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ABSTRACT

The author discusses the doubtful value of error-bounds and
estimates of a statistical nature, based on variance-estimators and
the Central Limit Theorem, when used in situations where quasi-
random (deterministic) sets of points are used to estimate integrals
over multi-dimensional intervals. (The doubt extends, of course,
to all quasi-random calculations.) He describes an alternative
approach, based on discrepancies of point-sets and consequent
bounds on the error, for integrands of bounded variation in the sense
of Hardy and Krause. Suitable error-estimates, computable during

the calculation of the main estimator, are described.



1,  Monte Carlo Integration

The problem we shall consider, is that of evaluating an integral
of the form

1 1 1

k
fk dw f(g}) _\/; dzl/(; dz‘2 0o \/0‘ dzk f(zl’ZZ"“’Zk) = 0; (1)
U

where U denotes the unit interval [0,1], Uk is the k~dimensional
unit hypercube whose points z = [Zi].]iizl satisfy the conditions

0< zi <1 (i=1,2,...,k), @ is the Lebesgue measure on the real
line, and (bk is the k-dimensional Lebesgue product~measure; so that
k k

= dz dza---dzk and o (U') = 1. We assume that f is Riemann-

dw 1

integrable in Uk and that
o] < e (2)

We shall consider a situation in which either k is very large or
f(z) is extremely complicated to evaluate, or both; so that it is not
practical to evaluate 6 by any traditional quadrature formula.

The basic Monte Carlo method for estimating 6 is to generate

of points

K] H (X)
a canonical random sequence: a seguence A= [{3 ]n—O

gn = [éni]i': 1 independently distributed uniformly in Uk, and to

compute the estimator

t_ =t (=N 3
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Then clearly 'tN will have mean value

Elt, ] = E[f] = 6, (4

and variance

A

N = var [tN] = EHtN - E[tN][Z] = EHtNIZ] - 1912

=N (E[)E]4T- 0] %) = Nt var[f] = N7 A (5)

Even if 2 is infinite, it is well-known that t

N converges to 6

N
as N— o, both in probability (i.e,, for any g > 0, the probability

that ]t - G] > g tends to zero as N—w) and almost surely (i.e,

N

the set of sequences & for which tN(E) does not tend to 6 as

N— o~ has probability zero.) (see, e.g., [1], pp. 230 and 245),

However, we shall assume here that, as is often the case,

2 k
1% [ a0 [52)]% = 2 v (0]’ < ©)
Uk
so that
GIZ\T:ozNﬁl—-»O as N—ow, (7)

The Central Limit Theorem(e,g. [1], p. 293) then implies that

the distribution of tN is asymptotic to a normal distribution with mean

6 and variance (TIZ\T as N—o; so that the probability, that tN < 9 +

wo,.., converges to

N
2
wo
mw)-—-l—-—f 6% /2% g, (8)

hadee]
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as N—-+ o; whence the error made in estimating the integral 6 with

the sum t__,
N

is greater than WON with probability asymptotically equal to

-W 2 co 2
— 2 —

f ez/dz+f ez/zdz:z[l-‘]l(w)]. (10)

In particular, we may note that the error 5N(f) is greater than ON,

ZGN, or 3O'N with probability asymptotically egual to about 0,317,

0.0455, and 0.00270, respectively.,

Thus, the standard deviation oN is an important measure of

the error in a statistical estimate tN of ©; and consequently, it is

useful to have an estimate of ON itself. The quantity

Z _ [ Z _ —Za N—l _ Z
Sy = SN(A) =N Z -0 {f(gn) tN]
-4 N-1 2
=N 2n=0 (N ”f(gn) Zm;!n f(g,m)]
-2 _N-1 2 -3 N-1 2
= N "z lHe )T -N T3] (11)
is called the sample mean variance and is clearly a simple Monte
Carlo estimator for GIZ\T' Its mean value is seen to bel
2 -3 N-1 2 -3 i
Elsi]=EN "(N-D 5 o [fe)]"-N "5 3 Ee )EHE )
+ (g V(e )] = N"Z(N—l)E[jf[ 21 - N4 - 1)00%
g,m én ~ ' !
t Here, and elsewhere in this paper, the * denotes the complex-conjugate

guantity.



whence
Efsy] = ngzl o2 = Bt 2
For this reason, the unbiased estimator
s\ :N'I(N—l)'lzlrf;é HEW —tN]Z:N§T1 s; (13)

is often preferred. By the laws of large numbers mentioned above,
it is clear that both Nslz\'T and NS'NZ converge in probability and
almost surely to CYZ, as N-— o,

In actual practice, Monte Carlo calculations are most often

carried out with sequences of numbers, called pseudo-random and

guasi~random (the former, if they have passed a series of statistical

tests; the latter if they are merely found to be efficient in performing
certain classes of Monte Carlo calculations as if they were random
sample-sequences), which are generated by deterministic algorithms
and have no true randomness at all. The question arises, of how we
are to estimate the accuracy of the answers which we obtain by these
means, This question has recently led to much discussion in the
literature (see, e.g. [9], and [4], pp. 6, 32, 35-47, 50-51, where
many additional references to different, and sometimes conflicting,
approaches can be found).

In many cases, the user of pseudo~random and quasi-random

2
numbers assumes that the estimators SN or Si\TZ' just like the esti-
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mators t still give the right answers, at least in some qualitative

NI

2
sense., However, the remark above, that SN is an estimator of 012\7,

2
gives us the first heuristic hint, that the assumption that SN gauges

the error 5N(f) is some way, is unwarranted in general,

2. Discrepancy

Let us now write % for a deterministic sequence of points in

Uk; and let us write VN(E) for the number of points among EO’

which satisfy the conditions

B e

Osg’li< Zif_l (1:].,2,..o,k); (14:)
and put
k k
Q(z) =w (5) = Hi-_—l zi (15)

for the measure of the region defined by (14). Then the local discrep-

anc e sequen " zZ 1
y of the s ce m at S

~s

1

AntE) = N Tv(z) -a(z), (16)
and we say that & is equidistributed in Uk if AN(;Z,)_*O as N— o,

. k . . .
forevery z in U ., From this we may derive various measures of the

imperfection of equidistribution of the sequence & in Uk:

./MN = - inf Uk AN(Z), (17)
= 8
Ny T SUP, _yk AN(E)' (18)



(2)| = max (L, ¥n.), (19)

N N N'TN
and
k 2.1/2
7y =[] do” [b ()] 4 (20)
bUk

Y R . . (o]
are respectively termed the minimum, maximum, extreme (or L ), and

(root) mean-square (or LZ) discrepancy [@N was formerly called just

the 'discrepancy', before the LZ—discrepancy (also termed the turpitude,
whence the notation) was introduced by Zaremba and Halton [2,9,10]

on the basis of earlier ideas of Roth [8], Hammersley [5], and Halton [3].]

We note that, for a true canonical random sequence, (z) counts the

VNN

number of successes in a series of N Bernoulli trials with probability

of success (z); so that the mean value of AN(E) is zero and the

mean value of ]AN(E) | 2 s Q(z)[1 -Q(z)]/N. Thus
hand Z 2‘...
2 1 1 1 zlzz---zk 225 Zy
B[] :f dz, f Az, «e- f dz, -

0 0 0 N

k k
1 1

G -3 1 f (1)

N L

We note for future use that the following identity holds in the

Lebesgue-Stieltjes senses:

"'l N"'l P k
N Zn:o g(gn) :\./Uk dA (5) g(z) +‘~/;Ik dw g(g}). (22)

1 It is interesting to observe that, rather counter—intuitively, this expression
decreases as k — oo,



We shall also require the following definitions. The k-dimensional

total variation of a function g in Uk in the sense of Vitali can

formally be written as

and this is rigorously defined by considering k arbitrary partitions

7Ti of U at points 0 = x,

< X,
i0 i

< so0o & X :]_ (i:l,Z,o-olk)l

n,
1 1

defining

5 q)(Z) = ¢(le¢°' :Xijilﬂo' lzk) - ¢(er°°‘ 1 X, (2'4)

l(ji__l)l' L lzk)l

and

6 ¢(z) = 6,06 -0  ¢(2), (25)

where the xi}, occur in place of zi, and the indices ji are omitted

for brevity; and then putting

np n n k
Vk(g) = sup 5 _Z?‘ ;k [0, , veuy 9(2)]. (26)
TpeTareee M=l J,=l 0 gp=l M2 %

The function g is of bounded variation in the sense of Vitali if \/'k(g)

is finite. The function [ is said to be of bounded variation in the

sense of Hardy and Krause (BVHK) if Vk(f) is finite and also Vh(g)

is finite whenever h< k and g is a function of h variables obtained

by fixing any (k = h) of the z, to be 1. Let us now write f@; for
h



such a g, where @h is any choice of h of the z; (there are (};)

, - : 7
such choices), and similarly let @N,Gh and N,Gh denote the
oo 2 . . ©
L and L~ discrepancies of the sequence ',".*,'Gh = [gn,Gh]n:O
is the h-dimensional vector consisting of the h components

, where

©
““h

of gn selected in @h. Then it was proved, by Koksma [7], for one

g

dimension (k =1), and by Hlawka [6] and Zaremba [9,10] in general,

that, if f is a BVHK function,

k h

o)< s 5. @ Vi ) (27)

N h=1 Gh N,@h @h
and Zaremba [9,10] proved also that

5..(f) < zk Z@ g- Wh(f ) (28)

< 2 g

N h=1 h N,@'h h

where
1/2
h h h 2
Wi ) = ([ dug |Dg f |9 (29)
h uh h h h
with dw; denoting the product of the dzi selected by @h, and
h ‘
Q; denoting partial differentiation with respect to these Zi' once
Y .
each. The bound in (28) is thus finite if all the ]22 fG are bounded
h h
in quadratic mean (it suffices for this that D f be bounded
Nzlzzc oo Zk

in Uk.)

Zaremba proves (27) and (28) in [10] by applying his generalization

of the Abel transformation to show that



‘ k
[ f@an e = s o0 s, fU b e e ) fe ) (30

where z is defined like gn as the vector with components

®,
selected by &, and d. f refers to integration with respect to
h G'h G‘h

the variation of these variables in f; the theorem holding for functions
f which are BVHK. Now (1), (3), (9), and (22) combine to show that

6N(f) equals the modulus of the left-hand side of (30); and we get

(27) by applying the triangle inequality both to the sum and inside the
integrals on the right-hand side of (30), and taking out the supremum

of Ay e Ze ) with (23); while we get (28) by applying the

h h h
Cauchy~Schwarz inequality to each integral on the right-hand side of

2N &

(30), with (29). We note that, if the Dh f are bounded in mean,
N@:‘h Gh

we can write (27) with

. (31)

3., Error-bounds for Quasi-Monte Carlo Integration

Let us suppose that we perform a quasi~-Monte~Carlo integration
by using a quasi-random sequence, whose LOo or LZ discrepancy is
known (or at least has a known upper bound), in the estimator tN.
Then (27) or (28) will give us an upper bound for the error made, and

its determination will simply require that we estimate the measures

of variation \/'h or Wh for the functions f@ . If we have good reason

h
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to believe that the Vh or Wh exist (it is clear that, if some of the
Wh exist and the rest of the Vh exist, we can form a mixed formula,
intermediate between (27) and (28): each integral on the right of (30)
can be bounded in either way, according to convenience), we can
form Monte Carlo estimates of the appropriate integrals rather easily,
especially if the partial derivatives in (29) and (31) are known or
computable without too much trouble,

Now consider the sample mean variance slz\y. By (1), (6), (11),

and (22), we see that

2 _ 2 1 _N-1 2 1 _N-1 2 k 2
B I N L TR RN E A (] —fkdw |£(2)]
U,
n
+ 1ka do* £(2)| %= S 2ont2 1£(z)| % - FIINE £(z)|
- [ an (z) i(z)6s —f dn. (z) £(z)*8 | . (32)
ka N uk N
Applying (30) appropriately, we get, as the analog of (27), that
2 _ 2 k h 2 h
[INs = 07| <5, 3y @ V(fs |7) +2]8]|V (g )]
N h=1 "6 "N,&_ & &,
k h 2
+[s , Sy @ V(g )], (33)
h=l "€ "N.& 3

and the analog of (28) replaces @ by 9 and V by W. We observe

from this that the condition @N e —+0 as N-—o forall h in (33),
"“h
or the equivalent condition on .°7'N & if f is appropriately differ-
“h
entiable, suffices to confirm rigorously our heuristic conjecture that
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2 , 2
SN is a good estimator for GN. It follows from this that, when (as

often occurs) (SN(f) behaves like N-Ha with o> 0 arbitrarily small,
while e behaves like N_l/z, SN will give no indication of the
error in the sample mean tN.T
What is here proposed, as an alternati{fe, is to abanoion the
sample mean variance SI?:T and the estimator si\? (defined in (11) and
(13)) as measures of accuracy, in Monte Carlo calculations of integrals
in multi-dimensional intervals, using quasi-random sets of points; and
to adopt, instead, the bounds given in (27) or (28) (when we have
)e

h
is being com=-

b b t i i
reasonable values or bounds for the discrepancies @N,Gh or TN,@»’

For this purpose, at the same time as the estimator tN

puted (as defined in (3)), we would evaluate the estimators

-1 _N-1 h
\% =V () =N "3 D. f [ (34)
= ~8 G
N,Gh N,@h n=0 h &y
or
-1 _N-1,_h 2.1/2
w. =w () =N "z |Dy By [, (35)
N,Gh N,@'h n=0 m@h h
h h , e e ,
of V (f@ y or W (f@, ), respectively; at least, if it is possible to
h h
— h .
compute the derivatives P@ ];,5 (E@ ) without too much trouble,

h h "h
.These considerations are illus trated by the one-dimensional

examples given in the next section,.

t Indeed, though the estimates afforded by approximating the right-hand
sides of (27) or (28) may be more useful, they too will not give direct
evidence of the magnitude of 5N(f) , since they are only upper bounds.
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4, Fxamples

(a) We consider first the very simple example with k =1 and

1
f(x) =2z -1, Here 6 =0 and oz :f (2z - l)2 dz :‘13". Only in the one-
0

dimensional case can we explicitly find the set of points, for any given

N, for which . (and also g ) is least; namely,

N N
1 _ 3 _ 5 2N -1,
Eo=2n' 1728 €228 ' vEn-1 T ow ¢ (36)
1/2N
. . 2 2 2
and for this set, oy = 1/2N, while TN = ZN[ z'dz = 1/12N",
0
Taking these points, we find, in fact, that
-1 N-1 2n+1
t_ =N entl. .1 o
N Zn:O [2( SN )= 1]= 0; (37)
and
2 -2 N-1_ 2n+41%  2n+l NZ -1
= - =" T 38
sy =Nz [N ATy ) =T (38)
so that
NsZ - o = - 1/3N°. (39)
N
Turning to the variations, we see that (27) and (28) become
simply
éN(f) <9y V() = V({E)/2N,
and (40)
5N(f) < 7y w(f)/2/3 N,
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Now, V(f) = 2 and W(f) = 2, Thus the two upper bounds in (40) be~-

come 1/N and 1/./3 N; but actually 6N(f) = 0, The estimates i

and WN of V(f) and W{f), gotten from the points (36), will be

exactly correct; because f'(z) is constant,
(b) Now consider k =1 with f(z) = 322 - 2z, Then 8 =
1 1 1 _
JF (3zZ - 2z)dz =0 and OZ :f (322 - Zz)‘Z dz = [ (924 - 12,23 + 422) dz
0 0 ~0
’1'5‘ . Taking the same optimal point-~set (36), we get the same

discrepancies: 2y = 1/2N and Ty = 1/2./3N. With these points, we

obtain the estimates

2
1 N-1 _2n+1"% _2n+l1 1
N =N Zn-0 PO an ) T2y )= T e (41)
and
2 L Nl [9(2n+_l)4_12(2n+1)3+4(2n+1)2]__1_ oL
N - N2 “n=0 2N 2N 2N N ' 4N2
21 1___c£_1+1 (42)
15N 3N3 TB5N5 T N 3N3 T sND ¢

Since f'(z) = 6z - 2, we see that, for this example,

1 > 1/2
W(f) = (f (362" = 24z + 4) dz) =2, (43)
0
while, by (31),
1 p1/3 Al
V(f):f [62—2]dz:/ (2 = 6z) dz + | (6z = 2) dz
0 ‘0 1/3

=1/3 + (1 +1/3) =5/3, (44)

These values yield the upper bounds
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2, V() = 5/6N and 7y W) = 1/./3N (45)

for éN(f). In actual fact, however, we see from (41) that

2
5N(f) = 1/4N", (46)
It is of interest, finally, to consider again the estimates V

and WN of V() and W(f) obtained by the quasi-

estimators analogous to t._, using the same point-set (36). The

N
estimate of V(f) is then

1 _N-1 2n+1 1 m-1 3 n N=-1 n 3
Vo= LIS, Lol == -2 g2 2,2
NN Zneo 10C o) "2l =g B @ ey t I bty m 2]

!

1 3.3 - 3 o3 IR T T -
N [(2=pm = om(m=1) + L N(N=1) - em(m=1) = (2= 1) (N -m)]

2

7

1

(NZ + 4mN - 6m2)/N

N
where m is the greatest integer not greater than = ¢+ l, It is readily

verified that we must have m = (N + j)/3, where j is 0 or +1. The

estimator of V(f) thus reduces to

5 ij Z'Z
vN = —3— ~ SN2 T V(f) - 3N < V(f). (47)
The estimate of W(f) is similarly
2 1/2
1l _N-1 2nt+l ™ 2n +1
WN = (N Zn:O [36¢ N ) 24 N )+ 4]>

1 2 2 2:1/2 3 _1/2
= N[(lZN 3) = 12N~ + 4N7] = 2(1 4-N2)
-2 3 9 27

TANZ T Teant T E1ane rr S WO (49



—-15-

Thus both estimates are too small, but converge rapidly to the cor-

rect values,



3.

10,
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