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1. INTRODUCTION

The basic aim of this paper is to describe and illus-
trate a new method to do numerical integration, Monte Carlo
Sequential Stratification (MCSS). The MCSS procedure is
the product of a synthesis of statistical sequential analysis
and numerical analysis techniques. The result is, as we shall
see, a method which will very efficiently estimate a wide
class of large-dimensional multiple integrals.

The MCSS technique searches for an optimum estimator by
the use of theoretical stopping and decision rules, which are
developed and discussed in Sections 3, 4, and 5. 1In Sections
6-10, we derive the formulae needed for the efficient imple-
mentation of the procedure and describe the MCSS algorithm
in detail. Numerical results are then presented, described,
and discussed. We end with an outlook for further research
in the field of sequential stratification.

The Monte Carlo method is defined as

representing the solution of a problem as
a parameter of a hypothetical population
and using a random sequence of numbers to
construct a sample of the population, from
which statistical estimates of the para-
meter can be obtained. [HALJ-70]
®
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For more descriptions of the Monte Carlo method see [HAMJ-HAD],
[SHY], [KAH], and [TOK] .
In particular, the problem of evaluating by the Monte Carlo

method a finite real valued integral

(1.1) 6= [pf@dx <=

where R is a compact measurable subset of Ek, X = Cxl,xz,...,xk),
and dx = dxldxz...dxk, can be stated as estimating the parameter ©
by a random variable T defined on the probability space (R, %,u),
where % denotes a o-algebra of subsets of R and u is a probability-
measure on % (u(R)=1), such that, for g taking values on R

according to u,

(1.2) E(r) = Jp T (8) du (B =8 <=,

(1.3) var(o) = fp (1 (@) - 9 dn (@ <= .
By Schwartz's inequality, (1.2) and (1.3) imply that E(|t|) <= .

This random variable, T, is called the primary estimator for 6.

1f the points éi’ EZ"" are independently identically distributed

as g , then

n
AN -1
(1.4) 6, =8 (s §poevvr &) =0 ot
r=1

is called the secondary estimator for 6. It should be noted that

1 var (1),

(1.5) E(en) =6 and Var(en) =1
and that the estimator O converges with probability one, to 8, as

n > (see, e.g. [LOM] p. 239).



In order that the estimate should have less than a given

error, €, with more than a given probability 1-a, we require that

(1.6) Pr { ]én -8l se}2l-a.

The estimator, 6*, will be called an optimum estimator over

the class, Q , of estimators if, for given positive constants e
and t_,
a

~

(1.7) L(8*) = min { L(8) : 6 ¢ 9, var(8)< e/t 1,

where L(g) is the total amount of labor needed to calculate the
estimator 6 and the minimum is taken over all estimators, 6, of 6,
in the class g.

Before we continue describing the Monte Carlo method, let
us see why we would want to use it. The need to resort to a
Monte Carlo approach to estimate (1.1) arises, for example, when
the dimension, k, of the integration problem is large. Consider
estimating

11 1
(1.8) 0= [, [y oor Iy @0 Xy0 0 xy0) 1] dxdx, . udxy

The numerical-quadrature trapezoidal rule, where we evaluate

the integrand at each corner of the twenty-dimensional hypercube,

20

required 2°° or approximately one million evaluations of the




function to yield a result with more than 90% relative error. The
simplest, the crude, Monte Carlo estimator, is defined to be the

secondary estimator

~ -1 B
(1.9) bon =" r__Z_er({;r) )
where
(1.10) 1o(8) = £(8)

is the primary estimator,and § is a random point chosen from a
multivariate wniform distribution over the region U20= ngl(o,l)
and having a probability density function: p(g)=1, & € Uzo,and.p(g)
= O, otherwise. This estimator required 150,000 function evalu-

ation to yield a result with about 10% relative error.

(Here, 6 = .95x107%, 8 = .85x107°

6,

This would have been a good example to show that a Monte

, and the trapezoidal estimate

was 1.72x10°

Carlo approach would be useful except that the midpoint rule,
a classical numerical quadrature formula, only required one
function evaluation at the point (1/2, 1/2,...,1/2) and yielded
a result with about .015% relative error! In fact, by the
intermediate value theorem of the calculus, there always exists
at least one point z € R such that vol(R) . £(z) = e, where
vol(R) is the hypervolume of the region of integration, R.

Let us go to a slightly different example and consider

estimating



I 1 :
6 =/ flf (exp(xlxz...xzo)-l-xlxz...xzo) dxldxz...dxzo .
0 0o o0

This time the midpoint rule yielded a result with greater than 99%

20

relative error. The trapezoidal rule, using 2°" evaluations of the

integrand as before, yielded a result with a relative error greater
than 6,000%! The crude Monte Carlo estimate with 250,000 function
evaluations yielded a result with less than 50% relative error.
(llere, 6 = .14x10~9, 6c = .7lx10'10, trapezoidal rule estimate

6

was .72x10 °, and the midpoint rule estimate was .5x1071%,

In general, multidimension numerical quadrature formulae are

of the form

N N N
(1.11) J= } I ... 1 A

. . . 313 5, iy
J1=l 32=1 3k=1 12722° ")k

’jl,xz’jz' .o ’xk,jk);
so that, the estimator, J, requires Nk function evaluations. Thus,as
the dimension, k, of the integral increases,the number of function
evaluations increases exponentially; whereas, the Monte Carlo es-
timator (1.9) is not forced to increase with k in this manner.*

Stratified sampling consists of partitioning R into disjoint
subregions, or strata, Ru’ w1l,...,p, so that

P

(1.12) 8= I, 6,

where

<o
1]

E3 . . .
For a fixed accuracy the number of function evaluations is




Now eachkeu is estimated independently by a Monte Carlo estimator,
§u. (Note, it may be possible to evaluate some of the 6, by direct
computation.) 1f the strata, Ru, v=1,...,p, have, 2 priori, been
assigned, then the variance of the stratified Monte Carlo estimator,
35 = ZzFl 8u’ will be minimized,for a fixed total number of sample
points, when the number of points sampled in each stratum is directly
proportional to the standard deviation of the estimator for the
stratum. This is the Tschuprow-Neyman theorem, [HAM-HUW] page 209,
1. 1f the partition of R and the number of subregions, p, Were
not chosen in advance, but instead allowed to vary, then further
reduction of Var(gs) is possible. Dalenius and Hodges [DAT-HOJ]

have given strong empirical evidence that the minimization of

var(@) will be nearly achieved if

(1.13) var(§u) = constant, u=l,...,P-

(See Hammersley and Handscomb [HAMJ -HAD] for a brief discussion
of stratified sampling.)

The most recent numerical quadrature programs use adaptive
integration methods; that is, the points at which the integrand
will be evaluated are chosen according to the behavior of the
integrand. And in many cases, these programs use an iterative
scheme which successively approximates the integral until the
desired accuracy is achieved. McKeeman and Tesler [MCKW-TEL]
and Tavernini [TAL] have good examples of programs of this type.

The difficulty, as we SaWw before, is that for multiple integrals

proportional to var(t); see [KAH] p. 89-90.



the number of function evaluations needed is Nk, where N is the
number of evaluations in each direction and k is the dimension-

ality of the integral,

is an adaptive iterative scheme which attempts to minimize the
variance of the Stratified Monte Carlo estimator. The scheme pro-
duces an approximately optimal choice of Strata, in the sense of
(1.7), an iterative search procedure. The algorithm also yields

a confidence interval (1.6) for the estimate of 0 less than or equal
to the one desired, (See, Halton [HALJ-67] for a discussion of other
Sequential Monte Carlo schemes, )

It should be noted that all the Calculations actually carried
out, in this Study, have used the class 2 of estimators obtained by
Successive bisection of Strata (see Section 6). However, the theory
is presented in more general form, since the generalization to the

other partitioning schemes is relatively Straight forward,



2. A BRIEF DESCRIPTION OF THE MONTE CARLO SEQUENTIAL
STRATIFICATION (MCSS) PROCEDURE

The MCSS scheme, for the estimation of 6 = fRf(gjgﬁ,
consists of searching, in a given partitioning scheme, for the
optimum partition of the region of integration, R, and the num-
ber of points to be sampled in each stratum of the partition.
The number of points to be sampled per stratum for the estimate
of the integral,and the partition of the region,are dependent
upon the integrand and the desired size and significance level -
of the probabilistic confidence interval. A few basic definitions
are in order before the exposition of the procedure.

The decision rule is used to determine whether a given

stratum should be stratified. The stopping rule is used to test

if more sampling in a stratum is necessary in order to reach the
desired accuracy. Next, let us consider an example.

The MCSS scheme with bisection-type stratificationf applied
to calculating fi log x dx with an error bound of 0.1 and with a
99% confidence interval, determined the stratification points to be
o, 1/16, 1/8, 1/4, 1/2, 1. Figure 2.la indicates the tree struc-
ture. The dotted line shows where to proceed after reaching the
end of a branch. Figure 2.1b shows the corresponding strata and
stratification points. (Here, 6= -1. The results were: 8 = -,9982,

standard error = .02, and number of samples = 360.)

E
For details, see Section 6.
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The following is a brief description of the MCSS algorithm.
A more detailed version will be given in Section 8.

The procedure begins by drawing a sample from the entire
region of integration. The stopping rule is applied. If the
condition is satisfied, the search procedure stops and the esti-
mate of the value of the integral is calculated. If not, the
decision rule is applied. If the decision rule signifies that
stratification is not advantageous, then sampling over the entire
region is continued until the stopping rule is satisfied. If the
decision rule recommends stratification, the entire region is
partitioned according to a given stratification scheme (e.g.,
bisecting, along a randomly-chosen coordinate axis, into two strata
of equal volumes.) Next the algorithm in a recursive fashion
examines one of the subregions (or strata) just partitioned.

The available information for the remaining strata is saved and
stored in a last-in-first-out (LIFO) list. (In trial calculations,
the length of this list has remained small.)

The procedure for this stratum is the same as for the entire
interval. The stopping rule is applied first and if necessary, the
decision rule is applied. As before, if the decision is to stratify,
then this stratum is partitioned, one of the subregions examined,
and the information on the remaining one stored in the LIFO list.,
If stratification is not recommended the sampling continues in the

entire region being examined until the stopping rule is satisfied.

Afterwards, the unexamined stratum, whose location, as well as
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,have previously been stored in the LIFO list, is
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s the amount of sampling
urn to,after the end of a

mine
list shows where the process should ret

branch has been reached. (See Fig. 2.1 )



3. THE STOPPING RULE

Let us recall, see (1.1) and (1.6), that the problenm is to
estimate 9 = fR f(X)dx to within a given error e with g given
probability of at least 1-q, Now,we can apply the central limit
theorenm (see, €.g. [LoM] p. 275) to the secondary estimator én’
defined in (1.4), to yield that

(3.1) pr {:5#-615 e} = (2m)~1/2 /fz exp(-x%/2)dx + v(n,e) ;

where z = e[var(en)]'l/z, and Iw(n,e)l/h is bounded above for
all sufficiently large n, Also,for a given a, there exists a

ta 2 0 such that

ty

(3.2) (2m /2 [t ex0(-x%/2)dx = -g.
a

Hence the condition (1.6) reduces to

13
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t
@ V2 [ e + v,V [ ew(x /2,
~Z

which yields, with a little algebra, that

(3.3) @M [% exp(-x2/2)dx + p(m,e) > O.
t
a

Now, we observe that, by (1.5) as me , z=€[var(6n)]—1/2

= e/h[var(r)]'l/z + o, while t, remains constant;so that -

Z ow
f, exp(-x/2)dx > [, exp(-x’/2)dx > 0 .
a oL

Also, as m, y(n,e) + 0. Thus, for all sufficiently large n,
(3.3) will hold; whence (1.6) will be satisfied.

In the absence of further information about y(n,e), it
is customary (and perhaps reasonable!) to assume that (1.6)
holds, that is, pr {lén-e| < e} > 1-a, as soon as n is large

enough for z>t , or equivalently, as soon as

(3.4) var(r)/n < ¥/t % .
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In practice very often the value var(t) is unknown. It is

estimated by the estimator

2

n
(3.5) 2= Lo LG -y’

,» for n22 ,

where T(ér) and en are defined in (1.4). That si is an unbiased
estimator of var(t) follows from

Lemma 3.1. For slz1 as defined in (3.5) and var(t) as defined in (1.3)

(3.6) E(srzr) = var(t) .
Proof: This is a standard result; see e.g. [WIS] p. 199. H—

If we substitute the estimator for var(t) into (3.4) we
obtain
2 2,2
sn/n <¢g /ta .
We are now ready to state the

Stopping Rule: Stop sampling as soon as

2 ,2,2
(3.7) n>s; ta/e .

This is a standard sequential analysis procedure, see [ANJ], [SIN], and

[TOK].That this Monte Carlo process is a finite one follows from

Theorem 3.1
Prince] = 1.

Proof: (Cf. Starr [STIN])

By Lemma 5.2,
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(3.8) 2im sﬁ = var(t) with probability one .

10

Thus, by (3.7),

Pr[n==] = Pr[n < si ti/e2 , for alln 2 2]

.2
<Prigims = «]

Hence, by (3.8), and since var(t) < « by (1.3),

2 -
Pr[%%g S, = ] =0.

Therefore,
Prn=«] = 0. H-
The Monte Carlo Sequential Stratification procedure (MCSS)

uses unbiased primary estimators, Ty to estimate the values 8 af

the integral over the separate strata Ru. That is,

(3.9) o Jp, fW &
where the Ru are disjoint and Ug;l Ru=R, yielding that

(3.10) 0 = 8, »

when P is the total number of strata.

The secondary estimators of eu are:

n

. u
(3.11) = 1 ) Tuggr) , for u=l,...,p,

n
u u=l
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where.nu is the total number of samples drawn in the region Ru,
and the £_ are sampled independently from (R , R , u ). We have
-T u’ AU% Tu

that
"~ pA
(3.12) 6.= )8

as the stratified sampling estimator of 6.

That BS is an unbiased estimator of 6 follows from

Lemma 3.2. Let §u and 68 be defined in (3.11) and (3.12) respec-

tively then E(gs) =9 .

Proof:

B ~ECS 6)- 1 EGH
T T

Denoting ru(gr) by T,p oW have that

it}
u

p
A 1 1
R R

| o~ 'O

n eu , Since N is an unbiased
estimator of eu ,

L]
o~
<@
i}
[«

-

by (3.10) . H—

This Lemma and the next one are standard results in the theory of
stratified sampling (see, e.g. [COWD. Their proofs are included for

completeness.
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Lemma 3.3.

If 6 defined as in (3.12), then

P
var(8g) = ] var(8,) , where var(f,) = ;1-1- var(t) .
u=1 u
Proof:
"~ p ”~
var(8.) = var( } 98 ) , by (3.12),
S =1 u
u
P

it

}  var( @u) , by the Bienaymé equality

wl [LOM, p. 334],
b 1 Ty, )
= z var( — 2 T ) by (3.11)
w1 Ny il W ’
L :
= var(t, ) by the Bienaymé equality
uzl ;1:17 r-'-l]_ LlI' ’ ’
F 1
= Z - var(ru) , Tur’s independent
u=l u

random variables. H—

In order to satisfy the condition 2> t, (see (3.1),(3.2))

we must have, by Lemma 3.3, that

P 2
(3.13) var(@s)-'-_zl var(@u) < £

€
o 2
u= t,



Let
(3.14) T=e¥/tl
and define
(3.15) Tu = auT, for w1,2,...,p,
P
where ] o =1, and the o are constants .
u=1
Then, if
(3.16) var(éu)g T, , for u=1,2,...,p,
we have that
p R p p
] var(8 ) =var(6)) < ] T. =T § a =T;
u=1 u 5 u=l Y u=1 U ’

that is, if conditions (3.16) hold, then condition (3.13) holds.
As before, in practice the value of var(rﬁ) is unknown, but it

is estimated by the unbiased estimator

il
u
2 .1 RY
(3.17) Su’nu = 'ﬁu—_—r r*z-l ( Tu(g_r) eu) S > 2

. Rim 2 _ . -
(Remark: Ty su,nu = var T, with probability one, by the strong

law of large mumbers; see Lemma 5.2.)  On using (1.5) and (3.11)

19
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in (3.16) and substituting si n for var(ru), we get the
’
u

MCSS Stopping Rule

As soon as 2

(3.18) n >

we stop sampling in the uth stratum; that is, n, is the minimum
integer such that (3.18) holds.

Remarks:

1) The stopping rule is illustrated in figure 4.3. Cases I and II
represent typical statistical sample values of Si,nu/Tu against

n_=v, 2v,..., for a given positive integer v; n, is the stopping

u ,stop
value of n . in each case, according to (3.18) (the first point from

2

the left falling below the line su,nu/Tﬁ;= nu).
2) Because si only approximates var(t ), the MCSS rules (3.18) and

"
(4.28) may, in fact, give a wrong decision. To reduce the chance

of making a wrong decision, we used a "'second stopping rule'. This

will be discussed in Section 5.



4. THE DECISION RULE

Let Ro be any stratum contained in R, and partition R0
into p disjoint substrata, R,, u=l,...,p. The following theorem
states how many samples should be taken in each substratum to

achieve the minimum variance of the estimator.

Theorem 4.1  (Tschuprow-Neyman).
Let n,, nz,...,np, be positive real number whose sum

ng is fixed, where p is any integer such that p > 2, then

P
. 1
(4.1) min ] = var(t,) ,
n n u=1 nu Iu
1’..-’ p
subject to
P
(4.2) ng = ugl n o

is attained when the n, are equal to

P
(4.3) nz = [var(ru)]l/2 nS/ VEl[var(tv)]l/2
for u=1,...,p. This yields that
’ 1 1 b 1/2.2
4.4) mmuz1 ﬁ;- var(t ) = Bg-( uzl [var(ru)] )e .

Although this theorem and its proof are given in [HAM-HUW]

21
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p. 132, iI, it is included here for completeness.

Proof:
Let
4.5) o, = [var(ru)]l/z , for u=1,2,...,p .
Using the Lagrangian multiplier, A, we get the equations
3 P o >
(4.6) = [ I =—1+x» — (I n)=0,
on, =l 1 anv u=1

for v=1,2,...,p.

Differentiating (4.6), we get that

02

v
4.7) - ;3f'+ A =0, for v=l,...,p;

so that the optimal values of n, denoted by ng, are

(4.8) nv*= 7%— , forv=l,...,p .
Using (4.2), we get that
o
(4.9) ) Aoag,

whence
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P
} o
S w1 Y

:S,H

(4.10) A =

Combining (4.8) and (4.10),we get that

* p
(4. 11) nv = Gv ns/( ugl Ou) k4

v=l,...,p,
as desired.
Upon substituting (4.11) into (4.1), we obtain (4.4).
In order to see that (4.4) is actually the minimum value

for (4.1), we observe that

P 02 P
u 1 2
Lo TR CF e s
u=1 u s =1
1 1 2
(= -5)og - & Loo =
u=l “u S S u,v
(u#v)
p - n
) 5" N ot - 2 } o0 =
u uv
u=1 n, u,v
(wv)

P
'rl'l_[ Z (‘Z#unv) Gé/nu ) o0y 1 =

(uv>v)




24

1 ngh L
=[]« + -20) 1 =
s u,v g Dy v V)

(wv)

(m o_-ng )
%1- ) v vV_u > 0 0
S u,v nunv
(u>v)

This theorem states that for any given region, Ro’ and
partition of it, Rl"' . ,Rp, the minimum variance for the
stratified sampling estimator, 58’ is attained when the number
of observations in the u-th substratum, 1, is chosen according
to (4.3), for uv=l,...,p. The exact minimum is not usually
attainable, because the values of n:: from (4.3) are not always
integers. In practice,we use the value of n.z gotten by rounding
nl’; to the nearest integer.

We again let o, = [var(ru)]l/z, for u=0,1,...,p, where
u corresponds to the region R . The variance obtained when we draw
a sample of n points directly from a region R is var(@u)=o%/nu,
for «=0,1,...,p, where RO = US=1 Ru and the Ru are disjoint.
Similarly, when we draw a sample of n, points directly from the

region R we have that

(4.12) var(8,) =

52
o jor

This will be called the direct sampling (the non-stratified)

variance for the region R .
—— o
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If we stratify Ro into disjoint strata, Rl"" ,Rp, and
take n{"l points in each stratum, then, by Lemma 3.3, var(gs) =

P 2 P _* 2 p 2
& - =
) u=l /0§ - letng = D=1 ng,» Og=(] . o) s and

*
the n, be defined as in (4.3) of Theorem 4.1; then

2
(4.13) var(es) = ig .

This is the optimm stratified sampling variance.

If the tolerance, T, is defined as in (3.14), if 2,0 and

5 are defined to be the amount of labor per point to calculate

)

] o and %S’ respectivelyf and if W, and WS are defined to be the

total amount of work required to calculate 50 and g to within a

tolerance T, respectively, then

52
WO = nO 2’0 = T-g' 20

(4.14) )  and o}
Wg = Mghg = 77 A&

Therefore, from the definitions, it will require less work to |
stratify Ro than to sample from it directly if We< W . Moreover,
we shall see in the section on the labor ratio that !LS/JL o > 1.
Hence, Wg < W implies that nsﬂ,s< noILO, 1 <$Z,S/SL0 < no/ns. So

that we get

?FSee the footnote on page 41.



(4.15) n, <n_.

Now, by virtue of (4.14) we can state our

Theoretical MCSS Decision Rule. Stratify the region RO if

2 2
(4.16) oy > L US ,

where the labor ratio L = %5/20 ,

P .
2 1/2.2
o, = - ,
S (ugl [var(t )17 %)
and
cg = var(ro) .

Otherwise, sample from R, directly.

To illustrate more clearly the meaning of the decision
rule we examine a specific stratification scheme. The scheme
consists of partitioning a given stratum, Ro’ into two sub-
strata, R1 and RZ’ such that their hypervolumes are equal, that
is we have le dx = IRZ dx. This is essentially the multi-
dimensional equivalent of the bisection process.

For this special case the decision rule (4.16) becomes,

stratification is recommended if

2 2 -
4.17) Uo > L(01+ 02) , where L = %;/20 .

Returning to the general, non-optimal case of Lemma 3.3 with

_ N 2
p = 2, we have var(es) =0y /nl * 0, /nz.

26
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Figure 41: Gra‘:'\s of deo=o’- L(-;“*--,oé;),
X 6[0,1] for three cases (i=1.2,3)
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If we let ng remain fixed and let x.=n1/nS vary continuously,

then we can define the function d on [0,1] by

2
2 91 °§
(4.18) d(x) = o - L= + —=) -
X 1-x

By Theorem 4.1 for p = 2, we get that d(x)>0 for some Xx,in [0,1]
namely ni*/ns, if and only if the inequality (4.17) holds. Hence,
if (4.17) holds, then by the continuity of d, there will be an
interval of values, (u,v), for x, in which stratification will

be advantageous. In any case, the function d(x) will attain its

maximum value on [0,1] when

n *
(4.19) X = =——— , Wwhere Xx ==, Ty as in theorem 4.1.

Graphically, this is described in Figure 4.1.

In reality, bisection is only advantageous if there. is an

X = nl/ns, with n; an integer, for which d(x) > 0. The condition
(4.17) implies that

*
(4.20) dx) = 002 - L (o * o) >0,

% ‘
where x = ol/(c1 + 02) = nl*/ns.
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The MCSS procedure, by this sequential process attempts to find a
final estimator, 3*, the sum of the estimators of the partition
of R,ORl, RZ""’ Rp) which satisfies the optimum condition (1.7).
There are a few limitations to the MCSS method. One of
these is that it is uneconomical to examine more than a few
possible stratifications of any given region; so that the class
of estimators in (1.7) may need to be small. That is, for a given
class of stratification (or partition) schemes, the decision rule
may yield that it is not advantageous to stratify (by the suggested
scheme). However, there may exist a partition of that stratum in -
which it is advantageous to stratify. Consider, for example,
o = fl x(1-x)dx. By the decision rule (4.16) bisection is re-
jectedf because of the symmetry of the integrand, but trisection
or quadrisection will be accepted (see Figure 4.2). Hence care
should be used (as with any Monte Carlo method) in selecting the
stratification scheme before using the MCSS method.
The decision rule as stated in (4.16) can not be applied in
practice, because the values for oi and cé are almost always un-

known. Therefore, we must estimate them. The estimator of cg
can, for example, be (for an initial sample of m points)

o
2 1 A2
(4.26) s ==} (1,.-6)" ,
o,m My 1 <1 ©°r ©

o o : - .

where Top = TO(E{J and the ér (r=1,2,...,md) are independently -

identically distributed, each in the probability space (Rd’Ro’“o);
: "

thé estimator of 63 can be (for initial samples of ml,...,m.p points)
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m
v ; 1 ’ ~ (2:1/2,2
(4.27) L) = C LUy Ity 809597,

-~ u 3 ——
where T = Tu(g;) and ,. for each u=1,2,...,p, the g, with r=1,2,...,m ,
are independently identically distributed, each in (Ru’ﬁu’uu)'

This yields the practical

MCSS Decision Rule. Stratification of the stratum R0 is

recommended if

p

(4.28) s2 > L( 3}

0,m, u=1l

)2, )

S
m
u,u

where L = 20/25 .

Otherwise, we sample from R.o directly.

Remark: The inequality (4.28) is the statistical analogue of

(4.16). Here, og is replaced by its unbiased estimator sg n
?
()
2 . . . p 2
and og is replaced by the (biased) estimator (Zu=l Su,mu) .
See remark (2) on page 20.

To guarantee termination of the stratification process,

we overide the MCSS decision rule with the

MCSS Stratum Size Rule. For some o < n < 1; if Ro is stratified
into U5=1 R,» and min {vol R) :uw=l, 2,..., p} < nvol (R),

then do not stratify Ro'
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The total number of strata required, P, in the MCSS procedure

is finite.
Proof:
P
vol (R) =} vol (R,) 2n P vol (R),
u=1
Therefore, P < 1/n. H—

The Expected Sample Size

As is the case with any statistical sequential procedure,

the number of samples required for the MCSS method, n= ZE=1nu’

is a random variable. Its size depends upon the given error, e,
the number of standard deviations, t&., - the variance of the
estimator, and the samples drawn in the particular experiment.
We attempt to . approximate the expected sample size, E(n).

(It is also called the average sample number (ASN) function,

see [WAA] p. 25.)

P 1, where n, = the least multiple of some v

Let n= J 0.,

(given), such that the stopping rule (3.18) is satisfied, that is

2 iy , o o :
n, > su,nh/Tu. We have that E(n)='§u£1 E(nu). Now, by Lemma
5.2, Si + var(t,) with probability one as n + = , soO that given
"u

any ¢,y> O and u, u=l,...,p, there exists an N=N(e  v) such that

either n, < N+ v; or n, > N+ v, andn > (var(t))- e)/Tﬁ and

H
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n, -V < tvar(ru) + s)/Tu with probability (1-y) (see Figure 4.3).
Letting N + v = N', we have that

E(‘nu) =mzl m pr (nu=m)

=} m-opr (oz7m + Y m:opr (n,=m.
m<N' m>N'
In the first sum m < N' explicitly, and in the second, letting V =
(var(t)) + €)/T, + v, We have that pr (nu=mlm <V) =1-y and
pr (nu=m\m > V) = y. We get that
E(n) < N' pr (n, < N') + Vpr(N' <)
+ ) mpr (nm.
m>V

Hence,

(4.29) E(n) s "+ V) (l-y) + ) mpr (o =m.
m>V
Although

7 pr G = pr @y 2V S

we don't have any other information on this distribution. All we
can say is that if such information as

pr (o =m[mV)

C
T

for some p > 1 and c a constant, then

. c T 1 p+l
mp (n=m < =5 $ =T H
mzv u mZV w - prl v

which is finite. Without such information, there, in fact, should be
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no upper bound for E(nu). For example, if pr (nu=m[m>V) = 1/m2, then

=m.

=1

L mpr (ns=m = J
m>V m>V

The Labor Ratio

The labor ratio was defined in (4.16) to be

(4.30) L= =2

where

20 is the amount of labor per point to calculate 60 and

RS is the amount of labor per point to calculate 55 . -

The quantities zo and QS are evaluated during each iteration of
the MCSS procedure and calculated in terms of the number of
essential operations required to calculate éo and QS’ respectively,
Using the current numerical analysis convention (refer to [ISE-
KEH] p. 34), the number of essential operations is the number of
multiplications and divisions, where the exponentiation operation
is treated as repeated multiplication. The quantities lo and QS
depend on the number of dimensions of the integrand and region of
integration, the number of essential operations required to evaluate
the integrandf to generate a pseudorandom number and scale it,
to perform a square root, to approximate the mean and variance of
the estimator 50 or 68’ to perform stopping and decision rules,

and the number of stratifications used by the given partition

scheme. Since we are not taking into account such matters as

-—
see the footnote on page 41,






addition, subtraction, transfers, comparisons, memory 39

references etc., %, and g are only formalized estimates of labor.
We can describe the course of a computation by a graph.

We denote the sampling of m points to estimate the means and

variances of our estimators by —8—, the application of the

decision rule by —2—— , the application of the stopping rule

by —sl-—- , and the further sampling of (n - m) points to the
satisfaction of the stopping rule by Ml. . The letters m, s, d,
(n-m) are symbols only and do not represent specific numbers. Noting
that we do not consider a given partition again, once it is rejected,
we see that the simpler possible graphs (taking the bisection stratifi-

cation as an example) are:

m S h
Go’0 : o—
GO’1 :
Gl,O
G :
1,1 4 (n-m)
. {
d (n-w)
> |
G1,2 :
"m '3 A n-m)
t » 4
¥A s 3
G. S ¢ ¥
—{— i




d
Consider any given decision rule application, say the @

of Go,l . The labor already expended is -3‘——?-—%1- and we have

to compare the remaining labor w o of Go,l (corresponding to -(1‘3))
with the corresponding labor W of the possible stratified computa-
tion. Clearly many possibilities exist. We choose (because it
seems to be the best practical way) to compare Go,l with the result -
of a single stratification, followed by direct sampling, that is
with graphs Gl,o’ Gl,l’ G1,2’ and Gl,3‘ The most likely of these

is Gl, 3 in practice. (The remaining labor Wg corresponds here to
G .) Also, if we make our decision on the basis of com-
parison of Go,l with Gl, 3 then no alternative event occurring after
the Ig_.___s,___f steps of Go,l have been executed can do anything
but render stratification even more economical (for example, going
to Gl,o or Gl,l or G1,2’ or to further stratifications such as G2
etc.). Thus, this form of decision rule guarantees that (i) strati-

ficationwill occur if and only if it effects an immediate economy

of labor and (ii) any subsequent decision can only improve the
economy. It does not guarantee that some complicated graph which,
in fact, is more economical than Go 1 will be reached by the decision

L

procedure (if intermediate graphs are more costly than Go 1+ see
b4
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the exampie on p. 32 and Figure 4.2 ). Therefore, if any bias
occurs, it is against stratification which should theoretically
be done. The same discussion applies to any other application of
the decision rule during the sequential process, for example from
Gl,3 to GZ'

Let & be the amount of labor expended in drawing a single
sample point, evaluating the integrand there, updating the sum of
values and sum of squares used in estimating the mean and variance
of the estimator, and applying one of the two stopping rules.
(During __g___. the second rule is applied, see Section 5 and
(5.8); during ..Si::h , the first rule is applied; in each case, _
the labor is the same). Let r be the labor to apply the stopping
and decision rules, and e be the labor to set up the strata for
the decision rule; 1In a given partition scheme, we consider the
division of a given stratum into q substrata (for bisection q=2);
and the decision rule will consider c such divisions (e.g. in a
multidimensional scheme, we may bisect in c perpendicular direc-
tions—see Section 6), and therefore sample to estimate means and
variances of cq=p substrata. The symbol ZL-ii- represents all p
computations: if we do not stratify, all the results contribute
to our e;timate; if we do stratify, one of the blocks of q results

is selected; this is represented by —@— .

*In general, the labor, although taken here to be constant, required
to calculate the integrand f(x) will depend on X, and the labor

to set up the sub-strata of Ry will depend on u. The quantities

% and e should, therefore, be averaged estimates obtained in the
course of sampling and computation.



Now, if we assume that n, 2m,, Wy = (y-my)2, and if we
assume that each ny > m = m, ther%l

Wg =€+ qr + pgmg + u§1 [nu -m] L.

q
Letting ng = ) n , we get that

u

Wo = qr +e + ng L+ (p-1) qme .

Since L, = wb/(no—m) and ls = wS/nS » we get that

and

b= L+ = [@-1) at + (arve) |-
S
Therefore, since the labor ratio L = Rs/lo, we obtain that

(4.31) L=1+ 3 [@-Lan+ (ar+e)/t ] .
S

Remark: In practice we can only estimate L, for every u, because
the value of ng is usually unknown. In computing the labor ratio
we estimgte ng by using Theorem 4.1 (we assume that the n, will be
chosen in the proportion of the nﬁ in (4.3), to yield the minimum
variance (4.4); even though later the n, are determined by the
empirical stopping rule (3.18)), yielding nS=G§/T, which is

estimated by p

_ 2
(4.32) ng = ( uleu’m) /T

42
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(Note that each ci is estimated with m points, as si m') The

s
assumption, that n>m, and n, 2m, is equivalent to saying that we
look at Go,l and Gl,S’ rather than, say, at Go,o or Gl,l'

We should remark also that if ng is very large then L will be
close to one, by (4.31). This is intuitively clear, as wellj
because, if it requires a large sample to achieve the desired
tolerance, then the extra amount of work to stratify is negligible
compared to the amount of work needed to draw a large sample
size.

Clearly, from (4.31), L>1, so that stratified sampling
requires more work than direct sampling. On the other hand,

since ng > qm, we obtain an upper bound for the labor ratio,

namely,

(4.33) L < p+ (qr + e)/qm.

Once we decide to sample directly from the region R0 we are
done with that stratum and can go to the next one, if any. This
is not so if we decide to stratify RO into q substrata, Rl""’Rq’
since each of these subregions, R,, may or may not be partitioned
again into q more substrata. Fortunately, we know, by Theorem 4.2,

that with probability one this process does not carry on in-

definitely.
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5. THE STOPPING RULE FOR THE ESTIMATOR OF VAR(Tt)

As we mentioned before, the value of var(t) is usually
unknown, because var(t) depends upon the unknown quantity 8,
that we are attempting to estimate. Therefore, we estimate

var(t) by the unbiased estimator

n

‘ 2 _ 1 A2
(5.1) s, < TT rzl (r(_gr) - en) , forn 2 2.

Naturally, this raises the question, how large of a sample, n,
must we take in order to be reasonably confident that the estimate )
is good enough to apply the MCSS stopping rule (3.18) and the
decision rule (4.28)7?

One way in which to answer this question is to try to find
the number of sample points, n, needed to give a probabilistic
confidence interval for |var(t) - si] . Since the distribution

of the random variables Tz(g ) is usually difficult to determine,

we appeal to a Chebyshev inequality.

Theorem 5.1.

IfA > 0, then for a given integer n > 2

(5.2) pr { |var(t) - s2 | < A[var(sz)]l/2 b o1-4
n n AZ
Proof:

By Chebyshev's inequality (see, e.g. [WIS] p. 75), if x is
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a random variable with E(x) < «» and var(x) > O, then for all

A >0,

1/2 1

pr{ | x - E®)| < Alvar(x)] b21- =

. 2, _ 2 .
Since E(sn) = var(t), we may put x = sn. to yield (5.2), He—

Given a § > 0, if

(5.3) 5 » A[var(si)]l/z

then

(5.4) pr { |var(z) - si | <61} 2

pr {|var(t) - srzll < A[var(s-:;)]l/z }>1 - 1

- .

As is to be expected this leads us to another estimation
problem. We know that (see [WIS] p. 199, and [KEM-STA] p. 277,

volume 1)

Ly - 23 arml®y

(5.5) . var(srzl) = T

where
ng = Bl
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The var(s;zl) is, of course, unknown but can be estimated by the

unbiased estimator (see [KEM-STA] p. 304, volume 1)

n
1 ~ 4
(5.6) V= ———— &) ")t
T @2)@-3) I.El“(-r) !
‘ n
2 - - 3(n-1) 11 Z (T(éy)’an)z ]2 R
(ri+1) (n-1) (n+1)n(n-2) (n-3) 4 ’
for n>4.
ASH‘*W,
VavVp = 'rl'i' (m4,n i} sg) '
5.7 where n
Mg I GG -8t
’ r=1

Substituting (5.7) into (5.3), we have the

n

MCSS stopping rule for the estimator . s2 . ("Second Stopping Rule'')

Continue sampling for n = 4,5,6,..., until we find the first

integer

(5-8) ny (3)° my-sp .

» n




That the second stopping rule yields a finite procedure,
with probability one, comes from the next theorem. First, we

will need the following lemmas. They are standard results, but

the proofs are included here for completeness.
Lemma 5.1. (see [BES] p. 58)

If a,b,an(n=l,2,...),bn(n=l,2,...) are random variables
on a probability space (R,s,pr), and if zimn+w a =a with
probability one, and Zimn*n bn=b with probability one, then,

for any real constant c,

%ig (an+ cbn) = a+ cb with probability one,

and 2im a b = ab with probability one.
ne N1
Proof: Let
A = {xeR:2im a_(x) = a(x)}
n+eo N
and B = {xeR:2im b_(x) = b(x)} .
n+e I

By the hypothesis
pr(A%) = pr(8%) = o.

let
C = {xeR: 2im (a_(x) + cb_(x))= a(x)+cb(x)}
e °°M n
Since,
AN B &€ ¢ ,
so that

s AU pC.

47



pr(C%) < pr(A%) + pr(89) =0

yield the first conclusion. The second follows by applying the

same argument with

C={ xeR : Lim an(x) bn(x) = a(x) bx)} . H—
N

Lemma 5.2,

For sfl defined as in (3.5),

Lim 52 = var(t) with probability one.
N N

Proof:
By (1.4) and (3.5),

n

n n
(5.9) n-1 52=}- 1'.-2 ( T)2+ 1( T 2.
n nrzl ") rzl T nt 1.21 r)

By Kolmogorov's strong law of large numbers ([LOM] p. 239) and

the properties of 1 (see (1.2) and (1.3)), we see that,

n
gim £ § t_= 6 with probability one
oo n r=1 T
(5.10) and n )
fim 1 . = [var(t) + 62] with
) ward) n r:l r

probability one.

48
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Applying Lemma 5.1 to (5.9) and (5.10) we obtain the lemma. H-

Lemma 5.3.

For m, defined as in (5.7),
,n

2im Myn =W with probability one.

N>
Proof: n
. t
By (5.7), and letting m't,n ) T, we have that
=1
. I 4 , 6 , 2
(5.11) m4,n nl 4,n n2 m 3,n m 1,n+ n3 mZ,n (m 1,n)

4 4 |1
- g Wy )y )
n 1,n n 1,n

As in Lemma 5.2, we see from the strong law of large numbers that,
with probability one,
1

3 —_ L]
Mg ™y

4

2
Myt 4 0 Mg+ 6 67 var(t) + 6

(5.12) and

1,
Lm g Mgn T ¥3

+ 30 var(t) + 83 ,

where ;= E[(x-6)°] and 1, = E[(t-0)%]. Thus, by Lemma 5.1,
(5.10), (5.11), and (5.12), we obtain the present lemma. H—
It should be meted that results similar to Lemmas 5.2.and 5.3:are

proven in the literature (see, e.g. [CRH] p. 351), for convergence

in probability, that is si and m, , are consistent estimators.
, =oos et
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Although the Lemmas are given here for convergence with probably one,

they are standard results and their proofs are only included here

for completeness.

Theorem 5.2
If y, = E[(1-0)Y] < =, then
prin < «] =1,
Proof :
By (5.8),

o] = A2 4
prn==] = priN <(x)" (my \- sy), for all N>4]
Spr[ &im (m - 54) =o ],
- NW 4;N N

By Lemma 5.1, 5.2, and 5.3, )

B g 50 = g () - (g Y

My - [var('r)]2 with probability one.

Since O < My < and O < var(t) < < , we must have that
Hy © [var(r)]2 < o, Therefore,
prigim (m -4)=oo]=0'
o 4N TN '

whence prin==] = O. H-

Remarks:
1) If the primary estimator, T, of 6 is the crude Monte
Carlo estimator and if £ ¢ LYR) (that is, [y [£)|* dx < =),

then My < o,




51

peo ‘gh ofly

.&mmiouv ..mm_:... m

»M

Ty [

‘u

(75 P9 07 sabed uo Suorjouvidnd

wibls SSIN TSy

IR
IR



2) Following the same type of argument as we did on

pages 35 through 38,we find that the expected sample size necessary

to satisfy (5.8) is approximately (A/é)2 (u4 - [var(r)]z).

The second MCSS stopping rule (see (5.8)) determines an

52

estimate for the lower bound on the number of samples needed before

we apply the first MCSS stopping rule (3.18) and decision rule
(4.28). That is, the stopping rule for si attempts to prevent
the MCSS process from stopping too soon.

Consider the example shown in Figure 5.1. Without the
estimated lower bound, n, from (5.8), we would take N, samples
and stop, since (3.18) is satisfied. However, with the lower
bound, N, we must take at least n sample points before we apply
the stopping rule. So that, in this case, we would take n,
samples before having (3.18) satisfied. This is much closer to
the actual number n¥* of samples needed in this example, than
is ny.

There is a drawback to this procedure. The estimated
lower bound n may severely underestimate the true lower bound n*.
Take again the situation described in Figure 5.1. If n is less
than nl,*then the method would stop after only n, observations.
This would cause a large underestimation of var(t), and hence, we

would think that we had a better estimate of 6 than we actually

have. What the second stopping rule does is to lessen considerably

the probability of severely underestimating var(t). (It cannot
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guarantee this, however.) If n is greater than n*, we lose

some time, but the accuracy of var(t) does not deteriorate.
Furthermore, the estimate, m4,n, of the fourth moment,

Hyo used in (5.8),1is very unstable. So that, the second stopping

rule only provides a rough guide to the actual lower bound for

the number of samples needed before we apply the rules (3.18) and
(4.28)



6. THE IMPLEMENTATION OF THE MCSS PROCEDURE

In this section we will deal with the description and
analysis of some specific cases of the MCSS procedure. The
cases are crude, control variate, and antithetic variate es-
timators (see [HAMJ-HAD] pp. 50-66) with a bisection-type
stratification scheme.

Let us recall (see (1.1)), that the problem is to
estimate 0 = fp f(x) dx. We will assume that R is a k-cell
(see [RUW], p. 27); that is,if a, < bi’ i=l,...,k and x = (xl,...,xk)
then

R={x: a; < Xy < by, for i=1,...,k }.

If R is not a k-cell, then, since R is a compact set, we can
find a k-cell R' containing it. Thus, we can extend f(x) to R'
as zero outside R, and rename R' as our new R.

Thé type of bisection scheme used bisects a given region,
say Rb, on one of its coordinate axes, say that of Xj’ at the
point cj = (aj + bj)/2, so that the bisection of Ro produces two

strata

54
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Rl = {x: aj < xj < Cj’ and a; €x; < bi , for all i#j }

and
Ry= {x: Cj5 € X4 < bj’ and a; < x; <b, , for all i#j }

where R; U R2 = R0 and Rl and R2 are disjoint. (See Figures 6.1
and 6.2.) Letting vol(R) denote the hypervolume of the region R,
that is vol(R) = [R dx. When R is a k-cell, then vol(R)= H§=1(bi-ai).
We should note that vol(Rl) = vol(RZ) = 1/2 vol(R).
In general, the crude Monte Carlo estimator with stratified

sampling for p strata is defined to be

P

6.1 8 = 8c
(6.1) o Zu=1 °C,un
where

A 1 "u
(6.2) GC,u,nu= ?1: Z Tc’u (ET) s

r=1

and
(6.3) Teu = VOIR) £(8) ,

and_g n U(Ru), which means that é_is a random point chosen from a
multivariate uniform distribution over the stratum Ru and having a
probability density function:p(g) = [vol(R )], if £ e R, and
p(g) = O, otherwise. Since R is a k-cell, £ v UR), for

g= (El,...,gk), means that Eim U(ai,bi), for i=1,...,k; that

is, for i=1,...,k, p(§;) = (by-a)) L if £;e(a;,b;) and p(E;) = 0,
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otherwise. The same is true for each substratum Ru .

Theorem 6.1.
Let ¢ = fR f(x) dx, where R is a k-cell. If 6(3 is defined

as in (6.1), then §C is an unbiased estimator of 6, that is

(6.4) E(éc) =9,
and
A P n P
(6.5) var(8.) = )) var(e. ) = ) = var(t; ),
u=1 Tu u=l U
where
(6.6) var(t. ) = vol(R ) [ fz(gc_) dx - 67
' C,u u R -_— u
u

Proof: Since

E(tg ) = /Ru To,u P dx = jR vol(R ) £(x) dx/volR ) =
u

we can apply (1.2), (1.4), (1.5), and (1.12), yielding the result
(6.4). From the definitions

2

2
var(tg ) =E[ﬁcﬂl-eﬁz]=fﬂﬁb& - ¢

2
VIR) [ £09 & -6,
u
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as in (6.6). Now apply (1.5) and (1.12) to get (6.5). H-
The control-variate sampling technique is useful when we
can find an "easy' function ¢(x) which approximates the integrand
f(x) over the domain of integration R. A function ¢(x) will be
called easy if we can theoretically integrate fR ¢(x) dx. The
control-variate estimator with stratified sampling for p strata

is defined to be

P
(6.7) 8= L B + 9
v s @hun,
where
n
u
2 _ 1
(6.8) 6CV,u,nu n, ! Tcv,u (-E-r) ’
r=1
(6.9) Toy,u = VLR [£(®) - (@],
(6.10) ? = [p o dx,

[ U(Ru), and R = {x: auj‘ xj< buj’ j=l,.0.,k }

Examinin; (6.9), we can see that the control variate technique
is the same as the crude sampling technique for the function
(f-9) (x) with a constant added-in to the result. Thus, the
following theorem is almost an immediate consequence of theorem

6.1.
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Theorem 6.2,

Let 6 be defined as in Theorem 6.1 and §CV be defined as

in (6.7). Then 8, as an unbiased estimator of 0, that is,
(6.11) EG) = 9,
and
. p P
(6.12) var(8~,) = )} var(® ) =) =—var(t ),
Cv w1 CV,u,nu w1 M CV,u
where
. 2 A
(6.13) var(tey ) = vol(Ru)_[Ru[f(§)-¢(§)] dx - (8, ¢)
and % = Jp ¢ @dx .
Proof:

By comparing (6.1)-(6.3) with (6.7)-(6.9), respectively,

and using (6.10), we see that §CV~® is an estimator éC for

-0 = [p(f-¢) (X)dx .

Thus, by Theorem 6.1, (6.4)-(6.6) imply that

E@yy - @) = 09,
and
" p n Py
var (6~ @) = ) Var(eCV,u,n Y=} = Var(TCV,u) ,

=1 u =l “u
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where

var(igy ) = IR fp (E0)°(9dx - (8,70)%

and the theorem follow. He

As we can see from (6.13), the variance of §CV can be made
much smaller than the variance of §C if we choose ¢(X) such that
|£(X) - ¢(x)| is much smaller than |[f(x)| over the domain of
integration R.

The antithetic-variate technique consists of finding a
linear transformation of the integrand, f(x), which will transform
it to a nearly constant fumction, then applying crude sampling to
the transformed function (see [HAMJ-MOK]).

Although, there are many antithetic estimators that can also
be used, as we will discuss in Section 12, the particular anti-
thetic-variate estimator for eu = j'Ru f(x)dx, that is now being

considered in the MCSS algorithm is

(6.14) Thu = FWIRY [£B) + £E]
where

Em U(Ru), R, = {x: auj< xj< buj’ j=l,...,k }
and

g* = (aul + bul - gl’”" auk + buk - gk) ’
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e 1
F\gvreé?) The Antithetic variate estimator.
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the estimator for 6, with stratified sampling for p strata is

b

6.15 6, = 6
( ) A u£1 A,u,nu
where

n

N 1 u ‘

(6.16) eA,u,nu - ﬁ; ) TA,uggr) )

r=1

We can interpret the antithetic-variate estimator as
transforming the integrand into a new function, 5vﬁkf = f* |
which when integrated over the same region of integration yield
the same value for 6 (this will be shown in the next theorem),
and applying the crude Monte Carlo estimator (6.3) to this new
function f*. Consider, for example, 6= fi x2 dx. When we
apply (6.14) to f(x) = xz, we get the estimator %-[52 + (1-5)2],
£ WU(0,1). We, then, have as our new function f*(x) = %—[x2+(1-x)2].
Estimating fi f*(x)dx by the crude Monte Carlo estimator (6.3)
is the same as estimating fi X% dx by T, (see (6.14)). This is
illustrated in Figure 6.3.

Whgn we stratify with the antithetic-variate estimator, we
usually get a different function, f*, for each stratum, that is
we usually do not use the same f* over the entire region of
integration. In our example, if we bisect the region of inte-
gration, [0,1), we get that, in [0,1/2), £*(x) = 3 [x*+ G -x)%]
and, in [1/2,1), £,*(x) = 3 [x*+ (3/2 - )%]. This is graphed in
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Figure 6.4.

Theorem 6.3 ,

If 8 is as before and 6A is defined as in (6.15) and
(6.16), then

N

(6.17) EGy = o,

and if the t Ay 2Te uncorrelated, then
H

~ p
(6.18) var(8,) = Z %l—var('rA’u) , .
u=l "u
where
2 2
(6.19) ver(ty ) = 7 LR fy [£@EGNI - o
and 3c_*=(aul+bu1-xl,...,auk+buk-xk) .
Proof:

From (6.14) we have that
1
B(tp,g) = Jp 7 (@ * £ ]dx .

But, since Ru is a k-cell, Ru = {x: auj< xj< buj’ j=l,...,k }




k auj
£~k = - - -
jRquE Jdx jil[ !b d(auj+buj xj)] f(aul+bul Xl""’auk+buk xk)

uj

k uj

= X | f dz.] f(zl’“"zk) = f f(_J_C_)QJ_E,
j=1 ‘a . J R
uj u

k
where the notation X [ dy. denotes [ dy,... [ dy, .
=1 'E j E 1 k
J=1 Ey 1 By
Therefore,
E(t

A,u = jRu f(y-dl B eu '

Now apply Lemma 3.2 to get (6.17).

2

Z _ -1
var(ty ) = jRu Tp,u [VOLRYT ™ dx - 68

2 -
/ TA,u [vol(®R )] 1 dx = %- vol(R ) / [f(§)+f(§f)]z dx
Ru Ru
=-}v01 Ry IR [fz(gg) + £(x) £(x*)] dx . o
u

We now apply Lemma 3.3 to get (6.18).
The motivation for using the estimator T, comes from the

next theorem and its corollaries.

Theorem 6.4.

Let us define the transfbrmatimnii& by

65



W, [£@] = 3 vl R [£@) + £@9] ,
where
X* = (ap* byt Xppeee, 3t b X))

R={x: a,< x;< bi’ i=l,...,k } .

If £f(x) is such that
f(x) + £f(x*) = K,

for some constant K; then

(6.20) £ [f(x)] = 0o, for all xeR ;
A =
so that, since Tp = WAf(E) s

(6.21) var('cA) =0.

Proof:

By Theorem 6.3, we have that E(TA) = 6, Furthemore,

13

E(ty) = E( 3 wl(®) [£Q) + £ )

fr 7@ + @1

2 vol(R) K , by the hypothesis .

66
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Hence,

= [%—vol(R)]'l 0 .

Therefore, we get (6.20):
W [f — 1 l "1 -
Z£@] = [ 3 vwl®)] [ 5 vl®)] "6 =29

Now, (6.21) follows trivially since

2
var(TA) = E(TA -0)"=0. He

Corollary 6.1,

Let T, be defined as in Theorem 6.4, if £(x) is anti-

symmetric about the centroid of R, that is
f(c1+ ZysesosCpt zk) = - f(cl- ZyseessCy” zk) ’

where the centroid of R is (cl,...,ck),with <y ='% (ai+bi), for

i=1,...,k, then (6.20) and (6.21) hold.

Proof :

Letting X; = C;* 24, for i=1,...,k, we have that

. - z. = 2C.- X, = a.+ b.- X, i=1,...,k .
c; "%y C; X3 T Ay bl Xy for i=1, K

Thus, by the antisymmetry of f

f(xl"”’xk) + f(a]_"' bl' Xls"':ak"' bk‘ Xk) =0. H-



Corollary 6.2.

With T, as in Theorem 6.4, if f(x) is a linear function,

that is
k

F = vy+] B X,

i=1
then (6.20) and (6.21) hold.

Proof:

Here,

FQOvEQ) = 2+ ] 8 %y - [ By (ahyoxy)

= ZY = z Bi(al+ bi);
but this last expression is a constant. H-

Remark. The last corollary states that the estimator, Ty of 6
is exact for linear functions. This is clearly not the case for
quadratic functions. Thus, in numerical quadrature terminology

we would say that TA has degree of precision one.

Lemma G.f.

If £f(x) # £(x*) on a subset of R of positive volume, where

5 (a"‘b'X oco,ak+bk ’

68
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and if A is defined as in (6.14) and Tc as in (6.3), then

var(TA) < var(rc);

and var(rA) = var(rc) if and only if f(x) = f(x*) almost every-

where in R.
Proof:
By (6.19),

var(r)) = L vol®) [fp £ + £@ £@ & - o,

and by (0.6)

var(tp) = wI®) [z £ dx - o° .

Now,by Schwart'z inequality,

fp EOEEN X < ([ a2l Fanaat? - [ Foa

and
fp E@EENdx = [y £
if and enly if

f(x) = £(x*) almost everywhere in R.

Therefore, we obtain the desired results. H—

Now, let us examine when it would be more advantageous to use

the antithetic rather than the crude Monte Carlo estimator.
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~

n n
= qn 1 U |
Let A,n =P Zr=1 TAQET) and ec’n = n Zr=1 T (5,)
denote the antithetic-variate and crude Monte Carlo estimators,

respectively, for n observations. Clearly, it is advantageous

to use the antithetic-variate estimator rather than the crude

A

Monte Carlo estimator, when the total work to compute 6n s
b

Ty

Wy is less than the total work to compute 8 to get the

e, Yoo
same desired accuracy.

Let T be the desired tolerance; so that, it requires
n, = var(TA)/T samples for OA and n. = Var(TC)/T samples for

~

eC’tO achieve the same desired accuracy. Now, let lA be the
amount of labor to evaluate Tp»and 2. be the amount of labor to
evaluate Tee Since for every one computation of Ty We require

two function evaluations (see (6.14)), whereas T . requires only

C
one function evaluation (see (6.3)), we have that

&A = ZRC

There fore, Wp < Wo if and only if

WA T Mpfy < ncke = e
or equivalently,

var(rA) zA < var(rc) QC .

Using lA = ZRC, we get
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Theorem 6.5

It is advantageous to use the antithetic variate estimator,

aA rather than the crude Monte Carlo estimator, éb’ if and only if

(6.22) 2 var(pA) < var(rc) ;

or equivalently, if and only if

(6.23)  Wol(R) fp FOF(x*)dx < 67 .

Remarks: 1) The inequality (6.23) can be written in the .
equivalent forms.

(6.24) cov(rc, TD) < 0,
where

Ty = vol(R) " f(£*), and Tc is defined as in (6.3);

Or again, if p denotes the correlation coefficient,

(6.25)
) COV(TC, TD) )
" ey o < 0
since var(TD) = var(rc).

2) A good practical criterion for using the antithetic
variate estimator would therefore be that p was significantly
negative.

3) This result is new. The apparent similarity of (6.24)

to the result in [HAMJ - HAD] on page 57 is coincidental; they are

looking at the variances rather than comparing labor.
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7. BASIC RELATIONSHIPS

Before we proceed with the description of the MCSS algorithm
for the estimators mentioned in Section 6, a few relationships must
be established. These relationships are used in the procedure and,
as we shall see, reduce the number of samples required by the usual

sequential procedures.

Definition: a, = bn if and only if

pr{%_i’g}(an-bn)=0}=l;

that is, f2im (an- bn) = 0 with probability one

Theorem 7.1

Let RO be any given stratum of R, R1 and R2 be such that

R, = R, U R, with R;, R, disjoint.
Then
(7.1) at,o,no - et,l,nl+ e‘c,Z,n2
where
t=C, CV, or A, and n= n1+ n, .
Proof:

This theorem will be proven for the case when t=C. The

other cases follow in a similar manner.
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For brevity, let 5u n= 8C u.n for u=0,1,2.
b o
u

Now, for u=0,1,2,

E(6. ) = 6, » by Theorem 6.1 ,

u,n)
and aC,u,nu is an average of independent identically distributed
random variables satisfying (1.2)-(1.5). So, by the strong law of
large numbers (see [LOM] p. 239)

li"h*w 8un = eu, with probability one,

H
for uv=0,1,2.
Now upon applying lemma 5.1, we get

~

My e (89 * 83 ) = 81+ 6, , with probability one.

But,since R.0 R1 U R2 >

0

i
<>

o] I e2 ;
so that

2?mn+w(§1’n + 62,n) = 6, , with probability one.
Since we also have

Zimn*m go,n = 6, » with probability one;

upon applying Lemma 5.1 again we get
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2im (el’n + ez,n - eo,n) = 0, with probability one- H—

n-ro0

Next, we need an estimator for var(T £ u) , for t = C,CV,
H

and A. Let var(Tt u) be estimated by
’

ny
2 1 A 2
7.2 = -8 fo 2
(7.2) s'c,u,nu nu-l rzl (Tt,u,r t,u,nu) » TOT nuz ’
where Tt,u,r = Tt,u(ér) and t=C,CV, or A . Then
2 -
(7.3) E(St,u,n) = var(rt’u) , for t=C, CV, and A.

u

This is proven in exactly the same manner as Lemma 3.1 by using

(6.4), (6.11), and (6.17).

Theorem 7.2,
If a given stratum Rj is bisected on the Xj axis at

1 .
c; = 7(.aj+ bj) and if t=C, CV, and A,and n_= n;+ n,; then

2 ny 1 2 1 2 A 2 2
7.4 s 2 (2- =) s + (2- =) s +(6 -
(7.4) t,o,n0 ( nl) 1:,1,n1 ( nz) 1:,1,n2 ( t,l,n1 et,z,nz)
+Q s
where
Qt=0whent=corw ,

_ ol ofog
QA_nO EI:‘=]_Qr’




Qp = I3 vol(R 1% [£(8;)-F(5,)] [£(E5)-F(E5,)]

and (omitting the index r for clarity)

El = (El"'°’£k) ’ éi” U(Rl)’ i.e.

g U(ai,bi), for i#j and i=1,...,k, gj% U(aj, cj) ,

%
§1 = (a1+ bl- 51,...,aj+ cj— Ej,..., a+ bk- Ek) ,
§2 = (El:"'s gj + Cj' aj’...’ Ek) ’

* —
EZ = (a1+ bl'gl"‘°’ aj+ bj- Ej,..., akf bk- Ek ) .

Remark: We observe that the points & and §2 are not uncorrelated
(they are rigidly connected), so that (6.18) does not hold, in

this case. To prove this theorem we will first need

Lemma 7.1

Under the same hypothesis as in Theorem 7.2, we have

(7.5) var(rc,o) = 2[var(rc’l) + Var(rc,z) ]+ (91— 62)2 ;

letting ¢ = [ o@x)dx, we get
u Ru —_

(7.6)  var (1gy o) = 2lvar(rgy 1)* var(rcv’z)]-»[(el—@l)-(62~<1>2)]2

75

.
3
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and

(7.7) Var(TA,o) = 2[var(TA’1)+ var(tA’Z)] + (81— 62)2 + QA’

where Q = 3 Vl®) { fr £ [£GE)- 16 14

+

fsz@) [£Gh) -f(x8)dx }

53 = (a1+b1-x1,...,ak+bk—xk), 53 = (a1+b1-x1,...,aj+cj~xj,...,

- A = - - -
ak+bk xk), and x5 (al+b1 xl,...,cj+bj xj,...,ak+bk k).

Proof of Lemma 7.1:

By (6.6), we have for crude sampling that

2 2
var(rc’o) + 8, = vol(R)) jRo £ (x)dx,

whereas, since vol(Rl) = vol(RZ) = vol(Ro)/Z,

2[var (. l)+6i + var(t 2)+9§] = vol(Ro)[fR fz(ggggffR fz(gggi]
.’ 4 1 2

2 .
vol(R)) bef (X)dx, since R =R;UR,.

Therefore

2 2 2
var(rc’o) = 2[var(rc’1)+var(rc’2)] + 2(61 + 82) - 60 .
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Since, Ro = R1 U R2 yields 60= 91+ 62, we have

2 . 2002 _ ol a2y 2 _ .2 2 _ o e a2
2(0] + 65)-65 = 2(8] +03) - (8y+ 8,)° = O] - 200,405 = (6;-6,)" .

This proves (7.5).

The control variate case (7.6) is proven in the same manner
. 2 _ 2 i
with £°(x) replaced by [f(X)-¢(x)]” and eu replaced by eu o,
for u=0,1,2.

For the antithetic variate case, we have, by (6.19),

var(TA’o) + 6(2) = %vol(RO) fR [f2(§)+ £0 £(x*)]1dx

0

Now,

2[var(TA l)+ei+var(TA 2)+6§] = %-vol(Ro) {,R [f2(3<_)+f(3c_)f(xi‘)]dx
’ ’ 1 ==
+ fthfzc5>+f(g_<_)f(x_§)]ggc_ )

= 2 Vol R) /. £ (dify FEEGPS + fy FGOEC)x ]
. .

Therefore,

var(ty ) = 2[var('cA,l)+Var(TA’2)]+(61-62)2+ Lol R ) [fRof(g_c_)f(g_(g)g_x_

- lef(gg)fcgc_f)ggc_-fsz(gc_)fcgc_g)ggg 1.
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var(rA’O) = 2[var(rA,1) + var(rA’z)] + (el- 62)2 * Qs

where

Qq = 7 VOL(R ) [ £GO£(xt)dx - lef(zij§f)dx —fszgf)fgfg)dx];
[s)
or,upon splitting [p, we get that
[8)

1

Q = 7 VIR ) jR £ [£x3)-£) 1dx + [ £(x0) [£(xF)-£(x5)dx]

I,

B .

Proof of Theorem 7.2 :

= Bl = v
For t=c, L(SC,O) var(rc’o), by (7.3); whence
B[(2- =)s2 | +(2- 2952  +(B. .- b. )*]=2[var(t. |)+var(t. ,)]+
n,”°C,1 n,’°C,2 TVC,1T 7,2 c,1 C,2

2
(61‘ 92) ’

since 6 1 and @C p are independent and
3

C,

T S TP R ~2
E[(8c 179, 2071 = E(6¢ 1)-2E(8; 1)E(8; ,)*E(S: 7))

E(e )— var(TC )+62 , foru=l,2.
y

By applying Lemma 7.1, Equation (7.5), the result follows from

(1.5), the strong law,and its extensions in Lemmas 5.1, 5.2.
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For t= CV, the result follows in a manner analogous to the
preceding case. For the case t=A, we have that, since §2

depends on §i, (still omitting the index r for the random point)
E(Q = E( [% V01(R0)]2 [£(&1)-£(ENTIEES-FEDD
(7.8)  E@ =3 vol(R, ){jR £(X) [£(ay+b =X 5o v 53, #by o))
- E(ayth) X e 350X DX ) dK

+ lef(xl,...,xj+cj—aj,...,xk) [f(a)+b)-X{,ee,s

a.+C."X. 00
J ]

i k+bk - xk) -f(al+b1 Xq s ..,ak+bk-xk)]g§ } .

We use the substitution yj=xj+cj-aj in the second integral,

to get that
b c bk b1 b bk
[ldxj'dx fdx Jodx = [oaxg.. ]dy...fdxk
a; aj ay ay Cj &

and hence, the second integral equals
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]R f(xl,...,yj,...,xk) [f(a1+b1-x1,...,aj+bj-yj,...,ak+bk— »
2

- f(al+bl_xl’o .o ,C'+b -"yj ge e ’ak+bk‘xk) ]d.Xl. o odyj .o odx °

J )

Replacing yj by xj and substituting into (7.8), we get that

(restoring index )
EQ,) = 7 wl®R) { fo FO LRGP +

fsz(zc_‘)[f(g_cg) - £(x5)]dx } .

= QA , by Lemma 7.1, whence E(QA)=QA also.

The remainder of the proof follows exactly as in the case when
t=C. H-

The importance of Theorems 7.1 and 7.2 is that,if we sample
from regions R1 and RZ’ then we need not sample from region Ro to
determine its sample mean and variance for the estimate of
8, = fR £(x)dx, because the samples from R, and R, will yield
them. %his, of course, yields a reduction in the total number of
function evaluations needed.

The following theorem is very useful for the sequential

2

computation of Sy It is known that, if we used the formula

Si = (n-l)‘l 22=1 2 (&) - 62 , we would obtain large roundoff
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errors, whereas if we used formula (7.2) we would not, but would
require the storing of the T(gr)'s. The following theorem
establishes the validity of a formula which enables us to compute
si with a roundoff error comparable to that arising from the use
of formula (7.2), yet requiring very little storage. For a further

discussion of this point, see [NEP].

Theorem 7.3.

Let Xp,..e,Xy be any set of real numbers and x(N) =
1 N
N ] 1%, then
N - 2 N'l -
(7.9) ) (x. - x(N)* = u. o,
r=1 r=1
where r
2
u, = [rx_,- ) x_ 1° .
L e L) IR = T
Remark :

The formula (7.9) is the Helmert transformation. The proof is

given in [WEB], but is included here for completeness.

Proof (ﬁy induction on N):

2 2
- 2 1
LR @)® = [ 7 (g xp)]

r=1

= %-(xl-xz)z =y .
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Hence (7.9) holds for N=2. Assume (7.9) holds for N=2,3,...,n-1,

that is
n-1 n-2
(7.10) (xr—;c(n-l))2 = ) u_ .
= r=1 r
Now n
xm = &7 «x
n T
=1
n-1
-1 .1 Z ‘ 1
= —= (== X)) +=X
n_ ‘n-1 s T nn
= E.:-. x (1~ ..];.
o x(n-1) + =X
n-1
Since ) [x - x(n-1)] =0,
r=1
n n

T 2L xen) - Lx)”

=32
rzl(xr_x(n)) =1 n

n-1
- 1l ReD- L <m0y @)1
R

n-1
- Xl[xr-i(n-l)]z e BL e xmen)?
r-—

n-1 n-1

= - 2 1 2
= rZl[xr-x(n-l)] * Tn [(n-1)x - Szlxs]
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n-2
= lou tu g, by (7.10) and the definition
r=1 of u_,
T
n-1
) rz'l % .

Corollagx.

The estimator of var(sﬁ)

N-1
. - 1
(7.11) i, @L2 44y = Iow
N£4,N(N) N] EZ’ =1 r
] .
_ 1 52 ~2:2
where W, = S [r(t . - 07 - szl (14-6)"]
Proof:
Let Zp= Ty " 0.
N N
1 N-1.2.4,_1 1 4 1 2,2
- (= == [g z. - (% z
M GOSN R Lt (p L )]
N N
1 2 1 2 2
= S0 {z-(g L 2011
N1 TN s
N-1
1
= =z ! w. , by Theorem 7.3. B

r=1



Lemma 7.2,
IfR=0U_, R
v=1l "u
(7.12) Tu =
then
p
I T
w1
Proof
p
I 1, 6= T
vol(R)

and the R, are all disjoint, and

T

1(R =1,0.0,P) 3
e vol(R ) (w p)
= T,
P
) vol(R ) = T vol (R)
w=1 vol(R)

T

84
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8. THE MCSS ALGORITHM

With the basic notation and theorems at hand, we are now

prepared to describe the MCSS algorithm.

The MCSS Algorithm for Crude, Control Variate, and Anti-

thetic Variate Estimators with Bisection-Type Stratification

Main Program

1) [Read input parameters] Read k, ai’bi for i=1,...,k, €,

t,» FC, C, MAXm, m, Am, t, MAXLEV, NOSTOP, NCA, NPIMIN, TIMAX,

(k =the dimensionality of the integral,

(ai,bi)=the ;th sidé of the k-cell R, the region of integration,
for i=1,...,k,

€ =the desired error bound,

t =the desired number of standard deviations for the
confidence interval,

FC =the number of multiplications and divisions to evaluate f(x),

c =the number of coordinate axes in which bisection of a
stratum will be performed, 1 < c < Kk,

MAXm =the maximum number of samples that will be drawn before
applying the stopping rules and the decision rule,

m =the initial number of samples,
Am =the increment, so that m¢m+Am,
t =the type of estimator, C, CV, or A,

MAXLEV =the maximum length of the strata storage LIFO lists,
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NOSTOP =nonnegative integer such that if vol(R;j) /Vol(R)>(1/2)NOSTOP
we do not stop, but continue to strati]fy Ry,

NCA =0, when random choice of coordinates desired, =1 when
coordinates are to be chosen in a cyclic manner, (if
c=k, the value of NCA is ignored),

NPIMIN =the minimum number of points to be used in sampling
directly,

TIMAX  =the maximum amount of time, in seconds, to be used in
sampling directly )

2) [Echo check on data] Print input parameters;

3) Call MCSS with the above input parameters and feturn the
estimate 3, of 6 and the estimate of one-half of the con-
fidence interval, ta o s(g);

4) [If control variate estimator desired, then add its integral
to the estimator] Read ¢; If ¢ # O, 6«0+ 0o

5) Print out 8, t s, e

Subroutine MCSS R, k, €, ta”:FC’ ¢, MAXm, mys Am, t, MAXLEV,

NOSTOP, NCA, NPTMIN, TIMAX, 8, s(8) )

Input: R = {x : a;< X;< bi’ i=l,...,k }, k,..., TIMAX

are input parameters defined in the main program,

Qutput : 6 the estimate of 6 and s(é) the estimate of the

standard error of 5 .
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(This subroutine performs the sequential bisection type strati-

fication.)

1) [Calculate labor ratio constants] 20+ 4k+FC*4; (20= labor
constant for direct sampling) 251+ 40.6c + .6 ; lsz+ 134c + 20;
(251 and L, are labor constants for stratified sampling. The

derivation of these values will be shown in the next section.)

2) [Initialize] NPTTOT«0; (NPTTOT=the running sum of the total
number of samples) 5«0; (5 = estimate of 6) 52(5) « 03
(s®(8) = estimate of var(8)) LEVEL «O; (LEVEL = the pointer
which indicates the last element on the last-in-first-out
(LIFO) lists which store the information saved on the previously

examined strata.) TOL+eZ/t§ ; TOLI «TOL;

3) Call VOLTOL (R,k,VOLRJ,TOLI,1); (R={x: ai<xi<bi’ i=1,...,k},
a k-cell, the region of integration, vol(R) = ngﬁ, and
TOLI = €%/t% )
4) If c=k, go to (5);
4.1) If NCA=0, pick c coordinate directions at random
and without repetitions, store in NDIR(i), i=l,...,cC;
. 4.2) If NCA=1, pick c coordinate directions in cyclic
fashion, that is for i=l,...,c do (NDIR(i)*(NCA-1)
mod (k) ; NCA«NCA+1;)

5) If LEVEL=0, MAXm <2+MAXm ; (This doubles the upper bound on
the number of samples needed for stopping and decision rules.

The effect is to provide a larger sample size in the strata in



6)

7)

8)

9)

S
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which the variance of the estimator is large. As will be
shown later, the strata in which the variance is large,

are stored first and worked on last. Thus, when LEVEL=0
we will be working on that stratum with the largest variance.

Initially, this stratum is R.)

[Initialize] v(sz)+0; (G(sz)=the estimate for var(sg))
N«O; (N= the running total of the number of samples taken
in a given region)m+mo; (m = the number of samples to be

used in applying the stopping and decision rules)

[Sample size loop] no+2-m; (no = the sample size for

each of the 2c strata of the given partition) I sg +0;

[Coordinate direction loop] For j=1,...,c, do the following:

8.1) If c=k, JDIR«j;

8.2) If c<k, JDIReNDIR(j);

8.3) Call MEANVR (Ro,k,m,Am,JDIR,N,él(JDIR),62(JDIR) ,slz(JDIR),
szz(JDIR),v(sz),Q(JmR); R={ x: a;<x;<b;, i=1,...,k

and MEANVR returns the values 61, 62, s%, sg, V(SZ) and

Q
8.4) sZ(JDIR)+(2--Ilﬁ) (si(JDIR)+s§(JDIR))+((61(JD1R) -6, (JDIR))/n,) 2

+ aGJDIR)/nO;(Here we are applying Theorem 7.2, to compute

So .)
8.5) I s2 «s°(JDIR) +3 s2
2 +Zs§/c 3 NeN+2c.m ;




10)

11)
12)

13)

89

[Apply the second stopping rule (5.8) to determine if
additional samples are necessary to achieve a better
estimate of the variance.] If LEVEL=0, A+3; If LEVEL#O,
A<2; (See the note following (5).) If V(Sz)< (TOLI/AZ),
go to (12);

m+ Am + m; If m < MAXm, go to (7);

280+O; VOL*VOLRJ/2; NPTTOT N + NPTTOT; DEIMAX+ -1.0;

MAXDIR + O;

[Compute estimates] For j=1,...,c, do the following:

13.1) If c=k, JDIR*j;

13.2) If c<k, JDIR«NDIR(j);

13.3) §; (JDIR)+8, (JDIR) VOL/m;

8, (JDIR)«8, (JDIR) VOL/m;

s, 2(IDIR)+s, 2(JDIR) (VOL)%/(m-1) ;
s,2(IDIR)+s,% (JDIR) (VOL)%/ (m-1) ;
s2(JDIR) «s2(JDIR) (VOLRJ)?Z;

13.4) 18+, (JDIR) + 8, (JDIR) + Z8_; (See Theorem 7.1.)
s, «[SS1EDIR) M2, s «[ssz(nIry] Y2,

13.5) [Find the coordinate direction, JDIR, where the
bisection type stratification yields the largest
reduction in the labor needed for the estimator.]
If DELMAX 2s”(JDIR)/ (s,*s,)%, go to (13.3);

MAX*—é\l(JDIR);

1
~ A 2
8 MAX«B,, (JDIR) ; SleAX+slz(JDIR); S, AMAX«s, “ (JDIR) ;

13.6) DELMAX+52(JDIR)/(51+52)2; MAXDIR«JDIR; 6



14)

15)

16)
17)
18)

19)

20)

21)

22)

23)
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52(§O)+502/N; (52(50) = the estimate of the variance of
the estimator, 60.) v(sz)+v(sz)-(CVOL)2/N)2;
[Calculate the upper bound for the confidence interval
for the variance of the estimator, see (5.4)] sz(éo) +

2. 2
[ (eo) + )

. v(sz)/N; soz+sz(5o)'N;

If VOLRJ/VOLR >(1/2)NOSTOP | o5 to (29);

[Stopping Rule, see (3.8)]  If s°(8_)> TOLI, go to (23);
[No additional points needed, add new estimate to the
previous one. ] 8«8 +8 ; 52(§)+ 52(60) + 52(5);

[Are we done?] If LEVEL=0, go to (35);

(A'true" response indicates that there is no more information
stored on the previously examined strata, i.e. we have
examined all of them.)

[Not finished, retrieve the information on the next stratum
in the LIFO lists.] For j=1,...,k, do (aj+Aj(LEVEL);

b«B, (LEVEL) ; ) 8. MAX<E (LEVEL) ; 812MAX+V(LEVEL);

1
m«K(LEVEL) ; (for the definitions see step (30))

[Move pointer]  LEVEL«LEVEL-1; (This has the effect of
"erasing'' the last pieces of information stored on the

LIFO lists.)

Call VOLTOL (R, k, VOLRJ, TOLI, 2); (Ry= {x : a;sx;<b;,
i=l,...,k }, the values VOLRJ = vol(R.), TOLI=v01(Ro)/vol(R)°
ez/té are returned) go to (32);

[Calculate the number of points needed to achieve the desired

accuracy] NPT«s %/TOLI; n_« (sq*s,)/TOLT ;




24)

25)
26)

27)

28)

29)

30)
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[Calculate the labor ratio] L «1 + Z.m/ns(2c-1) + (Zm/nsgsl

+ 2 ,/n )/ (g* (k#10)/ (NPT-N));

[Decision rule] If DEIMAX >L, go to (29);

NPT<NPT-N; If NPT> TIMAX-10°, go to (29); (This is a check

to see if bisection might be advantageous later, even

though the decision rule did not recommend it now. When

NPT is so large, little extra labor is lost.)

[Don't stratify, calculate the estimates using direct sampling]
Call CRUMC (R , k, VOLRJ, TOLI, t, NPT, N, s.2, 0, 7))
8, « (8" VOLRJ + 8_ - n_)/(NPT + N); NPTTOT«NPT+NPTTOT;

go to (18);

If LEVEL>MAXLEV, go to (27); If (VOLRJ/VOLR)< 10°°, go to
(27); (sample directly if store level overflow or vol(RO)
very small)

[Begin stratification procedure; save information on the
stratum where the variance is the larger and set up the
other stratum.] LEVEL«LEVEL+l; For i=l1,...,k, do the

following:

30.1) A, (LEVEL)<a;; B, (LEVEL)<b, ;

30.2) If i # MAXDIR, go to (30.1);
30.3) If 5,(1)>s,° (i), go to (30.7);
30.4) A; (LEVEL)+ 2 (a;*;);

30.5) E(LEVEL)+BMAX; V(LEVEL)« s, 7MAX;
30.6) by« A; (LEVEL);



31)
32)

33)

34)

35)
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1 .
30.7) B; (LEVEL)« (a;+b.) ;
30.8) E(LEVEL)+8 MAX; V(LEVEL)«S MAX;
30.9) a«B, (LEVEL); 8 MAX<B MAX; s, “MAXes, 2MAX ;

K(LEVEL)+m; Call VOLTOL(RO, k, VOLRJ, TOLI, 3);

{Is the new stratum within desired accuracy?] 52(8 )*s 2MAX/m;
cy o’ 1

1,NOSTOP

If (VOLRJ/VOLR)> () , go to (8); If 32(60) >TOLI, go to (4);

[New stratum within desired accuracy.] NPT+no' c-m;
(sample directly at least NPT more points in the new stratum)
Call CRUDMC (R , k, NPT, m, S,°MAX, 0', s(8_) )

6o+ (6" - VOLRJ + 8 ,MAX-m)/(NPT+m); NPTTOT<NPTIOT+m;

1
go to (18)

s(@) +[52(§)]1/2; return.

Subroutine MEAVR (R , k, m_, Am, m, JDIR, N, él(Jm:R), 8, (JDIR),

s,2(WDIR), 5,2 (WDIR), V(s%), QUDIR))

Input: R0 = {x: ai<xi<bi, i=1,...,k}, k is the dimension
of the space, 61, 62, si, s%, Q are the running
sums of the estimates when the bisection is made
on the coordinate axis, JDIR, v(s) is the running

sum of the estimate of var(sz).

~ A 2 2 2 ~
Qutput : 61, 62, S17s Sy v(sT), Q .




1)
2)

3)
4)

3)

i«IDIR; CJ « 3 (a;+h.); HALFeCJ-a ; If mm ,go to (3);

. A A 2 2
[Initialize totals] 61<— 0; 62 1 2
Q(JDIR)* O; KK*'mo; KL<0; go to (4);

< 0 «0; s,” «0;

[Not first time] Kiedm; KLem-dm; If t=A, KL « Z KL;

If t=A, KK *« % KK; (For the antithetic variate we will

go half as many times thru the loop, because there are

twice as many function evaluations for the estimator.)

For j=1,...,KK do the following:

5.1) Call RANPT (RO,JDIR, 1, HALF, CJ, k, t, £ );
Y1+F(E,k) ;

5.2) If t=C, go to (5.4);

5.3) Call ANTHET (RO,JDIR,l,HALF,CI,k,t,_g_ )
YAI+F(E,K) ;

5.4) Call RANPT (Ro, JDIR, 2, HALF, CJ, k, t, & );
Y2 « F(g, k),

5.5) If t=C, go to (5.8);

5.6) Call ANTHET (RO, JDIR, 2, HALF, CJ, k, t, & );
YAZ « F(g, k)

5.7) Q(DIR) +« (Y1-Y2)-(YAZ-YA1) + Q(JIDIR);

= Y1 « Y1 + YAL; Y2 «<Y2 + YAZ; (see Theorem 7.2)
5.8) N «N + 2; If t=A, NeN+2;

5.9) If j=1, go to (5.11); If KM< O, go to (5.11);
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5.10) KP <« KM+ 1; v(s®) «v(s®) + (kM - (v1-8,/kp)%- 5%/ (ouekp)+
(KM* (YZ-@Z/KP)Z- s%)z/(KM-KP); (This uses the corollary

to Theorem 7.3.)
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5.11) KMeKL+j-1; If KM<O, go to (5.13); KP«KM+1;

2 2 ~ 2 2. 2
5.12) s] *sy * (KM -Y1 - 91) /(KM * KP); Sy* sy +

(0 Y2 - §,)%/(KM - KP); (This uses Theorem

7.3, the Helmert Transformation.)

5.13) 6,« 6, + Y1; 8, ©

1 91 -+ Y23

2 72

6) Return.

Subroutine VOLTOL (R, k, VOLRJ, TOLI, IGOTO)

1)

2)
3)

4)
3)

Input: Ro = {x: a;g X< bi’ i=1l,...,k }, IGOTO = 1,2,or 3,
if IGOTO=1, then TOLI = (e/t)°.

Qutput: VOLRJ = fRo dx and TOLI = the desired tolerance of Ro'

If IGOTO = 3, go to (3)

VOLRJ «1; For i=l,...,k, do VOLRJ «VOLRJ '(bi-ai); go to (4);
VOLRJ <« %— VOLRJ; (Since we just bisected stratum,the volume of
it is halved.) go to (5);

If IGOTO # 1, go to (5); TOL «TOLI; VOLR« VOLRJ; return.

If (VOLRJ/VOLR) > .001, TOLI « TOL - (VOLRJ/VOLR);

If (VOLRJ/VOLR) < .001, TOLI «.001 - TOL; (Without this last
cond’:ition, the tolerance for such values of vol (Ro) proved

in practice, to be much too strict.) return.




Subroutine CRUDMC (Rb’ k, VOLRJ, TOLI, g, NPT, N, s

2

2A
)
2, e, s%@))

Input: R = {x : a;<x.<b., i=1,...k} , k, VOLRJ, TOLI,

t= C or A, NPT = size of the sample before applying

2

o’ 52(§0), TIMAX = maximum

the stopping rule, N, s

time allotted, in seconds,

2.4 . . .
Qutput: ©', s (eo).(the direct sampling estimates)

(This algorithm determines the estimates by using Anscombe's

sequential scheme [ANF])

1) TIMEON«TIME; (get the starting time and store it)

2) [Initialize] 6'<0; SSQ+0; NTIMES = O;

3) If NPT<1, return; If t=A, NN«NPT/2; If t=C, NN«NPT;

4) For i=1,..., NN, do the following:

4

R T T R~ T R

4

.1)
.2)
.3)
.4)
.5)
.6)
.7)
.8)
.9)

Call RANPT (R, O, 0, 0, 0, k, t, &);
Y « F(§, k);

If t=C, go to (4.6);

Call ANTHET (R, O, 0, 0, O, k, t, £);
Y +Fg§, k) + Y,

NM «i-1 + NTIMES * NN, NP«<NM+l;

If NM<O, go to 4.9);

SSQeSSQ + (NM*Y - 9')2/NP'NM);

o'« ' + Y ;

5) NTIMESeNTIMES + 1; If NPT-NTIMES< NPIMIN, go to (4);

6) s%(8,) « (sZ + N+ 55Q * (VOLRT)?)/ (NPT-NTTMES + N)%;

7) [Stopping Rule] If s*(s ) <TOLI, go to (11);
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8)
9)
10)
11)

TIMIOT « TIME - TIMEON;(elapsed time in seconds)
If TIMIOT < TIMAX, go to (4);
Print out error message: ''time limit exceeded" ;

NPT « NTIMES NPT; return.

Subroutine RANPT (R , JDIR, LOR, HALF, CJ, K, t, §)

1)
2)
3)
4)

)
6)
7)

Input: R, JDIR, LOR = 1 or 2, CJ = J (a;+b;) and
HALF = %-(bi-ai), where i= JDIR, t=C or A.
Output: & = (gl,..., Ek) is the random point uniformly

distributed on Ro'

j « JDIR; AC <aj;
If LOR

2 and t = A, go to (6);
If LOR

2, AC «(CJ;

For i=1,...,k do the following:

4.1) If i=j, go to (4.3);

4,2) £ RANUN °(bi-ai) *+a;; go to (4.4);
4.3) g4+ RANUN - HALF + AC;

4.4) XS(1) «&5;

Return;

For i=1,...,k, do £;+ XS(i);

£j+ XS(G) + QI - aj; return,

Entry ANTHET
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8) For i=1l,...,k do the following:

8.1) If i=j and LOR=1, go to (8.3);
8.2) &+ az* b; - X5(i); go to (8.1);
8.3) If LOR=1, £+ a,+ CJ - XS(i);
8.4) If LOR=Z, g+ (J + b, - XS(i);

9) Return.

Function RANUN

Qutput: A pseudo-random number approximately uniformly
distributed on [0,1].

1) RANUN «(RANUN * 51° + 1) mod 23%/(2%°-1); retum.

13, initially. The constants 5ls and 513 are

(RANUN = 5
used because they are the '"best' in the sense of producing

a sequence with a high frequency wave length;see [COR-MAR])

Function F(&, k)

InEut: _E_ = (€1’°'°,€k)o
Output: F(E).

The uscrzsupplies the integrand f, if t=C or A then F« £(§),
if t=CV, then F +(f-¢)(£), where the control variate, ¢, is

supplied by the user.
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9, STORAGE REQUIREMENTS AND THE LABOR RATIO FOR THE MCSS ALGORITHM

The storage requirements for the MCSS algorithm depend on the
number of dimensions, k, of the region of integration and the maximum
length, MAXLEV, of the lists storing the information on the substrata
to be examined. In practice, MAXLEV = 25 has proven to be suffi-
ciently large, however the user can increase this parameter if the
problem requires more storage. Specifically, the MCSS algorithm re-

quires

(9.1) 2 « MAXLEV (k+1) + 7k + 250

words. When MAXLEV = 25 and k = 10, the amount of storage needed

is only 870 words. If k = 100, with MAXLEV as before, then 6,000
words would be needed. This amount of storage is not too large,
since most of the modern computers have storage capacities of 32,000
words or more.

The formula for the labor ratio, L, is obtained by applying
(4.31). Here, since we are using bisection, gq=2 and since we are
considering the bisection in c coordinate directions, p=Zc. We
let g be the number of essential operations (ops.) to generate a
pseudo-random number,FC be the number of ops. to evaluate f(x),
and z be the number of ops. to take a square root of a given

floating point number. It can be seen from the algorithm that
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it takes:

k * g ops. to generate a random variable §_=(€1,...,5k),
FC ops. to evaluate the integrand there, *
4 ops. to update the sum of squares,
k + 10 ops. to calculate the hypervolume of the region
of integration and compute the mean and variance

of the estimator.

Therefore,
(9.2) L=k -+ g+ FC+ 4+ (k+10)/(no-2cm),

where (no-chD is the number of samples drawn after applying the
stopping rules and 2cm is the number before applying them.
Now, in doing bisection-type stratification at c coordinate

axes, we can see that it takes:

10 cm ops. to compute the sum of squares that is in the
estimator of var(sz),

2m/Am ops. to apply the second stopping rule,

(3ct1)m/Am + 5c + 10 ops. to calculate sg and sz(au),

2(cé+c) ops. to apply the decision rule,

4c(l0+z) ops. to set up the strata for the decision rule. *

Hence, if Am=10, and as on the Univac 1108 g=4 and z=10,

(9.3) qr+e = 2r+e = 40.6 cm + .6m + 134c + 20 .

* See the footnote on page 41.
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By (4.31), (9.2), and (9.3) we obtain that the labor ratio
(9.4) L=1+2 [2(2c-1)m+ (40.6 cm + .6m +134c + 20) /
S

{4k + FC+ 4 + (k+10)/(n -2cm)}] ,

where ng is the number of samples for stratification.




101

10. NUMERICAL RESULTS

The MCSS algorithm was applied to the problem to evaluating
various different types of multiple integrals. This section is
devoted to interpreting and displaying the results obtained from
applying the algorithm. In addition, comparisons will be made
with other known procedures. The following experiments were run
on the Univac 1108 computer at the University of Wisconsin Computing

Center.
| 1 1
Example 1: fo fo 4 x; x, dx) dx, = 1

In the first experiment, the crude estimator was used along
with the following input parameters: m, = 50, Am = 10, MAXm=250,
c=2, NOSTOP=0, NCA=0, NPIMIN=0 (i.e., the NOSTOP, NCA, and NPIMIN
options were not used) € = .01, t, = 1.0, FC = 3, TIMAX = 1 second.
Let us notice that the function 4 X] X, is symmetric about
the line X=X, and increases monotonically along that line from
x1=x2=0 to x1=x2=l. The level curves of the integrand are shown
in Figure 10.1. The MCSS procedure stratified the region of
integrati;n as indicated in Figure 10.2. Notice that the parti-
tions are symmetric about the line X)X, 3 this corresponds to the

behavior of the integrand.
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We will now examine, in detail, just exactly how the MCSS
procedure arrived at this partition. First, one word about the

notation. We will denote a stratum R = {x: a;sx;<b,, i=1,2 }

by (al,bl) X (az,bz).
Starting with R0 = (0,1)x(0,1) and bisecting along the

coordinate X;, we have that

Ry(1) = (0,x(0,1) Ry(2) = (3,1)x(0,1)
61(1) = .232 (8;(1)= .25) 8,(1) = .766 (8,(1)=.75)

2 -
51(1) = ,0334 (var(r1)=.0486) s%(l) = .167 (var(T2)=.215)
s2(1) = .682 (var(8_)=.778)

Bisecting along X,, we have similarly:

R,(2) = (0,1)x(0, 3) Ry(2) = (0.1)x(,1)
6,(2) = .276 (.25) 6,(2) = .730 (.75)
si(Z) = .0491 (.0486) si(2) = .163 (.215)
s2@) = 625 (.778)

The second stopping rule was satisfied with N=200, so that m=m_ =50

for each stratum. Now apply the stopping rule, we see that

2 -4

s2(8) = .55 x 1072 > T =107

so we don't stop.
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The coordinate X yields the greatest value of the ratio
sg(i)/(sl(i) + sz(i))z, i=1,2. (Theoretically, the ratio is
identical for i=1,2 and equals 1.66). Since sg(l)/(sl(l) + 52(1))2=
1.95 and the labor ratio L=1.04, stratification along the coordinate
Xy is recommended.

Next, we store the information from the stratum Rz(l), since

si(l) < sg(l). Now, we set RO= Rl(l) and bisect along Xy, we get

Rl(l) = (O,!") x (0,1) RZ = (1’ %) x (0,1)
8,(1) = .0558 (.0625) §,(1) = .158 (.1875)

201y = -2 -1
s21) = 301 x 1072 (304 x 1078 Sz(1) = 82 x 1077 (1356107
s2(1) = .0327  (.0481)

Bisecting along x,, we have

R, (2) = (0,) x (0, R,(2) = (0,3 x (1)
8,(2) = .0808 (.0625) 5,2 = 197 (.1875)
2 -2 -2
51(2) = ,335 x 10 © (.304 x 10 %) 53(2) = .985 x 10-2 (.135x10-1)

so(2) =7.0400  (.0481)

Again, N=200 satisfies the second stopping rule; for the other
stopping rule we have that 52(60) =.388 x 1072 >.5 x 1074 = %-T .
Hence we do not stop. The ratio sg(i)/(sl(i) + sz(i))2 is greatest

for i=2, although theoretically they are the same. Applying the
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decision rule yields that stratification is recommended.

The stratum with the large sample variance (O,%Dx(%,l) is
stored and we now sample from (O,%JX(O,%J. For this stratum the
stopping rule does not suggest stopping, but the decision rule
does not recommend stratifying. So we sample directing using the

crude estimator to get the estimate P =,0662 (61=.0625).

1

We proceed to retrieve the last stratum stored (O,%Jx(%,l).
The stopping and decision rules suggest bisecting forming the
strata labeled 2 and 3 in Figure 10.2. Since the stopping rule is
satisfied for each of the strata, we add their estimate §2=.0473
(.0469) and 8,=.143 (.141) to the Tuming sum, I)_ 6 =.256
(.250).

So far, the region (O,%Jx(o,l) has been estimated. This
leaves the stratum G%,l)x(o,l). The decision process indicates
bisection along the coordinate Xe (This agrees with the theore-
tical result.) This time, there is a clear advantage to stratify
along Xye Let us see why.

Intuitively, we can see that bisecting along X, splits the
region G%,l)x(o,l) into one stratum with lower values of the in-
tegrand tgan the other stratum (see Figure 10.3),while bisecting
does not. (See Figure 10.4.) Notice, too, that the bisection
along X, partitions 6%,1)x(0,1) intec two strata such that the value

of the integrand increases more rapidly in one than in the other;

while if we bisect along X1, this difference is not as great.
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Theoretically, if we bisect along X, we get:

61(2) = ,1875 62(2) = .5625

var(rl(Z)) = ,01345 var(TZ(Z))= .0239

Whereas, bisecting along X, we have:

6,(1) = .3125 8,(1) = .4375

Var(rl(l)) = ,034 var(rz(l)) = ,066

First, we notice that |el(2) - 62(2)1 < |el(1)- ez(l)l and,
secondly, var(rl(Z)) + var(TZ(Z)) < var(tl(l) + var(rz(l)).

Going next to the region G%,l)x(O,%Q, the program bisects
it along Xye (Theoretically, there is no preference.) Then each one is
sampled directly. (See Figure 10.2, strata 4 and 5.) The region
that remains is (%31)x6%,1). This is first bisected along Xy
Then each half is bisected along Xq.

Finally, in the stratum C%,l)x(%,l), the decision rule in-
dicates that this region be sampled directly. The,estimate obtained
is By = .1914 (o4 = .1925).

Adding 6y to the running sum, we get the estimate of 6,
6C = 1.007 (6=1). The computed standard error is equal to .007
(actual s.e. = .0044) which is less than the desired error, € = .0l.
The MCSS procedure took 5,182 samples;while it would take 40,000

samples, if we used the crude Monte Carlo estimator without strati-

fication to achieve the same standard error.
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In the next experiment we use the antithetic variate estimator
11
defined in (6.14) to estimate 6 = [ [ 4x,x,dx,dx,. Except for
o‘o0 172771772
the type of estimator,we use the same input parameters as before.
The partition of the region of integration is shown in Figure 10.5,

and the results are presented in the following table:

~ ~ 2A
u 6A,u % leA,u o S (eA,u) n,
1 L3111 .3125 .0014 .347x10"° 450 .
2 4372 .4375 .0003 .334x10"° 450
3 L0615 .0625 .0010 .399x10"° 450
4 .1881 .1875 .0006 .382x10"° 450
Totals 9979 1.0000 .0033 146x10°% 1800

Computed standard error = .0038 (actual s.e. = .003) number points
needed if only direct sampling was used = 25,000.

The partition in this case is different from the crude case,
because the antithetic variate transforms the integrand: see Section
6. Note, too, that 2 var(jA) = 2/9 < var(rc) = 7/9 so that, by
Theorem 6.5, the antithetic variate estimator is more efficient than
the crude estimator. The results of the experiment certainly in-

dicate this, as well.
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Bxample 2: 6=/, I ixi'dx =10, where U= X [0,1
e | i=1

111

].

The integrand, in this example, ranges from O at (0,0,...,0)

6

to 3.6 x 10~ at (1,1,...,1) and is monotonically increasing along
each coordinate X;. Furthermore, since af/axi = i(i-l)x;-znlo
j=1,3#

the rate of change for each variable X; increases on U = as
i increases. This does play an important role in the choosing of

coordinates to bisect.

L
i ]

In the first experiment we used the following input parameteré:

k=10, m =50, Am=10, MAXm=150, c=10, t=A, NOSTOP=3, NCA=NPTMIN=0,

e=.1, ta=1’ FC=45, TIMAX=5. It should be noted that since 2 var(t

2.00 x 104 <var(rC) = 2.01 x 104 there is only a slight advantage

in using the antithetic estimator.
Table 10.1 shows the last ten strata chosen by the MCSS

algorithm and their estimates. Notice that the coordinates X1s X5,
Xz5 Xy and X; are bisected much less than the coordinates Xg s Xo,

Xgs Xg» and X10° and that Xgs Xg5 and X are bisected more fre-
quently than the others.
The stratification yielded the following results:

39 A

= .944 |6y-8] = .056 Y |8

-0
=1 A,u

= .075

QA ul

number of strata = 39 number of samples = 205,677

N
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computed standard error = .017 (actual std. err. = .029)

number of samples needed to achieve the same actual standard

error using direct sampling is approximately 22,000,000

This result demonstrates how powerful stratification can
be compared to direct sampling. In this experiment, the MCSS
procedure required 1/100th of the number of function evaluations
needed to do a direct sampling antithetic variate procedure.

The above partition is only an approximation to the -
optimal one in the sense of (1.7). To find the optimum partition
the MCSS program was run using the theoretically computed values
of the variance of the estimator. Table 10.2 shows the final ten
of these strata. Notice, first, that the last stratum here is the
same as in the last experiment where we used the sample variance.
Also, note that the coordinates Xg» Xg5 and X are bisected more
than the others.

An estimate of 6 was taken using this partition and the

theoretically computed variances. The results are:

P ~ 43
8 = .987 e - 8] = .013 uzl |6,-8,l = .066
number of strata = 43 number of samples = 203,042

actual standard error = .023

As expected, this result is better than the previous one. But,
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in comparing the actual standard errors and the number of samples
in the two experiments we see that the MCSS procedure using the
sample variances did indeed produce a partition very near the
optimum one.

In order to compare the results of the MCSS procedure with
other ones, two additional experiments were attempted. The first
one consisted of using the crude Monte Carlo estimator and sampling

uniformly from Ulo. The results are:

= .733 |6-6|= .267

D>
!

number of samples = 415,00 computed standard error = .22
(actual std. err. = .11)

Notice that even though the number of samples used by this method
is' twice that of the MCSS method, the results are much worse.

The next experiment attempted to evaluate the integral by
using the multiple numerical quadrature algorithm, NIMDQD, available
at the University of Wisconsin Computing Center (see [TAL]). This
is an adaptive and iterative scheme using Simpson's Rule recursively.
The procedure partitions the region of integration according to the
behavior ef the integrand and iterates until the desired error
bound is reached. However, one iteration for a multiple integral

102 9,765,625

whose region of integration is a 10-cell requires 5
function evaluations. This would take at least 100 minutes on the

Univac 1108, so that this experiment was never completed.
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] -6
Example 3: g = {Eo(exp(xlxz...xzo)-l)dxldxz...dx20= .953817x10

where UZO = ngl[o,l).

This example was taken from a paper by Handscomb [HAD]. The
integrand is a smooth function, as was the integrand in the previous
example, but differs from it in that the present integrand only
ranges from O to e-1 ( = 1.718).

The first experiment uses the following input parameters:
k=20, m0=50, Am=10, MAXm=500, c=1, NCA=1, (this means that first
X is bisected and tested, then Xgseees and after X500 X1 etc.)

6

NOSTOP=5, NPIMIN=500, €= .1x10 ", t =1, and TIMAX=S.

The antithetic variate estimator is used because 2 var(rA) = .285)(10-9

>var(TC) = .286x10-9.

The results are:

N -6 A _ L -6
6, = -855x10 |6A~6| = .098x10
5 -6
=1 leA’u- 6, = -198x10 number of strata=55
* number of samples = 80,206 computed standard error =

.501x10~7

(actual standard error = .496x10'7) the number of samples
need to achieve the same standard error by direct
sampling = 115,000.
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In the next experiment we increased the desired accuracy

to g = .05}(10”6

and increased the number of directions searched to
¢ = 10, when they are picked randomly without repetitions (i.e.

NCA=0). The results are:

A —6 A _6
6, = -911x10 |eA-e| = ,043x10
268 Ig 8| = 136x10~° number of strata = 68
uv=1l '"A,u "u *
number of samples = 234,352 computed standard error =
7

(actual std.err. = .210x10”7) .241x10 ]

the number of samples for direct sampling would be = 648,000

Here, we decreased the actual standard error by a factor of Z.36,
whereas we only took 2.93 times the number of samples as in the
first experiment. For direct sampling, we would have needed 5.65

times the number of samples.

If the control variate ¢(X) = XgXge e e Xog is applied to
8, then we have to estimate fuzo (f-¢) (x)dx, which leads us to

our next example.

Exanple 4. 0-¢ = f 20l€%D (X)X ¢+ 0 X)) -1-X X, 01X g ]dX
U

.14355x107°,

where ¢ = [ , ¢(x)dx = /220 = .953674x107°,
200 QX

and 6 is defined in example 3.



The function ¢(x) = X1 X5. e Xy is an

choice for the control variate, because it

obvious and a good

is the first nonzero

term in the Taylor Series expansion of [exp (X1 %5, .. %54) -1]

about the origin and because /6 = .999845.

The input parameters are the sample as in the first ex-
periment of the last example except that € = 1.0;(10'10 and, of
course, t=CV. The results are:

A - 8 .al = -10

8y = +953772x10"° |0y -8l = .511x10

ecv,- ¢ = .924)(10"10 number of strata = 48

number of samples = 143,398

(actual standard error = .578x10-10)

computed standard error = .6422x10™ 10

118

The number of samples for direct sampling would be =1,400,000.

14

(var(T) = .5x10777)

Example 5. 8 = {Js f(x)dx = 1/54 = .01851851...,
. _ Lo Lyvrn 2yyrl 1
where f()_() =1, if xeH = [O,l)X[O,-Z)X[O,g-)X[O,-g)X['g-,E-)
and f(x) = O, otherwise.

In the previous examples the integrands were continuous

and infinitely differentiable functiorms.

Here, the integrand is
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discontinuous on the region of integration.

The input parameters:
k=5, m =50, Am=10, MAXm=100, c=5, t=c, NOSTOP=3,

NCA=NPTMIN=0, e=1.0x10'4 » t,=1, FC=1, and TIMAX=1

yielded the following results:

8¢ = .0185158 8701 = .27x107°

o1 -4 number of strata=101

Zu=1 [eC o8yl = -27x10 -
,

computed std.err. =.109x10"%

number of samples=120,145

(actual std.err.= .875x10'5)

number of samples direct sampling would need =232,000,000
(var(rc)=.018l)

That direct sampling would require almost 2,000 times the
number of samples than the MCSS method is due to the effectiveness
of the procedure to partition the region of integration. The
region U2 was stratified into strata where the function was zero
and strata where the function was almost entirely non-zero there.

For example these last two strata are:

Rygg= (0-»-5)x(0.,.5)x(.3359,.3438)x(0. ,.5)x(.375,.5),
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9,100 = %100 = @

Rig; = (O.,.5)x(0.,.5)x(.3281,.3359)x(0. ,.5)x(.375,.5)
8 = .8417x10°%, 6. = .8138x 1074

c,101 = > 0501 7 - .

In a direct sampling Monte Carlo procedure 98% of the samples,
on the average, would yield a value of zero for the integrand.

For the MCSS, the average is 38%.

L b aadady?
Example 6 6= [, dx; f, dx, f dx, -
2.2 2.1/2
1 X17X, x3)
/ dx, = .308425 .
0

In this example we have a region of integration which is not

4 4

a k-cell. We circumscribe U = Xi=1[0,1) about the region of

integration and define £(x) =1 if Ji_; x> <1 and £(x) = O,

otherwise. Thus, we have the equivalent form

/ g TX)dx = 6 .
u

The input parameters are: k=4, mb=50, Am=5, MAXm=100,

3

=4, t=C, NOSTOP=5, e=1.0x10~, ta=1’ FC=1, and TIMAX=1. The

results are:
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~ N - ’3
B = .307446 IQC-GI = ,979x10
number of strata = 86 number of samples = 133,266

computed standard error = .631x107°

number of samples direct sampling would need to achieve the

same standard error = 535,000 (var(Tcp = ,0181)

This example was taken from the Modified Monte Carlo
Quadrature (MMC) by Haber [HAS]. Haber's MMC procedure consists
of, a priori, subdividing each interval of the k-cell, [ai’bi)’
for i=1,...,k. The region of integration is partitioned according
to its geometry rather than the behavior of the integrand. For
this example, one of his experiments consisted of subdividing each
interval [0,1) into 1/16-ths, so that U4 is partitioned into
164(=6S,536) strata. Then using the crude Monte Carlo estimator,

two samples were drawn from each stratum. The results are:

3

l6MC) -6] = .144x10° number of samples = 131,072

computed standard error = .45x107° .

&

Since the integrand, f(x)=1, when 2g=1 xi <1 and £(x)=0,

otherwise, is symmetric with respect to each of the coordinate
axes, stratifying each axis identically, as did Haber, is an ex-
cellent choice for this integrand. Hence, the MMC method is ideal

for this example; nevertheless the MCSS does not compare too
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unfavorably.

All of the examples that Haber used were four dimensional
multiple integrals. Why? For instance, one of the examples was
the four dimensional equivalent to our example 3. If the MMC
procedure was applied to example 3, it would require 220, or
approximately one million, strata just to bisect each interval
[0,1) once. Moreover, due to the nature of the integrand there

exists other partitions which would be more efficient, that is,

require less work and obtain more accurate answers.

Example 7; o(k) = [, fdx ,
u

where f(x)=1, if 21;1 xg <1, £f(x)=0, otherwise, k=5 and 10,

and 6(5) = .164493 and 6(10)= .002490 .

These are just the five and ten dimensional analogues of
the last examples. The input parameters remain the same, except,

of course, the value k. For k=5, the results are:

-~ ~ -3
GC = ,164280 |ec-e] =,213x10
number of strata = 77 number of samples = 124,029

computed standard error = .546x10">

number of samples needed for direct sampling = 460,000
(var(rc) = ,1374)
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For k=10, the results are:

A A - -4
6 .= .002528 [_ec 0] .38x10
number of strata = 33 number of samples = 87,892
computed standard error = .604x10”%
samples needed for direct sampling = 695,000
(var(TCQ = ,0025)
1 (1-x4)L/2
Example 8. g(k) = fo dxl f dxz ces
L2 2 (1/2
(1 Xyoes Xk-l) X )
lo dq exp(- Jip Xj) o

for k=4,5,...,10 .

This example comes from the report on the NIMDQD subroutine
by Tavernini (see [TAL]). Only the case k=4 is mentioned in the
report. However, the cases k=5,6,...,10 where also tested and
compared with the MCSS procedure in order to determine, empirically,
at which dimensions NIMDQD is more advantageous than MCSS and vice
versa. t

It should be noted that the results here will not give us
any general idea as to what the number of dimensions it will

be advantageous to use the MCSS, but only a vague notion. Also,
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the integral in this example » not difficult to evaluate, mainly
because var(rc(k)) is small relative to 6(k), for k=4,...,10.
Before the MCSS procedure is applied we transform the in-

tegral, as in the last example, into the equivalent form:

(10.1) ka fdx = ok ,
ko3 K .2
where f(x) = exp(- Zi=1 xi) if Zi=l x{ <1 and f(x) = 0,

otherwise. The input parameters are:

k=4,5,...,10, m0=50, Am=10, MAXm=100, c=k, t=A, -

3

NOSTOP=5, €=1.0x10">, t =1, FC=5,6,...,11, and TIMAX=1.

For the NIMDQD algorithm the inputs are the desired bound
on the truncation error, E=10"° for k=4,...,10, and the function
for evaluating the upper and lower limits, gj(xl,...,xj)=(1-xi-...x§_
and hj(xl,...,xj)=0, where j=1,...,k, for each k=4,...,10. Note that
the NIMDQD procedure evaluates the originally stated integral, while
the MCSS procedure evaluates the integral in (10.1).

Let J(k) be the NIMDQD procedure's estimate of 6(k). The
results are shown in Table 10.3.

In the MCSS results we differentiated between the number of
samples and number of function evaluation. The latter only refers
to computing the function, f(x) = exp(-x%-x%-...-xﬁ), which requires

k+10 essential operations (ops.),whereas evaluating f(x)=0, for

7
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k

zi=1 xi < 1 requires k ops. since it is necessary to evaluate

Z xg. On the other hand, the NIMDQD must evaluate gj(xl,...,xj)=
(l—xi ...xz._l)l/2 which requires j+9 ops. This averages out to

be S'Ck.l)(k-l)2 (k/2+9) per function evaluation, which is not
too significant when k is large.

Examining the results we can see that NIMDQD is superior
to MCSS when k=4,5,or 6. When k=7 the NIMDQD estimate is slightly
better than MCSS, but the NIMDQD requires 562,000 ops. to evaluate
its integrand and the gj's, while the MCSS requires 380,000 ops.
to evaluate its integrand. For k=8,9, and 10, it is a trade-off
between accuracy and labor. The NIMDQD procedure only iterated
once, for k=9 and 10.

Note that for k>10 the number of function evaluations for the
NIMDQD method becomes prohibitive, whereas for the MCSS method this

is not the case.

5 5 A
. k 5
Bxample 91 8(K) = [ dxj... [ dxg o) [(2m? exp(- 3 xD)]=1.0,

for k=5 and 10.

The integrand in this example is the normal probability
finction. Letting D()=X<_ (-3,3) and H(K) = X_ {(-5,-3] U
[3,5)} , we have that integrating over D(k) yields 95%, for k=5,

and 90%, for k=10, of the value of 6(k). Therefore, the optimum



strategy would seem to be to stratify and take more samples in
D(k) than in H(k). The MCSS procedure using the following input

parameters, in fact, did this.

k=5,10, m =50, Am=10, MAXm=150, c=k, t=A, NOSTOP=5,

NCA=NPIMIN=0, e=.1, tafl, FC=k+11, and TIMAX=1.
The results for k=5 are:

6y = -960 |8,-6] = .040

computed standard error=.022 number of strata = 42
number of samples=105,821

number of samples needed for direct sampling to get
same computed s.e. = 370,000 (var(t) = 177.65) .

For k=10, the results are:

6, = .904 |8,-6] =.096

computed standard error=.106 number of strata = 68
number of samples=453,872
number of samples needed to get the same s.e. by direct

sampling = 2,850,000 (var(t) = 31,920) .

Example 10. 0 = [ofp exp(-20)/(c*V?) dv . av'

3

i=1 (xi-xi+3)2 , R= right circular cylinder of

where 02 =7

127
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unit radius, eight unit lengths, and of volume

V=28r. ©6=0.1862.

This example is from the paper on antithetic variates by
Hammersley and Morton [HAMJ-MOK]. The integrand is umbounded on

RxR and is infinite on the set H ={ (xl,...,xé) P X.=

i~ Xi+30 for i=1,

2,3 }. Although the value of 6 is finite, var(rc) = o on RxR,
Thus, we cannot guarantee that the stopping rule will ever be
satisfied nor does Theorem 3.1 hold.

Nevertheless, the MCSS procedure was tried just to see )

what would happen. The input parameters are:

k=6, m =50, Am=10, MAXm=200, c=6, t=A, NOSTOP=S,
NCA=NPTMIN=0, e=.01, t =1, FC=25, and TIMAX=S .

The results are:

8, = -1571 |op-8| = .0291

nunber of strata=77 number of samples=307,791

computed standard error=.0062

The MCSS algorithm partitioned the region of integration,
RxR, so that the total hypervolume of the strata which includes
the set H is very small compared to the vol(RxR). In addition,

the probability of choosing a point in H is very small.
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TR i
Figure 10.G. The partition o fx',adx
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(Theoretically, it is zero; but, because we work with a finite
word length computer, there are only a finite number, say u, of
machine-attainable points in the cylindrical region R, and so
u2 points in RxR. The number of points in H is also u. If we
assume that the sampling distribution is uniform over the u2
attainable points of RxR, the probability of H becomes 1/u. In
our experiment with the Univac 1108 computer, u is about
T X 2183 NlOss.) Therefore, the contributions,from the strata
which include H,to the estimate of 6, are very small.

In order to see more clearly what has happened in this -

1/2dx.

example, let us consider an analogous example, 6 = fi x
Notice that 6 is finite (6=2) but var(rc) is infinite (since
f i dx/x does not converge).

Let 9' = fl x /2 ax = 2-2/8 , for some § > O (see
Figure 10.6). '?‘hen, 9-0' = " = jg xY24x = 2/5 . The MCSS
procedure partitions [0,1}, so that the final subinterval is
[0,8), where 6 is small. The magnitude of § depends directly on
the size of the desired error-bound, €. So that, since § is small,
9'/6 is almost 1. Hence, the dominant contribution to 6 comes
from the:region outside the point where the integrand is in-
finite. The estimator of ' has a finite variance. Hence,
it converges to 6' with probability one (see (1.3) and the

sentence following). Furthermore, since the probability of

choosing £=0 (which will yield theoretically an infinite function
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value; computationally it yields an arithmetic overlow) is almost
zero and since § is small, the estimate for 6" will be small. Note,
too, that the probability of picking an £&=0 is independent of the

choice of §.




11. PROSPECTUS FOR FURTHER RESEARCH

As we recall from the introduction, for a given 6, €, and o,
we are attempting to find an estimator § of 9, such that 6

is the solution of
11.1) min{L®):b e 0, var® s (e/t)? )}

where L(§) is the total amount of labor required to calculate 5,
and the minimum is taken over all estimators in the class Q.

In our experiments, so far,we have restricted the class of
estimators to the ones discussed in Section 6. However, this
class can be greatly expanded with the hope that a new minimum
value can be found.

Some of the estimators which might be useful to further

research are listed below.

(1) Antithetic Variate Techniques. Here, there exists a
very large class of transformations which are variance-reducing.
However, the number of points required for the more powerful ones

increases exponentially with the dimension of the integrand.

132
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Nevertheless, formulae which grow linearly, though not as powerful,
should be explored.
These estimators are generally good when the integrand,
f, is a multiple-differentiable function. On the other
hand, there is little improvement when f varies rapidly in every

direction.

(i1) Quasi-Random Formulae. These formulae could be gen-

erated from an initial random point so that the sample points
will be spread (approximately equidistributed) throughout the
region of integration. One possible approach is the following:
let 6 = ka f(x)dx, where Uk is the k dimensional hypercube.
Choose § = (51,...,€k), where Eim U(0,1); then generate N samples
from

_E_r= ( {€1+ -Ié"} 9000 9 {gk"' ";J;} ) ’ ‘r=0,...,N-1,

where {<} denotes the fractional part.

(11i) Stratification Procedures. Instead of bisection-type

stratification, one could try trisection, partitions of unequal
lengths, and partitions other than ones perpendicular to the
axis. Aé an example of the last type, consider estimating
6 = fé fi 4xy dx dy. The region of integration could be
partitioned by the line x+y=c, where 0sc<2.

The MCSS procedure could test, by sampling, some of the

types of partitions and choose the estimator with the least
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sample variance.

(iv) Regression Method. For each stratum, the idea is to

fit, in the least squares norm, a multidimensional polynomial of

a given degree to the samples drawn from that stratum. The
decision rule to continue stratifying is based on an analysis-of-
variance test. The procedure, otherwise, continues in the same
manner as the MCSS procedure will. The estimate of the integral for

the stratum is then theintegral of the multidimensional polynomial.

(v) Control-Variate Regression Method. This method is the

same as the last one except that the multidimensional polynomial

fit, of a given degree, is used as a control variate.

In this study we have applied the sequential stratification
technique only to the problems of estimating multidimensional
integrals. However, there exist many other applications. One
application is in the area of curve fitting. The classical numerical
analysis techniques almost always use equidistanced partitions, but
there may exist other partitions which would yield a better fit.

The*sequential approach could first choose points (which may
or may not be random) in the entire region where the fit is desired.
Then that region is partitioned and the same number of points are
chosen in each subregion. For each subregion, we fit polynomials

of a given degree to the values of the data or function at the
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points and apply a decision rule to determine if we should con-
tinue partitioning. The decision rule will depend on the type
of norm used.

Remark: (iv) and (v) above, and the sequential curve-fitting
technique here described are applications of the idea of fitting
with spline-functions in which the choice of "knots' or ''nodes"
is sequentially determined and the data are randomly selected.

The method (v) has been attempted with considerable success by
M. Winston as an unpublished temm-project in a Monte Carlo

course at the University of Wisconsin, Madison (Spring 1970). -
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12.  CONCLUSIONS

The Monte Carlo Sequential Stratification method opens up

an avenue of attack in the design of optimum estimators for multiple
integrals. The MCSS procedure frees the user from having to choose a
partition of the region of integration,a priori. Instead,it programs
the computer to search for an optimum placement of the strata. The
effect of this search is to yield an estimator, chosen from a given
class,and requiring close to a minimuni amount of work for the given
task. i
The MCSS algorithm was programmed and tested for a wide variety
of integration problems. The result in every case tested produced
an estimate which was better than the corresponding direct sampling
estimate. The amount of improvement depended upon the integrand
and the region of integration.

In comparing the MCSS technique with Haber's MMC and Taverini's
NIMDQD multiple numerical quadrature algorithms, we found that the
MCSS procedure was superior when the dimension of the integral was
ten or greater, and was comparable between seven and ten dimen-
sions.

Basic to the field of sequential stratification is that it
enables us to get away from the overworked and outmoded notions
of equidistant grids, fixed-length intervals, and equal-sized

partitions. Instead, the computer, together with the appropriate
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decision rule, can determine the grid size according to the be-
havior of the data. However, as the remarks made in the previous
section indicate, much more research needs to be done in the

field of sequential stratification.
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'RUN ZEIDMANS800253273676662510 300
tFORTDs [SZ sMAIN

DOUBLE PRECISIUN FsESAVESVSAVE»EL1sE29551s552sV0OLsXI

COMMON/BL1/NPTTOTsNDIR(50) s TAsNOSTOF s NCA

COMMON /B3 /MCRUDE/ B3/ TIMAXSNPTMIN

COMMON/BLK2/K0 s KINCsKMAXsNCYCLESFC

DIMENSION A (20)s 8 (20)» XI(20) sAADAVE(20922) s85AVELZ20925)

1ESAVE(25) s VSAVE (253 2E1(20)9£2(20)s551120)9552020)

EXTERNAL F
C%%*’X‘*%*'}'c%';('?‘('“)'\'%(")\"%%v\'v‘?'r7‘('3('%')&‘% P O T o (Rt R R R K L i <
IF CRUDE MONTE CARLU 1Is5 PEbIPFD SET #MCruUDE=1
IF ANTITHETIC VARIATE 1S DESIRED ScT MURULE=O
NOSTUF=DON'T USE STUPPING ~ULE UNTIL VOLRJI/VULR enTe Z2%% (=N,
IF NCA=OsTHENPICK ZU-ORDINATE DIRECTIONS IN RANDOM FASHION Of
NCYCLE=K PICK ALL CO-ORDINATE DIRECTIONS
IF NCA=1,THEN PICK CO‘ORDINATE DIRECTIONS IN CYCLIC ORDER
NPTMIN=MINIMUS NUMBER OF PJINTS TO BFE USED WHEN SAMPLING DIRI
TIMAX=MAXIMUM TIME TO BE USED IN SAMPLING DIRECTLY
R 3 5 0 *

TIMEON—TIW F{leQ)

READ OlaK,KQ;KINCsK;AXsNCYCLLaACRUDEstSiUPaNLAsuPTilN
1C1 FORMATI(GI5)

READ 1002 ¢ERROR s TAsFUsTIMAX sAL 421
162 FORMAT 10e395F1UC)

¢

.. : e
N SR AR R SR

s o , s "
363k 3630 3 38 36 3k 3 38 30 3E 98 35 3T 3636 ¥ 36 K 3 3 3 96 I8 36 36 30 36 5F KRR 35k

N aVaNa AR NA NGRS

(&
IF(AL «2Qe a0 eANDe B3] ocQe 0e0) ol=1e0
DO 13 I=1sK
A(I)=UeC
10 B(I)=1.0C
PRINT 3
3 FORMAT (30H1 THE FEGION OF INTEGRATION [5/7)

PRINT 1ls(A(L)sI=1sK)
PRINT 1+(8 I)9I—19K)

1 FORMAT(1H s1C(F1QeD93X})
PRINT 103

103 FORMAT ('O K Ku KINC KAAX NCYCLE MCRLUDE NUSTUPR
INPTMIN ERROR TA FC FIMAXY)

PRINT 104 sKsKOsKINCsRMAX 9 NCYCLE 9 CRUCE smD5TOP ¢ NCASNPTMIN g ERK
lTAsFCsTIMAX
1o4 FORMAT ( (2X9I5),1X9L‘b.%9j 1X9f100~))

(C 3 336 36 3 96 K e B R kA R U SR A R S SR o AR A D * R O o O <
C PLACE CONTRUL VARIATF SELOwW

C PHI = o.o INDICATES THAT NU CUNTroL VARIATE
333 3 363 3 33630 3% 50 H0 36 3658 338 906 E R R b 36 36 AR 30 R 3 303k e ok SR 5T S R 08 3F 3 5 56 36 98 36 3 36 S0 S Ak e e e d

PHI = (e

PRINT Ll4sPHI
14 FORMAT('OTHE INMTEGPAL OF THE CONTROL VARIATE PHI = 'sEl4e8//
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NPTTOT=0
CALL MCSs (AsBsXI s AASAVE s BBSAVE s ESAVE s VSAVE 9K 925 sF s ERROR s VOL
1ERRBDSELl sE29551+552)
VOL=vOL+PHI
TIMTOT=(TIMEF(1e0)~=TIMECN)/1C00.
PRINT 29 VOLINFTTOTIERROR s TASERRBD
2 FORMAT(6HO VOL=D20e11925Xs124TCTAL NPTSe=110/ 7H ERRUR=E1Z659,
115HERROR BOUND OF F5e2s11H STDe DEVe=E17410)
PRINT 16sTIMTCT
16 FORMAT(13HOTCTAL TIME =F1l0e3s8H SECONDS/)
5TOP
END
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'FORTDs ISZ #MCSS
SUBROQUTINE MCSS (AASBBsXIsAASAVE sBBSAVESESAVE s VSAVE »KDIM s MAX
IFsERRURSTOTARSERRBDIELSE295519552)
363636 36 46 36 36 36 9 3 363 9 036 36 I 206 3 3 K 3630 33 K 203 363303 2363 9 236 30 3 9 3 3638 3 I 30 93 KK H
PROGRAM TO FIND ESTIMATE CF THE INTZGRAL USING A SEQENTIAL ZBISEC
STRATIFICATION SCHEME.
336 96 H 3 3 3 3 305 56 40 I3 A 3 3 33 R S 30 I K 3 363 3330 3 KK 336 3 3 %0 3 336K 3 % 3 H
IMPLICIT UOUBLE PRECIGLGION (EsSsTsV)
DOUBLE PRECISTIUN FeUWsAREASAREAQ »ARKEAP JACTERRsRHSMAX s X1
REAL TOTDIFsTRTTISERRIRSERRBD s TASTOLLIsTIMAX s VOLR s VOLRJI 9 VOL gl
DIMENSION AA(KDIM) soB(KDIM) XTI (KDIM) s AASAVE (KDIMyMAXLEV) »
1BBSAVE(KDIMeMAXLEVY s ESAVE (MAXLEV ) s VSAVE{MAXLEV }sEL(KDInM) s E2(K
2551 (KDIM) ¢852(KDIM)
DIMENSION KSAVE(25)555(100)
COMMON/RBRI/NPTTCTsNDIR(50) s TAsNOSTOP 4 NCA
COMMON/B2/VARSS s NN
COMMON/53/MCRUDE/B4/TCOLTsVILRJI/B5/TIMAXsNPTMINSC
COMMON/BLK1/K s JDIRHVOL
COMMOIN/BLKZ2/K0 s KINCsKMAXsNCYCLE sFC
COMMGON/ANTI/ (10C)
DIMENSION ERAW(1I0) sNRAW(10) oKTRAW(10) sVIAW(10)
EQUIVALENCE (XI)s{El)s(E2)s(S51)s(582) -
EXTERNAL F
336 36 2696 3636 3690 3 K 0 WU I3 50 K3 3 50T R 30 0 H 33 63030 9 5 3303 3 3630 3 36 3 36 3303 3 336 36 3696 30 358 Fey
(CAACL)YaBB(L))sI=lreeesKDIM) = REGION OF INTEGRATION
F= FUNCTION WHICH IS5 T0 BE INTEGRATED
ERROR =TA % STANDARD ERRORe WHERE STDe ERRe SQRTF(SAMPLE MEZ
TA=THE NUMBER OF S$TD. DEVe DESIRED BY THE USER
SC THAT THE TRUE VALUE OF THE INTEGRAL WILL BE IN (RNAREA-ERGF
K= NUMBER OF POINTS PER INTERKVAL PER ITERATION
TOL=TULERANCE OR EPROK BOUNDS ON SAMPLE MEAN VARIANCE
LR=LABOR RATIO=LAB)IR FCOR STRATF«/ LABUR FOR CRUDE MeCe
R L R R o R L L L R R S R R
DO 60 [=1+KDIM
IF(AA(TL) 4GE«BB(I)) GO TO 901
6¢ CONTINUE
CHREX¥XDATA  CHE CR I 3503 % 3 353636 5 3 5033 3 36 96 303 3 0 2650 5 5 3090 30 5% 3036 363030 K 3 363 36 56 50 36 3636 % 3036 %9
IFC NCYCLE «LTe 1) NCYCLE=K
IF{ KMAXeLTe 1) KMAX=50
IF(KO «LTe 1) KOG=2y
IF(KINC oLTe 1) KINC=10
IFINPTMINCLTs 0) MNPTMIN=KO*NCYCLE
IF{MCRUDE «NFe C oANDe MCRUDE ofNce 1) MIRUDE=C
IF(MCRUDE «EGe 1) GO TO 66
[F(KO/2e0-KU/2 «GTe «0U01) KO=KO+1
IF(KINC/260— KINC/2 o0Te e001) KINC=KINCH+]
66 IF(NCA oNEs CeANUe NCAeNZe 1) NTA=0

AaNANANA

aNeNaNaNaNONANANaNE
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CHIEHBF TNTTIAL T ZEHHHFH I 933 H 3R R H R MR8 [N T AL JZE 33635 3% % % 3 3%

RDF =44 0%#KDIM+FC+4 460

RLS1=206e3#NCYCLE+0463 "

RLS2=1340%NCYCLE+20,60

NPTMAX=T IMAX#5000

[IFI(NPTMAX oLEe 0) NPTMAX=100

C=1.0

CA=0025

IF (MCRUDE oEQs 1) GO TO 67

C=0e5

CA=Cel25 .

67 REGION=0,0

TOTAR=0.0

ACTERR=0,0

TOTHET =0.

TOTDIF =OgO

TRTTI=0.0

TOTSIG=060

LEVEL=0

NUSED=0

NST=0

LEV=1 -

AREAO=0.0

NNO=0

VARO=0.0

DO 210 I=1510

ERAW(I)=0.0

VRAW(I)})=0,

NRAW(I)=0
210 KTRAW(I)=0

ELA5T=00

SMVL=0o.

NLAST=0 -

TOLI=(ERROR/TA) #*%2

CALL VOLTOL(AABBskDIMIVOLRIsTOLIs1)

VOLR=VOLRJ
C*%**%%*%%******%%%%***%%********%%%%***%**%%**********%%*%%*%%*****
CALCULATE APPROXIMATIONS FOR MEAN AND VARIANCE IN REGION RO
C*%****%***%%*%*%**%*%****%%**%%%**%*%%%**%**%%*%*%***%%**%%%%%%**%%

9 IFINCYCLE oEQe KDIMIGO TO 81
C*****%%%**%**%%*%**%**%*%***%%**%%%%*%%%%%***%*%%%%%**%*%%%%%*%***%
C z
C FIND DIRECTIONS IN CYLIC ORDER
E**%%****%%%**%*%***%***%%*%%%****%%*%%%**%%%%*%**%%*%**%%******%%*%

IF(NCA oEQe 0) GO TO 85

DO 190 I=1sNCYCLE

NCAM1=NCA-1

NDIR(I)=MODINCAM1skDIM)+1
190 NCA=NCA+1

GO 7O 81




(3 336 3 3 36367 3 3 36 3 3 3 3 36 5 363 3 3 %
C FIND RANDOM DIRECT
C%%%**%%%*%*%%w»kn“Aw%%w%”%**w%****%%*%%w%
85 DO 90 JJ=1sNCYCLE
NDIR (U =RANUN(R)*KDIM+140
83 DO 8D JK=1eJJ
IF(JJ «EQe JK) GO TO 80
IFINDIRCUK) oNEe NDIR(JIY) GO TO 80
NDIR(JJ) =RANUN(R)*KDIM+140
GO TO 83
80 CONTINUE
90 CONTINUE
€3 %3 303 3 2 369 3 3 9 30 336 350 36 3 33 3 3 8 3030 5090 5 332 35936 3 3 309 50 3030 03 30 9 3 36363 K 2 9 30336 36 % 6 5
81 KMAXT=KMAX
IF(LEVEL +EQe 0O) KMAXI=2%KMAX
=0
VARSS=0.
(336 3 3 3 36 9 36 R 36 3303 9 H 3 3 3 0 363 X I 30K 33 30 I 6 30336 I 3 303030 9 55 9 330 3 56 36 336 36 5 3 3 3563663 % 3 g
DO 70U K=KO +sKMAXT s KINC
TOTSSU=0,0
NGO=23%* )
C% ER R R o o A R R L L e R R i R R T R G Sh KO e
DO 2C JJJ=1sNCYCLE
IF(NCYCLE «EQs KDI M) JDIR=JJIJI
IFINCYCLE oLTe KOIM) JDIR=NDIR(JJII)
CALL EANVRIAA SRS 9 XT s DTiMsFsE1(JIDIR) $Z2(JDIR)»SS1(JIDIR)»SS2 (.
SS{JCIRY=( CA/(K—-1)+ CA/K)#(SSI(UDIR)+SS2(JDIRII+((EL(JDIR) ~¢
IRY Y /NO)*%2+Q(JDIR) /NQ
TOTSSU=TOTSS0 + SS(JDIR)
20 CONTINUE
SSO‘TOTQS”/NCYCLE

336 36 30 36 36 36 36 33 3K T30 I I 36 T I 38 36 38 30 30 3 I 30 3K 30 36 3 I8 330 3 38 S 3 30 3 3 3636 3650 38 6 38 38 36 36 3 N S 5 k3

PERFORM TEST TC SEE IF ADDITONAL SAHPLES ARE NECESSARY [0 ACH
BETTER ESTIMATE OF THt VARIANCE

NG ANANS

B R g L R L R I T S S A O SR T L E CP
TEST=TOLL/4.

[F (LcVEL Qe O) TEST=TQLI/9.

IF(VARSS* (C/NN)*%#2 oLEe TEST) GO TC 51

M

C

70 KLAS=K

33 33 3 9 I 363556303 36 3 3 W3 T I R I
K=KLAS

51 NPTTOT=NPTTOT + NN

RV

e i 3% o 36 gn e wr AL s ar AL Sl Sh e 30 an e 3 0 Mt
R e R O L R LRl N R i ol 1o T T e e Al i fl i Al - S S o)

Sk
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€3 336 36 3 3 36 30 % % 50303 36 3 K36 3 F 3 36 H 9k 30 3 33 0 H I I S I IS0 I e I % K K
C FIND UDEL MAX ANU THE UIRC&TION
T S T T
TOTEO Ce
VOL=0e5%*VOLRY
VOL2=VOL%*2
VOLRJZ=VOL2%4,60
VOK=VJOL/K

VZ0K=VOL2/(K-1)
DO 100 JJJ=1,sNCYCLE
IFINCYCLE «EQe KDIM) JDIR=JJJ
IF(NCYCLE obLTe KDIM) JDIR=NDIR(JII)
EL(JDIR)=EL1(JDIR)*VOK
E2(JDIR)=E2(JUDIR) *VOK
SS1(JDIR)Y=S51 (JDIR)*V2ZOKH*C
SS2(JDIR)=SS2(JUDIR)*V20K*C
SS{JDIR)Y=SS(JUDIR) *#VOLRI2
TOTEO=TOTEO+EL (JDIRI+E2(JDIR)
S1=DSQRT(SSLI(JDIRY))
S2=DSQRT(SS2(JDIR))
[FIMCRUDE oEGe 0) QUJUIR)I=U(JDIR)*VOLRJIZ/NO )
DEL=SS{JDIR) /(S1+S2)%%*2
IF(JJJ «EQe 1) CO TO 52
IF(DEL oLE.UELMAX) GU TO 100

52 DELMAX=DEL
MAXDIR = UDIR
EIMAX=EL(JDIR)
EZMAX=EZ2(JDIR)
SSIMAX=551(JDIR)
SS2MAX=5S2 (JDIR)

100 CONT INUE
IF(SSU «LLTe ) S50=0.0
$50=550%#v0OLRJ2
SMV =550/ (C*NN)
VOL4=VOLRJZ¥**2
VARSS=VARSS*VOL4* (C/NN) #%2
SMVUP=5MV+4 e 0*¥DSQRT(VARSS) / (NN#*(C)
IF(LEVELeEQe Q) SMVUP=SMY+9 6 0%DSART (VARSS ) / INN*C)

EN=TOTEO/NCYCLE
PRINT 33 4ENsNNsELASTeMLAST s SMVL
33 FORMAT(! EN='"9D16eluUsaXs'NN=" 3158549 ELAST="'5D15eLl094As ' NLAST=

1s5XsetSMVL=19D15.8)
EN=(EN*NN+ELA5T*NLAST)/(NN+NLAST)

SMVUP=(SMVUP#NN+SMYL¥NLAST )/ (NN+ANLAST)
SSUUP SMVUP*(KN+HLADT)J

(C 3 463 3 35 36 36 3 3 36 3% W 3% 36 9% 36 90 9 S 363 3 O R L L LR e R S I L o M I O AR e G TR SR A e R
C PRINT RhSULTS CF T75T FOR ACCURACY OF ARTANCES

C PRINT ESTIMATES uk MEHN AND VARITANCE .

(3 3 3 36 3 3 I 3 3 333 36 K SE 3k X% AR I e e e S A A T R O R T S S N e R Ao S Sl b O GO S O D b 1

DO 110U IAB=1, kDIV
110 PRINT 27+ IABsAA(TAB) s 1A s3B{1AB)
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27 FORMAT(4H AA(I292HY=F1l4a995Xs3HEB(I292H)=F14.9)
PRINT 123sVOLRJ
123 FORMAT(IH+3s380Xs'VOLRJ='yE1448)
TEST=TEST*VOL 4
PRINT 61sVARSS,TEST
61 FORMAT(1H s20Xs6HVARSS=D20610910Xs5HTEST=020410)
PRINT 21sLEVEL
21 FORMAT(7HOLEVEL=14)
DO 130 ND=1sNCYCLE
IF(NCYCLE «LTe KUIM) JD=NDIR(ND)
IF (NCYCLE «EQas KDIM)} JD=ND

130 PRINT 22+JDsAA(JD) sBBIJD) sNOsELIJD)ISEZ2(JD)»S55(JD)»S551(UD) 9552
1sQ0JD)

22 FORMAT (bH DIR=1293H A=Fl4evys3Xe3H B=Fl4e993H N=I1593Xs3HEL=DZO
15X s3HEZ2=D20e11/5H 5505020011 95X 94HS51=D20e1195Xs4HSS527020e11
12HQ=D16+3/)

PRINT 41 4SMV e SMVUP s TCLT oNiNsSSOUPSEN

41 FORMAT( 1Xe!'SMV="! 90148y DX ' SMVUP=13D1448s 5XetTOLI='9E1448)

1 EX s 3HNN=1695X96MHSS0UP=D14835X s 3HEN=D1448)
RHSMAX=SS(MAXDIR) /DELMAX
PRINT 249550 yRHSMA(sDELMAX sMAXDIR

2h FORMAT(5H S50=D2U0e1JslCXs1l4H (S1+52)%%¥2=D20«10s5X3

17VDELMAX E2U 1095X97HMAX)IH—I$/)

N N VRV ‘" o , \ .
C% B L T T e LR A A Y P S T LI TR - Tl S L T 1 R R L e A T i o il i b ol e Tt

STOPPING RULE

sk

36303 I A 3 36 ST 46 3 36 3 30 % e 3T 6 o0 30 R 3 A 3 3 36 3R 3
4 SMV =SMVUP

IF(VOLRJ®(2%%#NCSTCP)} «GTe VOLR) GO TO 2

IF (SMV 4GTe TOLI) GO TO 2
€ F3 3K 33 3 3 3 S0 3 330 5 5 930 S R I 03 S R K S R 3R IR R s
C
C VARIANCE IN I-TH STRATA WITHIN ThE TULZRANCE
C
(€33 3 39 3 3636 0 KK A 3K 3K o 3 T S S AR S 0 R A RS R S e e
NPT=NN
GO T0O 19

[N IO NI

C")?%‘}("*%%%%%%*%‘X‘—)’r';('-)(“x'~)¢‘Xy B R R T TR R L K T R o K R e S O it e e I Ol Al O S T LR VA
C NO ADDITION PTS NE™ DED fDU NEW CSTI4ATE TJ PRE VIUuS ONE.
C*%"X‘*%%‘Q\L')‘t%“)?%')’x“)(‘%%{'),(—‘x"‘,(-‘—)\L—,‘é 3 3E R 36 R 3 3R I 3F S0 3E 33k 3k 38 58 5k 3 T S 3 S S 36 3 9 30 30 3F 30 3R b 36 9k

3 TOTAR=TOTAR+AREA
ACTERR=ACTERR + UMV

€ 33 3 36 2 363 336 3 F 905 53 3 S 3R g I
C PRINT IdTERNaDIAIL RCDJLTD rOR CALCULATION uk INTLORHL
(€% H 36 3 233 6 36 3 R 3 36T a0 36 3 5 33 S A0S S S 3 RS T i 2 g S 3 33 3 3 3 36 R K e 3t

DO 12U TAE=1,KDIM

120 PRINT 27sIABAA(TAS) sIABBB(IAB)
REGION=REGION + VOLRJ
NUSED=NUSED+NPT
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NST=NST+1
PRINT 29sVOLRJ sREGIONSNUSEDSNST
29 FORMAT (8HO VOLRJ=E14e89510Xs10HSUM VOLRI=3E14e8510Xs6HNUSED=11¢(
110Xs11HNOe STRATA=I5)
PRINT 23sAREASTOTARsSMVsACTERRSNPTTOT
23 FORMAT (7H EST=D140895X98HSUM EST=014e835X54HSMV=012e695Xs
18HSUM SMV=D14e893Xs10HTOTAL NPT=17/)

65 IF(LEVEL «EQe 0) GO TO 999
€3 36 336 39 3 3 3 3 H I I K I I IR 3 I3 I I K I I 6 I I I 3 I %2

C YES-—DONE WITH STRATIFICATION PART .
C NO-=NOT DONE MUST TEST ANOTHER STRATA
C RETRIEVE THE LAST ELEMENT ON INFQ LIST AND POP LIST BY 1

F K3 33 36 36 3 363636 03030 36 36 36 3 36 3 36 36 3 36 36 3 3 H I I I 3 3 3 0 I I I K S H K H I KRR R R KRS
C

DO 40 'I=1sKkDIM
AA(T)=AASAVE(IsLEVEL)
40 BB(I)=BBSAVE(I,LEVEL)
EIMAX=ESAVE(LEVEL)
SSIMAX=VSAVE(LEVEL)
K=KSAVE(LEVEL)
LEVEL = LEVEL - 1
CALL VOLTOL(AASBBsKDIMsVOLRIsTOLIs2)
GO TC 16
%%%*%**%*%%%**%*%%%%***%%%*%%**%*%%***%**%***%****%*%**************%
NO—--VARIANCE IN I TH STRATA NOT WITHIN TOLERANCE

DECISION RULE STRATIFICATION TEST

OO0 N0

CALCULATE THE NUMBER OF PTS TO GET THE DESIRED VARIANCE
C%%%*%%*%%%%%***%%**%%**%%%*%%**%%*%*%*%%*%%%****%*%***********%%%%*9
2 SUP=1e0+2+0%DSQRT(VARSS)/ (SSIMAX+SS2MAX )
SSIMAX=SS IMAX*#SUP
SO2MAX =SS 2MAX#SUP
NPT=SSOUP/TOLI -NN
IF( NPT oLTe 0O ) NPT=0
N12=(DSQRT (SSIMAX)+DSQRT (SS2MAX Y ) #3%2/TOL 1
RMON=FLOAT(NO)/N12
LR=10+RMON* (2 *NCYCLE-1) +{RMON#®RLS1+RLS2/N12)/
1 (RDF+(KDIM+10.0)/NPT)
PRINT 109sLRsKsKMAXIsNPTeN12
109 FORMAT(1I3H LABOR RATIU=F10e5920Xs2HK=1595Xs6HKMAXI=I595Xs4HNPT:
195Xt NL+N2=15110)
IF(DELMAX «GTe LR ) GO TO 7
IF(VOLRJ* (2%%#NOSTOP) «GTe VOLR) GO TO 7
C**%*%*%%*%*%%*%***%*%**%%%%%%%%%%%%%%%%%***%*%*%%%%*%%%***%***%****n
C
C DON'T STRATIFYs CALCULATE AREA USING CRUDE MeCe
g****%%%%*%%%***%%%%%%*%**%**%%***%%*%%*%%%%*%**%*%%******%*%%%%*%%%
IF(NPT «LE«NPTMAX) GO TO 19

PRINT 111sNPTMAX
111 FORMAT (v #x#%%x NPT ,GTe NPTMAX STRATIFY NPTMAX = 1109t %




150

13363 %% 1)

GO TO 7

19 IF (NPT «GTe 2*KMAXI®*NCYCLE) NPT=Z%KMAXI*NCYCLE
IFC NPT +LTe O )} NPT=0
NN=NN+NLAST

CALL CRUD ‘C(AA;QBaKIaKEIN’FaNPT9NN95;OUP9AREA,QWV)
AREA=AREAXVOLRI+TITEURNO+ELAST*NLAST )/ (NPT+NN)
NPTTOT=NPTTOT+NPT

NPT=NFPT+NN

GO TO 3

TRV AR YN ') PR R TR VA L VI N T A L YN N AL VL VA T I A VR v A LT CUE T S VA A L VL R Y N S VU YA RV VA VAP S VAV VI Y]
Fo F 6 F 90 0 3 0 K G0 I 3 56 30 90 0 3 3 3 36 30 38 I 38 % 36 30 36 3 96 36 3 3 36 95 56 0 S8 SE 3 36 36 3 9 b 3F I 56 2E 26 b 9L 3t 3 3 K 9E 6 3r ¢ &35 B

STRATIFICATION RECOMMENDED
BEGIN STRATIFICATICN PROCEDURE

N AR TR S (U R TR Iy Loan 3t 3L st L R~ YRV VRIS VIR VTR,
R A Sl S R i i b o ol 30 9% 3838 30 3 30 38 36 30 30 36 38 9% 50 b 0 3 3 3 W e e s

[F(LEVELeLTeMAXLEV) GU TO 13
PRINT 8sMAXLEV

LS S e 3t o sn b
A T A R S

5o
36
>
b
9.
S
o,

NN ANGNANANA

5 FORMAT (LBHOLEVEL 1S OVER I3)
GO TO 18
C 3 3636 36 3 3 3 30 0 365 306 3690 3 3 23090 3 9 30 3530 5 3 3 3 R 3050 2030 3 F 30 56 336 9036 46 2% 46 3 36 36 35 330 390 9 3% 3 3 3 5% o
C Ib RtUICN TO O SMALL TO LONTINJE SUJDIVTDIJG. -
(C 3 3 3 3369 36 48 26 3 9 50 36 3 96 3 5 30 3 35 30 R LB R 2 S 3650 3 K36 56 3 3 30 3030 3 36 3036 26 6 3696 3646 36 33 96 9 36 3 3 % 369 9 9 5 3 38
13 IF(VOL% //VOLR«GTe 1eQE~08) GO TO 12
PRINT 102sVOLRJ
102 FORMAT(22HUVOLRU/ /OLReLTeleOE=1UsLUXs6HVOLRI=ELT+10/)
18 NPT=S50UP/TOLI

PRINT 112

11z FORMAT (IH+s6CX s 1wttt X DIRECT SAMPLING wlilLL 2E USED FOR THIS 3T
JHFIRRY /)
GO TO 19
C'?('"}("K‘ EaR e O R O b L O L T L L N L 3 R TR R LA e R A A
C IF THE REGIUN TO 2E STRATIFIED ADDS UP TO THE ORIGINAL RcGIOﬁ
C THEIR deIPATE5 TO THo uQIGINAL ONP
C%%(“ﬁ'c*‘)("}("}(“)(")(‘%vi"ﬁ(‘ e L L i S R i T T R o e R e T N T S N
12 IF(NN“NQ+NLAST «Elle 0O) GO TU 56

DO 20U L=LEV,s10
[F(VOLRJ oLE, 240%%(~-L)*VOLR) GO TG 200
ERAWIL)=SERAW (L) +( (TOTEC-E1MAX—E2¥AK) *NUFELASTHNLAST ) / (INN~NO+M
NRAW (L) =NRAW (L) +NN-NO+NLAST
VRAW (L) =VRAW (L )+5S0UP
KTRAWL) =K TRAW (L} +1
IF(KTRAW(L) oLTe 2%%¥(L-1) )
AREAU=AREAD +ERAW(L)*NRAN(L)
VARO=VARO+YRAW (L) *NRAW (L)
NNO=NNC+NRAW (L)
AREAP=AREAQ/NNO
VARP=VARQO/NNQO#**2
PRINT 205sLcVeLsERAWIL) sAREAP oNNU s VARFP

205 FORMAT(S5H LEV=1295Xs5HERAW(I2s2H)=D11e5510Xs61AREAP=D114595X

GU Tu 56
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15H NNU=1635Xs5HVARP=D11e5)
LEV=L+1
GO TO 56

200 CONTINUE

C % %36 3 33 3 9 3% 3¢ L3 % AL A 3 e 3 A AV VIV IR VRV VRV VIR VAR b S e A 36 3 2 30 0 3 25 3
C 333 R 330 RN X R R R R AR A
-
-

C SAVE INFORMATION OF THE RKEGIUN WHERE SAMPLE VARIANCE IS THE Lnat
C AND SET UP NEW RC REGION
C
C“)(‘**)(***%*v‘(‘*‘){“)(")(”}{' 3 3R 3 3 3 31 5 3F 6 98 E 36 3 36 36 S3F 9 58 95 6 38 36 98 SE 3 RS0 30 20 6 0 S ok L e S W R R e Skt e
56 LEVEL = LEVEL + 1
DO 50 [=1KDIM
AASAVE (I sLEVEL )=AA(])
B3SAVE (T LEVEL)=BE(I])
IF ( leNE«MAXDIR) GO TO 50
IF(SSLIMAXDIR) oGTs SS2(MAXDIR)Y) GO TO 53
AASAVE (MAXDIRsLEVEL)=Je5% (AA(MAXDIR)Y+3B(MAXDIR))
ESAVE(LEVEL)=E2MAX
VSAVE(LEVEL}=SS52MAX
B3 (MAXDIR)=AASAVE (MAXDIRsLEVEL)
GO TO 50
53 BEBSAVE(MAXDIRSLEVEL)=U.5% (AA(MAXDIR)+BB8{MAXDIR))
ESAVE(LEVEL)=E1IMAX
VSAVE(LEVEL) =SS51MAX
AA(MAXDIR)=BBSAVE(MAXDIR,LEVEL)
EIMAX=EZMAX
SSIMAX=S52MAX
50 CONTINUE
KSAVE(LEVEL) =K
CALL VOLTOL(AARBsADIMsVOLRJSTOLI ¢+3)
C 333 36 53 3 93 Fe Fe A e A F A Fe 36K S F A I e 3 3 I 3 R R 0T 3 T R 0 3 A R 3 o H I o KSR e sk e
C
C IS THE NEW STRATUM wITHIN LESIRED ACCURACY.
C
€ 3 He3 H 36 3 36 3 7 3 30 36 36 3K K F 39 2 50 H 3 3 8 3 3 33 36 Fe 3 3 3ok e 30 5 30 A0 3 3 33K 9 3 0 R 0 o 33 30 ek
16 SMY=SSIMAX/ (K*C)
ELAST=E1MAX
SMVL =5MV
NLAST=K
IF(VOLRU*(2%#%¥NOSTOP) «GTe VOLR) GU TO %
IF{SMVeGT TOLI ) GO TG 9
PRINT 26sSMV,,TOLI
26 FORMAT (' NEwWw STRATUM Al THIN DESIKey ACLURACY ' 95X 9t SmV=14D14e3
15Xt TOLI=19E13.,8)

USING CRUDE MeCe TAKE MORE SAMPLES AND CALCULATE  VOLUME FOR N

DM N

NPT=2%K#NCYCLE-K
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CALL CRUDMC(AA BB aXI oKDIMsFsNPT K ¢SSIMAXSAREASSMY)

AREA={ AREA*VOLRJ+FIMAX®*K )/ (NPT+K)

NPTTOT=NPTTOT+NPT
C INCREASE NPT FOR NUSED COUNTER

NPT=NPT+K

ELAST=0Ua

SMVL=Ve

NLAST=0C

GO TO 3
e T T S R TR
C ERROR RETURN
901 PRINT 101l
101 FORMAT (£5HQ® %% A eGT e B %% e8H ON THE [2Z2s8H-TH AXIS)
C NORMAL RETURN
999 ERRBD=TA*DSQRT (ACTERR)

IF(LEV «LEs 1) RETURN

AREAD=AREAQ/NNQ

VARO=VARO/NNQ#*3#2

LEV=LEV-1

ACTERR=(VARU*ACTERR ) / (ACTERR+VARO)

PRINT 206 sAREAOSVAROSNNOsLEV I ACTERR
206 FORMAT( THOAREAQ=U14e835X95HVARC=0D14e8 35X s 4HNNO=I 795K s 4HLEV =1,

TYACTERR#®=14D1448/)

IF{VARO oLTe 14CD-150 «CR, ACTERR LT 1e0D-150) RETUY

TOTAR={(VARO¥TOTAR+ALCTERR*AREAQ) / (VARO+ACTERR)

RETURN

END
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'"FORTDs 1SZ sMEANVR
SUBROUTINE MEANVR (VA sSBsXI sKDIMsFsE19E255519552)
IMPLICIT DOUBLE PRSCISION (EsSsVsY)
DOUSLE PRECISION FsQsXI
REAL VOL
DIMENSION AA(KDIM) sBB(KDIM) sX1 (KDIM)
COMMON/B2/VARSS s NN
COMMON /B3 /MCRUDE
COMMON/BLK1/K s JDIRsVOL
COMMON/BLK2/KCsKINCsKMAX sNCYCLE 9FC
COMMON/ANTI/ Q(100)
EQUIVALENCE (AA)s(BB)s(XI)

(C 3636 3 2 36 30 30 36 30 3 33 30 3 36 30 70 36 9 95 35 3 K30 3 36 36 K 30 36 36 36 3 58 3 36 36 3 30 36 3 30 36 5 9 3 30 36 36 36 I NI I K I I I I I % 39 3

CALCULATE MtAN AND VARIANCE FOR LEFT AND RIGHT STRATA
CALCULATION OF VARIANCE 3Y USING THE HELMHERT TRANSFORMATIUN,.
#3636 36 36980 36 96 30 36 30 9 36 36 K LI035 30 % 50 36 N30 3 3 36 3696 30 30 36 36 9 36 26 36 3036 38 38 30 36 30 36 3 36 36 3 3 34 36 96 6 9 I Ik I e K

CJI=0e5*¥ (AA(JDIRI+BI(JUIR))

HALF=CJ=~AA(JDIR)

IF({ KeGTe KU) GO T0O 1

E1l=0, b

E2=0,

$51=0.

SSZz'U °

QUJIDIR)I=060

KK=KO

KL=0

GO TO 2
1 KK=KINC

KL=K-KINC

IF(MCRUDE «EQe 0) KL=KL/2

F 3636 I 36 3 56 6 38 36 36 90 90 96 3 96 K 356 K K IE 33 I 36 T 3 90 3 330 38 3k 36 5630 26 3 3050 56 36 36 3 36 3 3 36 K 36 % 98 36 56 30 96 36 9% 3k 36 3

py

C
C
C SELECT K RANDOM PFPOINTS EACH FROM REGIUONS R1 AND RZ2
C BY USING ANTITHETIC VARIATES IF LDESIRED
C
C?é")'r‘)(“)’(‘%';‘i‘%’«%"}(‘*%% 36 56 26 35 26 L 36 3 38 30 S0 3 30 56 3 3 30 A 30 SE R e 3 3E 0 9F 3 6 30 H SE 6 3E 3 L R L 3R e 30 3 3 2k
2 IF(MCRUDE oEQs 0) KK=KK/2
DO 10 J=1,.KK
CALL RANPT(AAsBBaJDIR L sHALF o CJaKDIMeXI)
YE=F(XIskDIM)
[F({MCRUDE +EQe 1) 30 TO 11
CALL ANTHET (AASBBsJDIRs LesHALF 9 Cu s KDL MeX )
YAL=F({XIkKDIM)
11 CALL RANPT(AASBBsDIRs2sHALF sCJsKDIMeXI)
Y2=F (X +KDIM)
IF(MCRUDE oEQ. 1) GO TO 12
CALL ANTHET (AL sBEsJDIR s 2sHALF s CJs KD IMyXI)
YAZ2=F (XL aKDIM)
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CHRAIFIFXAXFHFXXCALCULATE ESTIMATE OF Q NEEDED TO CALCULATE S5SQ%# %43
QUIDIK)=(Y1-Y2)¥(YA2-YALl) + Q(JDIR)
Yl=Y1l+YALl
Y2=Y2+YAZ
C 3636 30 3369 3 36 96 30 e 36 3698 36 0 36 3 3 30 3 3 309 30 30 38 30 3 3E 6 56 530 20 5k 3 5530 3630 3 3 3R 3 36 3 35 36 38 5 356 3 9 5 3 36 3
C
CALCULATE TrE VARIANCE OF S50
C
C 33 3339 36 30 90 90 350 e 338 36 36 36 30 5% 6 0 38 % A6 3 30 3046 3k 30 3036 S50 3 2 0 T S 2 SE S R I H e N S H e WS
12 NN=NN+2
IF(J «EQs 1) GO TO 4
IF(KML o«LEs C) GO TO 4
KP=kKkMI1+1
VARSS=VARSS+H{(KM1I# (Y1-c1/KP)#*%2~-SS5] )%%2/ (KM *KP)
VARSS=VARSS+ (KMI* (Y22 /KP ) #%2=552 )% %2/ (KM1*KP)
4 IF(MCRUDE «EQe 0) IN=NN+2
C-)HH(-%%%%*«)H’c-‘ﬁ’-%*%(-7\‘7‘(-%-::--)HHH%~?('~‘,(-~}’(~>€-->(~-3(--)'m‘t-°,(-->’v%'r%%* o H 3 38 36 33 38 3 3 36 3 3 0 A S I I K W s
C
CALCULATE TrmE VARIANCE OF EL AND E2e
~
C*‘%% L g O R R i b R o R KR T g T T LR At A A S A A A R TR B R I X VA
KMl=KL+J=1 -
IF(KML «EQse O ) GO 70 3
SS1=SS1+(KML*Y1~EL1)#*%2/ (KM1#*(KM1+1))
SS2=882+ (KMLI*Y2~-E2)%¥%2/ (KM1#* (KM1+1))
3 El=El + VY1l
10 E2=E2+Y2
C
CALCULATE VARSES FOR THE LAST ITERATION THRU THE DO LOQOP
C
KP=KM1+1
VARSS=VARSS+(KMI*{Y1-E1/KP)¥#%2~55] )%/ (KM]#KP)
VARSS=VARSSH (KMLK (Y2-E2 /KP ) %%2~582 )% %2/ (KM1*KP)
RETURN
END
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'FOR7Ds I1SZ sVOLTOL
SUBROUTINE VOLTOL(ASRsKDIMsVOLRJIsTOLISIGOTO)
DIMENSION A(KDIM) s3(KDIM)
EQUIVALENCE (A)s(B)
K A S0 I R30I JedE 3 3 330 4 3 3B 30 3 A S I F 350 366 F % 36 3 K I 5E 33 5 400 58 30 3 03I 3 5 ok s
CALCULATE VOLUME AMD TOLERANCE FOR REGION R(I)

C 3 336 36 30 3 330 3 % 3 K 3030 A KR I I Ko B R T I IR KRNI e

IF(IGOTO «EWe 3) GO TO 3

8]

VOLRJ=1.0
DO 10 [=1sKUIM
10 VOLRJ=VOLRJI*F(S(I)-A(T))
GO TO 11
3 VOLRJ=0e5%VOLRJ
GO 70O 2
11 GO TO (142)51GOTO
C WHEN 1GOTO=1sTHEN EEFORE CALLING THIS SUBROUTINESSET TOLI={ERROK
1 TOL=TOLI
VOLR=VCLRJ
RETURN
2 VIOV=VOLRJ/VOLR
IF(VIOV «GTe 2001) TOLI=TOL%*VIOV )
IF(VIOV oLEe o001) TOLI=4001 *TOL
RETURN

END
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'FORT7Ds 1572 sRANPT
SUBROUTINE RANPT (AA+BBs JDIRSLORsHALF sCJsKDIMsXI)
EQUIVALENCE (AA) s (BB)
DOUBLE PRECISION XIsXS
COMMON /B3 /MCRUDE
DIMENSION AA(KDIM) sBRBIKDIM) o XIT(KDIM)sXS5(100)
R O e R bt A R
C GENERATE UNIFORM SAMPLE
€3 336 33 336 3 36 33 F 36 33 33 36K 33363 3 SIS SRS K3
AC=AA(JDIR)
IF(LOR «EQe 2 «ANTDe MCRUDE oEQe 0) GO TO 11
IF(LOR «EQe 2) AC=.J
DO 10 I=1sKDIM
IF{I «£Qe JUIR) GOTU 1
XTI (I)=RANUN(R)®#(B8B(I)—AACL)Y)Y+AA(TD)
GO TO 1lu
1 XTI {I)=RANUN(R)I*HALF+ AC
10 XS(I)=XI(I)
RETURN
11 DO 30 I=14KDIM
30 XI(I)=Xs(l) -
XI(JDIRY=X3(JDIR)+CJI-AA(JDIR)
RETURN
C"K“*'%('%ﬁ("}(‘*%%‘X"}i’%%\‘%*‘%*6(-‘)("')(—”31‘"}(")(")”("')?*}(‘7‘("}("}(‘%")(‘3("}(“%‘}\"5(‘7%7&* R R R s S B O o b S A S Sl e R e e o
CHHa% %
ENTRY ANTHET (AAsBBsJDIRs LORSHALF sCJ9aKDIMsXI)
CHR#¥®¥®
C%ﬁ(‘%*%%*‘**%“)(“}(”%?(—'X‘-}'c‘;'r 3 H M 3 3 630 3 56 3 3E I F6 3 S 56 36 3E 30 36 38 3 36 36 3 36 36 3 36 3 3 3 3 I L e R
DO 20 I=1sKDIM
IF(I ebwe JUIR o "\ND o LOR «EQ 1 ) GO TO 2
XI(I)Yy=AA(IY+BB(I) = Xo(1])
GO TGO 20
2 IF{LOR «EQe 1 )
IF(LCOR «EQe 2 )
20 CONT INUE
RETURN
END

I
I

) = AA
) =CJ

X {
X +BE(1) -

it
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'FORTDs 152 sCRUDMC
SUBROUTINE CRUDMC{AASBBsXI sKDIMsF sNPTosNN3sSSesAREA s SMY)
C 3 3636 36 36 36 36 36 30 96 30 3 496 38 30 40 3056 30 36 36 3 35 3 9b 26 S 5% 6L L 3 K I AL ER b o R T O B L L A N AR VAT JEVRETY
CALULATE APPROXIMATION TO INTEGRAL BY SAMPLING DIRECTLY FROH THE GIv
C AND BY USING A SEQUENTIAL SAMPLING SCHEME
C % F 36 36 3030 3 K 3 30 330 90 363 36 3 30 36 3 95 30 35 250 36 30 30 2 3 9 63 S 3 4o B T R ol TR St G L R R T (A VARV AR A
DOUBLe PRECISION AREASSSWLsY sYASSSaGMY
DOUBLE PRECISION FaXlI
DIMENSION AA(KDIM) sBRIKDIM) s X1 (KDIM)
COMMON/B3/MCRUDE/B4/TOLI sVOLRY
COMMON /B8 /TIMAX s NPTMINS C
EQUIVALENCE (AA)s(BB)s(XI)
TIMEON=TIMEF(1.0)
AREA=U,
S55Q=0.0
NTIMES=U
IF (NPT oLEe 1) RETURN
NPTO2=NPT/2
IF{MCRUDE oEQe 1) MPTO2=NPT
IFINPTOZ o«GTe 10003) NPTO2=10000
4 DO 10 I=1eNPTC2
CALL RANPT(AASBRs0sUsCes0e sKDIMsX1)
Y=F(X[skKDIM)
IF(MCRUDE oEQe 1) GO TO 1
CALL ANTHET (AA BB sC 90300 900 sKDIMsXI)
YA=F (X1 skKDIM)
Y=Y+YA
1 NM1=1-1 + NTIMES*NPTQ?Z
N=NM1+1
IF{NML «EQe C) GO TO 10
SSQ=SSUH (NML*¥Y—-AREA) #%2/ (NM] %N )
10 AREA=AREA + Y
NTIMES=NTIMES+]
[FINPTHNTIMES o#LTe NPTMIN) GO TO 4
SMV=(S5% (NN/C)+SSURVOLRI®%2) / (NPTH#NT L vESHNN ) #*%2
TIMTOT=(TIMEF(1eC)~TIMEON) /1000,
[F(SMV eLEs TOLI) GO TO 3
IF{TIMTOT oLTe TIMAX) GO TO 4
PRINT 54 TIMAX

5 FORMAT (v %% MAXTAUM TIME LIMIT OF 148341y ! SECONDS PER STRA
IEXCEEDED AND SMV oGTae TOLIL #33ts6s65 364 1)
3 NPT =NTIMES*NPT

Y=AREA*VOLRJ/NPT
PRINT 284NPTsTIMTQTsY
28 FORMAT (20X s 4HNPT=17 s LUXs5HTIME=F1Ce3 981 SECONDS»10Xs5HESTO=U14
RETURN
END




'FORS IS "oF
DOUBLE PRECISION FUNCTION F(XsKDIM)
DOUBLE PRECISION X
DIMENSION X(KLCIM)
EQUIVALENCE (X))
C*‘X“‘X‘%'}'{*"}(‘ Sk 56 S 3 AT e 3 6 I 4t I S 3R SE SR 3E SR e S Sk E R S R e K
C USER SUPPL
C E:

363 36 36 36 3 2 % 3 % 93

prd
b4

RETURN
END
"FIN
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