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ABSTRACT

This paper presents a general definition of algorithmic
convergence in mathematical programming and lists conditions
which are sufficlient for convergence in the sense of the
definition. These conditlions are also shown to be necessary
for convergence in many applications. The definition and
conditions are slight modifications of those given by
Zangwill [1969 pp. 235 and 244]. Special cases of the assump-
tions required by Topkls and Veinott [1967] and Polak [1971]
for thelr general algorithms are shown to imply that these
general conditions are met, and hence their algorithms
converge 1in the sense of our definition for these cases. The
use of the theory is illustrated by proving convergence of
the condltional gradient algorithm and a Kuhn-Tucker algorithm

for which no prior convergence proof had been given.






1. Introduction

Most convergence proofs for algorithms in mathematical
programming involve proving that each 1limit point of the
sequence generated by the algorithm satiéfies some sort of
optimality criterion. Polints satisfying this criterion are
frequently called stationary polnts and for certaln classes
of problems such points solve the programming problem, although
in many cases the criteria are only necessary. This paper
defines convergence in the above terms and sets forth in a
general context sufficlent conditions for an algorithm to
converge (in the sense of the definition) to a "stationary
point". The condlitions are also shown to be necessary for
algorithmic convergence with certain addlitional assumptilons
which are satisfied by many algorithms.

In section 2 we present some basic definltions and
conditions on an algorithm. These conditions are proven to
be sufficient for convergence in section 3, and also
necessary under certaln additional assumptions. Sectilon 4
presents a slimple applicatlon of these conditlons to proving
convergence of a condltional gradient algorithm. A convergence
proof for an algorlithm based on attemptiﬁg to satisfy the
Kuhn Tucker conditions (the algorithm was suggested by
Rosen [1965]) is given in section 5. In the last section

we show how the convergeﬁée conditions of Polak [1971]
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and Topkis and Veinott [1967] are related to the conditions

presented in section 2. Although we do not present a discussion

in this report it is also possible &o obtain convergence

proofs for the gradient projection method of Rosen [1960] and

zZoutendijk's [1960] feasible direction algorithm.

2. The Minimization Problem and Notation

The problem is to find x such that

(2.1)

Let

(2.2)

(2.3)

(2.4)

£(X) = min f(x), X € X<R"
W EX

U= {x € X[f(x) = £(x)},

the set of solution points. Assume further that there
exists a set

ScX, S # 4@

called the set of stationary points. We make no other

assumptions on X, U, or S at this time. We shall use

the notation of Zangwill [1969] for subsequences. That

is, if Xy oKgreoos is a sequence, we shall denote
subsequences by [xj}, j € K where K is an infinite
subset of the positive integers. We shall also adopt
the convention of using primes to denote the transpose
of matrices only, while vectors will be either a row
or column vector depending on the context.

Definition. An algorithm generating a sequence of
points Ry 1Xopeoo is said to be convergent if the limit
of every convergent subsequence is a stationary point,

i.e. it is in S.




Remark: We adopt the conventilon that for a finite sequence
the last element 1s assumed to be repeated so that
an infinite sequence 1s generated (for theoretical
purposes). Thus for an algorithm generating
a finite sequence to be convergent the terminal

point must be a statlionary point.

Let xl,x2,°°° be a sequence generated by an algorithm and let
Z be a continuous function from X into R. Suppose that the

algorithm satisfies the following conditions:

(2.5) If the algorithm terminates at x then x, € S.

J’ J
If the algorithm generates an infinite sequence of

points then

(2.6) Vidr sVieyn, 2(x) < x)
and
(2.7) If Xy X, J € KE€{1,2,--+} and X ¢ S

then 3xk ) Z(xk) < 7(x).

Condition 2.6 says that for each k, from some point on, the
terms are less than or equal to Z(xk). Thus an increase
in Z is only allowed a finite number of times. The second
condition, 2.7, 1s a relapively easy condition to verify for
most algorithms as can be seen in sectlons 4 - 6 and 1t is the
condltion which requilres uslng € actlve constraints in gradient

projcction and feasible direction methods.



The definition we have taken for convergence is the one
most commonly used (implicitly) in mathematical programming.
The main difference between the approach taken here and that
of Zangwilll [1969] page 235 is that his definition of
convergence and sufficlent conditions for convergence place
requirements on the algorithm for determining when there 1s
no solution. However, that sort of approach detracts from
the generality of the theory since most authors treat the

exlstence of solutlons separately from the algorithm.

In the next section we show that 2.5 - 2.7 are sufficient

conditions for convergence without any assumptions on f or X.

14

We also prove necessity but this requlres some additional

assumptlons.
3. Convergence Theorems
(3.1) Theorem (Sufficiency)

If an algorithm satisfies 2.5 - 2.7 for a contlnuous
7 then the algorithm 1s convergent, 1.e. it satlsfies

20”0

Proof: If the algorlthm terminates after a finite
number of steps at XJ then Xj € S by 2.5. Therefore,
suppose the algorlthm generates an infinite number

of points xl,x2;~=° and that x; > ®, 3 € K. We must 3,

show & € S. Suppose % ¢ S, then by condltion 2.7 ngk%




(3.2)

(3.3)

Z(xk) < Z(R)
But then by condition 2.6 I3 Lkﬂ%

Z(XQ) < Z(Xk) < 7(%) Ve o> Lo

Hence

Z(xj) < Z(x) Jek,J2L,

which implies Z(R) 2 Z(x, ) < Z(R) since 2
is continuous. This contradiction implies % € S.

Q.E.D.

Theorem (Necessity)
If an algorithm is convergent, f 1s continuous,
the Xj lie in a compact set for all j, S = U, and

the algorithm terminates whenever Xj ¢ U, then the

algorithm satisfies 2.5 -« 2.7 with 2 = f.

Proof: 2.5 1s satisfled by the definition of
convergence and the remark following it. Now
suppose the algorithm generated an infinite

sequence X, ,X and 2.6 1s not satisfied for

R
Z = £, Then Jk > ¥Wrn, F2 > L, 3 f(x,) >

k k 2
f(xk) so that we may take a subsequence {xj},

J € K %

f(xj) > f(xk)\fyj € K. Also since the XJ lie in a

compact set we may take a further shbsequence {Xj}’

J € K'CCK X, + % which implies that
J



(3.4) £(%) 2 £(x,).

But f(xk) > min f(x), x ¢ ¥ or the algorithm

would have terminated at X by our hypothesis and
thus f(&) > min f(x), = ¢ X= % ¢ S which is a con-
tradiction to the fact that the algorithm is conver-
gent. Thus 2.6 is satisfied and 2.7 follows since
every limit point is a stationary point by the
definition of convergence.

Q.E.D.

We note that the hypothesis of Theorem 3.2 are common
assumptions of many algorithms. We only requlre the contin-
uity of f, the equilvalence of stationary points and solutions
to the minimization problem, the Xj remaining in a compact set,
and that the algorithm recognize a solution when it finds one.

In section U4 we present a simple application of conditions
2.5 - 2.7 to proving convergence of the conditlional gradlent
algorithm. In section 5 we present a convergence proof
for an algorithm based on trylng to satisfy the Kuhn Tucker
conditions for a minimum point. It 1s a variation of an
algorithm suggested by Rosen [1965]. 1In section 6 we show
how the convergence conditions of Polak [1971] and Topkis
and Veinott [1967] are related to the conditions 2.5 - 2.7

presented here.




b, Conditional Gradient Algorithm

We consider the problem of finding an X such that

(4.1)

(4.2)

(4.3)

£(X) = min ©(x), x € X<R"

and assume:
l Fn Ji

f €C”, 1.e. £ 1s continuously differentiable and

denote the gradient of f at x by V£(x).
X is compact and convex

THE ALGORITHM

Given x. e X

Step 1

Step 2.

Note

0
Compute min Vf(xj)y = 6,., If 8§, <0 go to Step 2.
yex e, o}

Iir 63 > 0 terminate.

min f(x, + ly,) = f(xj+l}“

ok

X eX

3"

A >0

Set jJ + 1 - J and returnto Step 1.

S = {x € XImin ¥vr(x)y > 0} is the set of stationary
yeX

points. We now verify that 2.5 - 2.7 are satisfled with 72 = 1.

If 8§, > 0
j = 5

that 2.5 1

such that

xj is optimal (see e.g. Levitin and Polak [19667]) so

A

s satisfied. If sj 0 then there exists a X > 0

flxy + Xyl < £lxy]



so that 2.6 is satisfied. Define 6(x) = min VI{(x)y and
yex

note that € is continuous since X is compact.

For condition 2.7 suppose Xx; = X, i € K and ¥ ¢ S. Then Z
e X3 0(%) = vr(X)§ < 0. Since X is compact, = {xj}y j e K'€&K Y
vy ¥, j e K' and since & is continuous VE(X)§ = VF(X)y.
Therefore, since VE(F)¥ < 0 F % > 07

FIX + Ay] = £(%) - €, € > 0 =»
for sufficlently large J, J € K'. that

Flx, + X3 < (%) -~ g =%

f(xj+l) < f[xj 4 ij] < f(x)

so condition 2.7 is met and the algorithm converges.

5. A Kuhn Tucker Algorithm

In examining algorithms for solving the problem of finding
X such that

f(x) = min f(x), x € X = {xlgi(x) <0, i=1, -, m}

it becomes clear that two very broad and important classes of
algorithms can be distinguished. The first class of algorlthms
is based on consideration of the entire feasible set X at each
point. The versions of conditional gradient9 gradient projection
and Newton's method as discussed in Levitin and Polyak [1966]

are examples of such techniques. Generally spealiing the conver-

gence theory of such methéds is easier to establish (see e.g.




section 4) but the subproblem at each 1 a much

higher degree of complexity than methods of class two. The
second class of methods consists of those based only on the
active constraints (those constralints for which g, (x) = 0).
Techniques such as those of Abadie [19707], Goldfarb ([1969],
McCormick [1970A7 and [1970B], Ritter [19717, Rosen [19607,

Zangwill [1967], and Zouf® 19607 and [1970] all fall

into this category. In proving convergence of such algorithms
some sort of antli-zilgragging procedure is usually required,

One way of accomplishing thils is to use ¢ tolerances

(Zoutendijk [1960], Demjanov [1967], Zangwill [19697],

Polak [1971]) and this technigue wlill be used in proving
convergence of the Kuhn Tucker algorithm given below. Thus
2.5 - 2.7 are shown to apply to algorithms in both classes.
Mangasarian [1971] has devisged a new approach to algorithms

in the second class whilch has simplifled the e tolerance ldea.

In the XKuhn Tucker algorithm we consider the linearly

Fal

constrained nonlinear programming problem of finding ¥ such that

(5.1) F(x) = min £(x), x ¢ ¥ = {x

nﬁx - b, <0, 1 = lﬂ°-°,m}

(5.2) n,ng; =1, 1 edJ = {1,2,:°°,m}.

We use the notation:

(5.3) I(ste

{
ol
~~

e
R

(5.1) I(xj)



(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

N
3

i€ I(Xﬁs€c>

N

U

c

J

I

I

onst

is

is

= vector

matrix of unit normals contalining all ny with

J

matrix of unit normals contalining all 0y s 1¢e I,

RrCI)

in R where r(I) is the number of

raints in I, and assume that:
continuously differentiable and convex

convex and compact.

The Kuhn Tucker conditions (Mangasarian [1969]) that

X solve 3.1 are
Is

(5.10)  VE(X) + N;U; = 0, Uy e R
(5.11) N;Xx - by < 0

(5.12) U;IN;X - bs] = 0

(5.13) Uy 20

However, for an inactive constraint 1, n,x - lo,,i < 0 so

i
5,12?:=%Ui = 0 and thus conditions 5.10 -~ 5.13 can be wriltten

(5.14) VE(x) + NI(E)UI(I)= 0

(5.15) Up ()2 O for a feasible point x, where

I(x




r(I(x) P , " , . .
=, € R°° C*’>y »(I(x)) = number of constralints in

u
I(x)

I(x) and U, = 0, 1 € J

[N

s

We now gilve a result due to Rosen [1965] in a somewhat

more general form whlch shows that an attempt to verlify the
Kuhn Tucker conditilions 5.14, 5.15 elither leads to a feasible

direction or shows that a point is ontimal.

(5.16) Theorem [Rosen] Let ||v(u)

Then 1f v(u) # 0,
(5.17) Neviu) » 0 and
(5.18) FE(Ivim) = viw)v(u) = EIV(E}@?% > 0.

Note that if I = I(x) and v(u) = 0 then % is optimal since

the Kuhn Tucker conditions are satlsfiiled.

o5}

so that p(u) = ]lv(ﬁ?ifi =

vivu)v{u) and set g = Vi(x)

Al

3

e

(5.19) Then from v(u) = g + N,.u
p(u) = gg + 2gNu + UN LN U

and hence



(5.20)

! Qo
e}
I~
1=l
:v
i
(A
Y
&
AN
£l
=
s
]
2
0
-

EN%]ni

§
N
ot

Thus we must have

v{uyn, > 0 for i € I for suppose

ase

D

vi{uin, < 0 for szome J. Then we could incr
o

A deersage (T et OD SR N 1

u, and decrease plw since x5— < 0 which contradicts

A
o
the fact that v iz an

21 solution to 5.18. Thus

5.17 is prov

Looking again at 5.20 we see that if u, > 0 we must have

V(H)nj = 0 for AIf 1t were > 0 we could decrease uj and decrease

Therefore, V(E>nﬁui = 0,

80 that

(5.21) v(ﬁswlﬁ = 0

Using 5.19 and 5.20 we have
0 < v{wW)v{u) = v{u)[Vr(x) + NIEJ = v(WVE(x) i.e.

(5.22) VE(x)v(u) > 0 so 5.18 is proven.
.E.D.

. e ) n 1 1
For convenience we now define a function #: R° x R™ > R™ by

(5.23) F(x,e) = F(x,I(x, r(1(x,ej)

[0

)) = min []Vf’(x)ﬂ\lpu[l‘;ﬁ u eR
u>0 - )

and note that by the remark following theorem 5.16 1T

g(x) = #(x,0) = 0, x is optimal.

Z




We can now g

L

i

i

Assume x., €
L, = =,
El €,y pl b

(5.25) Step 1

(5.26) Step 2

A

‘ (} - ‘l::;

Remarks: (1) The

jons]
et

(2) Our theory also covers the case where p = € whilch

is used by some authors (e.g., Polak [1971] for



Figure 1

Kuhn Tucker Algorithm
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(5.35)

(5.37)

over all

and hence we

@B.E.D.

We now verlfy

Zz = 1. Condition

I

terminates if @{xj\ =

by 5.18 since - V{_ v,

Jd
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(5.38) Lemma. If x, -+ X, J € K and @(x) > 0, then €, # 0,

J J

j e K.

Proof:

Suppose €y -+ O==$pJ + 0, J € K, since they are halved
simultaneously. This also implies ﬂ(xj,2ej) < 2pj for
sufficiently large j, J € K, or halving would not have
been required. Since there are only finltely many
constraints we may take a further subsequence {Xj}’ J

€ K'€ K such I = I(xj,2s ) 1s a fixed set I for all

J

J € K'. Now I&€I(x) since 2e, » 0, and #(x 2€j> + 0,

J J’
j € K' since 2p, + 0, but this implies @(x) = 0 since
J

ﬁ(xJ,EE ) = @#(x,,I) + #(x,I) and I€I(x). This

J 3’

contradiction proves the assertion.

Q.E.D.

To verify condition 2.7 suppose that Xy > X, j € Kand x ¢ S,

i.e. #(x) > 0.

By lemma 5.38 € # 0, pj # 0 soJe¥ > 0, p¥ > 0 and a
subsequence {xj}, Je K'eK ? €y > e¥, pJ > p¥, J ¢ K'. Thus
Q(xj,sj) > pj > p%¥ and since there are only finitely many

constraints we may take a further subsequence {xj}, joe K
< K'Y I(xj,ej) = I, a fixed set Y J e K''. Then by the con-

tinuity of ¢ (theorem 5.29), #(x,I) > p¥. Also since €5 # 0

I(x)<=I. Now since X is compact y‘j and A, lie in compact sets

J

so that we may take a further subsequence {xj}, J e K'T1K"?
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3 xj+§, yj+57, AJ-»Y, We claim X > 0 for if X = 0 then
T - ]

for each J € K we must have niy.j bi 0 and nis.j < 0 for

some 1 € J or A, could be increased. Since there are finltely

J

many constraints we may take a further subsequence {XJ}, J e K1v

€C K''' J this occurs for the same 1. But then since Xj + 0,

vy * 3(_-'=}ni3<' - by = 0=>1i € I(X)=1I which is a contradiction

to theorem 5.16 since nysy 2 0 VieI. Thus A, - A > 0,

J
iv _ =
. Now ij[yJ - Xj] = —AJijsj = ~Ajﬂ(xj,ej

5.16, and —Ajﬁ(xj,ej) < -Ajp* J € K1V, Therefore since Xj > X,

jJ €K ) by theorem
vy > y and ij is contilnuous we have
Vr(X)(y - X) < -Ap¥ < 0.
Thus there exists 1 > X > 0 and € > 07
FIRX + (1 - R)y] = £(X) - & =»
for sufficiently large j by the continuity of f that

flxy4,] 2 f[Xxj+(1~X)yj] < £(X) - £ < £(x)

€
2
i.e. condition 2.7 is satisfied and thus the algorithm is

convergent.

A version of this algorithm was implemented on the Univac
1108 at the Unlversity of Wisconsin by Teorey [1971]1. The
algorithm was used to solve test problems 1 and 7 of Colville’s
[1968] nonlinear programming study. Problem #1 was solved in
a standard time of .0057 units and problem #7 was solved in a
standard time of .0202 units indicating that the Kuhn Tucker

algorithm is one of the faster methods.
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6. Applications To Other Convergénce Conditions

We now show that the general dpproaches to algorithmic
convergence utilized by some other authors imply our general
conditions. To that end we present sectlion 2 of the article by
Topkls and Veinott [1967] in an appropriate form for the minimi-

zation problem:

(6.1) min F(x), x € X< R"

Some of the notation and definitions are:

(6.2) d € R® is feasible direction at x ¢ X if 36 > 03

x+sdes Vs> 0<s < 8.

(6.3) A feasible direction d 3 F(x) - s6 > F(x+sd)

¥s > 0<s <38 1is called a usable direction.

(6.4) If there is no usable direction at x € X then
X 1s called a stationary point.

Let XO € X be given and define

(6.5) Xg = {x ¢ X[F(x) 2 F(xy)}.

Topkis and Veinott make the following assumptions:

I. X is closed, F is continuous on X and X. 1s compact.

0

I1. VFor every sequence {xl,xg,...} in XO there 1s a bounded

direction function d which assigns to {xo,xl,...,xn}
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a feaslble direction d(xO,xl,...,xn) = d, at x, for n =
0, 1, «+-+ . Moreover, there is a specified infinlte
set P of nonnegative integers such that any subsequence
{(xnk, dnk)} of {(xn,dn)ln ¢ P} converging to (x, d)
has the property that

(a) for some § > 0, x, * sd € X for k = 1,2,++-

k k
and all s, 0 < s < § and

(b) 1if X € X, and d is feasible but not usable at X,

then X 1s stationary.

TII. There is a real valued upper semi-continuous step size
function f(x,y) defined on XOXX for which f(x,x+xd) 1s
continuoué in X for fixed x € XO, d ¢ R" and
(a) f(x,y) > F(y) and f(x,x) = F(x) for all x ¢ XO,

y € X and
(b) if d is a usable direction for F at x e X, then d

is also usable for f(x,*) at x.

Under the above hypothesis the algorithm of Topkis and Veinott

consists of computing X4 by

(l) Xopp = %, 1 Sndn n=20,1,"""
where dr1 = d(xo,xl,...,xn) and 5, 2 0 is chosen so
that X + Sndn ¢ X and such that F(Xn+1) < F(xn) for
n ¢ Pand for n € P f(xn,xn + sndn) < f(xn,xn + sdn) for

all s > 0 with x_+ sd_ e S.
= n n
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Since Topkls and Velnott only discuss 1limlt points of {xj},
J € P our definition of convergence 1s not strictly applicable.
However, there are several different ways in which our theory
can be modified so that 2.5 - 2.7 are impllied by the above. One
is to require P to be the set.of all positive integers and the
other is redefine convergence to mean only convergence of all
subsequences {Xj}’ j € P. We shall take the first alternative
and let P = {1,2,-:-}. Condltion 2.5 is obviously satisfiled.
For an infinite sequence of points, we set Z = F 1in verifying
2.6 and 2.7. The second requirement 2.6 1s then obvious since

F(x F(xk) for all k. For 2.7 suppose x'j > f,dj*a, Je k and

k+l>

<
suppose X

is not a stationary point. By IIla d is feasilble so
that by IIb d must be usable, and hence by IIIb d is usable for
£. We let 5 be such that f£(X,x+5d) < £(X,x+sd) Vs > 07

X + sd € X. Then since d is usable for f

(6.6) £(X,x+sd) = F(X,X) - €.
Now f is upper seml-continuous so that for § > 0 236 >
_ 2
09 if ||]x - X - sd|| < § and ||y - x|| < & then

f(y,x) < £(X,x¥sd) + E

no

x| |<8

I

Therefore taking lej + Edj - X - sd]||<6 and lhj

F(x < £(x,,x ) < f(xj,xj+§dj) <f(x,x+sd) +

gty =

™o

j+l)

+ e = £(x,X) -

i
)
N
»|
>
St
1

(9]

€
2

A

£(X,X) = F(X)
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i.e. 2.7 1s satisfied and the algorlthm converges.

We now show that the requirements of Polak [1971] page 15-16
imply the conditlons 2.5, 2.6, 2.7 or modifications of them
for the nonlinear programming problem 2.1. Hils algorithm model
consists of a set valued search functlon A m%pping X into the
set of all nonempty subsets of X, written A : X » 2X. Polak
considers points as belng either deslrable or nondesirable and
assumes the existence of a stop function c which 1s either
continuous at ali nondesirable points x € X or else c(x) 1s

bounded from below for x £ X. We first consider the case where

¢ 1s continuous at all nondesirable poilnts.

(6.7) Polak's Algorithm Model: A: X - 2X, c: X » Rl.
Step 0 Compute a Xq € X
Step 1 Set 1 = 0
Step 2 Compute y € A(xi)
Step 3 Set X141 T vy
Step U Ir C<Xi+1) > c(xi), stop; else set

i = i+l and go to step 2.
Polak also assumes that c¢ satisfiles:

(6.8) for every x € X which is not desirable there exists an
e(x) > 0 and a §(x) < 0 such that
c(x") - e(x') < 8(x) V x"e X) ||x'=-x]]| < e(x)

and for all x" e A(x').




(6.9)

(6.10)

(6.11)

(6.12)
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We shall use the term stationary points to describe

the polnts he refers to as desirable points.

Theorem. If ¢ 1s continuous at all non-stationary
points and satisfies (6.8) then the algorithm satisfies

2.5, 2.6, 2.7, 1.e. 1t 1s convergent with Z.= c.

Proof: The algorithm only terminates if c(x >

i+1)
c(xi), i.e. Xy is stationary by (6.8) so 2.5 is
satisfled. If the algorithm generates an infinite

sequence of points Xy X then 2.6 1is satisfied

5

with Z = ¢, since Z(xi+l) < Z(xi). Now suppose

Xy +x, 1€ K and X is not a stationary point. Then

by (6.8) Fe(x) > 0, 6(X) <0 [|x' - X|| < e(X)=>
e(x") - c(x') < 8(X) Vx" e A(x')

But since Xy X, 1 e K for sufficiently large 1, 1 ¢ K,

|lx4 = X]| < e(X) and since c(xy) + c(x) we may take

1 e K so large that |[x; - x|| < e(X) and so that

le(xy) - e(x)] < - 5(?)

Then since X447 € A(xi) we have

C(xi+l) - c(xi) < 8(x) and from 6.10

c(xy) < e(x) - 8(x) so that
2
combining 6.11 and 6.12 we have
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i

c(xi+l) c(xy) + §(x) < c(x) - (gg + 6(X)

e(x) + 6(x) <c(Xx)
2
i.e. 2.7 1s satisfied and the algorithm 1s convergent.

Polak's alternate assumption on the stop function c, namely
that 1t be bounded below on X does not imply 2.5 - 2.7 directly.
However, it is possible to modify these requirements to make 2.6
a stronger condition in the interest of weakening the continuity

requirement on Z. That 1s, we replace 2.6 by

(2.6") Z(x,,1) 2 2(x) Yk e {1,2,-++}
and require that Z satisfy 6.8 at all non-stationary
points as well as Z being bounded below on X. We
omit the proofs here but these assumptions on Z
together with 2.5, 2.6', 2.7 1mply convergence 1in
the sense of 2.4 and Polak's assumptions imply 2.5,

2.6 and 2.7.




10.

11,
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