Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

AN INTERACTIVE GRAPHICAL SYSTEM FOR
THE APPROXIMATION OF PARTIAL DIFFERENTIAL
EQUATIONS
by

Paul S, LaFata

Technical Report # 138

Qctober 1971

AN INTERACTIVE GRAPHICAL SYSTEM I'OR THE
APPROXIMATION OF PARTIAL DIFFERENTIAL EQUATIONS

by

Paul S. Latata

ABSTRACT

An interactive graphical system which can be used to approxi=-
mate bivariate functions or to obtain approximate solutions to partial
differential equations is described. The function or differential
equation is entered symbolically, so the system may be used by
someone with no programming experience. The basic mathematical
technique is to assume the approximate solution is a linear combina-
tion of user selected functions, and to use linear programming to
determine the coefficients of these functions. The approximate solu-
tion and error information can be graphically displayed in several
different ways, and based on these results various parameters may

be modified on line so as to obtain a better approximation.

This research was supported in part by the National Science
Foundation under grant GJ-0362.

1, Introduction

Interactive graphical systems have proven to be powerful tools
in the area of numerical analysis, This has been demonstrated by a
number of general purpose mathematical analysis systems and also
by some more specific systems for the approximation of data, func-
tions, and differential equations [6,9].

In this paper we describe an interactive graphical system, PDE,
which allows us to approximate functions of two variables and to ob-
tain approximate solutions to Partial Differential Equations. This
system was developed as an extension to two previous systems which
allow us to solve data fitting problems [7], and approximate univar-
jate functions or obtain approximate solutions to ordinary differential
equation boundary value problems [13]. In all of these cases the
user may impose certain auxiliary conditions on the approximate solu-
tion, such as convexity. The basic mathematical technique is to

m
assume a solution of the form v(a,x) = '%1 ay ¢i(x), and to use linear
programming (LP) to determine the coeflf_icients OLi of the user selected
approximating functions cpi(x) , i=1,...,m. This technique has been
discussed by a number of authors for the approximation of functions

and approximate solution of ordinary differential equations [10, 2],

and also for the approximate solution of certain types of partial differ—

ential equations [11,12].

The system PDE is implemented on the Univac 1108 and Adage
AGT/10 computers, which are connected together via a high speed
data channel. The problem is specified at the Adage, with the differ-
ential equation and boundary conditions being entered symbolically
so the system may be used by a scientist or engineer with no pro-
gramming experience, The domain for the problem may be specified to
be any polygonal domain, and is not required to be simply connected.
For the approximating functions cpi(x) , PDE uses a tensor product
of spline functions with the user selecting the degree and number of
basis splines to be used. This offers an excellent compromise be-
tween generality and ease of use in this type of interactive program
[1,5]. The linear program is generated and solved on the 1108, giving
the coefficients of the spline approximation to the solution. Contour
plots of this approximate solution and related error information may
then be displayed at the user's option. If the results obtained are
not satisfactory, he may then modify his earlier choices and repeat
the process,

In Section 2 we briefly give a mathematical description of the
approximation problem,

Section 3 contains a description of the system PDE as it would

appear to a user. The final section contains some examples of partial

differential equations which have been approximated using PDE.
Elliptic and hyperbolic problems are approximated on domains of
various shapes, and we see the effect that modifying certain para-
meters has on these approximations. A more detailed description

of PDE which includes examples of parabolic problems is contained

in [8].

2o Mathematical Formulation

We now consider the following class of second order boundary

value problems given by

Lk[u]:fk(x,y) on Dk' k=0,1,e00,0 (2.1)

where D = ' Dk is a closed and pounded domain in Ea, the Lk
k

are linear differential operators defined below, the f.k(x,y) are
analytic functions on Dk’ and we assume that there exists a solu-

tion u(x,y)e C[D]. We define

Lo[u] = aoo(x,y)u + aOl(x,y)uX + aOZ(X.y)uY

(x,y)u

+a (x,y)uXX + a04(X’Y)uxy +a05 vy

03

on DO' (2.2)

Then Lo[u] = fo(x,y) is a linear partial differential equation on DO'
We assume that DO is an open polygonal domain which is not
necessarily simply connected. For k =1,...,00 we form the n

boundary conditions by defining
Lk[u] = akO(X’Y)U + akl(x,y)uN on Dk (2.3)

where uN is the normal derivative of u with respect to the bound-

ary Dk of D. As will be seen in the next section, the boundary

J1

conditions may also include terms with u and uy. The functions

aki(x,y) for k=0,1,...,n are, like f (x,y), analytic functions

k
on Dk'

We wish to obtain a function v(x,x,y) which will approximate
u(x,y), the exact solution of (2.1). For the special case aOO(x,y) =
1 and an =0 for j=1,...,4 (2,2) reduces to u = fo(x,y). In
this case we interpret the approximation problem as that of finding a
best approximation in the minmax norm to fo(x,y) (just approximating
a function). In the rest of this discussion we shall refer to (2.2) as

a partial differential equation, with u = fo(x,y) as a special case,

The approximation

m
via,x,y) = = a <1>i(x,y) (2.4)
i=1 ’

will be given by a linear combination of m selected functions
q)i(x,y), i=1,...,m, As mentioned in Section 1 the class of func-
tions used in PDE is a tensor product of splines. The details con-
cerning the exact nature of these splines appears in [7] and [12]. We
only comment that in the one~dimensional case a basis for an arbitrary
spline of specified degree r and uniform knot size is obtained by a
slight modification of B-splines [5]. We denote these basis func~
tions as B splines. Tor the two~-dimensional case the f splines
are used to form a basis for tensor product splines as explained

in [12]. This representation simplifies the computation

by leading to well-conditioned matrices with a special structure. In
the system PDE we may select B splines cjf degree r ¢ {(2,3,4,5].
We also select the number mX and my of the B splines to be used
along the x and y axis respectively, where mx> r, my > r, and

we are restricted to mxmy < 60, The knot sizes are automatically

determined using

by b2
N =" - and A = (2. 5)
-r ¥ my -r

where the numerator is just the width of the domain along the particular
axis. These splines will be used to form m = mxmy tensor products,
In the next part of this section, for simplicity of notation, we shall

use

I
via,x) = 2 o, ¢;(x) (2.6)
i=1

where we understand that ¢i(x) is just one of these tensor products,

and where o e E™ denotes a column vector with elements a, and

XEEZ.

Our boundary value problem as given in (2.1) can be expressed

Li[u]:fk(x) on D k=0,1,...,0. (2.7)

kl

This problem will be approximated on a discrete grid of pk points

X, eD for jel,... ,pk. Note that xj now designates a distinct
]

k

discrete grid points on the interior D ,

grid point, and we define p0 0

and pk points on the boundary D. , ke€l,...,n. Thus we have a

kl
n

total of p= % pk grid points,
k=0

We wish to determine a function v{a,x) for x £ D which mini-
mizes a weighted sum of the maximum errors in the differential equation
and boundary conditions over the p discrete points. In particular, we

want to find @ so as to minimize

n
Y= 2 o ||L [ve)] - £ | (2.8)
k=0 kM k k Dk
where the wk are non-negative weights and
- max _
[T V@] -1 | D, = ILk[v(oc,x:j)] f x|
‘ x. D
j k
If we let
o = Lyloy(x)] and oy =L [o(x)], % €D (2.9)

then (2. 8) can be expressed as minimizing

m
w, I ? a, 7

Y (2.10)
0 i=1

ik fk” Dy

where

For the details as to how a problem of this nature is expressed and
solved using LP, see [8].

We now briefly mention the type of auxiliary conditions that
the system PDE can handle. We may place lower and/or upper bounds
on the elements of the coefficient vector . In addition, lower and/or
upper bounds may be placed on any of the five functions v(a,x,vy),
vx(a,x,y), vy(OL,x,y), vxx(oc,x,y), and vyy(cx,x:,y) at any point
(3{',?) e D. As is illustrated by one of the examples in [8], imposing
the bounds on an appropriate set of points in D might insure that
our resultant approximation be convex or concave. The manner in
which these auxiliary conditions may be added to the LP problem
is also discussed in [8].

Now suppose that we have successfully solved the LP problem
and obtained the coefficient vector & and corresponding best approxi-
mation v(a,X,y). We might then want to see contour plots of the

errors in the differential equation (also called "defect") given by
ED(x,y) = Lo[v(&,x,y)] = £(x,y) (2.11)

and graphs of the error in the boundary conditions, given by
CNDk(X,Y) = Lk[v(&IXIY)] - fk(XIY) k = 110-01n' (2.12)

These graphs are displayed by PDE upon request, as described in

the next section. Also, if we happen to know the exact solution

u(x,y), we may request a plot of the solution error given by

SE(x,y) = v(&,x,y) - u(x,¥). (2.13)

As has been discussed in [11] and [4], if we have a monotone property
{(maximum principle) then the maximum grid errors in the differential
equation (2.11) and boundary conditions (2.12) give us an error bound
for the approximate solution v(a,x,y).

It should be noted that the number and location of the p grid
points is an important consideration which is not discussed in any
detail in this paper, but is left as a topic for further research. Ideally,
they should be chosen so as to trap the maximum error. After seeing
a plot of the defect (2.11), the user may wish to define additional
grid points where the defect is largest and then resolve the problem,

The choice of the weights , is also an important consideration

k
which deserves further study. It has been briefly discussed in [3],

and an example which shows the effect of modifying these weights

for a particular problem is given in Section 4.

10

3. Description of PDE

In this section we shall demonstrate how the system PDE would
be used in order to find an approximate solution to a partial differ—
ential equation. We shall only explain those portions of the system
that would be visible to the user. A description of the data structure
and various "hidden" routines is given in [8].

The system PDE is implemented on the Univac 1108 and Adage
AGT/10 computers. The Adage has a 16,000 30~bit word memory,
two magnetic tape drives, a graphical display with light pen, and
various function switches and analogue inputs. PDE actually con-
sists of two programs, APDE and UPDE which run on the Adage and
Univac 1108 respectively. These two programs interact in a master/
slave environment, with the role of the master being assumed by APDE.
They communicate via a high speed data channel connecting the two
computers, The user interacts only with APDE and in general would
not even be aware of the role played by UPDE. Almost all of the
routines in APDE are written in ADEPT, the Adage machine language,
whereas UPDE is written primarily in FORTRAN.

To initiate the program UPDE, a small deck of about five cards
must be submitted at the 9300 remote I/O station which is adjacent
to the Adage. This deck instructs the 1108 to fetch from drum the

program UPDE and execute it, Usually UPDE is active within a

11

couple of minutes. Assuming APDE has been initiated at the Adage,

the display shown in Figure IT1I.1 would appear.

In this frame we

are asked if we wish to approximate a two-dimensional function or a

partial differential equation.

DO YOU WISH TO APPROXIMATE:

¥ A TWO~DIMENSIONAL FUNCTION

¥ A PARTTAL DIFFERENTIAL EQUATION

Figure III.1

k-4

Our selection would be made by pointing at the appropriate line with

the light pen. We will call this "tagging”,

Suppose we wish to approximate, as described in Section 2,

the partial differential equation
u +u = =2 sin(x) sin on
<X vy (%) (y)

the domain D with the four

boundary conditions

(0,m)

(m,m)

(2.8,2) (3.1)

(0,0)

(n,0)

12

1) u=0 on D1 (the four sides of the square)

2) Uy = 0 on D2 (the hypotenuse of the triangle)

3) u=.416 sin(x) on D3 (the horizontal side of the triangle)

4) u = .335 sin(y) on D4 (the vertical side of the triangle)

where uN is the normal derivative of u. This problem, which has a
known exact solution, is chosen for illustrative purposes.
After tagging the appropriate line in Figure III.1 we are requested

by Figure III.2 to enter the partial differential equation (PDE). This

is done by using the light pen in conjunction with the sixteen function

ENTER THE P.D.E.

Figure TIII. 2

switches shown in Figure III.3. The function switches programmatic-
ally represent the various syntactic units indicated below the switches.
When a switch is pressed the appropriate symbol or symbols are added
to the display shown in Figure III, 2 to form the equation. There are
not enough function switches to include one for each of the variables

and functions in the set {x,y,u,ux,u }, and rather

,u,u u_ ,u
y' N Txx"xy’ Tyy

than redefine the switches when one of the members of this set is to be

13

selected, we decided to use the light pen in conjunction with switch
1 as illustrated below. Whenever switch 1 is pressed, the following

list of options is added to the display.

% X % UX % UXX
Y « UY UXY
% U « UYY

and the desired text can be selected with the light pen. Note that

©
)
()

© @ 9 ©

Gy W G
SN cos TAN ATAN

Figure III.3 Panel of Sixteen Function Switches

14

since we cannot display subscripts, we represent ux as UX, etc.
If the equal sign has been entered into the differential equation and
switch 1 is subsequently pressed, then the ny =" option and the
functions of u are not made available since they are not valid
syntactic units for the right-hand-side.

Also, if we had indicated in Figure III.1 that we wished to
enter a two-dimensional function, then pressing switch 1 would

place only the options

E X

* Y

on the display, since the various partial derivatives would not be
legitimate entries for this type of problem.

Function switch 2 allows us to enter a constant, When it is
pressed an array of numbers like the one in Figure 1II. 10 is added to
the display, and the desired constant can be entered with the light
pen. By operating the function switches with one hand and the light
pen with the other, the equation as shown in Figure 1II.4 can be
generated easily and quickly. If an error has been made, the equation
can be erased from right to left by pushing the foot pedal which is
essentially another function switch., Each time the foot pedal is

operated pne syntactic unit in the equation is erased.

15

ENTER THE P.D.E.

UXX+HUYY=-2. pOOOO*SIN (X) *SIN(Y)

Figure III. 4

When the equation has been entered and "* C" 1is tagged, a
simple agebraic compiler (syntax analyzer routine) parses the equation
and checks for syntax errors, If there are any syntactical errors we
are taken back to Figure IIl, 2, otherwise we move on to Figure III.5
where we are requested to specify the x and vy coordinates of the
end points of the lines which specify the domain. In Figure IIl.5
the seven corner points of the domain have been entered., To enter
point A the constant "0,0" is first generated using the array of
numbers, then when "% X =" and "* Y =" are tagged the constant
just formed is placed in the appropriate lines. After tagging "* ENTER"
the text "A @.QM) 0. 0pp" is added to the display and point A is
formally defined as having the coordinates (0,0). The remaining
three corners of this outside square are similarly entered. Only closed
curves are allowed, and we shall call any closed curve, such as the

square, a "cycle". After the four corners of the square or "cycle" are

16

entered, tagging '"* END CYCLE" would place a short horizontal line
beneath the character D as shown in Figure IIl. 5, and would indi-
cate that a line is to be drawn from point D to the first point in the
cycle, point A, The three points in the second cycle are similarly
entered. If an error has been made, tagging "* DELETE" would delete

the last entry.

* x = 2.8p0db
x vy = 2.20bpb
A b.bbb b.0bD
B b.0bb 3.1k2 2.2000p
b 1 2
c 3.1h42 3.1b42 3 b 5
6 T 8
D 3.ak2 b.0bb 9 - -
E RESET
g o.2bb 2.20D
¥ ENTER
F o 2.8bb 2, 8bb
* DELETE
o 2.8bb 2.20
¥ END CYCLE

Figure III.5

The domain just specified by the user is shown in the next dis-
play (Figure III. 6). If a mistake had been made when specifying the

points it would certainly be apparent here, and tagging "* B" would

17

allow us to go back to Figure I1II. 5 where the necessary corrections
could be made. Tagging "* C" allows us to continue to the next
display. Most of the displays within APDE have at least the two
options "* B" and "% C", so that the user has ample opportunity

to make changes or correct mistakes when necessary.

19}

Figure III.6
The differential equation will be approximated, as explained
in Section 2, on a grid of points within the domain D. After spec~

ifying the number of points to be used along each axis, we would

18

see Figure III. 7 where a grid of 11x11 or 121 points has been placed
on the domain. Since we do not wish to approximate the differential
equation on the three points lying in the triangular region, we delete
these points simply by passing the light pen over them, Each point
successively disappears as it is tagged by the pen. | If we wished to
include a few additional points in our grid, this could be done by using

the "floating dot" shown positioned in the triangle of Figure I11. 7.

b iy ol et P,

Figure 1I11.7

The x and y coordinates of the floating dot are determined by the
positions of two of the six variable control dials. Thus, by manipu-

lating the control dials we can position the dot anywhere. Assume

19

that we want to add three points to the grid near the hypotenuse of the
triangle, After positioning the dot where desired, pressing function
switch 1 defines an extra point where the dot is located. Figure

I11. 8 shows us the display after erasing the three points in the triangular
region, and adding three points near the hypotenuse. Note that the
erase option is also available for any additional points defined in this

way, In this manner, using the light pen, variable control dials, and

function switch, we may add and delete points as desired.

Figure II1.8

Now we are requested to enter the boundary conditions. This
is done using the light pen and function switches as explained

earlier, except that when function switch 1 is pressed only the

20

following options are made available:

X < UX
4 < UY
U = UN

Note that the second derivatives, which would not be valid entries,
are not made available. In Figure III.9 we see that the first boundary
condition u = 0 has been entered. After having the syntax validated,
we are requested in Figure III.10 to specify the weight Wy as ex-—

plained in Section 2, for this boundary condition.

18T BOUNDARY CONDITTON

u=0. bhbdd

Figure 1I1.9

Only the weights o W, w., andw for the boundary conditions may

1’ 3! 4

be specified, The weight for the differential equation is automatically

set to unity, u)O =1, If we attempted in Figure 1II.10 to enter a nega-

tive weight, we would get no response, After specifying the weight

21

ENTHR THE WEIGHT FOR THIS

BOUNDARY CONDITION

Figure I1I.10

we are taken back to Figure III. 6 where we are requested to tag the
line upon which we wish to have this first boundary condition imposed.
Tagging line AB takes us to a display where we may specify the num-
ber of points to be placed on AB. After requesting a grid of eleven
points, we would be shown Figure III.11 where the points are auto-
matically spaced along the proper line. These are points on Dl at
which the first boundary condition will be approximately satisfied.
Points may also be added and deleted as explained earlier. When

the function switch is pressed, the additional point is automatically
"zoomed" from the position of the floating dot which is shown in the
figure to the boundary line, so we are again prevented from making

inconsistent entries,

22

Figure IiI.11

We are informed in Figure III.12 that the boundary condition
will be approximated at eleven points on line AB. Since we wish to
add three more lines to this set, tagging "#* ADD" would take us
to Figure III.6 so we may include additional lines, In this manner
we would define points on the four lines of the outer boundary and
would finally be presented with the display shown in Figure Iil.13,
giving us a summary of what we have done. There are various options

available. For instance, if we decide not to include line CD in our

23

LINE NO. OF POINTS

AB 11
*

¥

ADD

DKL

CHANGE

* REWEIGHT * C
Figure 11I.12
LINE NO. OF POINTS
¥ ADD
AB 11
BC 10 % DELETE
Ch 1
[b * CHATIGE
DA 9
%* REWEIGIHT *

Figure III.13

24

set, tagging "* DELETE" and "CD" would remove it. Similarly,
tagging "* CHANGE" and "DA" for example would allow us to
change the number of points on line DA. We also may change the
weighting of this boundary condition by tagging "#* REWEIGHT"
which would take us to Figure III.10.

Now the second boundary condition uN = 0 and its weight
would be entered. In Figure III.14 we see that this boundary condition

is to be approximated at five points along the line EF (the floating

dot is also shown). Since this condition contains a normal derivative,

Figure 111.14

25

a short vector perpendicular to EF is calculated (actually by UPDE)
and this vector is also shown in the figure. Since this is a homo-
geneous boundary condition (the right-hand-side is zero), the sign
of the normal derivative is not important. In gen eral however, we
must specify the interior of the domain with respect to a boundary
line. The vector shown indicates the interior direction. If it initially
points in the wrong direction it can be "flipped" to point in the opposite
direction by tagging "* F". This is exactly the sort of decision which
would be complicated to program but is a trivial matter for the user to
resolve. In the same manner we specify that the remaining two bound-
ary conditions are to have a weight of unity and are each to be approxi-
mated on a grid of five points on lines GE and FG.

If we have any auxiliary conditions, they may be entered as
shown in Figure III.15. In particular, we can place lower and/or
upper bounds on the coefficients (xi of the splines, or bounds on the
functions u(x,v), ux(x,y), uy(x,y), uXX(x,y), or uyy(x,y) at any
specified points (as indicated in Section 2, these bounds will actually
be placed on the approximation via,x,Y). vx(a,x,y), eos)es Since we
do not wish at this time to impose any aué{iliary conditions, we would
be taken to Figure III.16 in order to select the degree r of the desired
splines. As shown, we have decided to use cubic splines and in Figure

III.17 are requesting that sixteen of these splines be used in finding

26

PLACE BOUNDS

¥ THE
¥ THW
¥ THE
¥ THE
¥ THRE
¥ THE

ON:

COEFFS OF THE SPLINES

FCH U

FCN UX

FCN UY

FCN UXX

FCN UYY

¥ NO MORE BOUNDS

Figure 1II.15

SELECT THE DEGREE OF THE

SPLINES
¥ 02
¥ 3
¥)
¥ 5

Figure 111,16

an approximate solution v(&,x,y), as explained in Section 2.

SEIRCT MX AND My, THE NUMBER OF SPLINES 70 BE USED

ON THE X-AXIS AND Y-AXIS

THE KWOT SIZES WILL BE:

3.1h2/(MX~R) ON X-AXIS

3.1kp/ (MY-R) ON Y-AXIS

h.000bb

¥ MX = L o0 1 2
3k 5
¥ MY = L 6 7 8
9 - -
E RESKT

Figure 111,17

At this point the problem has been defined and the data, which
has been sent up to the 1108 in a piecemeal manner as we entered it,
is now used by UPDE to genérate the primal LP problem which is then
solved by SIMPDX, a double precision linear programming routine.

For this LP problem the 1108 required a total of 16 seconds. The
optimal coefficient vector o and corresponding approximate solution
v(a,x,y) are now available for display and error study purposes. The
approximate solution and various error curves may now be displayed

on the Adage in the form of contour maps. The approximate functions

28

will be evaluated on a grid of 20 x 20 points to give a data set of
400 values for the contour maps. A much finer grid would of course
give smoother contour maps, but would require that the various func-
tions be evaluated at many more points. As a reasonable compromise
we chose a grid of 400 points. Quite often, if a portion of the domain
has been cut out as in our example, it is because the solution takes
on exceedingly large values in that area, If this were the case, then
the contour maps would be distorted unless the cut out region were
also eliminated from the maps. In order to allow for this case, a
display similar to that shown in Figure I11.7, but with a grid of 400
points would appear and we could erase points in the triangular area
if we wished. This would be done as UPDE sets up and solves the
LP problem,

When the LP problem has been solved, a contour map of the
approximate solution v(&,x,y) as shown in Figure III.18 would be
displayed., It consists of ten level lines which are numbered in the
figure. Line ten which is the highest, is also the brightest and has
a value of . 7249, whereas line 1, the dimmest one, has a value of
-,1081. 1In this plot there is a constant increment of . 09256 between
level lines., The function attains its minimum value of -.1544 at points
on the outside boundary, and its maximum of .7712 at the center.

This data is given beneath the contour map.

29

)
—— W

| it

| *

]

il .

|

L g

l\ s : " L

1 s - 1691E 6 MIN = -, 1SWE @

e =

1€ © 6.7295E ¢0 MAX © 8,771 &0

Figure III.18 Contour Map of the Approximate Solution v(&,x,y)

xC

xp

X1z 90.01680 X2z 1.713%
Y1 = 1.9897 ¥2 = 1.5883

Figure I1I1.19 A Line Superimposed on Approximate Solution

30

If we wish to examine a cross section of this function in detail,
tagging "* L" would place a line on the map as shown in Figure
1I11,19. The x and y coordinates of the two end points of this line
(X1,Y1) and (X2,Y2), are determined by four of the variable control
dials, and their current positions are shown beneath the contour map.
Thus, by manipulating the control dials, a line of the desired length
can be positioned anywhere on the scope. Tagging "* C" sends the
end coordinates of this line to UPDE where the appropriate function,
in this case v(a,x,y), is evaluated at 100 points along the line. The
results of this calculation are shown in Figure III.20. Again, the end
coordinates of the line are shown in the bottom portion of the figure,
and we can see that the function goes from a value of -, 1355 near the
outer boundary to . 7711 near the center., In this manner cross sectional
graphs may be obtained from the contour plot of the approximate solution
or from any of the contour plots discussed below.

In the next display, Figure III. 21, we see a contour map of the

error in the partial differential equation, also known as the "defect”,

given by

Lo[v(cx,x,y)] - fo = Vxx + Vyy + 2 sin(x) sin{y).

This, of course, is an indication of how well the approximate solution

v(&,x,y) satisfies the differential equation, and from the figure we

31

0.77§3f 00
L
- . 1358 00 /
0.1601E-01 0.1711E @)
©.1581€ o} 0.158SE Ol

Figure III.20 Cross Sectional Graph of Approximate Solution

*3
L
K’, /
\ e /ﬁ
. - Min oz - 80T DD
0.0 0. 0% (O

10 043X ®

Figure III.21 Error in the Differential Equation

32
see that the maximum error, which is about .5 in absolute value, is
attained at four points along the outside boundary, at the four corners
on the outside boundary, and at the center. We also may examine
this error along any cross section as illustrated above.

Tagging line AB shows us the display given in Figure IIL, 22
which is the error in the first boundary condition given by Ll[v(&,x,y)] -
fl = v(Q,x,y) - 0 on D The end coordinates of the line, (0,0) and
(0,7), are given in the lower portion of the display. The corresponding
error on the other three lines could be displayed by tagging the appro-
priate boundary lines. For instance, tagging line EF in Figure IIl, 21

would automatically give us a plot of the error in the second boundary

condition,

The exact solution to (3.1) is u = sin(x) sin(y). When the exact
solution is known, APDE allows us to enter it and gives a contour plot

of the solution error
v(G,x,y) - u =v = 2 sin(x) sin(y)

as shown in Figure III, 23, The maximum error is .2288 in absolute
value and, since u(n/2,1/2) =1, this represents an crror of about
23%, Later in this section we shall see how this error can be signi-

ficantly reduced by increasing the number of splines.

33

DAGE C
L
(o
=X o 0.00005 01
0.0000E 01 ’
0,314 01
9.0000 ¢

Figure III.22 The Error in the First Boundary Condition

Figure II1I.23 Solution Error

34

If we decide to continue working with APDE, we now have a
number of options, We may branch to Figure III.1 and enter another
problem, or go to Figures III. 6 or Ill. 7 where we retain the same
differential equation but might define a new domain or grid size, or

we may branch to the display shown in Figure III, 24, Tagging "

FIRST", "* SECOND", "* THIRD", or "* FOURTH" in this display
would allow us to change the weight wy or the lines on which these
boundary conditions are to be imposed. Tagging "#* C" takes us to

Figures II1.16 and III. 17 so we may modify the number and degree of
the splines, if desired.
Based on the error information displayed a more accurate approxi-

mation was desired. Therefore, the above problem was rerun with

FOR WHICH OF THE FOLLOWING BOUNDARY CONDITIONS DO YOU

WISH TO MAKE CHANGES

¥ FIRST

¥ SECOND

¥ THIRD ¥ C
¥ FOURTH

Figure 1II. 24

35

mX = my - 6. In order to do this it was only necessary to redefine
the parameters in Figure III.17. A contour plot of the resultant
solution error is shown in Figure III. 25, The maximum error attained
is now .565 E-2 which represents an error of about 1/2%. Note that
going from m =16 to m = 36 has decreased the error from approxi-
mately 23% to approximately 1/2%. Examples of a variety of problems
which are more interesting from a mathematical point of view are given
in the next section.

In addition to graphical output, the 1108 prints out the co-
efficients ay of the splines and generates numerical data on all of
the displayed graphs. This output, which includes a summary of the

problem, is printed off-line and is usually available a minute or two

after the current iteration has been completed.

L

xg

xC

e 42908 - MIN @ - NBIF 0T
! NFwE-02 M = 0. 104GE-02 -
10 : 0.512%€-02 MAX = 0, E0502-02

Figure III.25 Solution Error Using 36 Splines.

4, Examples

We shall now give some examples of partial differential equa-
tions which have been approximated using PDE. Let us begin by con-

sidering the following elliptic boundary value problem:

= - - = t i
Lo[u] U uyy 0 on DO (the trapezoid)

1) Ll[u]zu:—4x4 on D, (line AB) B=(.5,.5) _C=(1,.5)

2) L.[u]=u=x%*-1,5x2+,0625 on D, (line BC)
2 2 (4.1)

3) L3[u]zu:y4—6yz+l on D3 (line CD)

4) L3[u]":‘u:x4on D, (line DA). 2=(0,0) T (0,1)

4
This problem, which has the exact solution u =x + y4 - 6xzy2, is

obtained by using symmetry on the L-shaped region shown below.

(0,1) (.5,1)

(1,.5)

(0,0) " (1,0)

The differential equation will be approximated at 108 points on DO.
This set of points is obtained by using a grid of 12 x 12 = 144 points,
and then erasing the 36 points lying outside the trapezoid. The four
boundary conditions will be approximated at 11 points on D1 , 5

points on DZ’ 10 points on D_, and 9 points on D4. For this

3!

38

problem we shall use 25 bi-cubic splines (mX = my =5, r=23) and
shall hold these parameters constant as we vary the weights wi,
i=1,00.,4.

Some numerical results are summarized in Table 4,1, where the
errors [Li[v] - fi[are the maximum errors at a fine grid of points on
Di' They will usually be very close to the actual maximum error on
Di' The first row of Table 4.1 summarizes our results with W, = 1,
i=0,1,...,4. The defect in the differential equation]Lo[v]— fO[
is held to a very small value of ,107 E~5, However, the errors in
the boundary conditions]Li[v] - fi] are much larger, in the range
.01 to .03, and the solution error [v—- ui has a maximum of .033,
or 3.3%. The effects of increasing the boundary weights to W, = 4,
i=1,s00,4, are shown in the second row of Table 4.1, and the
third row gives the results after again increasing the weights so that
wi =16, 1=1,,..,4. Notice that in both of these cases the error in
the differential equation, which has a small weight in comparison to
the boundary conditions, steadily increases whereas the boundary
errors go down, Of more importance however, is the fact that the
solution error goes down to 1,3% and then to .5%., Figures IV.1 and
IV.2 show the defect Lo[v]-— fO and the solution error v - u cor-

responding to the third row in Table 4.1, We would expect, that as

we continue to increase the weights, a point would be reached where

2 T'AI sean?td 999

UEnoxy

o?.

25

“1°% °Tq

0 UOTLBLINOJIGLY

-
(-

-

qendbz Te

jodons

39

L o
no oN
—~J ~l
o I
n ON
bt 5
[e9) (€]
+- (@3]
[ad} R
i 1
= [
(W) bt
O =
N w
b 3
| i
w N
[-
(@} ON
—~J -
= bt
i I
no N
=
I._J }, -1
-J I
L A%}
i 1
N n
| 1
}.._J
O S 1O I
O \OD 0 \O
\O \O |1V \O
b= Lo
ON I--
-3 O
-J (8]
-3 (A
td tf
1 {
6] ny

-
N
(@2l
it
£
|
F,]

o]
I

40

the solution error ceases to improve, This is illustrated by the fourth
row of Table 4, 1 where, with weights of 32, the solution error has
gone up to .68%. From this we can conclude that the best choice of
weights for this problem would lie somewhere between 16 and 32.
The proper choice of weights for a problem is an important topic which
certainly deserves further research.

For a basis of comparison we would like to know the best
possible approximation that we can get using the same spline basis.,
This is obtained by approximating the exact solution directly, as
opposed to approximating the differential equation. The approximation
obtained, using 127 points in DO' is shown in Figure IV. 3 and the
error is given in Figure IV.4. These results are summarized in the
last row of Table 4.1 where we see that the error is . 116 E-2, or .12%
Thus, comparing Figures IV.2 and IV.4 shows us that fitting the ex-
act solution directly has given us an approximation that is over four
times as good as was obtained using the differential equation with the
weights of 16,

We now look at the following variable coefficient wave equation,

where the vertical or y axis is to be considered as the time axis:

41

XL
x B8
*xC
N
: - o0
1 - .6BE ® Min 7 TN
: N c 0,119 00
: MAx:o,Mw

pifferential Equation Error for Problem (4.1).

Figure IV.1.
See third row of Table 4. le

5., R, VU

T - Me2%- MIN = -,
} ’ 92 INC @ 0. 7O4SE-3 o
10 : 9. 171IE-R MAX : O, 2WEME-

IV. 2 Solution Error for Problem (4.1). See third row of

Figure
Table 4.1.

2C

1z - 83 00

1IN = 0,14 €3

18 * 0.9 ¢

Figure IV.3 Approximate Solution.

EQ. ERR, L(O-F

See last row of Table 4.1,

43

N ——
e

N

A e
[| o
L\ \\/
W 0 \
WL,
13 - ™03 INC : 0.2217E-09
19 = 9.1084¢-02

Figure IV, 4 Solution Error.

HMIN @ - 493 €3
MAX ¢ 0.997IE 60

HIN ¢ - 188¢-82
MAY T O,116%E-82

See last row of Table 4,1,

43

uyy—-(xﬂ)uXX = 4e2xy(x2~(x+1)yz) on DO B=(0.1) e=(1,1)
1) u=1 on Dl (lines AB and AD)
2) uy = 2% on D2 (line AD) : (4. 2)
3) u = eZy on D3 (line CD)
2=(0,0) D=(1,0)

The exact solution to this problem is u = ery. The differential

equation will be approximated at 90 points in DO not including the
three lines AB, AD, and CD. On these lines the boundary conditions
will be approximated at a total of 42 points, and the weights will
all be held constant at a value of unity.

As shown in the first row of Table 4.2, 25 bi—-cubic splines were
used in the approximation and resulted in a solution error of .05475,
or .74%. The second row shows that after increasing the number of
bi-cubic splines to 36 we geta modest decrease in the differential
equation and boundary condition errors, and in the solution error.
Finally, going to bi-quintic splines but keeping the number of func~
tions constant, gives us a more dramatic decrease in the errors with
a resultant solution error of .224 E-2 or .03%. Contour plots of the
error in the differential equation and the solution error for this third
approximation are given in Figures IV.5 and IV. 6, As done in the
previous example we now give results obtained after approximating

the exact solution directly. The approximate solution and the solution

A
S

A Ly 3TCB]

=

o

ogIschy 2

"8 *Al uEnoIuy g,

1T 91T

TeTqwexarz

r
w
[y

0g 20BXYE

otTanT

.TT
|94

O\

ON

On (@)
ON (@2
\Ji w
\J1 [q 4]
(] (o8}
[ag] ON
@
’....l
-~ [9Y)
}...l ',.S
N I
taf Ly
i !
no o
(@] (&
[w
(B8] -3
w =
b taf
1 i
no no
—J -~J
w \O L \O
\O \O oo \O
Hoon JON ON
o N
A%} n
no O
i [
(A 1=
L] tu
i i
ny oot

Tt

’._l

bt

L4
[N

45

£0, ERR, LD

Figure V.5 Differential Equation Error for Problem (4- 2).

third row of Table 4.2

LS
*8

L

See

ING T 0,43RSE-03

Figure IV.6 Solution Error for Problem (4.2).
Table 4. 2.

® L

*C

MIN = - 21X
MAX = O, ZNMIE-B2

See third row of

46

error are shown in Figures IV.7 and 1IV.8. This data is summarized
in the last row of Table 4.2, where we see that we now have a solu-
tion error of . 155 E-3 or .002%. This represents an improvement in
the solution error by a factor of over 14, when compared with that
shown in Figure IV.6. Also, comparing Figures IV, 6 and IV. 8 shows
that as the amplitude of the error decreases (by a factor of 14), the
number of oscillations in each direction increases (by a factor of 2).
We would now like to indicate the amount of human and computer
effort required in defining and approximating problems of this type.
A rough estimate of this is the amount of time required on the two com-
puters, For the example discussed in Section III, a total of 11 minutes
were required on the Adage in order to generate and approximate the
problem (this is from log-in to log=-out), and during this time the 1108
used only 24 seconds of CPU time. Most of the time on the Adage is
spent in defining the problem, and since the problem definition does
not have to be re~entered, successive iterations are much faster., Con=-
sider the example specified in the first four rows of Table 4,1, These
four problems required in total of 25 minutes on the Adage, and this
includes the time spent initially defining the problem, On the 1108
about 5 minutes of CPU time were used, but 75% of the CPU time was
devoted to just solving the LP problem (an indication that work on a

more efficient LP code for this type of problem might be well justified).

1:01% a1
10 = 0.796% 0}

INC

Figure IW7 Approximate Solution.

£D. £RR.

LA
xC
e
—
]
H : 0.999% @0
: 0.638% 00 N0
MAY : 8,735 01

See last row of Table 4.2,

LW -F

Figure IV.8 Solution Error.

See last row of Table 4.2.

48

ACKNOWLEDGMENT

The author wishes to thank Dr, J. B. Rosen for his sustained

guidance during the course of this research.

10,

11,

49

REFERENCES

Ahlberg, J. H. Spline approximation and computer~aided design.
In Advances in Computers Vol. 10, F.R. Alt and M. Rubinoff (Eds.),
Academic Press, New York, 1970, pp. 275-289.

Barrodale, I., and A. Young. Computational experience in solving
linear operator equations using the Chebyshev norm., In Numerical
Approximation to Functions and Data, J. G. Hayes (Ed.), Athlone
Press, London, 1970, pp. 115-142.

Bramble, J. H. , and A. H. Schatz. Rayleigh-Ritz-Galerkin
methods for Dirichlet's problem using subspaces without boundary
conditions. Comm, Pure Appl. Math. 23 (1970), pp. 653-675.

Collatz, L. Functional Analysis and Numerical Mathematics,
Academic Press, New York, 1966,

Greville, T. N. E. Introduction to spline functions. In Theory
and Applications of Spline Functions, T. N. E, Greville (Ed.),
Academic Press, New York, 1969, pp. 1-35.

Klerer M. and J, Reingelds (Eds.). Interactive Systems for
Experimental Applied Mathematics, Academic Press, New York,
1968,

LaFata, P., and J. B. Rosen. An interactive display for approxima-
tion by linear programming., Comm, ACM 13, 11 (Nov. 1970),

LaFata, P. An interactive system for generalized approximation.
Ph.D. Thesis, Computer Sciences Department, University of
Wisconsin, Madison, 1971.

Prince, M. D. Interactive Graphics for Computer—aided Design,
Addison-Wesley, 1971.

Rabinowitz, P. Applications of linear programming to numerical
analysis, SIAM Rev., 10 (1968), pp. 121-159, :

Rosen, J. B. Approximate solution and error bounds for quasi-
linear boundary value problems. SIAM J, Numer. Anal, 7,1
(March 1970), pp. 80-103,

12,

13,

50

Rosen, J. B. Minimum error bounds for multidimensional spline
approximation. Tech. Rept. No. 100, Computer Sciences Dept.,
Univ., of Wis., Madison, October 1970,

Rosen, J. B., and P. LaFata. Interactive graphical spline
approximation to boundary value problems. In Proc. ACM '71,
Association for Computing Machinery, New York, 1971, pp. 466-481.

1. Report No. 2.

A
BIBLIOGRAPHIC DAT 1S-CS-71-138

SHEET

3. Recipient's Accession No.

4. Title and Subtitie

An Interactive Graphical System for the Approximation of

Partial Differential Equations

5. Report Date
October 1971

7. Author(s)
Paul S, LaFata

8. gerforming Organization Rept.
o.

9. Performing Organization Name and Address
Computer Science Department
University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

10. Project/Task/Work Unit No.

11. Contract /Grant No.

GJ-0362

12, Sponsoring Organization Name and Address

National Science Foundation
Washington, D, C. 20550

13. Type of Report & Period
Covered

15. Supplementary Notes

16. Abstracts

An interactive graphical system which can be used to approximate bivariate functions
or to obtain approximate solutions to partial differential equations is described,

The function or differential equation is entered symbolically, so the system may be
used by someone with no programming experience.
is to assume the approximate solution is a linear combination of user selected
functions, and to use linear programming to determine the coefficients of these
functions. The approximate solution and error information can be graphically dis-
played in several different ways, and based on these results various parameters may
be modified on line so as to obtain a better approximation.

The basic mathematical technique

17. Key Words and Document Analysis. 17a. Descriptors

interactive graphics, approximation, partial differential equations

17b. ldentifiers/Open-Fnded Terms

17c. COSATI Field/Group

18. Availability Statement —
Available to public,

19. Sccurity Class (This 21 No. of Pages
Report) 50

UNCLASSIFILD
20. Security Class (This 22. Price
Page

UNCLASSIFILED

FORM NTis-35 (10-70)

USCOMM-DC 40329-P7 1

