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ABSTRACT

A class of algorithms for nonlinearly constrained optimization
problems is proposed. The subproblems of the algorithms are
Tinearly constrained quadratic minimization problems which contain
an updated estimate of the Hessian of the Lagrangian. Under
suitable conditions and updating schemes Jlocal convergence and
a superlinear rate of convergence are established. The convergence
proofs require among other things twice differentiable objective
and constraint functions, while the calculations use only first
derivative data. Rapid convergence has been obtained in a number
of test problems by using a program based on the algorithms
proposed here.
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SUPERLINEARLY CONVERGENT QUASI-NEWTON
ALGORITHMS FOR NONLINEARLY CONSTRAINED
OPTIMIZATION PROBLEMS

1. INTRODUCTION

We develop in this paper a class of algorithms for finding
Kuhn-Tucker points of the following nonlinear programming problem:

1.1 minimize {f(x) | g(x)<0}

‘where f and g are differentiable functions from R" into R
and RV respectively. Our algorithms require calculations with
gradients, hence f and g should at least be differentiable.

. However our convergence proofs require, among other things, twice
differentiability of f and g. Starting with an initial and
possibly infeasible guess Xq of a solution, and an initial guess
Ug of the Kuhn-Tucker multipliers, the algorithms construct a
sequence {(xi,ui)} which under suitable conditions converges to

a Kuhn-Tucker point (x,u) of 1.1. The convergence we establish
is a local one and the main condition required for it is closeness
of the starting point to a point (x,u) satisfying the second order
sufficiency conditions, the linear independence of the gradients of
the active constraints and positivity of the multipliers associated
with them. The subproblems solved are linearly constained quadratic
programming problems for which efficient and finite algorithms exist
[3, 12]. These quadratic subproblems contaiﬁ an n xn matrix
which is an estimate of the Hessian of the Lagrangian of 1.1. If
this estimate is close enough to the Hessian a linear convergence
rate is obtained, and if it converges to the Hessian a superlinear
rate of convergence is obtained. If the exact Hessian is used the
algorithm becomes that of Wilson [14] for which Robinson [11] has
established a quadratic convergence rate. '



In order to achieve superlinear convergence it is sufficient
but not necessary that the updated estimate of the Hessian of the
Lagrangian converge to the Hessian. In fact any updating scheme
which satisfies a less stringent condition, condition (b) of the
algorithm below will achieve superlinear convergence. Thus a
"finite difference" approximation of the Hessian similar to that
employed by Goldstein and Price [6], in which only gradients are
computed, can be used. Numerical experiments on all of Colville's
test problems [2] were carried out with a specific updating scheme
[5], in which under suitable conditions the updated matrices converge
to the Hessian. The test results are quite encouraging and are
discussed in more detail in section 4.

The subprob]ems genérated here by matrix updating schemes can
be considered either as quadratic approximations of the subproblems
of either Robinson's [10] or Wilson's [14] algorithms, both of which
converge quadratically [11]. However in Robinson's algorithm the
subproblems to be solved have nonlinear objective functions which
.~in general are not quadratic. In Wilson's algorithm explicit
evaluation of second derivatives is required which need not be the
case in our algorithms. In addition the Laarangians of our sub-
problems here can also be considered as estimates of a gquadratic
approximation of the Lagrangians of the original problem 1.1 [5].
Topkis [13] has proposed a different quadratically convergent algorithm.
However his subproblems are nonlinearly constrained.

Throughout this paper all vectors will be column vectors. The
transpose will be denoted by the superscript T . The gradient or
Jacobian with respect to x will be denoted by V , whereas the
gradient or Jacobian with respect to any other variable will be
denoted by the same symbol V subscripted by that variable. Similarly
V2 will denote the Hessian with respect to x , whereas the Hessian
with respect to another variable will be denoted by V2 subscripted
by that variable. Subscripts to vectors will denote iteration number,
while superscripts will denote a vector component. The symbol
| < Il will.denote an arbitrary but fixed norm.

a



2. ALGORITHM

The algorithm is described by the following steps. Let
z = (x,u) , and let VZL(z) denote the n x n Hessian with respect
to x of the Lagrangian L(z) = f(x) + uTg(x) .

Step 1: Set i=0

Step 2: Having z; = (xi,ui) find a Kuhn-Tucker point

Zipy = (x1+1,ui+1) of the following linearly constrained quadratic

program -
min;mize Vf(xi)T(x—xi) + %(x—xi)G(zi)(x-xi)
Q(Zi):
subject to g(x;) + Vg(xi)T(x-xi) <0
If Zi41 is not unique, choose any Kuhn-Tucker point Zi41 which is

closest to z; in terms of the distance 2547 - zilln Here

G(zi) is any n x n matrix which satisfies one or more of the
following conditions.

a. || 6(z;) - V2L(zi)|| ;=T%§ (1inear convergence)

where B8 1is a constant defined in 3.2 below.

16(z;) - YLz | <15

(superlinear
convergence)

(8(z;) = PLiz))(xpy - %)]

-3
2447 - 23l

0

C. G(zi) = VZL(zi) (quadratic convergence)
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Step 3: If some convergence criterion such as || x;,q - ;]| <¢
is satisfied for some small preassigned positive number ¢ , stop.
Otherwise set i := i+1 and go to step 2.

We make some remarks concerning the algorithm.

Remark 1: The key to the convergence of the algorithm is the matrix
VGﬁgi) which is an estimate of the Hessian VZL(zi) , and which need

be defined on the seguence {Zi} only. Condition (a) is a closeness
requirement on G(zi) which is similar to a condition given by Ortega
and Rheinboldt for an algorithm for unconstrained optimization

[9, p. 401, theorem 12.3.3]. We shall establish in theorem 3.1 below

a linear rate of convergence under condition (a), a superlinear rate

of convergence under condition (b), and a quadratic rate of convergence

under condition (c). In section 4 below we shall give updating schemes
for the matrix G(zi) “such that condition (b) is satisfied. When
condition (c) is satisfied the above algorithm becomes Wilson's
algorithm [14].

Remark 2: The rationale behind employing the quadratic subproblems
Q(zi) is that the Lagrangian associated with it is (to within the
constant term f(xi)) equal to a quadratic approximation of the
Lagrangian of the original problem (1.1) around Z; » provided that
G(zi) = V2L(zi) [5]. Hence finding Kuhn-Tucker points of Q(zi) is
equivalent to finding Kuhn-Tucker points for a quadratic approximation
of L(z) around z; for case (c) above (Newton method) and to
approximately doing that for case (b) above (quasi-Newton method).
Remark 3: The iterates X; need not be feasible with respect to
the original problem, that is g(xi):; 0 need not be satisfied. If
there are equalities ed(x) =0, j=1,....k , present in 1.1, they
can be replaced by the _k+1 inequalities eJ(x):; 0, j=l,....k ,

and
k

) =-ej(x) <0.
J=1




Alternatively the subproblem Q(z ) can be modified by adding the
linear equality constraints e(x ) + Ve(x )T(x -X; )

Remark 4: The quadratic subproblems Q(zi) are convex if the matrix
G(zi) is positive semidefinite. Efficient and finite schemes for
solving such problems exist [3, 12]. The updating scheme presented
in section 4 below generates G(zi) which under suitable conditions
[5] are positive definite matrices.

Remark 5: Condition (a) of the algorithm which also appears in
condition (b) can be replaced by the weaker condition

(6(z5)-V°L(2;)) (X 477%;)

o]

<_L_

108

Remark 6: When G(zi) is positive definite problem Q(zi) has
another interesting geometric interpretation as a gradient projection
problem which is the following. It is equivalent to finding the
closest point in the “11near1zed" set {xlg(x )+Vg(x )T(x -X3 )<0}

to the point x; - G(z; )" Vf(x ) in terms of the norm [Ix[lG(x ) =
(xG(x )x)]/2

Remark 7: If g(x) is convex and X = {x|g(x)s0} 1is not empty

then the feasible region X, = {xlg(xi)-+VQ(xi)T(x»xi)§(H-of Q(zi)
is not empty and contains X, because for x in X

2 g(x) z glx;) + vg(x; ) (x- -X;)

If g(x) 1is not convex, the theorem below ensures the nomemptiness
of Xi under certain conditions including a closeness condition
and second order sufficiency conditionsn Note also that if Xi

is nonempty then Q(zi) will always have a solution if the original
problem 1.1 contains upper and lower bounds on x.




3. CONVERGENCE AND RATE OF CONVERGENCE
OF THE ALGORITHM

~-In the theorem below we shall establish convergence of the
algorithm iterates (Xi’ui) to a Kuhn-Tucker point of our original
problem and establish various convergence rates.

We shall use the concept of R-quadratic convergence rate as defined
in [Qj. We shall also use the second order sufficiency conditions for
problem 1.1 [4]. A point (X,u) in R" x R" is said to satisfy the
second order sufficiency conditions, if it satisfies the first order

Kuhn-Tucker conditions and if yv L(x u)y > 0 for each _nonzero
y ¢ R" sat1sfy1ng Vg (x)y s Joe {Jlu >0} and Vg (x)y <0,
je {J]u =0, g¥(x)=0} . We shall also use the concept of strict

complementarity at (x,u) s that is Gj

>0 or gj(i) <0 for
J=1,....m .

3.1 Convergence and Rate of Convergence

Theorem: Let (X,u) be a Kuhn-Tucker point satisfying the second

order suff1c1ency conditions for problem 1.1 with strict comp]ementar1ty

and Tinear 1ndependence of the gradients of the active constraints

vgl(X) ,» Jj e {j]g?(X)=0} . Suppose that f and g have second

order derivatives which are Lipschitz continuous in an open neighborhood
N(X) around X . Then there exist positive numbers §; and 8,

such that if the algorithm above is started at any po1nt (x ,uo)

with [ (xqsup) - (X,u)]| <&y and || G(xq,up) - V L(xo,uo)ll <8, , then

the sequence {( i 2U; )} exists and converges to (x,u) with the

following R-rates

a. R-linear convergence rate, that.is there exist § ¢ (0,1) ,
e>0, 120 suchthat |z;-Z|| <es' , forall ix7.

b. R-superlinear convergence rate, that is for each ¢ ¢ (0,1) ,
- no matter how small, there exist € >0 , 7 >0 such that

l|21~2||:; e , for al1 i > 1 , provided that condition (b)

of the algorithm is satisfied.



(c) R-quadratic convergence rate, that is there exist § e (0,1) »

- - i - .
e>0,1>0 such that l\zi—zll:; ¢ 82", for all i 271, provided
that condition (c) of the algorithm 1is satisfied.

Proof: We first establish the convergence of the algorithm with an
R-1inear rate, then establish the other rates of convergence. Our
proof for convergence with an R-linear rate is patterned after that

of Robinson [10] in which he proves R-quadratic convergence of a

different algorithm. Introduce the functions h : R RYM  and
4 RV gL 1T 55 follows
T 9f(x) + Vg(x)u | COER) + 6(2) (x-x) + vg(R)u]
ulg' (x) J (g (%) + g (R (x-X))
h(z) = s d(2,2) | :
A BRGSO vg"(R)" (x-X))

These functions are obtained from the equalities h(z) =0 and
d(z,z) = 0 which constitute the equalities of the first-order Kuhn-
Tucker conditions for the original problem 1.1 and the quadratic sub-
problem Q(z) respectively. McCormick [7] has shown that the second
order- sufficiency conditions, strict complementarity, and linear
independence of the gradients of the active constraints at (i,ﬁ)
insure that Vzh(i) is nonsingular. Define

3.2 g=3 (7@

Since: h(z) = 0 and Vzh(Z) is nonsingular, there is some open
neighborhood of 7 which contains no other zero of h , and hence
no other Kuhn-Tucker point of 1.1. Combining this with the facts

P



that Vv2f and VzgJ s J=1se..,m , are L?pschitz continuous on N(x)

and that || G(z;) V2L (z) 2 T%E
constants u and M such that z s the unique zero of h in
E(E,%ql) , the closed ball of radius %41 around z , and that for
any  z, and z, in the open ball B(z,u) we have that

we conclude that there are positive

1 2
1
3.3a l]vzh(z )-v,h(2)]] < 78
3.3b || V,h(z, ) d'( )ll _.28
where d'(zi 223 ) is the (n+m) x (n+m) matrix v, d(z ; ,z)l .
1 "2
"1,
I L L IEL A 12+ 110vPL(zy )-8z, ))(xg ;)|
11 2 1 1 1 2 1

3.5 gj(xi]) + ng(xi1)(x12=xi1) <0 for j e {jlgj(§)<b}

3.6 u J>0 for je (§la>0l
1

We shall need the following two lemmas, the first of which was also
established by Robinson for his own algorithm [10].

3.7 Lemma

Z e B(E,%qi) 3 a unique Kuhn-Tucker point z é(i,%ﬂl)
48 ||h(2)| <u of Q(2) , and ||Z-Z|| <28 [|ND)] <&




Proof: See lemma 1 of [10]

3.8 Lemma: The sequence {Zi} generated by the algorithm under
condition (a) exists, remains in B(Z, %& and converges R-linearly
to z.

Proof: Since h(z) = 0 there exists a 8 « (O,%u) and usch that

2
Z e 8(2,61) = || h(z)]| < N 5
8MB

where

1

n =min {7 E%Ié’ ) (ZUMB)Z}

N =2

1 . -
Let 8, T08 Since zg € B(z,s]) we have that

f

2
- 1
” ZO”ZU < 6-] <Z']_1 and 45”"1(20)” £ 'ZDHE' su

where the last inequality follows from the choice of n which
satisfies n2 < 2uMB . By lemma 3.7 it follows that there exist
a unique Kuhn-Tucker point 2z of Q(zo) in §(zo,-%) with
||E~20[|:; 28 || h(zg)]] . Since zy 1is supposed to be a closest

Kuhn-Tucker point of Q(zo) to zy 5 we must have that zy = z
and hence

2
39 Nzl <28 Ih(z)ll < o0
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Since z; 1is a Kuhn-Tucker point of Q(zq) » d(zgsz) = 0 .

Hence

I h(zq) 1l = 1| h(zg)-d(zgs2) |

M llzy-zgll 2 + K7PL(zg)-6(zg)) (xq-x0) |

A

A

(M llzq-2o |l *+ 172L(zg)-6(zg) | )| 27-2, ]

n

n_, 1y n-
(25 * Tog)
2

in

i6
~~
ol
o+
=
~n
th

Suppose now that for some i 21 and all k e {1,2,...

we have that

3.10 | 2=z, 41l 228 ||h(zk_])||, Zp 1 € B(z, %ﬁ
and
2 2
. 1,k
3.71 Ih(z )|l < = %+ %)
Then

i
||21°2‘|=é | 20“2||+ kZ1llzk-Zk“1”

o1}

(by 3.4)

(by 3.9)




1

N —

)

But for any k e {1,...,i}
_;_k-'l (since n <

I Zp=2y 1 ] <28 | h(zk_]) | 2 erp]]'g' (

Hence using || 20-2” <gu we get
i
= 1 T1.k-1 1 . M
22l <qu + g I @ squ s gigs (since n <)
Hence z; « B(E,}él-) . Also from 3.11 we have
48 1h(z) Nl 250 (since n <)
;%<u (since n;‘—l—gﬁ—)

So we conclude from lemma 3.7 that Z341 exists and is unique in
§(z,is %u) and
312 |l 25,4771l 228 || h(z;) I élzl‘

Since d(zi’ziﬂ) = 0 we have that
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Il h(21+])” = | h(21+1)'d(21 ’21+1)”

;
(by 3.4 and é(Z_i,%-u) < B(Z,u))

2 2
< M 21'+'|"Z1'” + ] L(Zj)"G(Z')“ | 21'4.]'2-;”

< M| n(z) || %+ g (281 ()|
(by 3.12 and condition (a) of algorithm)
2 2 Tvi 1 2 2 14
<[5 G+ 5) +g]~8—”M—B-2f (5-+35) (by 3.11)
2 2 .
1,1+1 . 1
2 (3-+2) (since n < %)
8Mg 2 5 =7

Hence by induction the sequence {Zi} exists and both 3.10 and 3.11
hold for all i > 1 . Relations 3.10 and 3.11 imply that

n2 ,1,k-1
2=z 41l < 7g(3)
Hence for i > k
| 2=z [l 2 Il 25=25_ 911 *+ coee + |l 272 ]
2 . 2
n? o 1yi-1 1,ky _ 3n° 1.k
é4MB ((3) +°°°°+(§));88(°3—) .

Hence {z } is a Cauchy sequence which converges to some z' in
B(z,zu) w1th the linear rate

2
” 2 =Z ” SMB ("")

Since {zi} converges and since sz and Vng s J=lsecosm
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are continuous, the sequence {IIVZL(zi)l!} is bounded by o , say.
Hence ‘

Tz 2 16z 2 168Gz - 1] Pz |

v

16zl - o

and the sequence {|| G(z;)[| } 1is bounded by o + T%E-, It follows
then that the Kuhn-Tucker conditions for Q(zi)

Vf(xi) + G(zi) (xi+]-xi) + Vg(xi).ui+1 =0
uiI] (Q(Xi) + Vg(x_i)T (X1'+'I'X1')) =0

9(x;) * Vg(x;)" (x4417%;) = 0

Uie1 20

become in the Timit as (Xi’ui) + (x",u') the Kuhn-Tucker conditions
for problem 1.1. But since 2z s the unique Kuhn-Tucker point of
1.1 in E(E,%ﬂl) and since z' ¢ E(Z,%qi) ~it follows that z' = z .
This completes the proof of the lemma and establishes part (a) of
theorem 3.1. P

Since each of conditions (b) and (c) of the algorithm imply
condition (a), we have by the lemma 3.8 just proved that the sequence
{Zi} generated by the algorithm under condition (a), (b) or (c)
is well defined and converges R-linearly to z . To show R-superlinear
convergence under condition (b) we have from 3.4, 3.10 and
d(zi,zi+1) = 0 that for 1i=1,2,..., ‘

S
R
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2 (Xi"X.i_-l)
3030 N2zl < 280Nl 2402, 4 1+ 07Uz )-8z Dy D

I 257257 I

If we let Bi denote the term in the square bracket in the inequality
above, we have, from condition (b) and the fact that {Zi} converges,
that By 0 . Hence

| 21+1‘Z-i|l < By I Z-;'Zi_]” > B; >0
and by induction ||z, ,-2;]| < B:8;

Hence for k > i

22511 2 I 2=z g1l + e+ [l 240724

| A
-
-
™
=~

For a given & ¢ (0,1) pick i such that B, <& for i > 1 .
Then for k>i> 7 and vy = BiBpeece- Bx8~

-

k-1, k-2 i - zzglly
“ Zk"zi” =<= (6 +6 + ceoo + 6 )Y” Z.IGZO ” ; '——Tr 6

Since z, = z we have upon letting k - = 1in the last expression
that

Il z9-zpllY .
| zi-zll < —15— §' for i>1,
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which establishes the superlinear convergence of the sequence {Zi}

under condition (b).
We finally establish R-quadratic convergence under condition

(c). We have from condition (c) and 3.13 that
| Zeon-z || < 26M || 252, ]| 2, i=1,2
#1740 2 721l o TELS.

T We have then by in-

Pick 1 such that y = 2gM || z
duction that

a2t
| 2, 00-2; 11 < (28M) " s =111,

Hence for k>i;§
§ Y2‘"‘(2“-1)

2=0

k=1 ,2-1 -3
277 < (2! 42

22,1l < (280§ v
2=1

pi=T 2,

<(2m T2 Ty
2=0

02 2 o~ .
= (2gM) by and 8=y we obtain upon
2=0

By defining €
in the last string of inequalities

Tetting k » =

which is the desired R-quadratic convergence rate. This completes

the proof of theorem 3.1.
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4. COMPUTATIONAL IMPLEMENTATION
AND NUMERICAL EXPERIENCE

In order to insure superlinear convergence, condition (b) of the
algorithm must be satisfied. For this purpose any updating scheme
for an (n+m) x (n+m) matrix H(z) which satisfies either of the
following more stringent conditions will also satisfy condition (b):

4.1 The updated matrix H(z) 1is an approximation of the Hessian
V§L(z) of the Lagrangian with the property that

2
| v5L(z;) - H(zy)]| + 0
if z; » z

4.2 The updated matrix H(z) 1s an approximation of the Jacobian
Vzh(z) of the equalities of the Kuhn-Tucker conditions of problem
1.1, with the property that llvzh(zi) - H(21)|| >0 if z; - z
h(z) = 0 and Vzh(i) is nonsingular.

It is clear that the upper left corner n x n submatrix of both
VEL(Z) and Vzh(z) is VZL(Z) = sz(x) + Vzug(x) . Hence under either
scheme 4.1 or 4.2 we obtain that ]|V2L(zi) - G(z;)|| + 0 , where
G(zi) is the upper left corner n x n submatrix of H(zi) s and
condition (b) of the algorithm is satisfied.

Another possible choice for G(zi) is a finite difference
approximation to the n x n matrix V2L(zi) s similar to that
employed by Goldstein and Price [6]. We show now that this choice
for G(z;) also satisfies the condition ||V2L(zi)~ G(z;)]] ~0.
In particular we define the jth column of G(zi) as

L0, 19,u.) - L(x,,us)
G(Z])J = 1 1 61 1 1 j"],...,n
i
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where IV is the jth

column of the n x n identity matrix,

0; = r|[VL(z;)]| and r {is some positive constant. Since f and
g have Lipschitz continuous second derivatives in a neighborhood
of X , it follows that for (x,u) and (x+y,u) in a neighborhood

of (X,u) and for some K > 0 that

| TL(x*ysu) = TL(x,u) - VAL(xu)y ]l < K |y || 2

Hence if we let VZL(zi)J denote the jth

have for j=1,...,n that

column of VZL(zi) we

l6(z)? - Lzl <k 11120, <k | wL(zy)]]
where K, 1is a positive constant. Hence for Z; € B(E,%O

16(2;) = YLz <K, | VL(z) ]| < Ky [l z,-2] < K B
i ] 2 1 3 i 2

3
where K2 and K3 are positive constants, and the last inequality
holds by choosing u small enough. By picking 2 € B(E,%Q we
have by the above inequality that condition a of the algorithm
holds for Zg- By the proof of lemma 3.8, z, exists and is in
B(E,%° Hence using the above inequality again we have that Zy
also satisfies condition a. By repeating this argument we have
that all Z; satisfy condition a and hence by lemma 3.8 the
sequence converges R-Tinearly to Zz. But by the above inequality
we also obtain that. [G(z;) —VZL(zi)ll+ 0. Hence by theorem 3.1
the sequence {zi} converges R-superlinearly to z.

The algorithm was implemented computationally by an updating
scheme due to Garcia-Palomares [5] and which under suitable conditions
satisfies condition 4.1 above. For explicitness we give the scheme
here. Initially set both Hy and Cp equal to the (n+m) x (n+m)
identity matrix. Subsequently we have that (using the simplifying
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convention that the index 1 is dropped and the index 1i+1 is
replaced by 1)

S=Z]‘=Z

W= VZL-i - VZL - Bs

t e (0,1)

2.7

Hy = H o+ =i (wsTCrosw®) - B30 cssTe

. s Cs (sTcs)

I if i+1 =0 mod (n+m)
1= ¢

C - t CssTC
s*Cs

In implementing the algorithm, only the n x n matrix
G(zi) is updated during the initial iterations. When
I x;47-%;1l < ey for some small e; >0 , we begin to update
the (n+m) x (n+m) matrix H(zi) .

Another feature of the implementation of the algorithm
prevents the iterates Xs from becoming more infeasible with
respect to feasible region {x|xeR", g(x)<0} of problem 1.1.
This is done by adding a heuristic stepsize to the algorithm which
is determined by decreasing the infeasibility along the direction
Xit] = % generated by solving problem Q(zi) . In particular we
Tet r(xi) = maximum {r, 91(xi),..,,gm(xi)} for some small positive
number r , and move a sufficiently small amount Ai > 0. along
X + A(xi+1=xi) such that r(x1+Ai(xi+1—xi»:§ r(xi) . This was
achieved by cutting X in half until the infeasibility decréase
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condition r(xi+ki(xi+1-xi»=; r(xi) is satisfied. This stepsize
procedure was an important factor in achieving convergence from starting
points that were not close to the solution. That the procedure is

well defined can be seen from the following. If for some j e {1,...,m} ,
gJ(xi) >0 , then since gJ{xi) + VQJ(xi)T(xi+]—xi):; 0 , we have

that VgJ(xi)T(xi+]~xi):;-gJ(xi) < 0 . Hence we can always move a
sufficiently small amount Ai > 0 , because the direction (Xi+1'xi)

is a downhill direction. If convergence to a solution is obtained

with this stepsize, and Xi = 1 for sufficiently large i ,

then the convergence rates given by theorem 3.1 hold.

The algorithm together with the heuristic stepsize was coded
in FORTRAN V for the UNIVAC 1108. The principal pivoting method of
Cottle and Dantzig [3] was used in solving the subproblems Q(zi) .
It was tested on all eight of Colville's test problems [2]. The
results given in Table 1 are very encouraging; in
more than half the test problems the proposed algorithm was faster
than all the algorithms reported on by Colville. We also list in
Table 1 the timings obtained by Best [1] and Robinson [10] using their
algorithms.
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