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ABSTRACT
The paper studies the boundary-value problem arising from the
behaviour of a fluid occupying the region *i < x <1 between two rotating
disks, rotating about a common axis perpendicular to their planes when the

disks are rotating with the same speed @, but in the opposite sense. The

0

'equations which describe the axially symmetric similarity solutions of this

problem are

it
(e

cHY + HH'' + GG

f
o

eG" + HG' - H'G =
with the boundary conditions

H(xl) = H'(21)

i
(=]

G(-1) = -1, G(1)

1
Yt

where g = v/ZQO and v 1is the kinematic viscosity.

The existence of an odd solution {(H(x,e¢), G(x,¢)) is established.
This particular solution satisfies many special conditions, e.g., G'(x,e) >0 .
Moreover, precise estimates are obtained on the size and behaviour of the

solution as ¢ {0 .
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ON THE FLOW BETWEEN TWO COUNTER-ROTATING
INFINITE PLANE DISKS

J. B. McLeod and Seymour V. Parter

I. INTRODUCTION

’

Following the approach of T. voxi1 Karman [6], G. K. Batchelor [1]
and K. Stewartson [ 5] considered the fluid motion between two rotat-
ing disks, rotating about a common axis perpendicular to their planes.
The particular case when the two disks are rotating with the same speed
but in the opposite sense has generated a great deal of interest.
Batchelor conjectured that, in the limit of large Reynolds number (small
kinematic viscosity), the;main body of the fluid is separated into two
parts, rotating with opposite angular velocities with a narrow central
transition layer through which the fluid adjusts from one rate of rotation
to the other. On the other hand, Stewartson conjectured that the main
body of the fluid is only slightly disturbed at large Reynolds number.

Numerical computations have been carried out by Lance and
Rogers [8], C. E. Pearson [13] and D. Greenspan [ 4], but the evidence
given by these is conflicting. K. Kuen Tam [ 16] has applied the method

of matched asymptotic expansions to suggest the non-uniqueness of the
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solution. J. Serrin [14] has commented on the computational results and
the mathematical difficulty of the problem.

Let the disks be placed at x = -1 and x = 1 and rotating
about the x-axis with angular velocities S’ZO and —QO respectively.

Let qr, qe , and qX denote the velocity components in cylindrical

polar coordinates (r, @, %) . Following Batchelor [1] we write

1 _ R o
dg = SrQx), a = h(x), d.= -3
where the prime denotes differentiation with respect to X . The
continuity equation is satisfied exactly and the equations of motion
become

b iv R
v BV = hh'" - QQt = 0

]-!l)
ka" -hQ"+h'Q =20

where v is the kinematic viscosity. The associated boundary conditions

are
h(-1) = h'(-1) = h(1) = h'(1) = 0
1.2)
Q(-1) = 22 Q1) = -20 -
Let
g = v/zs'zo
1.3) H(x,e) = —h(x)/ZQO
G(x,e) = -Q(x)/29 -

Then the equations (1.1), (L.2) become




e IV F HHM G GGt =0,  -l<x<l,
1.4)
e G'' + HG' - H'G = 0, l<x<l1,
and
H(-1) = H'(~1) = H() = H'(1) = 0
1.5)

In this report we prove the existence of an odd solution
(H(x, &), G(x,c)) of (1.4), (1.5) forall ¢ >0 . This particular solution,
in addition to being oﬂdd, satisfies the following additional conditions:
H(x,e) <0 for 0 <x=<1l;

H'(x,¢e) has precisely one zero in 0 <x <1 with H'(0,g) <0 ;
H'"(x,e) has precisely one zero in 0 <x <1 with H"(0,g) =0
and H'(l,e) <0;
H'''(x,¢e) has precisely one zero in 0 <X <1 with H'"'(0,¢) >0
and H"'(l,e) <0;
1. 6) G'(x,e) >0 for -1 <x<1;

G'"(x,e) >0 for 0<x=<l.
Moreover, for any odd solution which satisfies (1. 6), and so for our
particular solution, we can obtain precise estimates on the size and
behaviour of the solution as ¢ {0 . These results are given in detail
in the statement of Theorem II in §3 below, but we remark here that the
behaviour so found is consistent with Stewartson's predictions and not
with Batchelor's. At the same time, the absence of any uniqueness proof
amongst our results means that a solution of Batchelor's type is not

completely ruled out, although our investigations of the cquations enable



us to say that certain behaviours are just not consistent with the equa-
tions, and that in particular the solution obtained numerically by
Greenspan [ 4] is impossible. We return to this point at the end of
Lemma 2. 2.

Although much work has been done on existence theory for swirling
flow above one rotating disc (see, for example, [ 3], [5], [7], [10]-[12],
[17]), this paper seems to be the first contribution towards existence
for the two-disk problem. The proof depends very delicately on the
precise boundary conditions that arise in the case of an odd solution,
and we do not believe that it will be a triviality to extend it to the case
where the rotations are no longer exactly equal and opposite.

The existence theorem is established in §2, and the discussion of
behaviour as ¢ ! 0 is carried through in §3.

We are indebted to Carl de Boor for many patient hours of fruitful

discussion on this problem.




2. EXISTENCE THEORY

We restrict our attention to the subinterval [0,1] and seek a
pair of functions (f,g) which satisfy
V4 Y 4 ggt = 0, 0 <x<l,

2.1)
gt + fg' - f'g = 0, 0 <x <1,

£0) = £17(0) = £1(1) = [(1) = O
2.2)
g(0) =0, g(l) =R>0.

If one has such a pair of tunctions, then, with ¢ = 1/R, the functions

- ¢ f(-x) , x <0,
H(x, e) =

G(x,e) =

satisfy equations (1.4), (1.5).
We shall make frequent use of the function
2.3) m(x) = f"'(x)
which satisfies the eguations
fgm”+_fm':-—gg', 0<x<l,
2.4)
Lm(O) = 0.
The main result of this section is the following fundamental
existence theorem.

Theorem 1: There is a pair of functions (f,g> which satisfy equations

(2.1), (2.2). Moreover



A) N%Raiff_Oy
1 2
i < .
B) ¢l <5 R
C) There are three distinguished points Xy Xy Kg with
<x < < <x_ < <
0 X, <X, 1, 0 Xy <X, 1
such that
C.1) fi(x) <0, 0 <x<x,
C.2) f'(x) >0, xl<x<l,
‘ i) < g2 <
C. 3) O<f(x)_§2R , 0 <x <X, ,
2
2 3
C. 4) - R e2® <) <o, x. <x <1,
C 1 RA] -1— 2
.5) 0 <f (x)_<_2R , 0<x<xg,
by 1p2
C. 6) -%RZeZR < fMi(x) <0, x3<x§_l.
Moreover, we also have
D) 0 <g(x) <R, 0 <x <1,
1g? 3
E) 0 <g'(x) <e®  (R+5R), 0<x<1l,
152 2
F) 0_<_'g"(x)_<_’{e2R (R 4»%}13) + R}B:Z, 0<x=<1

The proof follows from a series of lemmas and the Schauder fixed-point

theorem.




Lemma 2.1: Let g(x) e C'[0,1] and satisfy

2.5) | §(0) =0, () =R, g'(x)>0.

~

- 4
Let f(x) e C'[0,1] . Then there is a unigue fe C[0,1] such that

£V oy Fe = -ggt, 0<x<1,
2.6) - - ~ ~
£0) = L1(0) = f(1) = £7(1) = 0
Moreover
a) T(x) <0 .
¢) There exist two distinguished points % x_  with

l‘.’ 2 JRASUS

such that

c.l) fYx) <0, O<x<.xl,
c.2) ?'(x)>0, ;1<>‘<1’
c. 3) O<E"(x), O<x<>~<2,
c.4) ij”(x)<O, :c <x <1

Further, if é'(x) >0, then there exists a third distinguished point

~

{ i <x_ <x.<
x, with 0<x,<x, <l and

3
c.5) 0 < f'i(x), 0 <x <x,,
c.6) Nf”'(x)<0, §%<x§l.

(The lettering of the various propertics corresponds 1o that in Theorem 1.

There is no property (b).)



Proof: Let

2.7) m = f'(x) .
Then
2.8) m'4fm' = -gg' <0, 0<x<l.

Integrating (2.7) and using the boundary conditions £(0) = £'(1) = £(1) =

we obtain
1 "~

2.9) [ tm(t) dt = 0 .

0
If we set

- X —

ux) = [ f£(1)dt,

0
then we can write (2.8) in the form
(e"m")' = -e"gg' <0,

a ' ' . ' ~
so that e m' is non-increasing, and if m'(0) <0, we must have

~

m(t) <0 for all te [0,1] . Hence from (2.9) either fr(t) = 0 (which

does not satisfy (2.6)), or E'“(O) >0 and "fd"(l) <0, and then, if

-~ ~

g' >0, we can assert that there are two distinguished points X, x3

~

with 0 < ;{3 <X, <1 and such that (c.3), (c.4), (c.5), (c.6) hold.

Indeed, the existence of a well-defined x, holds when we have only

2

g'>0.

The above arguments also prove the uniqueness of f . For if

there are two solutions, then the difference (fl - fz)” satisfies the




equation (2. 8) with gg' replaced by zero. Thus (£, - f

~ ~

(and by integration {l -f,20, aswe want),
9 — ~ [ BN =

or (fl f2> (0) >0,

and of course | (f2~ ?l)"‘(O) >0,

which is impossible.

It remains to prove (a), (c.1l) and (c.2). Integrating (2.7) backwards

from x = 1 we obtain

(2.10) fi(x) >0, X, <x<l,

and after one more integration

2.11) f(x) <0, §25x<1.

Consider (2.7) on the interval [O,>~<2] . The maximum principle implies
f(x) <o, O<x_§;<2,

and there is a unique point ;<1 € (0,322) such that (¢.1), (c.2) hold.

Thus the lemma is proven.

~

Z ~
Lemma 2.2: Let f(x) e C[0,1] satisfy £(0) = 0 and the properties

(a), (c), (c.1), (c.2), (c.3), (c.4) of Lemma 2.1. Then there exists

~ 2
a unigue function g(x) ¢ C[0,1] which satisfics

all%,falnflazo, Oixil

b

2.12)

Moreover



f) 0 <g"(x), 0 <x<1.
Proof: For every real « let S(x,a) be the unique solution of the
initial value problem

S" 4 fSt-['S=0, 0<x<l,

2.13)
S(0) = 0, S'(0) = o .

The existence of 8S(x,a) follows from standard existence theorems

and the linearity of (2.13). Let

Then after differentiation of equation (2.13) we have

gin +'ES” = f1§
2.14) ~ = o
(e” 8" =e £"S.

Since f(0) = S(0) = 0, we have

S"(0,e) = O .
Integrating (2.14) we obtain
~ X ~ ~
2.15) ¥y = [ M Frnsmar
0

Suppose « >0 ; then there is an interval [0,%X] of greatest

length in which §(t) >0 . If

x < min(x, §2) ,

~-10-




then the representation (2.15) and the fact that f"(x) >0 for

0 <xX< 322 shows that

Thgs

2.16) S'(x) >a >0, O gximin(f,;cz) ,
and

2.17) ‘ S(x)}_ax .0 <x <min(x,X,)

2

Since either x =1 or S(x) = 0, we may conclude that

2.18) X > X,

Now we rewrite (2.13) as

2.19) st = -fst 4 f's, X <xc<l

?

and recall that %, <X_ . Thus on the interval (%, X

1 > the right-hand-

12]

side of (2.19) is positive, and by continuity there is a largest number y with

~

X, <y <1 such that

2.20a) S(}{,a)>0, 0 <x<y,
2.20Db) S'(x,a) >0, 0<x<Yy,
2. 20¢) Si(x,a) >0, 0<x<y.

If y <1 then (2.20c) implies that inequalities (2.20a) and (2. 20b)
apply at x = y . Hence returning to (2.19) we sce that (2. 20¢) holds
at x = y also.

We have thus shown that « >0 implies that S, St, 8" are

-11-



non-negative on [0,1] . By virtue of the linearity we see that o <0
implies that §, S8', S" are non-positive on [0,1] . Moreover,
if « =0, then S(x,0)=0. Thus, since R>0, if 8§(x,a) is
to satisfy the conditions on g(x), we mustrequire o >0 . At the
same time S(1,a) is a continuous (indeed, linear) function of «
with

S(1,0) =0,  S(,R) >R .
Thus there exists exactly one e« ¢ (0,R) such that 8(1,«) = R.
Remark: This lemma, or, more correctly, the method of proof of this
lemma applied to the computations of Greenspan [ 4] on the interval
[1/2,1] shows that those computations are inconsistent with the problem.

Lemma 2.3: Let g(x) ¢ C'[0,1] and satisfy (2.5). Let f(x) e C'[0,1]

and f(x) <0 . Let 'f(x) be thée unigue solution of the linear boundary-

value problem (2.6). Then

(a') SRt <f<o,
(b") I;'I < -% RZ ,
(c'. 3) O<E“(x)5*§‘RZ, 0<x<;2,
(c'. 5) 0<?“'(x)5—él-R2, 0=x Xk, .

(1If we have only EJ' >0, the point ;<3 may not be uniquely defined.
In this case, 323 is to be interpreted for the purposcs of this lemma
as any point for which f'"'(x) = 0, and the inequality in (c'.5) is

replaced by equality.

~12-




Proof: Let

2.21) ux) = [ f(tat<o,
0

and

2.22) ' u'(x) = E(x) <0 .

We rewrite equation (2.8) as

(e’ - --i-ea(ézw ,
and then
Y
2.23) i) =1 [ RO I I
X

If 0<x<X then in the integrand of (2.23) we have

3 b4

IA
%2

Thus, for 0 <x

2.24)

which proves (c'.5). Since

?'n(;{g) = max{m(x) ; 0 5x_<_>wc2}
we also have (c'.3). Forany x ¢ [0,3%2] , we have
x
~ 1.2
| _ . L
| £ (x)! l[ m(t)dt! < > R .
X
1
However,
?'(}Nc ) = max{f'(x) ; X, <x <1},



and so (b') is established. Integration then gives (a).

Proof of Theorem I: Let

1 | A LT =

F={f(x)c ClO,1]; -5 R

[

-

s 1 - . A
G = {g(x) « C[0,1]; g(0) = 0, g(l) = R, g'(x) 20} .
let f ¢F , geG.
Let 'f(x) be the unique solution of the linear boundary-value

problem (2.6). Using (2.23) we see that, in addition to (a'), (b"),

(c'.3), (c'.5) we have

IA
—
-

(c'. 6) -%Re‘ _5?"'(x)<0, X, <X

and hence

5?"(x)<0, §2<x§l.
(1f we have only 5'(x) >0, we interpret 3?:3 as in Lemma 2.3, and
replace the inequality in (c'.6) by equality.) Let g(x) be the unique

soluticn of the linear boundary-value problem (2.12), and let u(x) be

defined as in Lemma 2.2. Then we have

NN P ~~ o
(e'g") =e'f'g,

~U(x) “Ux) 2 ()

g'(x) = e U3'0) te [ e i Ng (tat .
: 0
Since g'(0) <R we have
2
1 3
0 <gix) <ell . (R+—21~R )

-14~




and

Gu(x) = ~E(T(x) 4 L ((x) 2
Thus the mapping ¢ defined on Fyp G by
o{f,q) = (£,9)
maps the convex set I y G into the compact subset of F yp G satisty-
ing all the conditions A, B, C, C.1l, C.2, C.3, C.4, C.5, C.6, D, E,

F of Theorem I, except that x may not be well-defined. Theorem I

3
follows from the Schauder fixed-point theorem [2], and since for the
fixed point we do have g' >0, we also have X, well-delined.
Remark: Applying Lemmas 2.1, 2.2 and 2.3 we see that any solution
{f,g) of equations (2.1), (2.2) which also satisfies

g'(x) >0, 0<x<l,

satisfies all the estimates of Theorem I.

_.15...



3. ASYMPTOTIC BLHAVIORAS ¢ 10

In this section we return to the functions of physical interest
(H(x, €), G(x,e)> which satisfy equations (1.4), (1.5). Whenever we
refer to a solution (H,G) we shall mean an odd solution, so that we
may restrict ourselves to the interval [0,1] with the boundary conditions
H(0) = H"(0) = H'(1) = H(1) = 0
3.1)
G(0) = 0, G(1) = 1.
We shall further restrict ourselves to solutions possessing the property
that G' >0 . By the remark at the close of the preceding section, it
follows that any such solution, suitably normalized, satisfies all the
estimates of Theorem 1, and in particular it ensures the existence of
the three distinguished points X

X x3 which are the zeros of

172
H', H', H'''.
As has already been indicated in the introduction, there may well
be solutions of (1.4) and (1.5), even odd solutions, which do not
satisfy G' >0 ; there may even be (although we do not consider it
likely) more than one odd solution which does satisfy G' >0 ; but
what we can assert is that any odd solution satisfying G' > 0 has a
behaviour as & !0 which can be very precisely identified and which
is in accordance with Stewartson's prediction [15] rather than Batchelor's [1]

in that it displays a boundary layer at x =1 and nowhere clse.

We shall use theé usual O- and o- notation. In addition, if

~16-




X, Y are two functions of ¢, we shall use

X>Y
to mean that Y = o(X) as ¢ {0 ; and we shall use

X RY
to mean that both Y =O(X) and X =0O(Y) as ¢ !0 . Theletter K
will be used to denote various positive constants not necessarily the
same at each appearance, but always independent of & orof any other
variables under discussion; if we wish to indicate that X depends on
some parameter, say &, then we will write K(e) .

With this notation, we can state the theorem on the behaviour

of (H,G) as e!0 as follows.

Theorem II: Any odd solution of (1.4) and (1. 5) which has G' >0 has

the following behaviouras € {0 .

(i) Xl’ Xz’ X3 - 1 .Wi_t_.h.

1 1
82<1—Xl = Ole? log e) ,
1 1
1-x,= e?, 1-x,x e . (Lemmas 3.24, 3.26, 3.3l)
1
(ii) sup !H(x,g)! =gl . (Lemma 3.29)
0 <x <l

1

(iii) -H'(0) = el | H'(xz) <1, H(x,) <31 O(e). (Lemmas 3.23, 3.29, 3. 30)

(iv) Uniformly in x,

1 i

H'(x,e) = Ofe * exp{-Ke “(1-x)}),

T

tv

H

H'"(x,e) O(g—l exp{%(em (1-x)}) ,

...17_



b -
while ~HY(1)x e ¢, -IMY(l) xe ! .

ﬂﬂﬂﬂﬂ (Lemmags 3,20, 2.21,
(v)  Uniformly in x,
1
G(x,¢e) = Olexp{-Ke 2(1-x)}) ,
-4 ‘ -
Gl(x,e) = O(e 2 exp{-Ke “(1-x)}),
- -1
G'(x,e) = O(e ~ exp{-Ke “(1-x)}) ,
1
while GYl)=e 2. (Lemmas 3.22, 3.27)
(vi) The first equation of (1. 4) can be integrated to give
3.2) e H 4 HEY 4 (67 - 1Y) =,
for some constant p, andas g0, ~uxe . (Lemma 3.29)
b 1
(vii) In any fixed interval 0 <l-x <Ke*, ifweset 1-x= et ,
then the guantities
-1 1 ‘
e “H(x,e) - ¢ (8) , H'(xe) - o(6), e H"(x,e) - og(6) 5
1
G(X,e) - 4’0(&) ’ —EZG'(xyﬁ) - qJ'O(g)
all tend to zero uniformly as e 40, where (¢ ,¢ ) 1is a solution
o’ "o
of the von Karman single disk problem
o't oo Jr‘zl‘(\ba - ¢'%) = 0
3, 3)
ot oyt - 'y = 0
with the boundary conditions
o(0) = ¢'(0) = ¢'(®) = 0
3.4) (Lemma 3.25)

i
[
-
.
P
8
S
i
<

LlJ(O ) =

-18-~-

2

e

28)




The last property (vii) is just the precise statement of the fact
that in the boundary layer the solution behaves like a suitably scaled
version of ''the' solution of the von Karman single disk problem, and
at a heuristic level this has been recognized for some time. (We
need merely observe that, if we make the change of variables

Lox=ele, —efH(x) = ol8), GG = W)
and if u is in some sense negligible then the equation (3.2) takes the
form of the first equation of (3.3).) Further, the solution (@O, 4)0)
to which (ME%H,G) tends has, as the discussion in Lemma 3.25
shows, the properties that are associated with 'the! solution of the
von Karman problem,

i.e. ¢>0 >0, \J,AO>O, \l)'o<0’

¢,8 has precisely one zero, being first positive and ultimately negative.

(See for example, [10].) At the same time, since there is no uniqueness
result for solutions of the von Ke;nm;n problem, the use of the phrase
Yithe solution'' is not permissible in any rigorous sense. Indeed, if
there were more than one solution of the von Karman problem, it is even
possible that by letting e ! 0 through different sequences, we might
have different limits (q;o, gbo) in (vii) above.

The proof of Theorem II is contained in a long series of lemmas,
most of which are in themselves relatively simple to prove. For each
part of Theorem II, we have indicated the precise lemma or lemmas in

which that part is finally proved.

-19~



y ) . VA . .
Lemma 3.1: H" i G is a non-decreasing function.

Proof: If we set
z 2
d = H“Z + G,
the_n

v +2GIGHT Z(HHIZ 4 an) ,

o' = ZHUVH'! + 2G'G", @' = 2H'H
and by substituting for HIV and G''' from the first equation of (1.4)
and the second equation differentiated, we obtain

e @+ Ho' = 2e(HMZ + G17)

which implies at once that
S|
o 1(x) exp{f e "H(t)dt}
0

is a non-decreasing function. But the boundary conditions at x = 0
say that @'(0) = 0, and so we always have &'> 0, from which
the lemma follows at once.

Lemma 3.2: For any x with 0<x <1, we have

1
1 -x°

0< G'(X, 3) <

Proof: For since G' is a non-decreasing function by condition (F)
of Theorem I, we have
1

1>G(l) - G(x) = [ G'(t)dt = G'(x)(1 - x) .
X

Lemma 3.3: If we define p as_in part (vi) of the statement of Theorem I,

2 2
and ¥ = (H'" + G~ + 2u)/G, then ¥' has one and only one zero, at

-20-




say, and w'< 0 for x<x0, vt >0 for x> Xy Further,

Proof: It is a routine calculation, using (3.2) and the second equation

of (1.4), to prove that

3.5) wto= - 8 (oG - HYGY) .
o2

Differentiating again, and using the first equation of (1.4) and the second
equation differentiated, we see that

2G! H 2
"o L e [ - ] o 1t e |
3.6) VG G ¥ e\l’+G(H + G,

from which it follows that

is a non-decreasing function. It follows therefore that ¥! has at

most one zero. (If it had two, it would have to be identically zero
between the two, and so everywhere, from the analyticity of the equations;
and this is impossible.) Further, the values of the various derivatives

at x=0 and x =1 (given either by the boundary conditions or by
Theorem I) ensure that ¥'(0) <0, Ww'l) >0, sothat ¥' has precisely

one zero, at Xq ) Say. Finally, at x

3’
H" =0, G'>0, H'>0, G">0,

so that \II'(X3>~>-O and X, < X

~21-



Lemma 3.4: For x> X and so in particular for x > Xa we have

0 ?

2

3.7) H' < (G = 2u)(l - G) .

Proof: By Lemma 3.3, we have, for x> x

so that
2 2 )
H' + G +2p< G+ 2p),
which rearranges to give (3.7).

Lemma 3.5:

1 2 2
0 < H'(x,e) < 5 {G (x5,€) - GT(x,e) ), 0 <x<x,,
0> L {GZ(X 8)-G2(X e)} > H'''(x,¢) x. <x<l
p 28 3, ? — ? H 3 - - *
X
Proof: If u(x,e) = f H(t,e)dt , then the first equation of (1. 4) can
0
be written in the form
3.8) {H'" exp(u/e)}t = - "81‘ GG!' exp(u/e) .
If we now integrate between x and Xy s remember that H“'(x3) =0

and use the fact that
{u(x) - u(t) }(x-1t) <0,

we obtain the required result.

. 1
. b >
Lemma 3.6 Xg 25 %,
Proof: Let X = max{O,Zx3 -1},
y = max{0, 2%, = xz}
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By Lenma 3.5, remembering that G" > 0 and that G is therefore
convex, we see that

(3.9) H'''(t,e) < - H''"(2x, - t,¢) , §_<_t§_x3.
Suppose for contradiction that the lemma is not true. Then x=0 ,

and integrating (3.9) over [0, x3] , we obtain

H”(x3,g) < H"(.x3,g) - I—I’l'(sz‘,g) .

But we now have 2x; <X, , and so H"(2x3, ¢) >0, whichis a
contradiction.
Lemma 3.7: xZ +1 as e 10.

Proof: Suppose for contradiction that the lemma is not true, and allow
e to tend to zero through a sequence of values {en} such that

xz(an) ~ %, < 1. Let a be a fixed number such that ;.2 <a<l,

and set

say. For x> X we have

iv
ler " | > GG,
and so for any x>a, since GG' is increasing, we obtain

-1 -

[grx) - HY' (@) | > e (x-a)é(a, e)

Since H''Y(x), H''*(a) are of the same sign, we in fact have

latx) | > e (x-a)ila, e)

and so on integration, still for x> a,

—p 3



|H(x) - H'a) | > %s (x-2)° E(a,e) :

and since H'"(x), H"(a) are of thc same sign,

~1

lH(x)] > T ¢ (x-a)z £(a, c) -

By -a final integration over [*21“ (1+a),1] , we see that

(14a) > Ke ¢,

N

3.10) H(

for some suitable positive constant K.

Potes

1
But also G'(x.) = O(£%) as ¢ {0 . For if not, then G'(xz)/é -+ 0

?

5)

[N

and so, since G' is increasing, G'(a)/£? - ®; and also, by integra-
1

tion over [xZ, al , G(a)/t?® -, which contradicts the definition of

¢ . Thus

2 2

3.11) (H"" + G'7)(x,) = O8) ,

. 2 2 .
and since H" + G! is non-decreasing,

Hi(x) = O(£?)

uniformly in x for x <X By integration between x, and X,

2 1

we obtain
1
3.12) H(x) = O(¢?)

uniformly in x for x<Xx and so for all x, since x, 1is the

2’ 2

positive maximum of H' . Comparing (3.10) and (3.12), we have

1

-1 i
€ f.; = O(gp) 9
from which

£ =0("), HY(x) = O(e) forall x,

—24~




and hy integration

H(x) = O(e) for all x .
Also, from (3.1l),

G'(0) = O(e) .

Now the equation

is, as an equation in G, a linear equation with coefficients bounded

in both x and ¢ . Let the solution of this equation with initial data
G(0) = 0, G'(0) =1

have G(1) = K(e), say, where, in view of the boundedness of the

coefficients, K(e) is bounded as & {0 . But we are concerned with

initial data

and since the solution is linear in the value of G'(0), we now have

which is the required contradiction if ¢ is sufficiently small.

Lemma 3.8: If we have a seguence {an} , with 81’1 {10 as n -+ »

i, b

and if !H'(o,gn)l o as n -, then

lim sup xl(gn) <1.
n — o0

e )~1 as ¢ 0. (It will

Proof: Suppose for contradiction that Xl( n n

cause no confusion to drop the subscript n from now on.) By Lemmas

, say, for ¢ sufficiently small.

QI:—'

and 3.7, X3(g) >

3.6

.’.,ZS«



If now
~HYW(0,¢) = c(e) ,
where c(g) >K as ¢ !0, we sce from the convexily ol HY(x)

for_0_<_x§_x3, and so for nggz, that

and so by integration

3.13) -H(x,¢e) > 77 cle) for x =

1
and so for T < X< X

3 The fact that H'"'(0) > 0 implies that

E
2
p+jzl‘c >0, sothat

et g
B0

Appealing now to Lemma 3.4, we see that

H'Z(xz) < (Glx,) + A - Glx,)) <14 .
Thus
1
IH(xl)I - / H'(t)dt < H'(x,)(L - %))
1

Combining this with (3.13) we have

1 N1+ cz_

16 < c (i - xl) !

which contradicts the assumption that
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c>K, l-xl»O, as ¢ {0.

Lemma 3.9: If x/(e) e <p<l, then

1 P 1
3.14) G'() exp{Z [ [H(t,e)lat} <GB <75 -
4 e 1 -
Proof: If xl(e) <x, then H'(x,e)>0 and
G = -1 ua i twes? lule,
£ £ €

so that (3.14) follows from an integration and Lemma 3.2.

Lemma 3.10: Let (H(x,e), G(x,e)) be a solution of (1.4), (1.5), with

3.15) m(e) = sup H'"(x,¢) .
0< x< x(e)

Then

3.16) : sup |H(x,e)| <m(e) .
0< x<1

Proof: This is an immediate computational result.

Lemma 3.1l: Suppose we have a sequence {gn} , with £ 10 as

n +®, Let

) (e )<l.

= lim sup xl n

n-—+ ®

Then for any fixed a with }:l <a<l, wehave

lim H(a,e ) =0.
n -—» 0 n

Proof: We assume the contrary. Let « ¢ (;cl, a) . Then for £,

sufficiently small, x (en) <a<a. Wemay suppose (from our assumption

1

for contradiction) that

4 e



0< & = lim inf]H(a, En) l(a-a) ,

and for all x ¢ (a,a) we have [H(x,gn)f > lH(a, gn)l . Thus applying

Lemma 3.9 we obtain

. o/
3.17) Ogtl’“G'(a,e )5‘“’“"1“““@ )/en 0 as n -
n n e (I-a)
n .
We may also assume that
xglep) =%y

Case 1: ;{l <ac< >—<3 . Because H'" >0 for xe [O’X?<E)] we have

X , .

H(x,e ) < T H(a,e ) <x H(ae ) <0, Osx<a.

Thus in applying Lemma 3.5 we find, for x < min(t,«),

t
u(t) - u(x) :}_[ H(s, en)ds < g

Let an be so small that

2
az - Xl(en) >0 >0

for some fixed constant ¢, andlet A be a positive constant such

that

0< A< lH(a,an)l .

9
2

Applying (3.8) for x < xl(g,n) we have
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; .
0<H'"(x,e )< = Ga,e )+ -2-L— e ne®yat,
n ®n @
e“5/€n 1 _A/En
0 < H'! < : <X <X,
< H'(x, en).” en(l—a) ¥ Zan © ’ 0 TREH

After one integration we see that m(an) >0 . Thus, applying Lemma 3.10,
we see that H(a, en) -~ 0 also.

%x. <b<x.<ac<

Case 2: x. <x <a<l. Let b be any point satisfying X 3

S B

Then, since H'(x, gn) >0 for xl(gn) <x<1, we have
[B(a,e )| < [Hb,e )],

and H(b, gn) - 0 by the discussion in Case l.

Case 3: x,<x, . For e sufficiently small integration of (3. 8) gives,

n ’ n
But in this case

- " .
m(sn) max { H"(x, en) ; 0 < x < x5le

Thus Lemma 3.10 again gives desired conclusion.

Lemma 3.12: Let (H(x,¢e), G(x,e)? be the family of all solutions of

(1.4), (1.5) which are odd and have G'(x,&)> 0, i.e. are of the form

described in Theorem I. Then

3.18a) lim sup IH(x,g)I =0,
e 0 0<x<l

3.18b) lim [H'(0,¢e)| = 0.
e 30
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Proof: By the argument of Lemma 3.8 we have

sup  [H(x, o) [ 2 ¢ 1700, 0]

0<xx<1
On the other hand, the convexity of H(x,e) on the interval 0 < x < Xy

gives

sup IH(X,e)[ < IH'(O,Q)I .
0< x<1

Thus the statements (3.18a) and (3.18b) are equivalent.
Suppose for contradiction that (3.18b) is false. Then there is a
sequence En {0 and a constant mn >0 such that

.
1< 76 |1 (O,En)l < 058}321 ’H(x,en)l .

Moreover, we may assume from Lemma 3.8 that

xl(an) - %) <l.

Let

a/:‘zl(l%-xl), ﬁz”zl‘(a-rxl).

When e is small enough, we have

and, using convexity,

_nfe=p) 1
IH(Q, En)] > o - Xl(an) s 5 n > 0 s

which contradicts Lemma 3.11.

Lemma 3.13: Let (H(x,e), G(x,e)) be the family of all solutions of
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(1.4), (1.5) which are odd and have G'(x,e)> 0. Let ¢ be any

fixed point, 0 <c<1. Then

lim sup lH”(x,g)l =0 .
et0 0<x<c

Proof: Suppose the lemma is false. Then there is a sequence £ 10
for which

3.19) sup IH“(X,en)l >n>0,
0<x<¢

and we may also without loss of generality suppose that

Case 1: ;(3 =1. For €, sufficiently small, we can find a fixed

o > 0 such that C+0'<X3(en). Since H'Y' >0 on [O,xg), we

deduce from (3.19) that

and also
H'(x,e ) 2 H'(c,e ) 2n for c<x<cto,
which on integration certainly contradicts (3.18a).

Case 2: ;:3 < ¢ . Using the concavity of H" on [x3,l] , We have

" T
H'"(xpe ) H'(xe )

< N , X, <x<x_ .
x2 x3 x2 X 3 2
Thus
x2~x
T Bk e ) < H'xe ),
2 3

and integration again leads to a contradiction to Lemma 3.12.
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Lemma 3.14: o= Ofl) .

Proof: The fact that H''(0) > 0 implies from (3.2) that

p+%H'2(O)>O,

which implies p bounded below from Lemma 3.12. And the fact that

H'''(1) < 0 implies similarly that p is bounded above by % .
Lemma 3.15: H'"(x,¢e) = O(e ), uniformly for x in [o,1] .
Proof: gH'"'(1) = p - % ’
so that

fao @] < lp \-jzl«l gL
But from the first equation of (1.4), H''' is negative and monotonic
decreasing for x> x3 , and so we have

lax, e) | < i - ”;‘[ e“l for x 2%, .

For x< Xy the result follows from Lemma 3. 5.

Lemma 3.16: H'(x,e) = O(1), uniformly for x ¢ [0,1] . Moreover, for

any fixed ¢, 0<c<1l, H'(x,e) = 1), uniformly for 0O<x<cC.
Proof: By Lemma 3.12 we have that H'(0,¢g) = o(l) , and so by
monotonicity H'(x,e) = o(l) for 0 <x < X For x> X Lemma 3.4
and the fact that p = O(l) give

0 < H'(x,¢e) < H'(XP, g) = O(1) .

(s

Finally,
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lim sup |H'(x,¢e)l = 0
e !0 0<x<c

because of Lemmas 3.12 and 3.13 and the well-known Landau inequality

[9]
sup |H'| <2{ sup gl +  sup JH"|).
0< x<c 0<x<c 0<x<¢c
Lemma 3.17: wo= o(l) .

Proof: If p <0, then the proof follows immediately from the facts

H'''(0,¢) >0, H'(0,e) = o(l) . Thus we may suppose p >0 .
Since G" >0, we have G(x)<x, and so, for any fixed c
with 0<c<1, andfor 0<x<c, we obtain from (3.2) that

e H'"'(x) > p ~ ”21* xZ + o(l) .

Now suppose for contradiction that there is a sequence e {0 and a
constant Mo > 0 such that

O < p‘o S.P’(En) .

Choose c¢ = '\fﬁg . Then

eH(x) 23 py +ol), O<x<ec,

0
and one integration contradicts Lemma 3.13.

1
Lemma 3.18: G'(l,e) =O(e ?) .

[

Proof: If 1-g? <x <1, then
1 1
H(x,e) = - [ H'(t,e)dt =0(e?),
X

using Lemma 3.16. Hence
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e G" = H'G -~ HG' =O() + Oe*G') ,
whence by integration over [x,l]

1

)+ Oe 2{G() ~ G(x)}) =O(e

D

@'l - G'(x) =0(e

: 1
and by integration over [l - ¢? 1]

3G (1) - {G(l) - Gx)) =0,

giving the required result.
1

Lemma 3.19: H'(l,e) =0(e °) .

o

Proof: 1If l—ai_<_x_<_l, then

| . 1
3.20) H'(1) - H'(x) = [ H'''(t)dt = O ?),
X

o

by use of Lemma 3.15. Integrating over [l - ¢?,1], we have
1 1
e?H"(1) - {H'(1) - H'(Q - c*)} =0(1),

and since H' =0(l), the result follows.

Lemma 3.20: There exists a positive number v, independentof e,

such that
-1 L
~H'"(x,e)%e for 1-mne®<xgl.
1 L
Proof: G(l) - G(x) = f G'(t)dt < Ke *(1-x) ,
X

by Lemma 3.18 and the monotonic character of G' . Hence, by suitable

choice of n, we can arrange that

i b
Gz(x) - 2p > ‘él*(l~29) for 1= ne?<x<l.
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(We recall from Lemma 3.17 that o o(l).) Similarly, always for
1
1-ne®<x<1l, wehave

1
(1) - Hx) L = | [ HU(pdat] < kme 2
X

so that

Dofe~

[H' (%) | < ke 2,
K not necessarily being the same at each appearance. By integration

[H' (%) | < Kn, [H(x) | <ane ,

Doje—

and from (3. 2),

ceH"M =Lt o - Lw? ol
2 2
1 . , . s
>3 (1-2p) if n is sufficiently small.
The lemma is thus proved.
-1
Lemma 3. 21: -H'"M1l,e)Re 2.

Proof: Repeat the proof of Lemma 3.19, but now restrict x to

—

[1-ne?,1] and use

“H' 5—‘1 instead of H'! :O(anl) .
We obtain
1

1 ]
—naa H'"(1) - I'l'(l-‘nea).-‘( 1.

ole

Do

tl

If we now suppose for contradiction that H'"(1) ), then

1
~H'(1-ne?) =1,

so that



DI

X2>Xl>l~ne‘

and
1
-H'(0) > - H'(l-ne?) = L .

This contradicts Lemma 3.12.
1

Lemma 3.22: GYl,e) X e °.

Proof: Using (3.20) with 1 - naé <X _gl’ and -H'%f = gul , we sce
that -H"(x,¢e) = E_% if 7 is chosen sufficiently small. This implies
that x, <1 - TIS% , and so, by Lemma 3. 3, (H’Z + G2 +21)/G is

2

L
non-decreasing in [1 - me%,1] , so that H"G'" - H'"G' >0, or

replacing G'" from (l.4),
HIIHIG - ({-:H'” + HH”)G' Z 0 ,

3.21) ler + HEY| G > lHHG .

iy 1
We have already seen that -H'sxge ¢ in [l - ne?,1], and so by

integration
1

1 1
)x1, -H(l-me?)=e’.

ol

H'(l-me
Further, by Lemma 3. 20 and its proof,

-1
) = &€ ’ G(l“ﬂﬁ

[

e

-H (1one )= 1,

and substituting in (3. 21) we obtain

[Rand

[

ro

G'(l-ne*) > Ke
This, combined with the monotonicity of G' and Lemma 3.18, gives the

required result.
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Lemma 3.23: H'(.XZ) =

-

Proof: As in Lemma 3. 22, we show X, <l - ngi and that

Do

H'(l-ne?) %1 .

Then

s

Y

H'(x,) > H'(l-me®) = 1,

2
and this with Lemma 3.16 gives the required result.

1

Lemma 3. 24: 1- *) > g2 .

Proof: We make the transformation

e

1
1-x=¢%, -H(xe)=cedEe), Glxe)=4(e).
Then the equations (1. 4) become

i

v
&+ e

H

=
3.22)

i

Pt ! o',

with the boundary conditions (amongst others)
3.23) 8(0) = ¢(0) = 0, y(0) =1,
Further, Lemmas 3.21, 3.22 show that in the limit as ¢ | 0 the
initial values ¢'(0), ¢'(0) are bounded, and we may therefore suppose
that as g ¢ 0 , 1if necessary through some sequence,
$"(0) ~a, Y'(0) =B,
where « and p are strictly positive. Further, (3.2) and p = o(l)
show that

o) ~ - L
$1(0) + -2



Because of the continuous dependence of the solutions of a differential
equation on the initial conditions, wc can say that, if (4)0, q:o) is

the solution of (3.22) satisfying (3.23) and

b/

N‘»—'

(bn(o) = a, \pt(o) - “ﬁ , (bnu(o) -

then in any fixed interval [0,K] the functions &, ¢ and their
derivatives tend uniformly to g b and their derivatives, and we
remark in passing that this proves (vii) of Theorem lI, except that we

still have to show that

() = 0, (=) = 0.

T

Now suppose for contradiction that 1 - x, X e (We certainly

1

1
know that 1 - x, > Ke?, since we saw in the proof of Lemma 3. 22

1
L 1
that 1 -x,> Ke? .) Thus we may suppose that (1-—xl)/g2 ~ Ky
say. Since Lemma 3.16 implies that - H' = o(l) for x< X and since
L
the convergence of ¢' to % is uniform for ‘21“}(0 < (1-x)/e? < -g— KO ,

we conclude that ¢(') =0 in [KO, —:23“ KO] , and so everywhere, which

is impossible and gives the required contradiction.

Lemma 3.25: Part (vii) of Theorem II holds.

Proof: We have already remarked in the course of Lemma 3. 24 that

all that is necessary is to prove that
¢6(oo) =0, qjo(oo) =0 .

We first observe that % >0 . Forif % changes sign, say at
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[ias)
il

go, then, for ¢ sufficiently small, ¢ must change sign near

()
1

go , and this contradicts Lemma 3.24. We thus have

Similar arguments show that

>0, WSO, =0,

0
while %’ and 4)6" change sign at most once.
£
From the second equation of (3.22) we deduce that 4:6(5;) exp( f (f)o(t)dt)
0

is negative and non-decreasing, and so tends to a finite limit as § -» o,
Since <}>O is positive and non-decreasing, we deduce that LIJ'O is
exponentially small as § = .

Now the first equation of (3.22) tells us that

& ;
{fbb"(&) exp(f ¢O(t)dt)} is bounded,
0
and so
é 2 1
lopri(e) exp( [ o ()ay) | < k(g™41)*
0

and 4)6" is exponentially small as £ - o . It follows that ¢'0'
tends exponentially to a limit, £ say, and £ >0 since £<0
would contradict % >0 . Also, £ >0 is impossible, for this would
imply that q)(') is unbounded as § - %, and this contradicts the
uniform boundedness, for all x and e, of H'Y(x,e) . Thus by 18

exponentially small as § -, and dp6 tends exponentially to a limit,



m say. The fact, already established, that ! is exporentially

'
small implies that Lpo tends exponentially to a limit, n say, and
substitutién in (3.22), the first equation having been first integrated,
gives

m -n =0, mn-=20,
from which it follows, as required, that ‘m = n = 0 .

We remark in passing that m = 0 certainly implies that cb(')’
has to change sign, and we have already seen that it does so at most
once. A similar remark applies to %" .

2

Lemma 3.26: 1-x2xa , l-x_m=¢

Proof: This is now an immediate consequence of the previous lemma.

For since q)(‘)', q)b” change sign at points ¢ = §2 , £ =¢ say,

3 b]
it fbllows for ¢ sufficiently small that ¢'", ¢'"" change sign near

E.Z R &,3 , and this is what is required.

Lemma 3.27: Uniformly in x,

Glx,¢) = Olexp{-Ke *(1-x)}) ,
GH(x, g) = O(e—%exp{—Keu%(l-*X)}) ,
G'(x,¢) = O(enlexp{-“Ke“é(l-X)}) .

Proof: By differentiating the second equation of (l. 4), we obtain

X - 1
{G"(x) exp(f £ 1H(t)dt)} >0 for x<x,,
1

so that
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3.24) G'(x) < G"(x. )exp f dt) for x<x
X,

5

But using Lemma 3.25, we see that certainly '(£) =O(1) in any

bounded interval of £, and so
- 1
G'"(x) =O(g ) in any interval 1 - x < Ke?

In particular, G"(xz) = O(e“l) , and so (3.24) yields
-1 * o4
Gh(x) = O{e  exp(- [ € H(t)at)} .
*2

Again appealing to Lemma 3.25, we see that

i
"H(Xz) = g? ,
and since H 1is convex for x £ X,, we have
: 1
3.25) M > — ,  ~H(x) > Kxe? ,
H(x.,) = x
2 2
for x <%, and so, still for x < X,
¥ L2 2 -4
—f e  H(t)dt < -Ke (x2 x7) < -~ Ke "(xz-x) .
*2

We conclude that

O(e exp{~Ke_2(X2“><)})

1

Gll(x)

- ! ]

O(e ~ exp{-Ke %(1-x)}), since 1 -x, % e?,

3.26) >

i

and though this estimate on G'" 1is in the first place for x < XZ ,

it in fact holds for all x since we have already seen that G"(x)

Ofe

)

1=



1
for 1 - x< Ke? . Finally, by integration we have

]

3.27) G'(x) = GY0) + O(g”é exp{-Ke *(1-x)}),

ol

G(x) = xG'(0) + Olexp{-Ke *(1-x)}) .

We next remark that if x, - %. as ¢ {0 through some sequence,

I 1
then
3.28) o> L
1= 2

For since H is convex for x < Xy it follows that

lH(xl~t) - H(xl)l < [H(xl i) - H(xl)l

for 0<t< min(xl, xz—xl) ,

and so

H(x,~-t) < H(x, +t) .

1 1
The case X, - X; > X would lead, with t = X, to H(le) >0,
which is impossible, and so X, = ¥ <X which leads to il 3_721" .

Now, since G'(t) > G'(0) and G(t) > tG'(0), we can deduce

from (1.4) that, for 0 < x <X,

X 2 &t t oo
H''(x) - H''(X) exp( [ € H(t)dt) > G'(0) [ Zexp([ e “H(u)du)dt
X X £ X
2 X t
G! (0) H(t 1
Z () }{ . G/p(}{ e ~H(u)du)dt
for ngl , since in [O’Xl] we have t> H(t)/H'(0) ,
2 X
__G(0) 4
H(0) {1 exp(xf ¢ “H(u)du)}
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Letting X = ) and recalling (3.25) and (3. 28), we sce that certainly

H'"(x) > - —i' G'Z(O)/H'(O) for x 5:11'
if e 1is sufficiently small. Hence
g » - 3 G(0)
2T o) T
G'”’X) — HHC‘ - I,‘T(“ll ~ HHC > - g’. Q.'.E.(Ql 2
€ { = ] Wt > a > 4 H'(O) X,
3
1" N .l. g,._(g). 3
eG (X) > 4 Hl(o) X .
Letting x = i‘ , we have from (3. 26) that

1

GH(0) = Ofexp{- ; ke *})

_1
= O (exp{~- i‘ Ke 2(1-x)}), 0<x<l.

Substituting this in (3.27), we obtain the statement of the lemma, with

K replaced by *};K .

Lemma 3.28: Uniformly in x,

-l _1
H''(x,e) = O(e 2 exp{-Ke 2(1-x)}),
-1 -1
H''(x,e) = O(e ~ exp{-Ke *(1-x)}) .
Proof: The result for H'" follows by integration from that for H'"!',
so that we need prove only the latter.
X > X since the

For H'", the result is certainly true for 30

1

fact that 1 - Xy % ¢?® means that the effect of the lemma for x > X3

~d 3



is just that H''' = O(e—l) , and this we already have in Lemma 3.15.

Also, for x 5_721" ,  we have by integrating (1. 4) that

8}1!!!(%) - EH“'(X) 2‘_ -
H”'(X) < Hnt(z
If now the result is true for x =

”Zl', then, for x <

H'''(x) = O(e  exp{-Ke %})
for some suitable K, and this necessarily implies that the lemma
holds for x 5% with the same value of K.

It remains to prove the lemma for <X <X and to do this we

N e

3 )
choose KO positive and sufficiently small that

1
g for - <x< X,

je—

[HG) | > 2K

o

(This is possible by virtue of (3.25).) Then

ol

(eH"! exp{Koa— (1-x) 1)’

‘ 1 1
(-HH" - GG' - KOEZH“') exp{KOa ¢(1-x%)}

-1
2

1
> (KOazH“' - GG'") exp{Koe (1-x)}

21
> -GG exp{KOa 2(1-x)} .

If KO is fixed sufficiently small, as we may suppose, then we can
integrate, using the results of Lemma 3.27, to conclude that
X

(1-%)}]

X

tohm

[el"! exp{KOe—

44—




. . . | :
is bounded below in ¢ , uniformly for SERS X, and so the lemma

is proved.

o

1
Lemma 3.29: sup 1] = ¢ , -HY(0) = g?, -pxeg.
0< x<1

Proof: By integrating the result of Lemma 3.28, we see that for x > Xl ,

H' = O(exp{——Ke*;‘(l"X)}) )

so that, integrating again over [xl,l] ,

Dot

sup |H| = IH(xl)] = Ofe
0<x<1

) .

But we have already seen in (3. 25) that sule[ > Kc% , and the
first part of the lemma is proved.

The second part fol.iows at once from the remarks at the beginning
of Lemma 3.12, and the third part from an evaluation of (3.2) at x = 0,
remembering that H'''(0) is exponentially small.

Lemma 3. 30: H'(xz) __<_le' + O(e) .

Proof: This inequality, which is surprisingly precise when compared with

the numerical computations, is a consequence of Lemma 3.4. For

using (3.7) and the fact that p = O(e), we have for x > %g, and

so for X = X5,

H'" < GI-G) + O(g)

e

IN

from which the result follows.

-4 5



Lemma 3.31: 1 - x = O(e? log g) .

Proof: We first observe that

H' (%) > Ke? .

It

[a%3

), then from monotonicity H'(x) = o(e
L
and this on integration contradicts -H'(0)=g?,

For if contrarily H"(x,) = o(e

1

for xgxl,

= 0 . Thus, from Lemma 3.28 we have

T
S

1 1 L
g? = Q(a 2 exp{-Ke ?‘(l“Xl)}) )

from which

—

l~xl = 0(g? log ¢) ,

as required.

[
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