WIS-CS-193-73

Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

Received August 7, 1973

VERIFICATION OF PROCESS STRUCTURES
OF INTERACTING DIGITAL SYSTEMS

by
R. T. Johnson
and

D. R. Fitzwater

Computer Sciences Technical Report #193

August 1973

VERIFICATION OF PROCESS STRUCTURES OF INTERACTING
DIGITAL SYSTEMS

by
R. T. Johnson and D. R. Fitzwater

ABSTRACT

A formal, universe for systems design has been developed, in which
representations of interacting digital, systems are interpreted by a
deterministic automaton acting on state information in the form of character
strings. Since process structures in this universe can be described with
regular languages, a new interpretation is defined in which regular
languages represent state information. Computations under this new
interpretation contain the previous ones (with some loss of detail), making
it possible to prove assertions about the original string computations.

An example is given to show the formulation, and algorithmic verification,

of some interesting properties of two asynchronous communicating systems.

I. INTRODUCTION

A. Design Feedback

A system designer needs the kind of feedback from his design that
is routinely supplied to a programmer by a compiler., The programmer
may intend to write a Fortran program,while t‘he compiler rejects it as
not being written in Fortran at all. Further, upon testing the corrected
program, the programmer may find that he did not say, in Fortran, what
he intended to say. Feedback information from debugging runs is
usually essential before he can be satisfied (perhaps, still, improperly)
that he has written the intended program. The designer of a complex of
asynchronous, interacting digital systems is faced with an even tougher

problem, and currently has few tools to provide any feedback information.

The purpose of this paper is to present some aids for the system
designer, and to build a base for more. The existence of these tools
depends on the design's being expressed as a representation in a formal
definition system, because only then can we be sure of the semantics
intended. It would be very unwise 1o claim "proof" about a design writtenin
a programming language, for instance, when even the meaning of each
arithmetic operation depends on the hardware details of the specific

computer involved.,

Turthermore, the design representation must be effective, i.e.
capable of being interpreted by a deterministic automaton. This is the only
way that all the observable, dynamic behavior of the system complex can
be studied. We have chosen the formal definition universe described in
[1] because it fulfills these requirements, and promises to facilitate our
task of deriving and verifying assertions about properties of the system

complex.

2

A substantial amount of feedback information is immediately
available from the interpreter of these formal definitions. Verifications
of syntactic form and trial "debug" runs may be automatically produced
for the designer. Such runs would rarely prove that the designed
system complex has the desired properties: the designer (as well as the
programmer) needs a more powerful tool. Indeed, because of race conditions
between the asynchronous systems of the complex, no reasonable
number of trial runs would be sufficient to instill much confidence that

the desired properties were present.

Fortunately, the verification of many desirable properties is not
dependent on the fine detail of computations presented by trial runs.
A suitable abstraction of the computation (that can be shown to
preserve the essential information) can provide the equivalent of an
infinite number of trial runs. This current work is concerned with just
such an abstraction, algorithmically provided. This work is presented
more completely in [4]. We will discuss it here by defining a simple
example system complex and tracing its analysis with respect to some

process structure assertions.

B. An Example System Complex

We will define a small system complex containing two systems
which operate asynchronously. The first system we call the Buffer.
Its purpose is to receive and enqueue characters from some external
source and transmit them on demand in a first-in - first-out manner.
In various contexts this system would be called either a “"store and
forward" system or a "producer-consumer" system. The second system,
called the Consumer, requests characters from the Buffer, one at a time,
and performs some unspecified operation on "words" which it constructs

from the characters.

The string representations of these systems ig in Figure 1. For
specific details of the representation and how systems in the representation
are interpreted, see the discussions by Fitzwater and Smith [1].

These systems are extensions of Post systems designed to model digital
system complexeswithwell-defined processes. All operators within a
system work in parallel during a system process step and if their antecedent
patterns match process states in the system state set (g), then their
consequent strings all contribute to the next state set. The completion
of the application of the operators to g defines the end of a system
step, and a new set of values will be assigned to ¢ . Duringa
system step the contents of the state set is invariant. Separate
systems work asynchronously and communicate via messages on
channels as shown in Figure 2. The Buffer System contains three
processes. The firstconsists ofan alternating sequence of r:0 and

re1 states used as a signal between Buffer and Consumer. 1r:0 is

a signal that Consumer is awaiting a character so that one should be
gent as soon as it is available. The r:l signal accompanies each
character to Consumer. Buffer will continue to enqueue characters

until it receives the r:0 signal again.

The second process in Buffer is the channel process with
process states "new" and "new <&> " where "<a>" is one of the
characters to be enqueued. We have left the source of these mes-
sages unspecified. If the complex is to work as we expect, this
source must neither send multiple messages simultaneously, nor

send at a rate faster than Buffer can handle.

The third process in Buffer is the character queue holding
received (butnotrequested) characters. It is intially the empty

string.

The Consumer System also has three processes; r:0 and r:1
are again the synchronizing signals with the other system. Each new
character is concatenated on the right of the "word" process. The
unspecified restricted processor <process word> is also applied (a
restricted processor is very similar to an ordinary system, and so
<process word> could perform any self-contained algorithmic operation
on the character string). The "use" process is a channel over which the

requested characters are received.

Buffer ::=
{o: r:0 and new and X

X JmnopgrstuvwxyzO0l

m: r:0 and A$— r:l—r:0 or
r:0 and /&$-z§l—~>use or
r:0 and new$ and A$ — $,%, or
r:0 and new $ gggi_x»fﬁl or
r:1 and new$ and $ —$.3, or
new $ — new or

Consumer ::=
{g: r:0 and word and use
x: fmnopgrstuvwxyz0l

m: word {$ <process word>} and A — word $l[§1 or

r:f - lr:A1 or
r:A — use or
or

r:l — r:0 — rel or

word {$<process word>} and use -~ word §,}

FIGURE 1: DEFINITION OF A TWO-SYSTEM COMPLEX.

g: is the system state set.

x: is the vocabulary for value strings of variable pattern
elements ($ and A).

$ will match any string over the vacabulary.

A will match any character in the vocabulary.

; is the set of operators separated by or . Double arrow
operators have the form antecedent —- message —

channel.

t“jzf“'l-}

Buffer States

{r:0,new, A}

{r:O,,;meW new m,A }
{r:0,new,m}

{0 r:1,new, A}
{r:1,new new n,a}
{z+t r:0,new new o,n}
{r:0 r:1,new new p,0}
{r:1,mew new q,op}
{r:1,new, pq }

f#2t r:0,new,opq}
{pr@’r:l,new,pq}

Consumer States

{r:O,word,use}

(r:O,word ,use}

{g2trr:1,word,use mj}

{zetr:0,word m,use}

{rr07r:1,word m,use n}
{r+¥r:0,word mn, use}
{r:0, word mn,use }

{z26r:1,word mn,use o}

FIGURE 2: A typical computation on the example system complex.

Each horizontal line represents a new ¢ . The struck-
out (/) process states are those which act as channel
names over which messages were received during the
step. The completion times of system steps in each

system are independent.

C. Verification of System Complex Assertions

This complex is simple enough that its correctness may be
obvious. It does have sufficient structure so that the techniques
we wish to illustrate may be applied to it. In the previous section
we described certain expectations we have about how the system
complex is to function. We would like to verify these properties

in as automatic a fashion as possible.

The first step is to classify all of the process states in which
we are interested into a finite set of regular languages. 1f two
process states are in the same regular language, then we do not
wish to distinguish between them in the subsequent analysis. The
union of all the languages for the complex should contain all of
the process states which we expect ever to appear in computations.
This classification defines a mapping for each system representation
from the state space in which each system state is a finite set of
strings to the state space in which each system state is a finite set of
regular languages. 1In the image space there are only a finite
number of possible image states and consequently only a finite
number of image computations. Furthermore, we can apply the
operators of the system representations to the image states directly
in such a way that the computations in the image space are images
of the computations in the finite-languages state space. Horning
and Randell [3] have a good tutorial article about general
processes and state spaces, including the concepts of image states

and image processes.

The computations in the image space are simpler, so the
properties of the system complex we are interested in will show up

more clearly.

All the processes within a system are synchronous, so that
we have a chance of predicting from the initial state set those

process states which will occur simultaneously.

In Table 1 , we present a set of image process states
({Bl’ ce ,85} and {Cl, ce. ’CS}) and a set of system states
({SB, ,SB,,8B,} and {SC; ,8C, }) for the Buffer and the Consumer,
respectively. « is the set of characters {l,m,n,... ,2}. For this

example, there are only two infinite languages in the complex: no in

S
Buffer and "word & " inConsumer. Ina more complexsystem, many of the
image states would be infinite and would have more interesting structures

than just arbitrary sirings.

Since inter-system communication is by messages, the suc-
cessors to states depend on the status of the message transmissions.
Thus we must also provide a set of (message, channel) language pairs

as follows:
Ml:(r:O,r:l)
MZ:(r:l,r:O)

M3:(new a, new)

M4:(a, use)

The first regular expression defines the image message language,

while the second defines unique channel names.

We represent the state of the system complex as a vector

o.''"") and C = (0o

(B,C) where B 1sapa1r(oB, B C’OC y. o, is

1

-

the current state set for SR.l (ie {B,C}) and o‘i"‘ is the
current status of message transmission to that system. In any

t

given state vector Gi” will contain 0,1, or "many" of each of

the (message, channel) language pairs for the system complex.

We will derive a number of properties which will verify
some assertions about this system complex. The first assertion
is that the specified image process and sytem states are closed under
all system transformations. Another assertion is that there is
never more than one character in transit from Buffer to Consumer at
any time in any computation. One more assertion we wish to verify
is that, apart from the indeterminacies induced by inter-system
interactions, the computations in each system are deterministic:
since we have specified enough structure in our image space SO
that the image computations within a system are deterministic, the
computations themselves must be, at least so far as distinguishable
by the regular language process states. 1t will also be clear from
the image computation graph that the signals r:0 and r:l serve
to synchronize the communication of characters between Buffer and

Consumer regardless of their relative rates of operation.

Buffer System Consumer System
Bl: r:0 Cl: r:0
Process State BZ: r:l CZ: r:l
Languages BS: new + new « (33: word &”
84: a” - N (34: use
BS: A C5: o
Systgerr; State | SB: {Bl,B3,B5} SCl:{Cl,C3,C4}
Sets
SBZ: [Bl,B3,B4} SCZ'{CZ’C3’CS}
SB3: {BZ,B3,B4,B5}

TABLE 1: Hypothesized image states for example complex. The
operators +,-, and ¥ represent union, difference, and
closure of regular expressions, respecitvely. A
represents the null string; @ is {B,m,n, cee1Z)

-10-

1I. APPLYING OPERATORS TO REGULAR IANGUAGES

We must describe the image computations in terms of
operations on image process states. Each such computation
involves the finite transformation of a regular expression, instead
of the infinite number of transformations that would be required to
process each sentence in the language as defined in [1]. We will
discuss briefly these computations in the context of our example

system complex.
We will first work out in detail how the operator:
r:0 and new $ and A $ — 2l

matches in the state set SBZ and contributes to the next state
set. In order to perform the matching we construct a reduced
finite state acceptor for the union of the languages in SB, and

then apply the antecedents to the acceptor.

A. Matching a Pattern.

The union of the languages in SBZ has the regular expression
representation r:0 + newoa + a* - A where a is f+m+ ... + 2.

The reduced acceptor for this language is shown in Figure 3.

11.

FIGURE 3: The réeduced acceptor a for r:0 + new @ + a® - .
A transition labeled with « stands for the set
of all transitions under characters in 1+ m+ ... + 2,
and similarly for the transition labeled « -r.

~12-

The result of matching a pattern P in a regular language
L 1is as follows: Let M = (Q,Z,qO,F,EI) be a reduced finite-state
acceptor for L , where Q = {qo, c e ,qm} is the set of states,
2. 1is the character set, qo is the initial state, F < Q is the
set of final states, and q:Q x 5 — Q 1is the transition function.
Let P be pl. P where each pi, 1l =i =< n is either a character,
a single character variable (such as A), ora $. Each match of

P in M 1is a function
m':s {py,..p } QxQ

such that m'(pl) (m'(p)i denotes the ith component of m'(p)),

17 90
m'(pi)2 = m'(pi+l)l, 1 <i=< n-1, and

m'(p), € F.
Also, if m'(pi) = (qr,qs), then there must be a string accepted by the
acceptor (Q,Z,qr, {qs},ﬁ) such that P, matches the string.

For each match m' of P in M , the result of the match

of P in L is a function
m: {pl, e ,pn} — %
defined by m(pi) =

{s]s is accepted by (Q,Z,m'(pi)l, {m'(pi)z}, &)
and P, matches s} for each 1 <1i < n.

This may be clarified by the example in Table 2.

~13-

e M1
r (a,.9,) (r)
0 (ag.a,) (0}
i 21 22 M22
new | (d,.q)) {new] (4q.q) {new]
§ofapa)) (a,.a,) @
M31 T3] M32 Mao ms; s
6| (a,.9,) (r) (a,:9,) {r) (@,.a5) @- (r) @
*

$ | (a,.9,) (O} (@,.q;) a*] (a;,a5) @

TABLE 2: Matches of Example Operator on the Union of the
languages in SBl .

B. Constructing the Consequent

For each sequence of matches of the antecedents of an
operator in a regular language, a consequent language is con-
structed as the concatenation of the languages associated by the

matches together with the constants in the consequent pattern.

The consequent language constructed by an operator applied to
a regular language is the union of all languages constructed for

each match.

For example, the consequent language constructed by the

example operator is

{X} ﬂk} + {X}a + aa*{k} 4 aa™ o + a*{k} + oFa = o

-14-

For the entire set of operators of Buffer applied to SBl , the

consequent language is o* + o + new + r:0 = r:0 + new + a*

The first operator matches and sends the two messages

{r:l1} — ({r:0} and a-— {use} .

C. Closure of Process State Languages

In general, the language produced by the operators applied to
a regular language need not be equal to any of the process state
languages or to any union of them. The process state languages
were to be a classification of the process states of the SR,so that
each sentence in this constructed language must be in at least one
of the process state languages. If this were not so, the asserted
image process states would not be closed under the system trans-

formations.

We can now derive some valuable information about the
processes supported by the system, by defining the successors to
an image process state to be all image process states that have a
non-null intersection with the consequent language. When this has
been done for all operators in the system we have not only verified the
closure hypothesis but also defined a finite graphat the specified level of
resolution that characterizes the system processes. Such graphs
easily provide information about many process properties. The
designer need only cast his assertions in the form of hypothesized

regular languages.

~15-

[I. STEPS OF THE SYSTEM COMPLEX

We can now develop a concept of process applicable to the entire
system complex. We must find a way to define the state of a
complex and a step from one state to another. There is no notion of
relative system process step speeds in our formal universe
and so each possible race condition result must be shown. Our
approach is based on a technique developed in [2] . We
can simulate message reception and determine which of the process
state languages overlap the constructed language. In our example,
when Buffer makes a step with initial state SBZ' then the constructed
language is r:l + new + o* gince the message {r:l} — {r:0} has
been transmitted and suéh transmissions are “instantaneous"
within a single system. This constructed language overlaps BZ’
B3, B4 and Bg. Thus, there is at least one representative string
from each of the languages in SBZ' i.e. SB3 c {BZ,B3,B4,BS}. Thus,

SB, is the successor state set to 8B, when Buffer completes a

3

step.
Information about messages must also be retained and used

to construct the language which determines the successor states

in each SR . We do this by including with the state of each SR

at each "time" during a computation, a record of which messages

have been transmitted to that SR . Since delaysin transmissions

mean that many instances of the same message can be en route to a

system at the same time and we wish to guarantee a bound on the

number of attainable states, we only record whether 0,1, or

"many" copies of the same message has been transmitted. We can

-16_

use this mechanism to provide a source for the messages received
in Buffer on the channel "new" by postulating that in the
state for the system complex, "many" copies of the message "newa"

have been transmitted to "new".

B. System Complex Processes

For the initial state of the complex, Buffer has SB1 as its
system state and "many" copies of message 1\/[3 have been trans-
mitted to it. Consumer has SC1 as its system state and no pending
messages. If Buffer completes a step before Consumer, the "next"
state of the complex will have either SB1 or SB2 as the state
set of Buffer, and either 0,1, or "many" copies of 1\/13 still
pending for Buffer. SC1 still is the system state for Consumer.

On the other hand, if Consumer completes a step first, then the

system complex remains in the initial state.

We summarize the attainable states of the complex in Table 3

and the successor relations between these states in Figure 4.

-17—-

TABLE 3: Obtainable States of System Complex.

The example system complex is started in state 1 and
only the given states may occur.

State of Buffer

State of Consumer

State System Messages System Messages
Number state pending state pending
1 SBl many I\/[3 SCI none
2 SBZ many 1\/[3 SC1 none
3 SBs many I\/I3 SC1 M2 and 1\/[4
4 SBs many M, 5C, none
5 SB3 Ml and many M, SCl none
6 SB, M, SC1 none
7 SBZ I\/[3 SC1 none
8 SB3 1\/[3 SC1 none
9 SB3 1\/[3 SC, M2 and 1\/14
10 SB3 1\/[l and M Scl none
11 SB, none SC1 none
12 SBZ none SC1 none
13 SB3 none SC1 none
14 SB3 none SC2 1\/[2 and M4
15 SB3 1\/[3 SCl none

FIGURE 4:

State successor relationships for example system
complex. A label on an arc means that if the system
of that "name" ("B" for Buffer, "C" for Consumer)
completes a step the complex can be in the state of the
end of the arc.

-1 9"-

C. Projection of System Complex Processes

We can obtain quite a bit of information about the system
from the table and the graph, but for some purposes they are still
too complex. For example, quite a bit of the complexity of the
graph seems to depend only on the number of copies of I\/I3 in the
pending message set of Buffer. If we take a suggestion from
Horning and Randell [3] and perform a projection on the states
to "forget" all information about 1\/[3 , we get an induced graph
homomorphism on the state-successor graph. The resulting state
structures and image graph are in Table 4 and Figure 5, respectively.
The projected graph that is orthogonal to the graph in Figure 5 is

given in Figure 6.

TABLE 4: States in projected complex.

State of Buffer State of Consumer
State System Messages System Messages
Name state pending state pending
(1,6,11} 5B, none 5C, none
{2,7,12} SBZ none SC1 none
{3,8,13} SB3 none SC1 MZ’M4
{4.9,14 } SB3 none SCZ none
{5,10,15} SB, M, SCl none

o o
C o

“‘-/DN
(2,712} ¥ (5,10,15})__~C
B

C

PO R Ty

C

FIGURE 5: Projected image graph of state successors. All
dependence on I\/[3 has been eliminated in this

projection of the graph in Figure 4.

(11,12,13,14,15}

— S

FIGURE 6: Orthogonal projection image graph.
The projection of the graph in Figure 4 which preserves only
information about 1\/[3

-21-

We note that, using the terminology of Horning and Randell,
the process described by the graph of Figure 4 is the synchronous
combination of these latter two graphs. Thus, all the information
inherent in Figure 4 is in the other two graphs in a more compact

and comprehensible form.

D. Verification of Properties

The closure of the image process and system complex states
under the transformations of the system complex have been demon-
strated in Figure 4. That there is never more than one character
in transit from Buffer to Consumer at any time is obvious by
inspection of Table 3. The state transitions in Figure 4 are
deterministic in spite of the relative rates of the two systems. The
role of the signals r:0 and r:l is clearly shown in the projection

of Figure 5.

In Figure 6, there is a transition from the node representing
many copies of M3 ({1,2,3,4,5}) to the node representing no copies
of M3 ({11,12,13,14,15}). If the transmission of I\/I3 was sequential
then this means that some of these messages can get lost because
the local reception buffer will only retain one copy during a step.
Thus, if we do not want any messages lost, Buffer's steps must
be fast enough so that no two of the messages described by 1\/13

can arrive during a single step.

22~
IV. SUMMARY AND CONCLUSIONS

As we mentioned, the example we presented was simple. At
least part of that simplicity arose because we designed it with the
subsequent regular-language analysis in mind. In fact, one
of the major goals of this continuing research is to provide
feedback to designers which can provide a basis for design decisions

leading to analyzable systems.

Given the finite graph of states of the system complex and
their successor relations, there are many possible analyses which
can be performed. The main point of this paper is that, given a
system complex and a classification of the process states and
messages, such a graph can be generated automatically and
algorithmically. We have skipped over many of the details
required for being convincing about the validity of the graph as a
representation of the processes in the system complex. Some of
these raise issues which are quite complex , for example,
those associated with computing restricted processor results
when the state sets are regular languages and those associated with
message handling. Also, we have stated here rather glibly that
there is a well-defined relation between the computations in which
the state sets are finite sets of strings and those in which the state
sets are regular languages. In [4], we have clarified and

settled most of these issues.

There are computer implementations of simulators both of the
finite language model and the regular language model. Both are
written in FORTRAN V on the Univac 1108 and are available from

the authors.

(1]

[2]

[3]

[4]

~23-

REFERENCES

Fitzwater, D. R., and Smith, Pamela Z. "A Formal
Definition Universe for Complexes of Interacting
Digital Systems." Computer Sciences Technical
Report #184, University of Wisconsin, Madison,

Wisconsin, 1973,

Gilbert, P., and Chandler, W. J. "Interference Between

Communicating Parallel Processes." Comm. ACM 15,

6 (June 1972), pp. 427-437.

Horning, J J., and Randell, B. "Process Structuring."

Computing Surveys 5, 1 (March 1973), pp. 5-30.

Johnson, Robert T. Proving Assertions about the State

Structure of Formally-defined, Interacting, Digital

Systems. Ph.D. Thesis, Computer Sciences Department,

University of Wisconsin, Madison, Wisconsin, 1973.

BIBLIOGRAPHIC DATA 1. Report No. 2 3. Recipient’s Accession No.
SHEET WIS-CS8-193-73
4, Title and Subtitle 5. Report Date
Verification of Process Structures of August 1973
Interacting Digital Systems 6.
7. Author(s) 8. Performing Organization Rept.
R. T. Johnson and D R. Fitzwater No. 193
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
The University of Wisconsin, Computer
Sciences Department, 1210 W. Dayton St. 1. Contract/Grant No.
12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered
14,

15. Supplementary Notes

16. Abstracts

A formal universe for systems design has been developed, in which representations

of interacting digital systems are interpreted by a deterministic automaton acting

on state information in the form of character strings. Since process structures in

this universe can be described with regular languages, a new interpretation is defined
in which regular languages represent state information. Computations under this

new interpretation contain the previous ones (with some loss of detail), making

it possible to prove assertions about the original string computations. An example

is given to show the formulation, and algorithmic verification, of some interesting
properties of two asynchronous communicating systems.

17. Key Words and Document Analysis. 17e. Descriptors

Digital Systems

Formal Systems

Language Semantics
Asynchronous Communication
Design Automation

Process Structuring
Extensions to Post Systems
Design Debugging Aids

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement 19. Security Class (This 21. No. of Pages
Report) 23
UNCLASSIFIED
20. Security Class (This 22. Price
Page
UNCLASSIFIED

FORM NTI!5-35 (10-70) USCOMM-DC 40329-P 71

