance, is explained below. COST, defined in

Chapter 4, is a measure of the processing cost of an instance,

76
Q
The constant is a normalizing factor which determines the degree
to which COST affects AWT.

CUM-DWT and REM-DWT have already been discussed. CUM-DWT
(cumulative description weight) is incremented by the description
weight of D' when instance D, matched to D', is FOUND. REM~DWT
(remaining description weight) is decremented by the DWT of D!
when matching instance D is COMPLETED, whether it is FOUND or not.

FOUNDWT and IMPWT are used in computing COMPWT. FOUNDWT
(found weight), the square of CUM-DWT divided by THRESHOLD, is a
measure of how close CUM-DWT is to THRESHOLD. If X is FOUND, then
FOUNDWT is 1.0. (An alternative is the "partially found" approach

discussed in Chapter 8.)

IMPWT (implied weight), a measure of the likelihood X will
be FOUND, is composed of two factors, one depending on its FOUND
descriptors and the other on‘its WAITING implicands.

The first factor in IMPWT is obtained by adding® to IMPWT
the IWT (divided by USE to make it a provability) of X in the
implication-set of every FOUND instance D of a descriptor of X.
This is a measure of the likelihood of X given the occurrence of
its FOUND descriptors.

The second factor is obtained by adding to IMPWT the product

of the DWT of X in the description-set of each of itz WAITING

¥Rather than simple addition, the formula for combining
independent probabilities, a + b - a + b, is used, even though
probabilities are not guaranteed to be independent.

7

implicands, a normalizing constant, and the COMPWT of those impli-
cands, It reflects the subgoal/goal relationship between X and its
WAITING implicands. Because of this factor, instances of descrip-
tors of WAITING instances will have greater IMPWTs, hence greater
AWTs, and consequently greater chance of being investigated. If an
instance is COMPLETED but NOT-FOUND, this factor causes IMPWTs to
be decremented rather than incremented, decreasing the chance the
descriptors will be investigated, (IMPWT is not simply set to zero,
for an instance may be a descriptor of ﬁore than one characterizer.)
COMPWT (composite weight) is a function of FOUNDWT and IVMPWT,
lying between them in value. The greater the value of
TOT-DWT - REM-DWT, a measure of the effort exerted on this instance,
the closer COMPWT is to FOUNDWT. The lower it is, the closer COMPWT
is to IMPWT. 1In other words, the greater the effort expended on an
instance, the more COMPWT reflects FOUNDWT, i.e., what is known
about the occurrence of this instance, as determined by its FOUND
descriptors. The less effort expended, the more COMPWT reflects
IMPWT, or what other instances estimate regarding the presence of

the instance.

5. Implicand-Processing

Implicand-processing updates instance weights of implicands
of COMPLETED instances, and forms new instances of such implicands

where appropriate. Figure 5-1 shows a general flowchart of

78

1] Get the next instance X

from COMPLETED. NONE

Switchingﬁll criteria ——

2 /Is VALUE of X less than
(AWT of top ACTIVE instance) *

constant?
l YES \6

Match IMPLICATION-SET of ggggggg%‘gg‘
X against COMPLETED

instances. For every
implicand I' of X:

3/ Is 1I' already matched td;z

an instance I? / iES ‘ NIL‘ ~
NO
4 [/Does a prior instance I
already exist that matches YES
I'? /
NO B
5/Is X FOUND and IWT of I' / 50 -
sufficiently great? / C
J YES

6 | Form an instance of I and
match its DESCRIPTION-SET
against COMPLETED instances

7 lUpdate instance weights of I:}%

N
&/1s I COMPLETED? / N0 >@
4 YES

9 Add I to COMPLETED.
Ny
10 /Is I GOAL and FOUND? [MO NIL

4, YEBS
11 {Output NAME of I. Input feedback.
Change POQUNDWT of I if required.

Figure 5-1. A general flowchart of implicand-processing. e

79
implicand;processing. The numbers on the flowchart correspond to
numbers in the following discussion. In Section 7 we discuss
alternative methods fto begin the recognition process. But for now,
let us assume some instances are already on the COMPLETED list.

Implicand-processing operates on the COMPLETED list, process-—
ing each COMPLETED instance until the VALUE of the next instance is
less than the AWT (times a fixed contant) of the top ACTIVE
instance. Then HPL switches to descriptor-processing of ACTIVE.

The constant is a parameter which controls the degree of switching
between implicand-processing and descriptor-processing. If it is

0, for example, implicand-processing occurs as long as there is
anything on COMPLETED. (HPL appeared fo work best with the constant
set to 1.0.) [Boxes 1 and 2]

After an instance is implicand-processed, it is removed from
COMPLETED; an instance is imﬁlicand—prooessed only once., Similarly,
an instance is placed on ACTIVE to be descriptor-processed only
once.

The main task of implicand-processing is forming new instances
of implicands. When this occurs, memory search is extended upward.
Suppose HPL is processing implicand L' of instance X. If I' is
already matched to instance I, then nothing more is done with the
implicand. This means I has previously been descriptor-processed
at which time the match was made [Box 3]. If there is no match,

HPL determines if there is already an instance of the same NAME,

absolute location, and size (within TOLERANCE) as I'. If so, then

80

IMATCH of I' is set to I. Similarly, the corresponding MATCH
field in the description-set of I is set to X.” (HPL efficiently
handles the search for the appropriate instance. Rather than
searching through all instances, the much.shorﬁey ;istmgf
INSTANCES associated with the NAME of I' is searched.’) [Box 4]

If no prior instance is located, an insﬁgngQHQf ILMWQXWEE“_
created and added t5 ACTIVE. Swuch an instance, however, is only
formed under certain circumstances. First of all, instance X must
be FOUND. This is an important restriction, for it‘means that HPL
only investigates the imp;ications of positivé occurrences of chare
acterizers. If an instance is‘NOT—FOUND, no implications of that
fact are pursued. (HPL does, however, lower IMPWTs and AWTs of des-
criptors of a NOT-FOUND instance, as already mentioned.) Secondly,
only sufficiently likely implicands are pursued. The IWT of TI'
divided by USE must be greater than a fixed parameter [Box 5].

Determining when instances are FOUND requires updating
instance weights. Instance weights are updated on two occasions:
when an unmatched descriptor matches an instance previously
COMPLETED and when an instance already matching a descriptor has
Jjust been COMPLETED.

Whenever a new instance is formed, its description-set is
scanned to determine what deseriptors have already been COMPLETED
[Box 6}.

Instance weights of I are updated to take into accounti that

X is COMPLETED [Box 7Ja A tent is made to delermine if I io

81

COMPLETED, and if so, it is added to the COMPLETED list [Boxes 8
and 9].

If T is a goal and has been FOUND, its NAME is output.
Feedback may be given at this time. If feedback indicates the
response is wrong, the FOUNDWT of I will be set to 0, and it will
be regarded as NOT-FOUND [Boxes 10 aﬁd 11}.\ Implicand-processing
then continues with the next instance on the COMPLETED list until
HPL switches to descriptor-processing.

The following mechanism is not shown in Figure 5-~1. When-
ever an instance is COMPLETED (whether within implicand-processing
or descriptor—processing), its.implicands which are already matched
have their instance weights immediately ufdated and are tested to
determine if they too are COMPLETED. Implicand-processing, which
may be deferred because of the VALUE vs. AWT test [Box 2], only
affects implicands not already matched. Implicands already matched
are WAITING for completion of a;3criptors, and when a descriptor is
COMPLETED, the WAITING instance is immediately notified. This
mechanism prevents the updating of WAITING inétances from being

postponed indefinitely.

6. Descriptor-Procesginge

Descriptor-processing investigates instances by computing
primitives or expanding non-primitives., Figure 5-2 shows a general
flowchart of descriptor-processing.

First the termination criteria are tested (see Section 8).

82

1
Check termination // Success Terminate
criteria, / recognition
\L process

Get the next instance
X from ACTIVE.

. 3
2 [Ts X primitive? / }(Apply primitive
function to input.
4 Add X to COMPLETED -
Match description-set of list. Mark it FOUND
X against COMPLETED if function succeeded,
instances; update its otherwise, NOT-FOUND.
instance weights.

5 / Is X COMPLETED? / Add X to
COMPLETED list.

\
7 For every unmatched descrip-
tor D' of X, form an instance
D with appropriate absolute
location and size, Compute
instance weights of D. If D
is COMPLETED, add to COMPLETED
list, else add to ACTIVE list.

8

Add X to WAITING list. |

Go’to
IMPLICAND-

Figure 5-2. A gencral flowchurt of descriptor-processing.

Sl

83

If they succeed, the recognition process ends [Box 1].

If the top instance X of ACTIVE, which has the highest AWT,
is a primitive, it is computed. A primitive function succeeds or
fails, depending on whether the property is found with the speci-
fied absolute location and size (within TOLERANCE). Success means
it is FOUND, failure NOT-FOUND. In either case, the primitive
is added to COMPLETED [Boxes 2 and 3].

If X is not a primitive, its description-set is matched
against the list of COMPLETED instances to see if any descriptors
are already COMPLETED, and its instance weights are updated [Box 4].
If X is now COMPLETED, no further processing of its descriptors is
necessary, and it is added to COMPLETED [Boxes 5 and 6].

Otherwise, for every unmatched descriptor D' of X a new in-
stance D is formed with éppropriate absolute location and size.
This extends memory search downward. As with any new instance, D'
is matched against COMPLETED, and its instance weights are updated.
If D is .COMPLETED, it is added to the COMPLETED list; otherwise, it
is added to ACTIVE [Box 7].

X becomes a WAITING instance and will remain so unless it is

eventually COMPLETED [Box 8}.

7. Startine the Recognition Process

We have described how descriptor-proceasing operates on
ACTIVE and implicand-processing operates on COMPLETED. To start

the recognition process, one or more instances must initially be

84
placed on one of these two lists. Several alternatives will be
described for so doing.

(1) A fixed list of characterizers could be placed on ACTIVE
at the beginning of each frame, building-in what HPL should look
for first. Initial tests of HPL used this method. (2) A list of
characterizers could bé suggested by the trainer at the time the
pattern is input. We have not used this alternative. (3) We shall
call the following alternative "preprocessing". A fixed set of
primitives can be applied in "parallel" (i.e., without regard to
order) to the input before recognition begins. The result of this
computation is immediately placed on COMPLETED. This technique was
devised for use with LINE primitives, where it seemed particularly
appropriate (see Chapter 7). With this approach, the recognition
process cannot compute primitives efficiently, since they are all
computed initially, but it will still search memory efficiently.
(4) The most attractive alternative is to compute, before a pattern
is presented, an a priori AWT for each primitive in memory, to
order them on the initial ACTIVE list. This AWT would be computed
using the algorithm described in Section 4, except that

USE / (current frame - BIRTHDATE),

the o pricri probability of the primitive, would be used ingstead of

COMPWT, This approach, which allows HLPL to lecarn the best primi-
tives to look for Tirst, was used with submatrix primitives (see

Chapter 7).

85

8, Terminating the Recognition Process

Recognition is a sequential process in which decisions are
made about the order in which to investigate characterizers. For
this to have meaning, it must be assumed that all characterizers
will not eventually be investigated. The recognition process
should be terminated before all characterizers are investigated.
There are several alternative stopping criteria.

(1) The simplest alternative is to terminate recognition
after recognizing a pattern. But this will not work since there
may be several patterns in the input. (2) The recognition process
could be terminated by the trainer after HPL has recognized all
possible patterns and subpatterns. (3) The trainer in the previous
alternative couid be simulated, by giving a subroutine a list of all
patterns and subpatterns in the input. (4) Recognition could auto-
matically terminate after a certain amount of computer time has
elapsed. (5) Termination could occur when some funéticn of process-
ing variables exceeds a fixed limit., A function of the following
quantities might be used: the current cumulative COST of primitives
that have been computed, the number of instances created, the number
of‘loops through descriptor-processing and implicand-processing.

For non-interactive runs of HPL, a combination of alterna-

tives (3) and (4) was used., In interactive runs, (2) was used.

9. Response and Feedback

Whenever HPL finds a goal, it outputs its name, location and

86

size; therefore, it tends to produce a detailed description of a
pattern. For instance in the example of FACE in Figure 1-1(0),
HPL will output the names of the subparts of FACE, such as NOSE
and MOUTH, before it outputs FACE. An advantage of this approach
is that immediate feedback may be given to an incorrect response,
causing HPL to immediately correct its error. A misnamed sub-
pattern may be corrected, helping HPL to correctly name the pattern
containing the subpattern. (Because of the weight and threshold
structure, of course, there is already some built-in tolerance to
error.) A disadvantage, however, is that HPL may produce more
detail about a pattern than is desired. We may only wish to know

if FACE is present, not if NOSE is present.

One approach to this problem is for HPL to output only top-
level goals it has FOUND (goals with no implicands also FOUND),
rather than all goals. In oéher words, no subpatterns would be
output. If HPL were asked for more detail, it would output the
names of the next highest-level goals. However, this is not a real
solution., HPL would still find the goals in the same order; their
names would just not be output, This reflects a significant prob-
lem of most pattern recognizers, including HPL., It seems much more
reasonable that HPL should recognize FACE before it has definitely
recognized NOSE, that the whole should usually come before its
parts, or at least concurrently. Asking HPL for more detuil should
involve more recognition. We give our ideas on this problem in

Chapter 8 in discussing partially found characterizers.

87

HPL's output does not adequately represent its ability, for
HPL independently outputs each pattern name that it finds, but
does not indicate the subpattern/pattern relationships that are
actually stored in memory, If HPL recognizes a HOUSE consisting of
a TRIANGLE and SQUARE, for example, HPL will output TRIANGLE,
SQUARE and HOUSE, but will not indicate that TRIANGLE and SQUARE
are subpatterns of HOUSE, although this information was, in fact,
used in deciding that HOUSE was present. We did not include this
information as part of HPL's output, since we were closely monitor-
ing the memory structure, and hence were aware of the subpattern/
pattern relationsﬁips. An improved version of HPL, however,
should explicitly output these relationships, an easy modification
to the output routine. <

When HPL outputs a name, YBES or NO feedback may be given. If
the feedback is NO, the FOUNDWT of the goal instance is set to O,
and it is added to a list of goals incorrectly FOUND, used in the
learning process. YES is equivalent to null feedback, since
description weight adjustment of goals only occurs when a response
is wrong. .

After this feedback, or when the recognition process termi-
nates, a list of [NAME LOC SIZE] elements may be input as addi-
tional feedback, indicating patterns that should have been FOUND
but were not. If a NAME has never been precsented before, HPL [orms

a new goal node to represent it. If such a goal already exiats,

88

HPL determines if there is a prior instance of it; If not; a
new instance is formed. In either case, the goal instance is
added to COMPLETED as FOUND. It is also added to a list of goals
which should have been FOUND but were not, used in the learning

process.

CHAPTER 6

THE LEARNING PROCESS

1. Introduction

We believe HPL's memory structure is theoretically powerful
(and even more so with extensions described in Chapters 8 and 9).
The practical performance of HPL, however, depends on how much it
can learn. Here we discuss our approach to learning.

The learning process uses the information accumulated during
recognition within COMPLETED instances, It COnéists of several
subprocesses: weight adjustmenf, addition and deletion of descrip-
tors, and compound formation and evaluation. Wéight adjustment is
the most straightforward of the subprocesses, since it changes
weights of links that already exist. The other subprocesses change
the structure of memory. The subprocesses are tentative,vfirst-
step learning mechanisms. At this point, we feel that the enumer-
ation of the subprocesses is as important as the techniques used to
implement them.

Before discussing the subprocesses, we shall explain the
significance of compounds. This explanation was deferred until the

recognition process had been described.

2. The Siernificaonce of Compounds

N
i

HPL can recognize patterns without using compounds, since

nothing in the recognition process requiren them. The learning

-

90 ‘%'

process requires compounds only in those oubprocesses thut exist
for their creation and evaluation. Nevertheless, compounds are

important and will be explained in the next few sections,

2.1 Conditional Probabilities and Compounds

Figure 6-1(a) shows two goals with primitives as descriptors.
Suppose P1 has been FOUND. HPL must decide what primitive to
compute next. If Pr(Pi/P?)* for i # 1 were available, HPL could
choose the primitive Pi that maximized some functioﬂ of Pr(Pi/P1),
VALUE(Pi) and COST(Pi). Suppose P2 has been chosen and FOUND. A%
this point HPL cannot use‘Pr(Pi/PZ) for its next decisioﬁ but

ideally requires Pr(Pi/P1 and P2)., This "ideal" approach requires

that all possible conditional probabilities be kept, and quickly
blows up numerically. Let us proceed along a different route.
There is indirect information which might approximate
Pr(P2/P1). Pr(G1/P1) is given by IWT(G1, P1) (literally the
probability of finding some combination of primitives P1 through
P5 sufficient to exceed THRESHOLD(G1), given P1). Consider
DWT(P2, G1) as an approximation of Pr(P2/G1) (a loose interpre-~
tation of DWT. See Section 3.) It would be convenient if
Pr(P2/P1) could be retrieved as the product of Pr(G1/P1) and

Pr(P2/G1), that is, the product of IWT(G1, P1) and DWT(P2, G1),

*Pr(X/Y) i the probability of finding characterizer X given
that characterizer Y is already FOUND. Also, IWT(X,Y) is the IWT
of implicand X in churucterizer Y, DWT(X,Y) is the DWT of descrip-
tor X in charccterizer Y, VALUE(X) is the VALUE of characterizer -
X, etc. {

e G

/

\a! P2 P3 P4 PS Po P

(a) Goals represented without compounds
| G2
G

Py Pz P3 P4 P Pb P77
(b) The same goals with compounds

&) &2
Ce

<y

P >y P3 P4 PS PG 7

(¢) A compound containing a compound

v.LPf +

B P2
(d) A specific compound and patterns containing it

Figure 6-1. Some simple examples of memory with and without

compounds.

N

92 €%'

since this information is stored in memory. (HPL uses bothn 1WT
and DWT in computing the two factors of IMPWT, as explained in
the previous chapter.) Unfortunately, this in gencral 13 not
possible, for P1 and P2 may occur together in other poila tenides
G1, such as G2 shown., Computing Pr(P2/P1) would be mathenstically
complex, requiring conditional probabilities between ponla. All
potentially relevant probabilities would have to be ntored, Wao
would again have a situation that blows up numerically.,

Figure 6-1(b) shows the preceding situation with the addi-
tion of compound C1 composed of P{ and P2, Pr(C1/Pi) or
IWT(C1, P1) is the likelihood of finding C1 given P!, Since C1

is P! and P2, this probability is just Pr(P2/P1), the probubility

we were seeking. The existence of a compound thus allows the
expression of conditional probabilities between its descriptors,

So far, however, we have'only redefined ihe provlem. To express
all possible conditional relations would requirc crentines compounds
for every possible pair of characterizers. Supposc €1 contrined P3

as an additional descriptor. Pr(C1/P1) would no lor;er exaotly

represent Pr(P2/P1), but it would still better np:iroxiznte 1 than
if C1 contained even more descriptors, or it Cl daid ot cait ot
all. The more descriptors in a compound, the leo: ot fuo it

provides about individual conditional relationabiis . it tne
advantage of smaller compounds must be welihou svrae

disadvantage of producing too many compounui.

93

Compounds of compounds express some of the conditional
information needed as recognition progresses. Figure 6-1(c)
shows compound C2 with C1 and P3 as descriptors. IWT(C2, C1)
is Pr(c2/c1), which is Pr(C2/P1 and P2).

Compounds capture conditional probabilities that facili-
tate recognition. Too many compounds, however, may have the
opposite effect because of the additional processing time each
instance requires. The question of exactly when compounds are
formed is discussed in Section 5. HPL forms a small number of
compounds containing several descriptors to try to express the

most commonly occurring relationships.

2.2 Compounds and Allocation of Effort

Compounds, in the long run, should reduce the number of
instances formed during recognition. Suppose P! has been FOUND.
Without compounds, as in Figure 6—1(3), instances of both G1 and
G2 may be formed; HPL may consider both G! and G2 as tentative
input patterns., In Figure 6~1(b) if P! is FOUND, only C!1 will be
considered; an instance of it will be formed. If C1 should be .
FOUND, then G1 and G2 will be considered. (In the short run,
however, before HPL has decided which compounds are good and
which should be discarded, more instances may be formed than are
necessary.)

G1 in Figure 6-1(a) contains a larger number of descriptors

94

than G1 in Figure'6—1(b%7”consequently, G1's processing COST is
greater than Cl's, Investigating G1 involves a greater commit-
ment of effort than investigating C1 (although the recognition
process attempts to handle this commitment efficiently). Com-
pounds break up larger units (goals) into smaller units, allowing
HPL to move in smaller steps with more reliable information about
its progress at each step (through success or failure of com-
pounds).

Figure 6-1(d) shows a simple example of compound C!1 composed
of vertiéal line P1 and horizontal line P2 (ignoring location'and
size for simplicity), and several named patterns which contain the

compound, Suppose P1 has been FOUND and that it is a part of a

great many different patterns in‘addition to the ones shown con-
taining C1. It is advantageous to determine whether P2 is present,
for if it is, it narrows the range of possible patterns. The
existence of C1 makes it easier for HPL to determine that P2 is

worth early investigation.

2.3 Compounds May Be (Good Characterizers

Compounds may make "better" characterizers than the individ-
ual descriptors composing them; that is, some combination of
features may be better than the individual features themselves.'
In Figure 6-1(d), knowing that a vertical line (P1) or a hori-

zontal line (P2) occurred may be much less important than knowing

95

that they both occurred at the same time and place in the input
(01). Obviously, if HPL is to evaluate compounds according to
their worth in describing patterns, something more quantitative
than this is necessary. The VALUE of a characterizer is our meas—
ure of its worth. A characterizer's VALUE (preéisely defined in
Chapter 4) is a function of its DWT in characterizers where it is

a descriptor and the likelihood of those characterizers as given by

IWT. HPL tries to create compounds that will have high VALUE.

2.4 Compounds Provide Plexibility

We have already discussed how weighted links and thresholds
add flexibility in determining the presence of a characterizer.
Compounds allow for many flexible nodes in describing a goal,
rather than just the single node of the goal itself, for each com-

pound contains weighted links and a threshold.

2.5 Compounds versus Goals

In Figure 6-1(d), compound C1 might be a representation of the
letter L. Why is C! a compound and not a goal? Compounds are
formed for reasons "internal" to HPL, namely, the mechanism of
compound formation. A compound may happen to correspond to some-
thing we choose to call a pattern. A goal characterizer would
represent that pattern. There is nothing to prevent that compound
from being a descriptor of the goal; it migcht even be the only

descriptor. Thus there is no loss of generality in not assigning

96

pattern names to compounds. To reiterate: compounds are formed

for internal reasons, goals for external reasons.

3. Inductive Weight Adjustiment

Weight adjustment ,is the most straightforward subprocess of
the learning process.

Implication weights of implicands of instance X represent the
likelihood of finding implicands, given that X has been FOUND. Sup=-
pose instance X is FOUND. Every implicand of X whiéh has a match
(in the IMATCH field) to a FOUND instance has its IWT incremented by
1; otherwise, there is no change in IWT. By updating USE of X by 1
whenever X if FOUND, IWT / USE gives the desired probability.

For goals, adjustment of description weights is similar to
that used in many learning pattern recognition programs. DWTs
are adjusted only when an error is made: either HPL has made an
incorrect response or has not named a goal which should have been
named. In the first case, DWTs of descriptors matching FOUND
instances (in the MATCH field) are decremented by 1 and those
matching instances not FOUND are incremented by 1. This negatively
reinforces the links that caused the incorrect response., In
the second case,.DWTs of FOUND descriptors are incremented and
other descriptors decremented. This positively reinforces the
links that produced the desired response. There ure many possible
variations of this technique [See Uhr, 1973]. One variation which

might increase the learning rate would vary the weight

97

adjustment increment by the magnitude of the error., A measure
of the error would be given by the difference between CUﬁ—DWT of
the instance and THRESHOLD.

Compounds are more problematic than goals., External feed-
back indicates if a goal is actually FOUND, whether or not its
description-set has exceeded THRESHOLD. Thére is no such exter-
nal evidence for compounds, and so it is illogical to say
that a compound which ﬁas been FOUND is wrong, that is, has not
really been FOUND. Our learning technique reweights FOUND com-—
pounds. For any FOUND compound, if a descriptor is FOUND its DWT
is incremented by 1 (up to some maximum); otherwise, it is decre-
mented by 1. The THRESHOLD of the compound is also recomputed to
reflect the new total description weight; it is set at some fixed
fraction of TOT-DWT, in most of our tests 2 of TOT-DWT. Our
intention is to perturb the description of the compound slightly
in the hope of increasing its VALUE.

Beasause reweighting is slightly different for compounds and
goals, the meaning of the description weight is somewhat different.
For compounds, the DWT reflects the relative frequency of occur-
rence of descriptors. For goals, wh%re reweighting only occurs on
an incorrect’response, it is more accurate to say that DWT
reflects the‘"importance" of the descriptor in describing the
goal, We would prefer a more uniform treatment of compounds and

goals,

98

4. Adding and Deleting Links

In this sectiogﬁwe discuss mechanisms to structurally
modify characterizers by adding and deleting links (descrip-
tors and implicands). Because of the relationship between
descriptors and implicands previously explained, when descriptor
D is deleted from (or added to) the description-set of charac-
terizer X, the implicand corresponding to X in the implication-set
of D is also deleted (or added). The purpose of adding and
deleting links is to make small perturbations in the memory
structure in order to search for better characterizers.

The mechanism for deleting links is gquite simple, When a

description weight reaches zero, the descriptor is deleted from

the characterizer. (Even here, there are other alternatives,
DWTs could be allowed to decrease below zero. Finding a descrip-
tor with a negative DWT would'suggest the non-presence of the
characterizer it is part of; however, it would still be desirable
to remove descriptors whose DWT is zero over the loug run., We
further discuss negative DWTs in Chapler 9.)

There are two cases where links may be udded to a charac-
terizer. When & new compound is formed, implication links will
be added to those characterizers in its description-set, This
is & natural concequence of compound formation and iz discussed
in the next section. The other cwuge occurs when a new link i1s
formed between a charucterizer and a goal; that is, a new descrip-

tor is added to the description-set of a goal. Although severnl

99

for simplicity new lirnks

goals may be present in a scene, are

formed with only one particular goal during a frame, eithepr tpe last

ame submitted as feedback,

name output by HPL or the last 1 Thig

name is assumed to be the overall name of the scene. Witp , single

rn name. If there is no over

pattern, this is just the patte all name,
then this process will not occur. Any top level characteriger (a
characterizer that is not a descriptor of any other characterizep

also FOUND) which has been FQUND and is not already a descriptop of
the goal will be made a descriptor. This technique may add jppeye-

vant descriptors; we argue that weight adjustment will take care of

y downweighting them +o zZero,

such characterizers by eventuall ‘When

a new descriptor is added to a goal, its THRESHOLD is incrementeq

by the initial description weight, 2 fixed constant.

5. Comvounds: Their Formation and Evaluation

Ideally, HPL should proflipately form compounds from nearly any

instance in the COMPLETED list, for it can never be known jp advance

which are the "valuable" compounrdS. Weight adjustment ang cempound

evaluation would eventually wecd out the many bad compounds,

14 be excessively wasteful or

Practically, this approach wou. computer

time. We selected some criterin 'hat would reduce the numpe.. of
compounds but not be overly resirictive.

A new compound is formed fyrom instances that are FOLﬁED, top
level, not members of ITM, and:uaficiently close together, Any

100

potential compound meeting those criteria will be created., A
new compound must have more than one but less than six descrip-
tors. The size limit and criterion for "sufficiently close
together" are fixed parameters.

Requiring that instances be close together might seem
unduly restrictive, The subroutine which determines if two
instances are close enough together compares their associated
rectangles tb see if they touch at any point, plus or minus a
fixed tolerange. In general, higher-level characterizers have
larger associated rectangles than lower-level ones, since their
associated rectangles include the associated rectangles‘of their

descriptors. Therefore as higher-level compounds are formed,

they cover more and more area. In other words, a compound is a
local collection of co-occurring characterizers, but local
relative to its associated rgctangle.

When a compound is created, it is added to ITM, the tempor-
ary storage area fo£ compounds, and the appropriate descriptor
and implicand links are formed. The THRESHOLD of the new com—
pound is initially set at % of the TOT-DWT of its description-
set.

At a fixed age, a compound is evaluated. After evaluation,
it is removed from ITM and either discarded or added to LTM. ITM
and compound evaluation constitute a filtering process that weeds

out the possibly large number of bad compounds. Once ézoompound is

101

added to LTM, it remains there permanently. (If HPL were given
many different patterns so that LIM became very large, it might
also be necessary to monitor LTM, discarding rarely used charac-
terizers.)
Several quantities might be used to evaluate compounds,

but they are not all incependent. For example, VALUE, or VALUE,
COST, and probability, or USE vs, AGE, might be used. USE, the
number of times the compound has‘been FOUND, depends not only on
Whether the compound could theoretically be FOUND, but if it was
actually accessed from memory, investigated, and FOUND. This, in
turn, depends on the factors that enter into the AWT computation,
its VALUE, COST, and so forth, We chose to discard a compound if

its VALUE did not exceed the maximum VALJUE of its descriptors.

LT 102

CHAPTER 7

EXAMPLES OF PATTERN RECOGNITION BY HPL

1. The Choice of Primitives

In this chapter, we shall demonstrate the present recog~
nition ability of HPL, giving as examples patterns recognized
in computer runs. More advanced recognition ability with
modifications to HPL is discussed in Chapter 8.

HPL accepts primitives of the form: [NAME LoC SIZE]o The
primitives compute functiops either FOUND or NOT-FOUND ;n the

input,

Three types of primitives have been used-~letters, submatrices,

and lines. Most runs have used the latter to reduce computing
costs. In this section, we discuss the three types of primi-
tives. Several pattern recognition problems handled by HPL are

explained in later sections.

1.1 Letter Primiﬁives

For initial debugging of HPL, primitives of the form
[LETTER-A LOC SIZE], [LETTER-B...], etc., were used. If HPL
requested the computing of primitive LETTER-A at (4,0), an "A"
would be looked for in the input at (4,0) as a primitive (i.e.,
not in terms of its components). Inputs were one-dimensional

strings of letters up to some fixed maximum length. All letters

103

were the same size, and so the SIZE parameter was in effect
ignored. A typical meﬁory structure built up from letter primi-
tives is shown in Figure 7—1(a).

More realistically, letters are not primitives but higher-
level characterizers composed of lower-level primitives. Using
lower-level primitives, the same structure as the one shown in
Figure 7-1(a) could be built up, except that the graph would ex-
tend below the nodes representing the letteré, to describe their
more detailed structure., PFor example, LETTER-A might be described
in terms of more basic strokes, as in Figure 7—1(b). This
suggests that the distinction between a primitive and a non-
primitive is a decision as to the level at which to build in
basic functions. HPL's structure treats primitives and non-
primitives in a unified manner, except that primitives are computed
and non-primitives are "investigated".

We shall not further discuss this simplest kind of primitive.

1,2 Submatrix Primitives

When using submatrix primitives, the input scene is in the
form of an M x N matrix of O or 1 cells. A submatrix primitive is
a fixed template specified as an m x n submatrix of 0 or 1 cells,
where m and n are less than M and N. Figure 7-2(3) shows several
submatrices. The submatrix is compared cell by cell with an m x n
part of the input; if they are identical, the primitive succeeds.

The 4 x 4 submatrices shown in Figure 7—2(&) were used to

¢ at LOCY 104

"WORD-CAT"

G2 at LOCH
"WORD-CAR"

LETTER-C) LETTER-A - LETTER-T - LETTER=-R
at LOCY at LOC2 at LOC3 at LOC3

(a) 4 typical memory structure built up from letter primitives

LETTER-A

.(b) A letter described in terms of lower level primitives

Figure 7-1, Letters used as primitives.

105

ololi|o ololo]e olojol/ 11ololo
ool o ojolojo ololllo olilolo
ololi o N aNANS olilolo ololjjo
ololt|O ojololo /lelolo olo|o} t
P1 P2 P3 P4
ailicio olojolo olololo olo|llo
ol/lclo olfle| il7)1lo olol/lo
Ool/i/il/ ol jvlo olo|t|o tillr]o
olojo|o oif Bl olol /1o olelo|o
P5 P6 P7 P8
(a) 4 x 4 submatrices used by HPL
SQUARE PLUS TRIANGLE WEDGE L-BLOCK

(b) Patterns recognized with primitives P1 through P8

Figure 7-2. Pattern recognition using submatrix primitives.

106
recognize the patterns in Figure 7-2(b), which were input as

10 x 10 matrices. Thé'patterns were recognized correctly after

one learning trial.

Submatrices are used as follows: Suppose [P1 (2,3) 1,] is
to be computed. At location TZjB)‘in the input, an exact template
match between P1 and the input is sought. If such a match is not
found, a similar comparison between P! and the input will be made
for each location within a neighborhood (%2) of (2,3), because of
the TOLERANCE parameter. If a match succeeds at any location in
the neighborhqu, P1 is FOUND; otherwise, it is NOT-FOUND.

Although not illustrated in Figure 7-2, submatrices of
various dimensions may be used at the same time. TFor example, P1
could be 6 x 3 and P2 47x S;A However, the SIZE parameter currently
serves no useful purpose with submatrices, for any particular
submatrix has only one fixed éize, determined by its dimensions,
(In Chapter 9 we discuss the use of a coarse and fine grid
representation of the input, giving meaning to SIZE with sub-
matrices.)

There are many ways in which submatrices can be made more
powerful, for example, permitting a 90% match rather than a per-
fect match, or allowing a -1 submatrix cell to indicate that the
cell should be ignored in the matching process. However, the
well-formed patterns of Figure 7-2 did not require more sophisti-

cated techniques. Because the LISP system we used was somewhat

107
inefficient in performing matrix operations*, most patterns were
recognized using the less expensive LINE primitives, rather than
submatrices. Our main intent in using submatrices was to demon-
strate that it could actually be done, showiﬁg that HPL is indeed

independent of the primitives used.

1.3 LINE Primitives

LINE primitives have characterizer names of the form LINE-i,
where 1 is an integer between 0 and 7 designating the discrete
slope of the line. Figure 7—3(a) shows the slope corresponding
to each integer. An integer represents any slope within a fixed
range; for example, LINE-O is a line which meets the X axis at an
angle between i11%p. A line is designated [LINE—i LOC SIZE],
where LOC and SIZE determine the position of the associated rec-
tangle surrounding the line, as previously explained.

The input scene was presented as a list of verfices, each
named by a letter of the alphabet for convenient inputting, the
X,Y coordinates of the vertex, and a list of those vertices
connected to it by a straight line. Figure 7—3(b) shows the
representation of a triangle in this format. We assume that a
preprocessor, for example, a line-following routine, could convert
a simple line drawing into that format (an assumption also made

by Guzman [1968]). This input format is converted into a set of

*Qur LISP cystem lacks an ARRAY feature. See Chapter 9 for a
discussion of computer language facilities we would like to have
available.,

108

e o . e 4

associated

TRIANGLE

[[a0.0. (3,0)], [B 4, 0. (4,0)], [c2. 2. (4,B)]]

INITIAL INPUT FORMAT

[[LInE-0 (0.,0.) 4.0], [LINE-5 (2.,0,) 2.0], [LINE-3 (0.,0.) 2.0]]
PREPROCESSED PATTERN: a list of instances

(b) A triangle, its representation in the initial input format,
‘and its preprocessed representation,

Figure 7-3, An example using LINE primitives,

109

instances of the form [LINE-i LOC SIZE], which are placed direct-
ly on the COMPLETED list. HPL never accesses

the initial input format directly. Figure 7-3(b) also shows the
preprocessed LINE-i primitives corresponding to the initial input
representation. LINE primitives are preprocessed because a hypo-
thetical line-following routine would normally output all lines

it found in a certain region, rather than determining if there
were a specific line of a particular slope and size at a certain

location.,

1.4 The Relationship between ﬁINE and Submatrix Primitives

Most computer runs of HPL have used LINE primitives rather
than submatrices for efficiency, as already stated. We have also
indicated that HPL is independent of the primitives used. Cer-
tainly, recognition may be more accurate or more efficient with
some types of primitives than with others, and this may be a
function of the patterns being recognized, but this does not
affect HPL's structure. Similarly,-the recognition examples
presented below are to some degree independent of the primitives
used, despite the fact that LINE primitives were used with all of
them. Some primitives might be more appropriaté with certain
pattern types than others, but the general part/whole pattern
relationships reflected in the memory structure is not dependent
on the type of primitive. In this section, we discuss the

relation between LINE primitives and submatrices.

110 'E.

Submatrices are more general than LINE primitives, for a sub-
matrix of any configuration of O's and 1's may be used, each a
template for a different shape. Submatrices are amenable to
learning, as well; for example, a novel submatrix that appears in
an input may be added to the repertoire of primitives (as in Uhr
and Vossler[1961]). The advantages of submatrices are counter-—

balanced by the large number of possible submatrices, many of which

are of little value. A LINE primitive is a more specific, "higher-
level” primitive than a submatrix. (In Chapter 8, we discuss other
higher—lével primitives that might be used,) A higher-level primi-
tive is a particular function the program designer considers impor-

tant in recognition. This eliminates the potentially costly search

for guod lower-level primitives, but requires reliable intuitions
in choosing good primitives.

Some higher-level primitives may be built up or at least
approximated by lower-level primitives. LINE primitives might be
approximated by submatrices representing straight lines of each
discrete slope, as in Figure 7-2(a), where submatrices P1 to P4
represent straight line segments of Oo, 450, 900, and 1350 angles
with respect to the X-axis. Such primitives do not duplicate LINE
primitives, which indicate where lines begin and end, and whose
length may exceéd the size of a submatrix. Submatrices represent-
ing various vertices, such as P5 to P8 in Figure 7-2(a), indicate
line endpoints, as well as give information about the type of

endpoint. In other words, to exactly represent a LINE instance o,

o

T

may require many submatrix inctanceg. (Representing a LINE in
terms of submatrices is analogous to representing letters in
terms of LINEs, rather than as primitives themselves, as in
Section 1.1.)

It is easy to think of higher-level primitives that could not
easily be approximated by submatrices, such as a primitive that
computes the number of straight lines in a pattern.

In order to recognize more realistic patterns than is
currently possible, the generality of lower-level primitives such
as submatrices may be essential, Higher-level primitives can
probably be written which work effectively on idealized patterns,
yielding more immediate results than long computer runs attempting
to discover good submatrices. As to the value of using idealized
patterns at all, we believe that important issues, such as the
recognition of subpattern/pattern relationships and the question of
context, may be investigated with highly simplified patterns of the

kind HPL recognizes.

2., Simple Pattern Recognition

Figure 7-4(a) shows a set of simple patterns recognized
correctly after one learning trial with LINE primitives. These
patterns are "simple" because they do not contain any patterns
as subparts. When a pattern is recognized, its NAME, LOCation,
and SIZE are output.

Figure 7-4(b) shows the memory representation of the goal

112

SQUARE RECTANGLE1 RECTANGLE2 1-BLOCK PLUS

TRIANGLE1 - TRIANGLE2 =~ TRIANGLE3 CHAIR1Y CHAIR2 TABLE ﬁ—I

(a) Simple patterns recognized by HPL

Description-set of SQUARE: THRESEOLD = 30
[[(LINE-4 (1. 0.) 0.1) 5 (LINE-O0 (0. 1.) 1.0) 5],
(LINE-4 (0. 0.) 0.1) 5 (LINE-O (0. 0.) 1.0) 5

(c1 (0. 0.)0.1) 5] [(c2 (o. 1.) 1,0) 5]]

Description-set of C1: THRESHOLD = 15
[[(11nE-4 (0. 0.) 1. .0) 10], [(zINE-0 (0. 0.) 10.) 10]]
Implication~-set of C1: USE = 12, VALUE = 0,60
[[(PLUS (~1,0 -1 o) 20. o) 2], [(1-BLOCK (1.0 -1,0) 13.3) 2],
(L-BLOCK (o 0.) 10.0) 2], [(LHAIR1 (0. -1. o; 10, o; 2],
[(TRIANGLE3 (0. o.) 10.0) 2], [(squage (0. 0.) 10.0) 2

Description~set of C2: THRESHOLD =15
[[(LinE-0 (0. 0.) 1.0) 10], [(LINE-4 (1.0 -1 .0) 0.1) 10]

) Implication-set of C2: USE = 8, VALUE = 0,57
[k(PLUu (0. -1.0) 2.0) 2], [(CHAIR1 (0. -1.0) 1 .0) 2]
(cHAIR2 (O. aw.o) 1.0) 2], [(SQuaRE (0. -1.0) 1.0) 2j

(b) Memory representation of SQUARE and two compounds

Figure 7-4., Simple patterns recognized with LINE primitives.

113
characterizer SQUARE after HPL had been presented each pattern
twice. Also shown are the characterizers representing compounds
C1 and C2, descriptors of SQUARE. Each compound, in turﬁ, has two

LINE primitive descriptors.

%. The Representation of a Pattern

Three patterns in Figure 7-4(a) were given pattern names
TRIANGLE1, TRIANGLE2, and TRIANGLE3. Why Qere they not all given
the same name, TRIANGLE? They can be, but only indirectly through
explicit training.

First we must describe what HPL will recognize as an example

of TRIANGLE1. Ignoring compounds (which would complicate but not

substantially change the situation), the description-set of
TRIANGLE1 would be represented as shown in Figure 7-5(a). Because
of the TOLERANCE factor, any bf the triangles in Figure 7—5(b) will
be recognized as TRIANGLE!. (Note that one pattern is not even
connected, since LINE primitives do not test for cohnectedness.)
Each LINE instance individually matches the appropriate descriptor
in the description-set of TRIANGLE!1 within the TOLERANCE. Suppose
now that the three triangles which we.have called TRIANGLE1, etc.,
were each presented to HPL as an example of TRIANGLE but were not
named individually. The description-gei of TRIANGLE shown in
Figure 7-5(c) would result. The characterizers that would have
been separate descriptors of TRIANGLE1, etc., are now all deacrip-

@ tors of TRIANGLE. After sutficient weight adjustment, an

[[Live-o (0. 0.)], [LINE-3 (0. 0.)], [LINE-5 (0.5 0.)]]

(a) Description-set of TRIANGLE! (SIZE and DWT have been ignored
for clarity) :

AAAN

(b) Several patterns which will all be recognized as examples
of TRIANGLE1

Possible description-set of TRIANGLE, assuming each DWT = 5, and

THRESHOLD = 15:

[[ziNB-0 (0. 0.)], [LINE-3 (0. 0.)] [1INE-5 (0.5 O, .
LINE-2 (0. 0.)], [LINE-6 (0.5 0.)], [LINE~4 (0. 0.)],
LINE-6 (0, 0,)]]

(c¢) & possible description-set for TRIANGLE when TRIANGLE!, ete.,
have not been learned separately

(d) A composite nonsense pattern which will satisy the above
description-set

[[TRIANGLE1 (0. 0.)], [TRIANGLE2 (0. 0.)] [TRIANGLE3 (0. 0.)]]

(e) Description-set of TRIANGLE when TRIANGLEY{, etc. have been
previously learned

Figure 7-5. Various ways of describing a triangle.

114

115

occurrence of any of the triangles would cnuse the THRESIHOLD to
be exceeded and TRIANGLE recognized, as desired. Unfortunately,
a nonsense shape, such as in Figure 7—5(d), containing enough
descriptors to exceed THRESHOLD, would also be recognized as
TRIANGLE.

We have approached the problem by first teaching HPL as
separate patterns TRIANGLET, TRIANGLE2, and TRIANGLE3. Then when
one of these patternshis recognized, HPL is given feedback that
TRIANGLE is present. This produces the goal TRIANGLE shown in
Figure 7-5(e), which contains goals TRIANGLE1, etc., as descrip-
tors. In effect, TRIANGLE is éesdribed as a disjunctive concept
whose instances are TRIANGLE!, etc.

It would be desirable if HPL could decide, without feedback,
to form compounds of dissimilar instances of a pattern concept.
Then, TRIANGLE!1, TRIANGLEZ2, etc., would be represented as compounds
describing the goal TRIANGLE, rather than as goals themselves,
HPL's compound formation mechanism is a step in this direction,
but a more powerful algorithm is probably needed.

Teaching TRIANGLE! as an instance of TRIANGLE illustrates a
simple class-forming ability inherent in HPL's structure.

Suppose HPL has learned HOUSE, BARN, STORE, etc. HPL can then be
taught that each such pattern is a BUILDING. If HPL has learned
individual letters of the alphabet, cach letter can be taught as

an example of the pattern class ALPHABET-LETTER. Once a .class

116
o

name has been learned, it may be used as a descriptor of other
patterns. For example, HOUSE can be defined as TRIANGLE and

SQUARE, rather than the more specific TRIANGLE! and SQUARE.

4. Recognition of Complex Patterns

Figure 7-6(a) shows a set of "complex" patterns successfully
recognized by HPL, which contain other patterns as subparts. The

subparts are also recognized. HOUSE, for example, contains sub-

patterns SQUARE and TRIANGLE. 1In attempting to recognize HOUSE,
HPL will.first output the names SQUARE and TRIANGLE, their loca=-
tions and sizes, and then HOUSE, its location and size.

A subpattern/pattern relationship between goals G1 and G is

represented in memory by a downward path from G to Gi. Usually,

G1 is a descriptor of G, as in the description-sets of HOUSE and
ARCH shown in Figure 7-6(b).

There is no theoretical limit in HPL on the complexity of
patterns that can be'recognized, for example, subpatterns of sub-
patterns of patterns. Practically, of course, the more compléex
the pattern, the greater the time required for recognition, For
this reason, we have only used patterns of sufficient complexity
to demonstrate HPL's ability. It is important to realize, however,
that there is no fundamental difference betwecn recognizing a
TOWER composed of three ARCHes, and recognizing a single ARCH
composed of three RECTANGLEs (as in Figure 7-6(a)). |

In teaching HPL complex patterns, subpatterns need not be

“-RECTANGLE1

&~ TRIANGLE []
“-RECTANGLE2 [:]
“-SQUARE AN
ARCH

HOUSE FACE

TELEVISTON BARBELL FISH

(a) Complex patterns recognized by HFL

Description-set of HOUSE: ‘
[[square (0. 0.) 1.0], [TRIANGLE (0. 1.) 1.]]

Description-set of ARCH:
[[rEcTANGLE2 (0. 0.) 1.0], [RECTANGLE2 (3. 0.) 1.0],

[RECTANGLET (0. 4.) 1.0]]

(b) Description-sets of HOUSE and ARCH (ignoring DWTs)

Pigure 7-6, "Complex" patterns recognized by HPL with LINE
primitives.

118

learned before the whole pattern is learned, For example, HOUSE
in Figure 7-6(a) can be learned before TRIANGLE and SQUARE have
been learned. The description-set of HOUSE will then contain
only LINE primitives and compounds. Suppose HOUSE is learned,
and then TRIANGLE and SQUARE are taught. Then the next time
HOUSE is presented as aupattern, SQUARE and TRIANGLE will also be
recognized, but not.as subpatterns of HOUSE. The link-forming
algorithm will then add the goals representing SQUARE and TRIANGLE
to the description-set of HOUSE. The new information that SQUARE
and TRIANGLE are subpatterns of HOUSE is integrated into the
existing knowledge about HOUSE..

In recognizing FACE, shown in Figure 7-6(a), HPL also recog-
nizes subpatterns SQUARE and TRIANGLE. SQUARE represents EYE,
TRIANGLE is NOSE, and the straight line is MOUTH. However, we do
not want HPL to output EYE when any SQUARE is recognized, but only
when the particular SQUAREs in FACE are recognized. This is the
context problem. Note that FACE will be recognized successfully
with SQUARE aiding that recognition. The\context problem is that
SQUARE should therefore be recognized now as EYE. A modification
of HPL to handle this problem is discussed in Chapter 8. An uncon-
vineing temporary solution would require that EYE contain details
allowing it to beKdifferentiated from SQUARE regardless of whether

FACE was also recognized.

19

5. Scene Analvgis

Figure 7-7(a) shows some simple "scenes" recognized by HPL.
Recognition of scenes is identical to recognition of complex
patterns; memory structures are identical. Each pattern and sub-
pattern name is output, along with its location and size. For
example, in the scene containing several SQUAREs of different
sizes, HPL outputs the name of each SQUARE, its location, and
size. A scene may be given an overall name, such as DINING-ROOM.
Figure 7-7(b) shows the memory representation of DINING~ROOM.

We do not believe there should be a distinction between
scene analysis and recognition of complex patterns. It is diffi-
cult, in fact, to define what differentiates scene analysis from
complex pattern recognition or what processes might be more
applicable to one than to the other. They both contain the
part/whole relationships that HPL deals with. For example,
recognition of a nose-like object may suggest a face, which in
turn suggests eyes, mouth, etc., in the same way that recognition
of a couch may suggest a living room, which in turn suggests a
lamp, a chair, and so forth. One might argue that scene analysis
should involve recognition of global features; this is probably
true, but would seem to apply as much to object recognition. (We

discuss "general to specific" recognition in Chapter 9.)

6., Overlappinge Patterns

Figure 7-8(a) shows a simple example of overlapping patterns.

2o @

CHAIR1 TABLE CHAIR2
v ¢ ¢

DINING-ROOM e - SUBDIVISION

[0 oL
]

TV-ON-TABLE

(a) Scenes recognized by HPL

[[caairt (1. 0.) 0.8], [TaBLE (1.5 0.) 1.0], [CHAIR2 (5.0 0.) 0.8]]

(b) Description-set of DINING-ROOM scene

- Pigure 7-7. Scene recognition.

Y
3

G
S

121
Whether the scene will be recognized as two SQUAREs depends on how
primitives are computed. LINE primitives assume the input has
been preprocessed by a line-following mechanism., Depending on
its design, that mechanism might find one line between A and D,

or two lines, one between A and I and one between I and D. In

~terms of LINE primitives, this is a question of how we input the

pattern, including or ignoring vertices I and J. In terms of
submatrices, it is a question of whether a primitive such as P1
in Figure 7-8(b) superimposed on line EF with I in between will
be FOUND or not. As implemented, it would not be FOUND, but one
could easily define a submatrix such as P2, in which -1 cells
were ignored, that would be FOUND. T

Should line AD be considered one line or two? Nothing in
HPL requires choosing between the two alternatives., For example,
the pattern can be presented in the input format so that lines AD,
AI, and ID will all be FOUND. Then both SQUAREs will be recog-
nized, as well as rectangle IDJF. In other words, overlapping
patterns pose no problem to HPL, as long as all necessary primi-
tives are FOUND, and the simplest way to accomplish that is to
allow all possible interpretations of the input.

It is much easier to recognize overlapping patterns, however,
than it is to recognize occluded patterns, as in Figure 7-8(c),

discussed in Chapter 8.

o 1,

122

B c
Olojt]o ==t {1 |~f
J & Ojoil]o =V i=t]t |=
OOIO -—-!—'I__‘
AT v ofolifo MEInE
P1 P2
E H
(a) Overlapping squares (b) Two variants of (c) Occluded
(Letters identifying a submatrix squares
intersections are not primitive

part of the scene.)

Figure 7-8. Overlapping patterns.

X
/

L 1]

Figure 7-9. The needle in the haystack: find all occurrences
of TRIANGLE in the scene.

]

123

L. Attending to a Pattern: The Needle in the Haystack

In the "needle in the haystack" problem, HPL is instructed
to find all occurrences of a specified pattern within the input
scene. For example, HPL successfully found the TEIANGLE in
Figure 7-9. HPL easily handles this problenm by use of
the VALUE parameter of characterizers. Normally, all goals are
given the same VALUE, 1.0, Here, the desired goal is given a
higher VALUE, such as 10. The VALUEs of all descriptors of the
goal, and their descriptors, etc., are then recomputed, since
they depend on the VALUE of the goal; Since the active weight
depends on VALUE, the recognition algorithm is biased in the
desired direction; the greater the new VALUE, the greater the
bias. In nther words, HPL will give the desired pattern the
most attention. The VALUE of more than one goal can of course
be changed as well. Hence, HPL can be asked to find some set of
patterns.

In the same mammer, HPL can look for a desired pattern
¢lass. If letters of the alphabet were also taught as examples
of pattern class LETTER (as discussed in Section 3), and numerals
taught as examples of pattern class N?MERAL, then recognition
could be biased toward recognizing LETTERs or NUMERALs. Similarly,
in a "robot" or "simulated organism" framework, recognition could
be biased to attend to patterns of class GEOMETRIC-SOLID or
ANIMAL.

A frequently cited example of human pattern recognition

124

.beyond the ability of mechanical pattern recognition is the

"face in the crowd". Someone looking at.a large group of faces
may suddenly recognize one person in the crowd. Note that the
needle in the haystack problem is not the same as the face in

the crowd problem, The former directs recognition toward a
particular pattern; the latter involves recognition of an unex-
pected pattern. In fact, it is the unexpectedness of any particu-
lar face that makes the problem interesting. We discuss this

important problem in Chapter 8.

8., Evaluation of Results

HPL, successfully learned and recognized the types of pattern
shown in this chapter, usually after only one presentation of each
pattern. This validates the general structure of the memory and
learning mechanism., The compbund mechanism, however, is largely
unvalidated, since by 1ts nature it requires extended learning,
which we have avoided because of computing costs.

Since LINE primitives are assumed to be "preprocessed", it
is meaningless to ask how efficiently the recognition algorithm
would compute them. Submatrices, however, were computed serially.
After first learning the patterns in Figure 7-2, HPL recognized
them using approximately one third of the total posgible number
of primitive and location combination; all possible primitive and
locstion combinations would have been computed in a simulated

parallel program. This suggests that the recognition algorithm

125

is able to compute primitives efficientl&.

The patternz shown in Figure 7-4 were recognized after an
average of 3.9 seconds of brocessing time (.8 seconds was the
shortest time, 5.8 the longest). Although processing times are
not especlally meaningful because of the many factors involved
(the computer used, the language and its implementation, etc.),
we felt they were encouraging but larger than expected. It
appears that a large part of the processing time is spent in
creating instances, which we had not foreseen. There is a simple
mechanism that might significantly reduce this time. Rather
than creating a complete instance consisting of description-set,
implication-set, etc., as defined in Chapter 4, a much simpler
instance could be created, consisting only of the characterizer
defining the instance, [CHAR LOC SIZE], and instance weights (AWT,
FOUNDWT, etc.). A complete instance would only be created in the
comparatively infrequent case that the AWT was sufficiently large.

One might assume that the recognition time for a complex
pattern such as HOUSE would be greater than the sum of the recog-
nition times for each of its subpatterns TRIANGLE and SQUARE, when
presented alone. This was not the case. HOUSE, for example, was
recognized in approximately the same time as required to recognize
SQUARE nlone.

The reason is not hard to see, Since LINE primitives are
presented in a coded format requiring little primitive processing,

recognition times primarily reflect costs involved in memory search,

126
instance formation, etc. When HOUSE was presented, TRIANGLE was
recognized first; TRIANGLE is one of the easier patterns in HPL's

repertoire, having few descriptors in common with other patterns.,

Since few higher-level patterns containing TRIANGLE as a subpat—

tern had been learned, HOUSE was given a high active weight.
HOUSE was soon investigated and an instance of SQUARE was ~
formed with a high active weight. HPL then directly found SQUARE
at the appropriate place, and hence HOUSE.

VN¢SQUARE, when presented alone, is one 6f the more difficult
patterns for HPL, since its descriptors are common to several pat-—
terns. However, as part of HOUSE, it is more easily recognized,
for recognition proceeds from TRIANGLE to HOUSE to SQUARE, and
back +o HOUSE. HPL‘S recognition algorithm encourages such
bottom—up/top—down behavior because of its efficiency.

We tested the needle in the haystack ability as follows:
HPL was first presented the scene in Figure 7-9 without being
requested to look fof a specific pattern. After 30 seconds, recog-
nition was terminated., HPL had recognized some of the patterns in
the scene, but not TRIANGLE. Then HPL was given the same scene but
was requested to look for TRIANGLE. HPL successfully recognized
TRIANGLE after approximately 4 seconds. By giving TRIANGLE o high
VALUE, its descriptors also had high VALUEs and were given high

priority in recognition. We find these results very encouraging.

127

CHAPTER 8

EXTENSIONS OF HPL

1. Introduction

In this chapter, we discuss extensions to HPL which improve
its recognition ability. For the most part, these extensions are
not vague conjectures, but instead concrete proposals that could
be embodied in computer code. In the following chapter, we dis-
cuss less concrete extensions.

Many of the suggestions may have a quantitative rather than
qualitative effect on the type of pattern HPI, recognizes, increns-
ing the variability allowed in a pattern and the tolerance for
error. The suggestions concerning relations (Section 4) and
context (Section 5) may have more far-reaching effects, increasing

the descriptive power of memory.

2. Expanding the Structure of the Characterizer

In Chapter 4, we explained that the description-set,
implication-set and miscellaneous parameters which constitute a
characterizer are stored in memory associated with the character-
izer name. We also explained that a descriptor and implicand each

contain a characterizer reference of the form [NAME L.0C SIZE]. In

addition, an instance is identified by a characterizer reference.
In this section we shall discuss ways to expand this structure. A

characterizer reference will be considered in a more general form:

128

[NAME ARG1 ARG2...], where ARGi is an argument or attribute of the

characterizer reference. . -

2.1 Absolute and Relative Attributes

Before discussing extension of the characterizer, we should
briefly discuss the storage of relative and absolute information in
HPL's memory. Location and size are stcred in permanent memory
only as relative quantities, for the characterizer references in
descriptors and implicands have only relative arguments. 'These)
relative arguments are converted to absolute arguments stored
within instances during recognition, as described in Chapter 5.

When might absolute location have meaning in the input?

HPL's input is supplied by a trainer, who decides what aspects of
a pattern are meaningful. Suppose the trainer always presented
patterns that filled a 10 x {O region, or that a preprocessor
expanded inputs to fill a 10 x 10 region. The absolute location of
a characterizer would then be meaningful. For example, if the
LETTER-A always filled a 10 x 10 region, a submatrix Pt repre-
senting the vertex at the top of the A would succeed near the upper
middle of the input area, near (5,10). Thus, if P1 were found at
or near absolute location (5,10), LETTER-A would be a possible
input, Moreover, if P! were found at (2,4), LETTER~A would not be
a possibility, since the top part of A would not occur at such a
location.

In contrast, suppose HPL finds P1 at (2,4). Since HPL

129

assumes location is relative, it cannot rule out thenpossibility
that LETTER-A is present in the input with its top vertex at
(2,4). In not assuming absolute locatioﬁ, HPL must consider more
possibilities in the input. Conversely, preprocessing so that
absolute location is meaningful reduces the number of possibili-
ties. However, such preprocessing eliminates the ability to
determine the location of a pattern (since it always occurs in the
standard position). Similarly, it eliminates the ability to deter-
mine the size of an input (sinoe the size is also always the Same.)
HPL must be able to determine the locations and sizes of sub-
patterns in order fto recognize coéplex patterns containing sub-
pattern/pattern relationships; a simple example is a pattern con-
taining several rectangles of varying sizes and locations as sub-
patterns. Furthermore, a preprocessor cannot expand each sub-
pattern to fill the input arfay. Suppose a HOUSE consisting of a
TRIANGLE and éQUARE is input. The program cannot assume that
TRIANGLE has been expanded to fill the input, for that is impossi-
ble if HOUSE has been expanded. |
Although HPL does not store absolute location and size, it
does, when using LINE primitives, stqore absolute slope. Argu-
ments in a characterizer reference must be relative, and so
absolute slope is incorporated into memory by including it as
part of the characterizer name: LINE-i. If a LINE of slope i is
FOUND, the primitive LINE-i in memory will be accessed. Hence,

HPL assumes that absolute slope is meaningful. For exanmple,

130

suppose HPL finds a vertical line and expects a HOUSE composed of
TRIANGLE and SQUARE. HPL will consider two possibilities: the
vertical line may be the left hand “"wall" or the right ﬁand wall
of HOUSE (i.e., one of the two vertical sides of SQUARE). It
will not consider the Qossibility that the vertical line is the
floor of HOUSE lying on its side., In effect, HPL assumes the
trainer or preprocessor has oriented patterns so that absolute
slope is meaningful. As shown above, this reduces the number of
possibilities that must be considered. We felt thaf adding rela=
tive slope in addition to relative location and size would increase
the number of possibilitiés to ‘the point of making HPL too expen-
sive to test.

To summarize, absolute informstion may be meaningful, depend=-
ing on what assumptions are made about the input. If it is
meaningful, it is valuable to allow it to be stored within memory.

HPL's method of incorporating absolute slope within the NAME
of a characterizer is ad hoc and makes it awkward to add addi-
tional absolute attributes. A more unified approach should allow
each argument ARGi in the characterizer reference [NAME ARG1...]
to be either relative or absolute. Absolute slope would thus be
represented as an argument. In fact, absolute and relative slope
could both be represented as separate arguments. In Section 2.4,
we discuss associating weights with individual arguments, With
that mechanism, a characterizer reference could indicate that

absolute slope was ususlly important in a certain pattern. For

131
example, HOUSE might usually be expected in an upright position.
However, the much less likely possibility of HOUSE lying on its
side could also be entertained, with a correspondingly low active

weight.

2.2 Multi-Valued Functions

In HPL primitives are either FOUND or NOT-FOUND in the
input. With the LINE type of primitive in mind, let us examine
a new primitive called VERTEX which computes the type of vertex
or intersection of two or more lines. Vertices are places of
high information content in a ﬁattern and should therefore make
good primitives., Figure 8-1 shdws several types of vertices,
called TYPE-4, TYPE-B, etc. Suppose HPL were to look for a
TYPE-A vertex at a certain location, expressed as
[VERTEX TYPE-A LOC], where TYPE-A is an absolute argument as in
the preceding section. If there were a specific function to
compute each particular vertex type, i.e., a TYPE—A function, a
TYPE-B function, and so forth, then HPL could handle the situation
without modification. However, it is more reasonable to assume
that a general VERTEX function would, given a location, return
as a value the type of vertex found., If HPL issued the primitive
function request [VERTEX TYPE-A LOC], and a vertex of TYPE-B was
FOUND, it would be wasteful to merely return a NOT-FOUND value to
the function request, ignoring the information that a TYPE-B ver-

tex had been FOUND, Within HPL's existing structure, it would be

132

[1.VPEc <>.,-rvpe-b

N rirea ~rveeg

Figure 8-1. Several types of vertex that might be recognized
by a vertex classifier.

/\

nmcsnanacen

An ideal HOUSE An imperfect HOUSE
presented as an input

Figure &-2. An imperfect HOUSE and an ideal HOUSE

133

possible both to return a NOT-FOUND value to the instance
[VERTEX TYPE-A LOC] and also to create a new instance

[VERTEX TYPE-B LOC] marked as FOUND and added to the COMPLETED
list. In short, with little change to HPL's structure, primi-
tives can return values other than FOUND/NOT—FOUND by expressing

them as characterizer arguments.

2.% Comparison of Characterizers

The previous section raises the issue of comparing charac-
terizer arguments. A vertex instance with argument TYPE-A was .
sought but an instance with argument TYPE-B was FOUND. A TYPE-B
argument does not satisfy the request for a TYPE-A argument, that
is, TYPE-A does not "match" TYPE-B. For greater generality, the
partial matching of two arguments should be considered.

The LOC argument is an example. Suppose [NAME'LOC1...] is
sought and [NAME LOCZ...] ig FOUND; that is, some feature sought
at LOC!1 is found instead at LOC2. In HPL, LOC!1 and LOC2 only
match successfully if they are closer together than the TOLERANCE
parameter. An alternative is to allow partial matching of LOCH
and LOC2, computing a match weight between 0. and 1. which depends

on the degree of closeness.

Before a new instance [NAME ARG1,..] is created, a comparison
is made to determine whether a similar instance already exists

(e,g., in determining the MATCH fields in the description-set of an

134

instance). In this comparison, an exact match within TOLERANCE
is required of each argument. For example, if some feature is
sought but has already been FOUND at a similar location with a
similar size, it will not be sought again. We can extend the
match weight (MATCHWT) concept to the entire characterizer refer-
ence, computing a total MATCHWT between O. and 1. as a function of
MATCHWTs between arguments. If this total MATCHWT is above some
fized criterion, e.g., .8, the two instances match, This
slightly increases the flexibility of the matching algorithm:
two instances might match whose locations are slightly beyond the
previous TOLERANCE factor, but whose sizes match closely, or vice
versa.

& more powerful use of MATCHWT, however, is in the compu-
tation of the cumulative description weight of an instance.
Rather than summing the DWT of each descriptor, DWT * MATCHWT
would be summed. In other words, those descriptors which did not
as closely match whét was actually FOUND would contribute less to
CUM~-DWT. This allows greater variability in an input, and at
the same time, takes into account the amount of variability in
deciding what is present. Within the learning process, the amount
of DWT adjustment could also depend on MATCHWT.

Essentially, we have replaced a discrete mechanism ("match"
or "no matech" for arpuments and oharacterizers)with a continuous

one. This can be carried one step further, replacing the FOUND/

-
A

135

NOT-FOUND concept with a continuous mechanism, The implica-
tions of this final step are discussed in Section 3, DBefore
doing so, however, we shall discuss the issue of weights associ-

ated with characterizer arguments.

244 Weighted Characterizer Arguments

We can further increase the power of the memory by associ-
ating weights with characterizer arguments to indicate their
relative importance. The weights would function much like DWTs,
The structure of a characterizer reference would then be:

[NAME (ARG? WT1) (ARG2 WT2)...]. The argument weights would
enter into the function that computes the MATCHWT between charac-
terizers suggested in the previous section. (Such weights are
discussed in Becker[1970].) For example, a descriptor of some
pattern might be [LINE (SLOPE! 5) (LOC1 2)], indicating that the
slope of the LINE is more important than its location.

Aréument weights are only useful if a learning algorithm can
successfully adjust them to meaningful values., The same type of
approach used for adjusting DWTs probably can be used, down=-
weighting closely matching arguments -of a descriptor in an instance
incorrectly FOUND, upweighting other arguments, and so on. Further
experimentation is necessary, however, to determine whether the
weights will converge to meaningful values, given the added

complexity of the memory.

136

3. Partially Found Characterizers

In Chapter 5, we explained that FOUNDWT”(defined as
(CUM-DWT / THRESHOLD)?), which is used in computing the active
weight, is a measure of how close the CUM-DWT of an instance is to
THRESHOLD. An instance is only considered FOUND, however, when
CUM-DWT reaches THRESHOLD, which implies that FOUNDWT is 1.0; this
is an important simblification. The alternative we shall discuss
here is to eliminate the idea of FOUND instances but retain FOUNDWT
as a measure of how confident HPL is that the instan;e is present.
This would allow HPL to make Jjudgements on the basis of less perfect
information than now required,

Suppose the imperfect pattern HOUSE of Figure 8-2 were pre-

sented to the current version of HFL, which had been trained to ex-
pect HOUSE as a SQUARE and TRIANGLE with the proper relative loca-
tions and sizes., If the input is to be recognized as HOUSE, both
TRIANGLE and SQUARE must be FOUND. -TRIANGLE will be FOUND, but
since SQUARE has a side missing, it may not be FOUND. Whether it
is FOUND depends on the relation between the DWTs of the descrip-
tors of SQUARE and its THRESHOLD. The lower the THRESHOLD, the
fewer descriptors are needed to "fire" SQUARE; but this depends on
HPL's training. If perfect SQUAREs are always presented, HPL will
have a low tolerance toward deviation from the ideal. If HPL is
trained with less than perfect SQUAREs, the three-sided SQUARE will
have a greater chance of being recogdized; If SQUARE is FOUND,

then HOUSE will be also, but if it is not, then neither will HOUSE. £

137

It would be preferable if HPL's recognition of imperfect patterns
were less dependent on the training sequence.

Allowing partially found instances lessens the dependence of
HPL on the training sequence and increases the flexibility of HPL.
If SQUARE is always presented as a perfect pattern, then a per-
fect SQUARE will have a FOUNDWT near 1. But if only 3 sides are
present, SQUARE will be partially found; that is, it will have a
FOUND&T less than 1., such as, .75. With the mechanism to be
described, this FOUNDWT will enter into the CUM-DWT of HOUSE,
which will also have FOUNDWT less than 1., such as .8. Without
this mechanism, SQUARE would be NOT-FOUND and would not contribute
to the CUM-~-DWT of HOUSE. If HPL's response criterion is to output
goals having the highest FPOUNDWTs, HPL might output HOUSE, .8,
TRIANGLE, 1,0, and SQUARE, ,75. In the FOUND/NOT-FOUND approach,
HPL would only output TRIANGLE. If HPL were trained with less than
perfect examples of SQUARE, the three-sided SQUARE would have a
. higher FOUNDWT, and so would HQOUSE, but the pattern names output
by HPL would not change. The FOUND/NOT—FOUND approach is discon-
tinuous, for when FOUNDWT reaches 1.0, behavior changes greatly.
With the proposed approach, behavior is continuous with respect
to FOUNDWT.

Observe that with this proposed mechanism, & pattern may be
output before its subpatterns are. In recognizing FACE, each sub-

pattern, EYE, NOSE, etc., may be partially recognized, e.g., with

a low FOUNDWT. The cumulative effect, however, may give FACE a
high FOUNDWT, causing it to be output. At this point, recog-
nition could terminate, or it could .continue to more completely
recognize the subpatterns.

The most important aspect of the mechanism for handling
partially found characterizers is as follows. Suppose descriptor
D of instance X is matched to an instance D'. In the current
version of HPL, DWT(D,X) is added to CUM-DWT(X) only if instance
D' is FOUND. 1In the proposed mechanism, whenever D' has FOUNDWT
greater -than O,, that is, whenever D' is partially found, then
some function of DWT(D,X) and FOUNDWT (DY) (for example, DWT(D,X)
times FOUNDWT(D')) will enter into CUM-DWT(X). If D' is a primi-
tive, then FOUNDWT(D') might be either 0. or 1., as in the
current HPL, or it might be a continuous function between 0., and
1., following the suggestions of Section 2.

A_disadvantage of the mechanism just proposed is that it
éould Eevéxtfemeiy fime—consuming. The FOUND/NOT—FOUND approach
was in fact used to avoid Jjust this problem. In the partially
found mechanism, CUM—DWT(X) contains factors DWT(D,X) and
FOUNDWT(D'). Suppose a descriptor of D' is a primitive which
has just been computed, changing CUM-DWT(D') and FOUNDWT(D').
Since FOUNDWT(D') affects CUNM-DWT(X), then it must be recomputed
also. This changes FOUNDWT(X), which in turn changes the CUM-DWT
of all its implicands, and so forth. Whenever the FOUNDWT of an

inztance changes, all higher-level instances linked to that

138

139

instance must have their CUM-DWTs and FOUNDWTs recomputed. HPL
could spend most of its time recomputing instance weights,
rather than computing primitives! The FOUND/NOT~FOUND approach
intentionally avoids this problem, With respect to a particular
descriptor D, CUM-DWT(X) is updated only once, and that is when
D' is FOUND. It is not updated whenever FOUNDWT(D') changes.
There is, fortunately, a compromise between the two
approaches, not as fast as the FOUND/NOT—FOUND approach nor as
slow as the approach just described, but maintaining the advan-
tages of the latter. The above mechanism uses a continuous
FOUNDWT; the FOUND/NOT-FOUND approach uses, in effect, a discrete
FOUNDWT having values O. or 1, A compromise is to use a discrete
FOUNDWT having more than two values. Suppose FOUNDWT has the
discrete values 0., .1, .2, ..., 1.0, corresponding to 11 confi-
dence levels, A discrete FOﬁNDWT could easily be obtained by
computing a continuous FOUNDWT in tﬁe usual way and truncatiné its
value, ‘Now suppose the FOUNDWT of descriptor D' changes from one
discrete value to another. As above, this causes recomputation of
CUM-DWT(X) and FOUNDWT(X). However, if FOUNDWT(X) before trunca-
tion does not change enough to alter the discrete FOUNDWT(X), the
recomputation process stops at this point, Implicands of X would
not have CUM-DWTs recomputed, for there is no need. They depend
only on the discrete FOUNDWT of X, and that has not changed., With

this approach, HPL may decide that HOUSE is present with FOUNDWT .9

140
rather than ,92 as in the continuous partial found mechanism,

but this is certainly a minor loss compared to the advantage

gained over the FOUND/NOT-FOUND approach.

3.1 Occluded Patterns

The extensions discussed in this section and Section 2
improve HPL's ability to recognize occluded patterns. Figure 8=3
shows a simple example in which a SQUARE is partially hidden
behind a RECTANGLE. Using LINE primitives and ignoring com=
pounds for simplicity, SQUARE might have LINE primitives as
descriptors representing each of its 4 sides. The lines labelled
a and b in the figure would exactly match the corresponding
descriptors of SQUARE. Lines c¢ and d would have the correct
location and slope but would have the wrong length. However, the
mechanism proposed in Section 2 would allow ¢ and d to match the
corresponding descriptors of SQUARE with MATCHWTs less than 1,

In turn, the FOUNDWT of SQUARE would be less than 1., but probably
much above 0. In other words, HPL would recognize SQUARE, but

with confidence less than 1.

4., Relations

HPL's major shortcoming as a pattern describer is its ina-
bility to handle ;reneral relations (including n-ary relutions).
For example, HPL may recognize TRIANCLE at a certain location and

then look for SQUARE at a location relative to that of TRIANGLE,

41

c—>

Figure 8-3. An occluded square.

Figure 8-4. A simple illustration of the context problem,

142 ‘g'

but it will not look for SQUARE anywhere ABOVE TRIANGLE, where
ABOVE is a relation named within the memory structure.

HPL does use implicit relations, the relative location and
sige relations between descriptors, and the subpattern/pattern
relations established by descriptors. However, it is difficult to
generalize an implicit relation. Therefore, we need the ability
to specify an explicit relation as a characterizer, which_may then
describe other characterizers. The description weight mechanism
wouid represent the importance of a relation. For instance, with
an ABOVE characterizer, HPL could describe structures in which it
is of great or little importance that one part be above another.

In HPL arguments of a characterizer reference do not depend

on the presence of other characterizers. In order to express a
relation, some arguments must refer to other characterizers, e.g.
1[TRIM\IGLE...] fSQUARE..,] [ABOVE #1 #2].

(The number above a characterizer reference identifies it so that
the relation may refer to it.) Such arguments will be called
"indirect arguments".

Relations can probably be fairly easily added to HPL as
primitives. A set of built-in functions such as ABOVE, BELOW,
LEFT-0F and RIGHT-OF might be written, for example, [ABOVE Xy v],
where x and y are indirect arguments pointing to LINE charac-
terizers and v indicates approximately how far x is above y. In
the recognition algorithm, investigation of an ABOVE characterizer

would require searching for a LINE above a LINE already FOUND, or

°

143
determining whether two LINEs already FOUND satisfy the relation.

An argument of a characterizer reference, such as location,
might alternatively be expressed as a unary "relation". For
example, rather than [LINE LOC...], we could ha?e
%LINE...] [LOC #1 V]. Then a set of primitive numerical comparison
relations could be iJdefined, such as EQUAL, LESS~THAN, etc., which
compare two locatlons or sizes.

It is interesting to speculate whether non-primitive relations

may be learned. Suppose the following characterizers were FOUND:
ELINE...] %SLOPE # v] fLINE...] ESLOPE #35 v] [EQUAL #2 #4]

and that a sophisticated compound-forming mechanism created com-
pound C1 containing those characterizers. C1 represents the
information that LINEs 1 and 3 are parallel., In HPL Ci would not
be a relation [C1 X y] but an independent characterizer.

Why is the relation [C1 X y] preferable to the independent
characterizer C1? Suppose a higher-~level characterizer contains
%LINE..O] %LINE...] [C1] as descriptors. PFinding €1 means finding
two parallel LINEs, but not necessarily LINEs 1 and 2. The rela-
tion [01 #1 #2], however, directly establishes the correspondence
between LINEs 1 and 2 and the descriptors of C1. This correspond-
ence is in fact what makes a relation important.

If HPL can build the non-relational compound C1, then with
feedback indicating the relation name and what characterizers are

related, a relational goal [PARALLEL X y] could possibly be

learned; however, the more difficult problem is to generate

144 e

relations without feedback. (For the reader interested in pur-

suing this problem, Becker's[1970] speculative discussion of

"secondary kernel formation" may be useful.)

5. The Context Problem

The context problem is the issue of identifying a pattern
which is not uniqueiy specified by shape alone. Figure 8-4 shows
an example, a FACE in which EYE is represented as a»SQUARE, We .
do not want any occurrence of SQUARE to be called EYE, only the

specific occurrences in FACE at their proper locations.

5.1 Guzman's Approsch to Context

Guzman[1971] proposed an approzch to context within a pattern

recognition system based on syntax-rules, such as
EYE + EYE + NOSE + ... = FACE

(which we have simplified by ignoring positional information).
Suppose a subpattern is recognized which satisfies the syntax
rules defining both EYE and WHEEL. Guzman's recognition mechaniswm,
a parsing algorithm, will choose one of the possible nawmes, e,g.
EYE. 1If none of the other parts of the syntax rule defining FACE
are present, the algorithm will backtrack and try the other

nenl

possibility, WHEEL. If no syntax rules containing WHEEL are
satisflied, the algorithm will backtrack further.

Our main objection to Guzman's approach concerns ihe use of

. . . / Y . .
syntax rules, which are at present too rigid (ao discussed in

Chapter 2). In addition, backtracking doea nol canily it in%o
HPL's structure., Once a goal such as EYE is FOUND, il seems
unconvincing to decide at a later time in processing that EYE is
NOT-FOUND and that WHREL is instead FOUND. hRather, we prefer an
approach in which contextual informétion enters directly into the

decision as to whether EYE is FQUND.

5.2 An Approach to Context within HPL

In HPL, a characterizer is FQUND when its description-set
has been satisfied. Our approach to context expands this concept
of when a characterizer is FOUND to include its implication-set,
the characterizers which it describes. The implication-set is,
in effect, the context. In HPL a description weight applies to
descriptors and an implication weight applies to implicands, but
the two weights are not analogous. IWT is treated a%’a probabil-
ity and has a different function durihg recognitionﬁthan DWT. Ve
propose a new weight associated with each implicand which is
- analdgous to DWT. This weight will be called a context we&ght
(CXWT), although it might be more consistent to call it an impli-
cand deséription weight.

Each implicand would have the form:

[(NAME LOC SIZE) IWT Qﬁﬂi].
In the same way that DWTs are added to CUM-DWT for each instance,

- CXWTs are added to a cumulative context weight (CUM—CXWT).

Similarly, in addition to the THRESHOLD, which applies to the

146
descriptidﬁisét;;Wémintroduce a second threshold, CXTHRESH, - ---
apgiying to the impiica%ion»sefﬁ”'An instance is FOUND when its
CUM-DWT exceeds THRESHOLD. We shall call sn instance CONTEXT- - - --
FOUND when it is both FOUND and its CUM-CXWT is greater than or =
equal to CXTHRESH. A goal instance will be output as a response
only if it is CONTEXT-FOUND. (If CXTHRESH is O, a FOUND instance
is aufgmatically CONTEXT—FOUND; indicating it does not depend on
context. Therefore, the proposed mechanism includes HPL's
current mechanism as a special case.)'

The most importapt part of this approach is the distinction
between FOUND and CONTEXT-FOUND; the former in effect sends infor-
mation upward in(the memory graph, the latter downward. (Backtrack-
ing similarly sends information downward.) When an instance X is
FOUND, the CUM-DWT of each implicand A is adjusted by DWT(X,A),
an upward flow of information. This may, in turn, cause A to be
FOUND. Suppose at some point an instance A is both FOUND and
CONTEXT~FOUND (e.g.; because CXTHRESH is O). Then the CUM-CXWT
of each descriptor X of A is adjusted by the CXWT of A in the
implication-set of X, a downward flow of information. This may,
in turn, cause X to be CONTEXT-FOUND, and so forth. To summarice,
if an instance is CONTEXT-FOUND, not only has its description-sct
been satisfied, but ils implication-set has been satisfied; the
requisite implicands have been CONTEXT-FOUND.

Suppose the description-set of goal EYE has been satisfied, so

that EYE is FOUND. EYE is a descriptor of FACE, nlong with NOSE,

147

MOUTH, etc. If these descriptors are also FOUND, then FACE will
be FOUND. Suppose that FACE does not depend on context (CXTHRESH
is O) and, hence, is CONTEXT-FOUND; Then EYE, NOSE, etc., will
also be CONTEXT-FQUND, and given as responses. If the other des-
criptors were not FOUND, or FACE depended on PERSON as context and
PERSON was not CONTEXT-FOUND, then FACE would be FOUND but not
CONTEXT-FOUND, and hence not output, nor would EYE, etc.

This approach may appear artificial, but it fits into HPL's
structure without great modification. The artificiality is more
a result of the FOUND/NOT-FOUND approach than the context mecha-
nism. This mechanism would fit very well with the partially found
approach discussed in Section 3., Rather than being FOUND, a
characterizer has a FOUNDWT of a certain value., Similarly, rather
than being CONTEXT—FOUND,-a characterizer has a CXFOUNDWT which
depends both on its FOUNDWT and CUM-CXWT / CXTHRESH. Positive
FOUNDWTs send information upward in memory; positivé CXFOUNDWTs
send information downward. The repeated adjustment of CUM-DWTs,
FOUNDWTs, CUM-CXWTs, and CXFOUNDWTs is a continuous version of the
discrete decision-making required by Guzman's backtracking approach.

As an example, the goal representing FACE might have a non-
zero CXTHRESH so that context, the goal PERSON of which FACE is
a descriptor, has some effect. Suppose FACE has a CXFOUNDWT of .7.
This could mean that the description-set of FACE has been perfectly

satisfied, but PERSON has a low CXFOUNDWT, or, alternatively, that

148 @

the description-set of FACE has only been partlally satisfied but
PERSON has been strongly recognized with a hlgh CXFOUNDWT.

This proposed context mechanism allows context to be flexible
in the same way the description-set of a particular characterizer
is flexible. Various implicands of a characterizer may have
differing importances as context, measured by CXWT. The relation
of CXTHRESH to the CXWTs determines the overall importance of
context in deciding the presence of a particular feature. Impor-
tant to the viability of this approach is whether the CXWTs and
CXTHRESHs can be meaningfully adjusted by a practical learning

algorithm,

5.3 Learning Context Weights

We propose the following algorithm for adjusting CXWTs of
implicands of goal nodes, which afe subject to external feedback,
Suppose pattern X is output but is not present in the input.
There are two possible reasons for this error: either the
description-set of X is inadequate or the implication-set of X
does not adequately account for context.

There are two alternatives for learning context. HPL could
be given explicit feedback indicating whether the pattern is
simply "WRONG" (not described properly) or "WRONG--CONTEXT"
(context inadequately accounted for). In the former case, the
DWT adjustment mechanism described in Chapter 6 would be used;

in the latter cuse, CAWTs of CONTEXT-FOUND implicands would be

149

decremented and all other implicands incremented, and CXTHRESH
would be incremented, making it less likely that the characterigzer
will again be CONTEXT-FOUND under similar circumstances. In some
situations, it would be obvious to a trainer that a pattern is
wrong because of context, for example, when EYE is output but no
FACE is present. The situation may not always be so clear-cut, for
example, when part of the description-set and part of the context
are present.

We prefer an alternative less dependent on the trainer, e.g.,
requiring "WRONG" feedback but not separate "WRONG-~CONTEXT"
feedback. DWTs and CXWTs could be adjusted as just described, but
at the same time, letting long-term learning determine the relative
importance of the description-set versus the implication-set.

The other type of error HPL can exhibit is not responding
with the name of a goal which is present. In this case, DWTs
would be adjusted if the goal was FQUND, but not CONTEXT-FOUND,
by the usual algorithm., CXWTs of CONTEXT-FOUND implicands would
be incremented, other CXWTs would be decremented, and CXTHRESH
would be decremented. If EYE and its context FACE both occur in
the input but EYE is not a response, the CXWT of FACE in the
implication-set of EYE would be incremented and CXTHRESH decre-
mented, making it more likely EYE will be CONTEXT-FOUND the next
time,

The above proposals for adjusting CXWTs depend on external

feedback and apply only to goals. Context weights are not

150

meaningful for primitives, since they are defined by built-in
functions; and cannot send contextual information "downward™ in
memory (for they are at the "bottom" of'memory). We can suggest
a CXWT adjusting mechanism for compounds, modifying CXWTs if a
compound is FOUND but not CXFOUND, and modifying DWTs if a
compound is not FOUND but has its CXTHRESH exceeded. This
mechanism, however,.is more problematic than the one suggested
for goals. JFeedback ultimately determines whether a goal is
present in the input, in a sense anchoring it to the externa}
world, but a compound is defined internally. Experimentation is
needed to determine whether CXWTS for compounds will converge
over time to meaningful values, or whether too many parameters

to learn have been iniroduced.

151
CHAPTER 9

CONCLUSIONS AND FURTHER EXTENSIONS OF HPL

1. Introduction

In this concluding chapter, we compare HPL in detail with
Winston's [1970] pattern description program, examining issues of
weights and learning, followed by a discussion of further extensions
of HPL (curved lines, two-dimensional projections of three-
dimensional patterns, and "general to specific" recognition). We
then briefly discuss computer language facilities we would have

liked to use in designing HPL, followed by a summary of the thesis.

2. A Comparison of HPL with the Work of Winston

Winston's [1970] pattern and scene analysis program (which we
shall refer to as WP) invites comparis&n with HPL, for it uses a
net-structure memory and to some extent learns. WP builds net-
structure descriptions of scenes composed of two—diﬁensional projec-—
tions of three-dimensional polyhedra. Objects are represented as
nodes in the net, and relations between objects, such as ABOVE, IN=-
FRONT-OF, LEFT-OF and SUPPORTED-BY, are represented as labelled
arcs between nodes. Relations may also be defined within the net-
structure. WP consists of several processes, including description
generation, description comparison, model building, and pattern
identification.

WP assumes that an input scene has alreudy been processed by a

152

program sugphas Guzman's [1968] to segment figures from background
and determine the presence of several basic shapes, e.g.,‘ﬁEBEE and
BLOCK. Guzman's program is philosophically similar to Winston's, -
using built-in functions (e.g., a vertex classification routine),“
to accomplish its goals. o

WP generates a description of an input pattern or scene using
built-in processes which do not depend on learned information
stored in memory. Learned information is only used when.WP attempts
to identify the description; description is a separate process from
identifiéation. Figure 9-1 shows an ARCH and the description WP
might generate for it. The name ARCH will not be associated with
the description, however, until after the identification process.

Using built-in functions, a net-structure descriptioﬁ of a
scene may be compared with another net-structure description, an
ability which underlies several tasks WP can perform. WP can com=-
pare two different scenes by independently generating descriptions
of each scene and then comparing those descriptions. WP identifies
an input by comparing its description with descriptions of "models"
of patterns stored in memory., The result of comparing two net-
structure descriptions is, interestingly, another net-structure des-
cription, called a "skeleton", which describes how the two descrip-
tions compare.

WP identifies a pattern by comparing its description against
stored descriptions of previously learned patterns, cailed "models".

Model-building is the only process in WP which makes use of learning.

153

ONE-PART~

/ -) SUPPORTED-BY

Figure 9-1. An ARCH and its net-structure representation in
Winston [19703. -

0 [=|~|-lo
~ 1 10i0({Q|—~
0010 |0|0O
6 {0 |0 |0 |0
0 {0 {0 |0 (O

Figure 9-2. A submatrix that could represent a curve.

154
Suppose WP has not already learned the pattern ARCH and is presented e

with an example of it, and its name. A description of the pattern

will be generated, the pattern name will,bgmasgociatgd with that
description, and the description will be saved in memory as = "firsz-
generation" model of the pattern. Suppose another instance of ARCH
is now presented, along with its name. Its description is compared
with the description of the first-generation model. If they are
sufficiently different, a second-generation model may be produced.
Continuing this process, a third-generation model may be produced,
or a different second-generation model, using a backtracking
mechanism. (Learning in WP is further discussed in Section 2.2.)
Pattern identification proceeds as followsi ‘Sgppose an example

of ARCH is presented. A description of the pattern is generated and

is compared with descriptions of models in memory. The models are
ranked according to how closely they match the description of the
input, and the name associateé with the model that best matches is
the program's response. Since comparison of two possibly complex
descriptions is very time-consuming, comparing the input description
with every model in memory is out of the question. To alleviate
this problem, models are linked together in memory via "gimilarity
descriptions", a type of comparison skeleton between models. A
skeleton is generated between the input description and a particu—v
lar model. Then that ckeleton is compared with similarity descrip-

tions linking the model to similar models, in order to decide which

moec! ko try next. Similority descriptions are intended to make

155

identification practical, but they, themselves, consume memory and
take time to create and process. It is important to know under
what circumstances similarity descriptions are formed. Winston
merely comments that WP spends "idle time" forming similarity
descriptions between models.

Our approach contrasts greatly with Winston's, despite similar
goals. We do not believe that object and scene segmentation, des-
cription, model building, and identification should be separate pro-
cesses. The pattern or scene "description" which HPL produces, the
set of characterizers FOUND in the input, is developed at the same
time as the process of pattern identification and is an integral
part of that process. WP identifies by explicit comparison of des-
criptions; HPL implicitly compares (in matching descriptors to
instances) during the course of identification. In Winston's mem-
ory, patterns are represented as separate models; they are only tied
together through the ad hoc mechanism of similarity descriptions.
Winston found it necessary to tie together models in order to direct
the search for what model best matches the input description. In
HPL's memory, patterns are integrally tied together through charac-
terizers shared in common; this is not ad hoc but inherent in the
structure, and it greatly increases efficiency.

WP uses explicit relations in generating descriptions. Rela-
tions are built-in, however, and no attempt is made to learn them
in a manner analogous to learning patterns. (Explicit relations in

HPL are discussed in Chapter 8,)

156

2.1 Unweighted Links versus Weighted Links in a Net-Structure

All links between nodes in WP's memory are unweighted; two
nodes are either linked by a certain relation or they are not.
Links in HPL are weighted, ranging from O, indicating irrelevance,
to the maximum DWT (10); indicating ti; most importance. This gives
HPL's memory greater flexibility than an unweighted stfu¢ture andw
makes it more amenable to learning. Winston introduced some rela-
tions to represent probabilistic information; for example, in
building models of patterns, the HAS-PROPERTY-OF relation is expande
ed into MUST-HAVE-PROPERTY-OF and PROBABLY-HAS-PROPERTY-OF rela-
tions, HPL can quite naturallyArepresent probabilistic information
within its existing structure. | |

In addition to the awkwardness of handling probabilistic state-
ments in an unweighted structure, there is another basic problem,
In an unweighted structure, discontinuous judgements must frequently
be made, both during rec&gnition and memory building; is this link
present or not; is this property important or not? Such decisions
are bound to be wrong on occasion. Either some tolerance for error
or a provision for backtracking must be built into the system. In a
weighted structure such as HPL's memory (particularly with partially
found characterizers, as diécussed in Chapter 8), individual Judge~
ments are less important, and there is an inherent tolerance for
error, Whether to add a parficular characterizer to a deécription~
set, for example, while of some imporfance from the standpoint of

memory utilization, is not cruecially important, If it turns out to

157

be of no value as a descriptor, it will eventually reach a zero
weight and be eliminated. Similarly, if a particular characterizer
is expected but not found, it will not drastically affect the
recognition process.

A proponent of unweighted links might argue that in a weighted
system, although any individual decision, e.g, a decision to form
a memory link, is not crucial, the overall effect of many such
decisions is important. We agree, and hence feel the need for
feedback, both internal and external. A large number of bad
decisions about what descriptors to add or what characterizers to
form may result in a very cumbersome memory, using excessive
amounts of storage and requiring a great deal of processing time.
Some of the mechanisms described in Chapter 6 are first attempts to
handle such problems, notably the use of ITM; certainly, much more
work is needed in this regard. However, such mechanisms will be
gross mechanisms that handle all characterizers in a similar way,
which is.a virtue. A similar mechanism in an unweighted structure
is more likely to be a specific mechanism, relating, for example,

to the formation of some particular memory link.

2,2 Negative Description Weights

WP is taught a pattern during its model building process by
means of a series of training sequences. WP is presented a pattern
and told that it is either an instance of pattern P or a "near-miss"

to P, a pattern chosen by the trainer to resemble P but lacking

158
some important property or including an erroneous one. In generat-
ing a new model of P, WP's heuristics take into accouﬁt»wﬁefhg;_a
positive instance of P or a near-miss has been presented. A neaf;
miss will typically cause the formation of newilinks in the m&del,
representing properties that should not be pfesent in the pattef;.
For illustration, suppose WP is learning the letter "O". (Winston
does not discuss the recognition of letters.) As part of’;g;
training, a "Q" might be given as a near-miss. The modél represent-
ing "O" would be expanded by adding a MUST~-NOT-HAVE-PROPERTY-OF
link to the node representing the short straight line part of "Q".

A MUST-NOT-HAVE-PROPERTY-OF relation is analogous to a high
negative description weight in HPL. Negative description weights
are not currently used in HPL; however, the recognition process
could handle them with little modification. If a descriptor with
a negative DWT is FOUND, that DWT will subtract from, rather than
add to, the CUM-DWT of the instance., It is, in effect, an inhibitm
ing factor. A descriptor might have a slight or a great inhibit«
ing effect, depending on the value of DWT. If the stréightwline
part of "Q", for example, had a negative DWT equal to the sum of
the DWTs of the other descripters of "O", it would completely
inhibit an "O" response.

The main difficulty in using negative description weights is
deciding what descriptors with negative weights should be included
in the description-set of a characterizer. This is analogous to WP

deciding what nodes should be connected by a MUST-NOT-HAVE-PROPERTY-OF

°

159

link. Any non-"0O" pattern, e.g., "X", hag properties which do not
pertain to "O0". It is absurd to include in the description-setl of
"O" with negative weights descriptors of "X". More reasonably,
negative descriptors of a pattern P should be properties which P
does not possess but which are properties of patterns likely to be
confused with P.

A trainer giving near-miss feedback must specifically decide
what patterns are similar enough to the desired pattern to cause
problems; it forces the trainer to decide what the crucial properties
of a pattern are. Near-miss feedback could be easily integrated
into HPL. Suppose a pattern P' is presented, a near-miss of some
pattern P. HPL will build a description of P' in its usual fashion,
possibly outputting the name of P as an incorrect response. Without
modifﬁcation, HPL may add new descriptors to the description-set of
P', since it is a FOUND goal (as. described in Chapter 6), but it
will not add new descriptors to P, since P is not FOﬁND. A simple
change would allow specifying to HPL that P' is a near-miss to P.
Then new descriptors may be added to the description-set of P, as
well, but with negative description weights, since thoge descriptors
describe the near-miss P'. For example, if pattern P is the letter
"0" and "Q" is the current input, characterizers represeniing the
short straight-line segment of the "Q" will be added to the
description-set of "O" with negative DWTs.

We believe that in a learning program, the program itself,

rather than a trainer, should be responsible for deciding what

160
properties are essential to a pattern. HPL could decide for
itself what a near-miss is. Suppose that HPL is presented pattern
P' and HPL outputs the wrong response P, causing "NO" feedback to
be given. In addition to the learning processes that affect goal
P', HPL might also add negative descriptors to the description—set-
of P, as described above, especially if its FOUNDWT were high
enough, indicating that HPL was confused. In other words, HPL
could consider a near-miss to P as any pattern which’is similar
enough to P to produce a confident wrong response. ﬁPL may some=
times add irrelevant negative descriptors, but, over time, they

will be eliminated‘through_weighf adjustgggELMM

3. PFurther Extensions of HPL

3.1 Curved Lines

HPL has only recognized straight line drawings. In order to
handle patterns containing curved lines, the set of primitives
can be extended in the following ways:

Curved line drawings could be handled quite simply with suitable
submatrix primitives (e.g,; the submatrix shown in. Figure 9—2) using
"a fine enough grid. to represent the input. As the number of sub-
matrices increases, however, time and memory requirements also
increase. This may, in turn, necessitate using a more efficient
implementation or a trimmed-down version of HPL.

Slope is built-into LINE primitives. Curvature could also be

161

built-in as a discrete quantity. With our idealized patterns, this
would only require modifying the special input format.

In short, curved lines do not seem to pose great problems to HPL
except in increasing the number of submatrix primitives or adding an

attribute to LINE primitives.

3,2 Two-Dimensional Projections of Three-Dimensional Patierns

HPL has not been tested with two-dimensional projections of
three-dimensional patterns but probably can handle them with a
rich enough set of primitives. A vertex classification primitive
might be especially valuable for this purpose. (Guzman [1968]
uses vertex classification in recognizing two-dimensional projec-
tions of polyhedra.)

HPL could be taught, for example, that the pattern in
Figure 9-3(a) is a CUBE. Any pattern sufficiently similar (with
respect to the primitives) will also be recognized aé a CUBE.
Using a vertex classification primitive in addition fo the LINE
primitives, HPL would also recognize the slightly rotated pattern of
Figure 9-3(b) as a CUBE. HPL will not recognize the pattern in
Figure 9-3(c) as a CUBE, since its vertex structure is not the same
as that of ﬁhe previous examples of CUBE. HPL must be explicitly
taught that this pattern is a different view of a cube, e.g. CUBE1
(analogous to learning TRIANGLE1, TRIANGLEZ2, etc., as discussed in
Chapter 7).

We shall briefly speculate on what may be required for a full

162

9 9 @

(b)'

Figure 9-3. Two-dimensional projections of a cube.

v) :

A ,
‘ONaE g
A 2
/;/5/7; » 75
e A

A coarse primitive, PC1, with two different patterns

/V / ’// r‘: /]
4 27 %7
a4 %% %
g \ v il
AL 7
AA~ ///r'/"
AT , "
A fine primitive, PM A fine priwmitive, PF2

Figure 9-4. A coarse and fine submatrix with two different
patterns.

163
three-~dimensional recognition ability. HPL containswno assumptions
about dimensionality except in the subroutines that compute location
and size, Those subroutines could be expanded in a straightforward

manner to handle three-dimensions. However, primitives must be
provided to compute three-dimensional properties. A three-
dimensional matrix reprgsentation of both the input and primitives
can be easily imagined, an extension of the matrix iﬁput and primi-
tives already discussed, but how is this input matrix to be
Abtained? Preprocessing a binocular view consisting of two two-
dimensional projections is one possibility.

A more important problem in three-dimensional recognition is
the issue of hidden information. In a binoculaf representation of
an input, for instance, much of a pattern is hidden. Welhave
suggested in Chapter 8 how incomplete patterns may be recognized
in HPL, particularly allowing for "partially found" patterns; this

approach may prove useful in three-dimensional recognition.

3,3 General to Specific Recognition

In human pattern recognition, general features of a pattern
may be observed, then more detailed features, and so on. We shall
call this "“general to specific recognition" and believe it may be
more representative of human recognition than the opposite approach,
commonly used in mechanical pattern recognizers. For example, a
person looking at a forest is not usually overwhelmed by the great

detail in the scene; rather, he may observe brond outlines of trees,

164

then individual trees, then perhaps details of a particular tree,

General to specific recognition may be advantageous in coping
with a large amount of input information. The more general the
information in a pattern, the less of it there is to process,

This general information can then direct recognition to specific
details,

G;neral to specific recognition is relevant to the "face in the
crowd" problem. We doubt that a person processes in detail each
face in a crowd; more likely, general features are observed first.
The general features of a certain face may be similar to those of a
face described in memory, causing more detailed recognition of that

face.

4 possible approach to this problem within HPL uses submatrix
primitives. An input could be represented not by one matrix, but
by two, a fine grid representation (e.g. 20 x 20) and a coarse
grid representation (e.g. 8 x 8), Similarly, two sets of submatrix
primitives would be used, one set for each grid. A coarse primitive
would generally be less costly and more likely to succeed than a
fine primitive. Figure 9-4 shows a simple example in which two
different patterns are identical with respect to a coarse primitive,
. but are different with respect to a fine primitive. The coarse
primitive, PC1, imblios two fine primitives, PF1 and PF2,

Without modification to HPL's structure, both coarse and fine
primitives could describe higher-level compounds and goals. Sup-

pose that a compound C1 is described by PC1 and PP1 and that this

165

compound is a descriptor of some other characterizer currently
being investigated by HPL during the recognition process. C1

will be placed on the ACTIVE list, and at some later time may be
investigated. When this occurs, its descriptors PC1 and PF1 will
be placed on ACTIVE, but PC1 will have a higher AWT than PF1,
since it is mbre probable and less costly. If PC1 is FOUND,

PF will be given a higher AWT and will be more likely to be
computed; if it fails, PF1 will be given a lower AWT. Compound C1
represents that the coarse primitive PC! "implies" the fine primi-
tive PF1; it directs recognition from a general to a specific
primitive. Compound C1 could be built-in, since it represents a
fixed relationship between coarse and fine primitives; alterna-
tively, no such compounds need be built-in, letting the learning
mechanism form compounds which are especially valuable.

Our approach will not force rigid general to specific recog-
nition, because of the probabilistic nature of the recognition
algorithm. Coarse primitives will be given preference over fine
ones only to the extent that they are deemed more valuable. This
mixed approach seems preferable to a rigid one.

More than two grid sizes could be used in our general to spe-
cific approach, but coarse and fine grids are probably sufficient

to determine the merit of our proposal.

166 ‘%’

4., Language Facilities Used in HPL

HPL was written in the "general-purpose" list-processing
language, LISP. We tried to design HPL so that its structure was
not strongly influenced by LISP; hﬁwever, the language used ﬁ;y
exert a subtle influence on the structure of a program. We shall
briefly discuss some computer language facilities we have.used or
would have liked to use. Many of these facilities are embodied in
the new artificial intelligence languages, such as QLISP
[Reboh, et al., 1973].

HPL's net-structure memory representation uses the "association

list" feature of LISP to associate a characterizer name with its

description-set and implication-set. The description-set and

implication-set, in turn, reference other characterizer nahes,
effectively forming links between nodes., HPL was not constrained
by this approach; however, it‘is conceivable that a language might
allow explicit definition of a net-structure, including nodes and
links between nodes, and the association of properties with nodes
and links (such as names and weights).

In designing HPL's data structure, we found it helpful to refer
to components of list structures by meaningful names, for instance,
"description-set" rather than "first element of association list".
We defined LISP functions having meaningful names to access appro-
priate parts of list structures. It would be convenient if a
language allowed defining specific data structures and accessing

them with programmer defined names; for example, a CHARACTERIZER

might be defined as a data type consisting of the components
[DESCRIPTION-SET, IMPLICATION-SET, PARAMETERS .

The set of instances HPL creates during each frame uses a
moderate amount of memory space. At the end of each frame, these
instances are discarded; new instances are created in the next
frame. Eventually, LISP automatically garbage collects unused
memory, including discarded instances, a time-consuming process.
It would be more efficient to have some control over the memory
allocation process; for example, a separate fixed length memory
area could be used solely for storing instances. This area would
be reused in each frame.

HPL was tested more extensively with LINE primitives than
submatrices, primarily because of the expense of computing sub-
matrices in 1108 LISP, It would have been more efficient to
compute primitives in a lower;level language, such as FORTRAN,
maintaining the remainder of HPL in LISP. This suggests the
desirability of interfacing between different languages, perhaps
with some common subroutine calling convention or file storage
format, readily suspending operation in one language and switching

to the other,

4. Concluding Summary

We have described in detail a running computer program, HPL,

which learns to recognize patterns composed of subpatterns., We

168

presented an overview of the program in Chapter 3, introducing its
three main subdivisions, the memory structure, the recognition algo-
rithm, and the learning mechanism, In the subsequent three chap-
ters, we discussed each part in detail.

Chapter 4 discussed the memory structure, a homogeneous,
hierarchical net-structure in which weights represent the impor-
tance of parts in describing wholes and probabilities between
parts and wholes. The differences between permanent memory and
short term memory were also discussed.

In éhapter 5, we presented the details of the heuristic-—
search recognition algorithm, which contains both upward-searching
and downward-searching subprocesses., We showed how the algorithm
attempts to efficiently search memory and compute primitives,
using probabilities, coSts, and values of memory nodes,

Chapter 6 explained the function of compound characterizers
and discussed the learning techniques of weight adjustment, link
formation and deletion, and compound analysis,

In Chapter 7, we presented concrete examples of HPL's tested
performance, including complex patterns composed of subpatterns,
simple scene ansalysis, and attending to a requested pattern. We
also discussed the three different types of primitives which have
been used, letteis of the alphabet, matrix templates, and straight
lines,

In the two remaining chapters, we have discussed extensions

169

S

to HPL which would improve its recognition and descriptive
ability, including partially found characterizers, relations,
context, and general to specific recognition.

We have been encouraged by our results in running HPL and
believe important issues, inluding learning, attention, part/whole
structure, relations, efficiency, and context, have been discussed.
HPL may serve as a general framework for a better understanding of

these issues.

170 ‘%’

- - '~ REFERENCES T R

Becker, Joseph D. (1970). An Information-Processing Model of
Intermediate-Level Cognition. Stanford Ph.D. Dissertation.
Stanford Artificial Intelligence Memo-4AI1-119, Palo Alto, Calif,

Duda, Richard 0. and Hart, Peter E. (1973). Pattern Classifi-
cation and Scene Analysis. Wiley and Sons, New York.

Evans, Thomas G. (1968). A grammar-controlled pattern analyzer,
Proc, IFIP Congress 68, 1592-1598,

L (19693). Descriptive pattern-analysis tech-
niques: potentialities and problems. In [Watanabe, 1969],
147-157.

(1969b). Descriptive pattern analysis tecﬁ«
niques. In [Grasselli, 1969], 79-95.

Falk, G. (1971). Scene analysis based on imperfect edge data.
Proc. Second Int. Joint Conf. on Artificial Intelligence, 8-16.

Feldman, J. A., Gips, J., Horning, J. J., and Reder, S. (19G9).
Grammatical complexity and inference. Technical Report CS 125,
Computer Science Department, Stanford University, June, 1969,

Fu, K. S. (1968). Sequential Methods in Pattern Recognition and
Machine Learning. Academic Press, New York.

Grasselli, A., ed. (1969). Automatic Interpretation and Classifi-
cation of Images. Academic Press, New York.

Guzman, Adolfo (1968). Decomposition of a visual scene into
three-dimensional bodies., Proc. AFIPS 1968 Fall Jt. Comp.
Conf., Vol. 33, Thompson Book Co., Washington, D. C., 291-304.

(1971). Analysis of curved line drawings using
context and global information., In [Michie, 1971], 325-375.

Londe, D. and Simmons, R. (1965). NAMER: a pattern recognition
system for generating sentences about relations between line
drawings. Proc. ACM 20th Nationul Conference, 162-175,

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., and
Levin, M. I. (1962). LISP 1,5 Programmer's Manual.
MIT Press, Cumbridge, Mass.

171

Michie, D, and Melzer, B., eds. (1971). Machine Intelligence 6,
American Elsevier, New York.

(1972). Machine Intelligence 7.

American Elsevier, New York.

Miller, W. F. and Shaw, A. C. (1968). Linguistic methods in
picture processing--a survey. Proc. AFIPS 1908 Tall Jt.
Comp. Conf,, Vol. 33, No. 1, 279-290,

Nagy, G. (1968). State of the art in pattern recognition.
Proc. IEEE, Vol., 56, 8%6-862.

Nilsson, Nils J. (1965). Learning Machines. McGraw-Hall, New
York.

Reboh, R. and Sacerdoti, B. (1973). A preliminary QLISP manual.
SRI Art. Int. Center Technical Note 81, Aug., 1977,

Rosenfeld, A. (1969&). Picture processing by compuler. ACM
Computing Surveys, Vol. 1, No. A, 1477176,

(1969b). Picture Procesaine by Commiler.
Academic Preass, New York.

(1973). Progrens in picture processing: 1969-71.
ACHM Computing Surveys, Vol. 5, No. 2, 81-100.

Sauvain, R. W. and Uhr, L. (1969). A teachable patterm dencribing
and recognizing program. Pattern Recognition, 1969, 1, 219~
232.

Slagle, James R. and Lee, Richard C. T. (1971). fipplication of
game {ree searching techniques to sequential pattern recop-
nition. Comsmnicntions ACM, 14:2, Feb., 1971, 103-110.

Uhr, Leonard, ed., (1966). DPattern Recognition. Wiley and Songa,
New York.

(1973). Puttern Recogmilion, Lesrnine, and Thowrhl,,
Prentice~linll, New York.

and Jordan, Sarah (1969). The learning: ol paramebers

For yeneraling compound charncterivers tor pallern recognilion.
Proc. 1ot Int. Joint Conf, on Artificinl lntellicence (Wulkcr,

D. E. and Norton, L. M., eds.) Washington, D. C., 381-415,

172

Uhr, Leonard and Vossler, Charles (1961). A pattern-recognition
program that generates, evaluates, and adjusts its own opera-
tors. In [Unhr, 19661, 349-364.

Waltz, D. L. (1972). Cenerating Semantic Descriptions from
Drawings of Sceneg with Shadows. MIT Ph,D. Dissertation,
Art. Int. Lab. Technical Report TR-271, Nov., 1972.

Watanabe, Satosi, ed. (1969). Methodologies of Pattern Recog-
nition. Academic Press, New York,

Winston, Patrick H. (1970). Learning Structural Descriptions
from Eramples, MIT Ph.D. Dissertation, Project MAC
Technical Report TR-76, Septs, 1970,

(1972). The MIT Robot. In [Michie, 1972],

431-463.

