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ABSTRACT

Modular algorithms for linear equations solution, matrix inversion,
determinant calculation, null space basis generation, and matrix mult-
plication are developed, all for matrices with polynomial entries. Theo-
retical computing times are obtained for all algorithms. The algorithms
are programmed in Fortran IV, forming a module of the SAC-1 system for
symbolic and algebraic calculation, and empirical computing times are

given for representative cases.
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CHAPTER I

INTRODUCTION

%

1.1 Problem Description and Background

Let & be an arbitrary integral domain.and let A and B
be matrices over J, where A is m by n, nonzero, and of rank
r and B is m by g. Consider the matrix equation AX = B,
representing g systems of linear eéuations with the same
coefficient matrix, one for each column of B. For sim-
plicity, this equation will be referred to as a system of
linear equations. Assuming the sYstem is ‘consistent, it -

has a particular solution X', an n by g matrix over Q(J),

the quotient field of 4, such that AX' = B. Moreover, if r < n,
the null space of A contains nonzero elements. Suppose X" is an
n by n-r matrix over Q(J4) with linearly independent columns,
which solves the homogeneous equation aX = 0. Since the col-

umns of X" then form a basis for the null space of A, such

a matrix X" will be referred to as a null space basis for A.

From the basic theory we know that every solution of the
system AX = B can be written as the sum of X' and some n by g
matrix, each of whose columns is a linear combination of the
columns of X". Hence, each such pair (X',X") will be said

to constitute a general solution over Q(J) of the system

AX = B. Of course, when n =m = r = q and B is the identity



matrix, then X' is the inverse of A and X" is not defined.

In this thesis we will be concerned.primarily with
integral domains J§ which are noé fields (i.e., the integers
and various polynomial domains). -fhis does not exclude per-
tinence to systems with coefficients in 0(d9), however, for
such systems can be transformed to systems with coefficients
in J by initially multiplying the rows of A and B by suit-
able elements of J. This thesis will be further restricted
in that only the problem of computing exact solutions to
linear equations will be considered. However, a brief re-
mark concerning approximate solutigns can be made at this
point. When & is the ring of integers I or the field of
rational numbers, such systems are‘usually solved by approxi-
mate numerical methods such as Gaussian or Gauss-Jordan elim-
ination using floating-point arithmetic on a digital computer.
The effect of ill-conditioning on the accuracy of these methods
is well-known.

Exact or symbolic methods in the field of rational num-
bers have offered a solution to the problem of error but at
the expense of efficiency. In particular, the computation
of greatest common divisors (GcD's) and the phenomenon of
integer coefficient growth restrict the applicability of ex-
act Gaussian elimination methods in the rational number field

considerably. Moreover, when J is taken to be I[xl,...,xs],




the domain of polynomials in s variables over the integers,
or its quotient field, the field of ratiénal functions, then
the problem of efficiency 1is much more serious and is fur-
ther aggravated by the related phénomenon of degree growth.
The occurrence of these phenomena (i.e., integer coefficient
growth and degree growth) in the préblems of polynomial

GCD and resultant calculations has been detailed and major
advances in their control have been reported in [COG69b],
[BrRO68], [C0G7la]), and [BRO71].

A first step in solving the problem of the computing _
time efficiency of exact methods for solving linear equa-
tions has been to restrict J to be I or I[xl,...,xsj and to
perform the elimination using onlylarithmetic operations in
Jd. That is, if ¢ = (A,B) is the augmented matrix of the
linear system, then C is transformed only by elementary row
operations in J. One early method was devised by Rosser to
control integer coefficient growtb in inverting an intégral
matrix (see [R0S527]). 1In this metﬁod the elimination involves
only subtractions of multiples of rows from other rows, where
multiplication by small integers is used almost exclusively;
no divisions are performed.

Another method, known as the exact division method or

exact division algorithm does apply divisions in an attempt

to restrict coefficient growth. As the name implies, this



algorithm assures that the divisions are exact, producing
quotients in J. This methcd can be applied in any integral
domain, for example, 4 = I and 5 = I[xl,...,xsj. In the
latter case, the divisions also tehd to restrict degree
growth as well. See [LIP697, [BAR687, and [LUG62] for re-
cent treatments of this algorithm; an earlier descriptionv
may be found in [BOD597, pp. 101-109, and a similar des-
cription in [FOX647], pp. 82-87. A more general treatment
than the above of the exact division algorithm for trans-
forming matrices is given in ChépterIZ, wﬁere the determinant
form of the entries of the transfofmed matrix are obtained,
while allowing row interchanges. In general, no GCD's are
computed during the elimination in exact division algorithms;
but coefficient and (in the polynomial case) degree growth
are still considerable. In solving linear equations, GCD
computations are necessary only in the final stage, 1if the
rational form of the solution components is desired.w

The approach of obtaining a solution to a linear system
AX = B using only arithmetic in J suggests an alternative
form for a general solution. Let d e J and Y be an n by g
matrix over &, Let Z be an n by n-r matrix over &, if r < n,
or 2 =0 ¢ &, if r = n. Then (d4,Y,Z) will be said to con-

stitute a general solution over J of the linear system AX = B

if AY = d-B and Z is a null space basis for A when r < n.




The exact division algorithm obtains such a general solu-
ticn, as will be explained in Chapter 4. Whenm =n =1r = ¢
and B is the idenfity matrix, then (d,Y) can be considered
to represent a matrix inverse for A, since al(1/4a)Y] is the
identity matrix. Such a representation of an inverse of a
matrix is, of course, not unique, as is also true of a gen-
eral solution (4,Y,Z) of the eduation AX = B. Unless other-
wise specified, all matrices and general solutions will be
considered in tbe remainder of this thesis to be over an
integral domain J. )

During the past decade methdds'have been developed for
solving systems of linear equationé, inverting matrices, and
performing numerous other glgebraic computations using mod-
ular arithmetic. Some of the earliest reported applications
to these problems may be found in [TAIél], where arithmetic
in the finite field GF(p) (i.e., integersAmodulo p) was em-
ployed to invert an integral matrix. TIts applications to the
solution of linear equations with integer coefficients has
been described in [BOF66], [NEW67], and [HOG697]. The former
describes the more general case in which rank(A) s m < n.
Some empirical computing time studies were performed; but no
computing time analysis was done.

The breakthrough for applications of modular methods

involving polynomials came with advances in the exact calcu-



lation of polynomial GCD's. In [COG69b ] G. E. Collins
outlined an algorithm for doing multivariate polynomial

GCD calculation involving the igterpolation of polynomials
over GF(p). This algorithm has préved to be superior to
all others, under theoretical and empirical analysis (see
[coc7lal, [BRO71]). Complete modular algorithms of this
sort apply reductions modulo a prime and Garner's variant
of the Chinese Remainder Algorithm to integers and poly-
nomials over the integers. Also, evaluations over GF(p)
and interpolation are required for pélynomials. These con-

cepts are discussed in Chapter 2.

1.2 A Preview of the Remaining Chapters

Up to this time, the application of modular methods to
the solution of linear equations (including matrix inver-
sion) has been limited to the case of integer coefficients
and, except for [BOF667, to single systems of "linear equa-
tions with unique solutions. The algorithms to be presented
in this thesis include: 1) a complete modular algorithm for
computing a general solution for any consistent system of
linear equations with integer or polynomial coefficients,

2) a complete modular algorithm for computing determinants
of matrices with integer or polynomial entries, and 3) a com-
plete modular algorithm for computing products of matrices

with integer or polynomial entries. Many other algorithms




are given, whose functions will be summarized below.

In Chapter 2, theoretical results afe obtained which
are applied later in the design‘of the algorithms. In par-
ticular, basic results concerning the exact division algorithm
are established, showing that this algorithm computes a ca-
nonical form T of a matrix -- in the sense that it is com-
putable and uniquely definable by closed formulas, for every
matrix. It is shown in the last section of Chapter 2 that
this canonical form is also computable over a field by a
Gaussian elimination algorithm.‘ This latter algorithm will
appear in a different form in Chapfer 4 as the nucleus of
the modular algorithm for solving linear equations. Sections
2.3-2.5 obtain basic definitions aﬁd results concerning the
relations of homomorphisms and the mappings I'. In particular,
mod-p and evaluation homomorphisms, and the Chinese Remainder
Theorem and interpolation are discussed. -

In Chapter 3, algorithms for‘performing matrix arithmetic
are presented: addition, subtraction, and multiplication.
Both the classical and the modular algorithms are given for
matrix multiplication. Algorithms for applying mod-p and
evaluation homomorphisms, Garner's Method and incremental
interpolation elementwise to matrices are included and ap-
plied immediately in the modular algorithm for matrix multi-

plication. The inclusion of this algorithm is necessary to



accomplish with the least computing time possible the sub-
stitution tests in the modular algorithm for solving linear
equations.

In Chapter 4 the modular algorithm for computing gen-
eral solutions for systems of linear eguations is given.

The actual algorithm is presented in Sectiogs 4.3-4.5. Basic
theoretical results are estabiished in the first section and
auxiliary algorithms given in the second section. Following
the lineaf equa?ion solution algorithm, a modular algorithm
for computing determinants is pfesented. Finally, two sim-
ple algorithms for accomplishing matrix inversion and null
space basis generation are given. “Each of these employ the
linear equation solution aygorithm to accomplish the major
portion of the compuﬁation.

All the algorithms of Chapters 3 aﬂd 4 assume that most
of the mathematical objects involved are implemented as list
structures in the SAC-1 Mathematical Symbol Manipulation
System (see [COG67], [coge8a], [COG6E8b], [coGe8c] [coGe9al) .
More will be said concerning data structures in the first
section of Chapter 3. Also given in this section are the
basic concepts of theoretical (a priori) computing time anal-
ysis, which will provide the framework for obtaining the com-

puting times of all algorithms in Chapters 3 and 4.




To complement the theoretical computing time analysis
of Chapters 3 and 4 we precent some empirical computing
time studies in Chapter 5. Thesalgorithms considered are
those  for determinant calculation; solution of linear equa-
tions, and matrix inversion.

The algorithms of Chapters 3 and 4 have been implemented
as a module of the SAC-1 System (see [COG7lc]). All pro-
grams have been written in ASA Fortran which is true of all

SAC-1 modules (see [ASA64]). The programs are listed in

the appendix.
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CHAPTER 11X

THE EXACT COMPUTATION OF A REDUCED ROW
ECHELON FORM OF A MATRIX

In this chapter theoretical results are presented for
the exact computation of a particular reducedﬂrow echelon
form of a matrix, that is, the determinantal feduced row
echelon form. Section 2.1 presents some preliminary def-
initions and results concerning the determinantal reduced
row echelon form of a matrix over an arbitrary integral
domain 4. In Section 2.2 an effective mapping is defined
for computing exactly this reduced form for a matrix over
J. It is shown in these two sections that the elements of
this reduced form are defined by explicit closed formulas
whose arguments are obtained from inherent properties of

the original matrix.

The last four sections of this chapter develop the
theoretical framework fo; alternate algorithms to compute
the determinantal reduced row echelon form for particular
integral domains. In Section 2.3 the relation between
mappings defined on matrices over d induced by homomor-
phisms and the effective mapping of Section 2.2 is investi-

gated, One outcome of this investigation is the discovery
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of a sufficient condition for commutativity. In Section
2.4 the computation of this reduced form for matrices over
the integral domains I and I[xl,....,xsj by the method of
mod-p mappings is presented, Then in Section 2.5 the
computation by the method of evaluation mappings of this
reduced form is investigated for matrices over the integral
domain J[x], with special pertinence to GF(p)[xl,...,xS].
Finally, an effective mapping for computing this reduced
row echelon form for matrices over a field is presénted

in Section 2.6, with potential application to the finite

field GF(p).
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Section 2.1. Matrices Over An Arbitrary Integral Domain

2.1.1. Preliminary Definitions
Let J§ be an arbitrary integral domain and Mm(J) denote
the set of all matrices over J4. Let A be an m by n matrix

in m(4). The rows of A are denoted by A_,A

4t eoesB . et
17772 m L

ll,...,ls and Jqreeerdpr l <s sm, and 1 = t < n, be se-

quences of integers such that 1 < i, <=m and 1 <

Kk < Jy, = n,

for 1 <k £ s and 1 <h < t. The matrix consisting of the

elements of A common to rows i.,...,i and columns jl""'jt'
s

determinant is denoted by A

1
1yreeesd .
in that order is denoted by A [, . .s] . If s = t, its
lt---rj
1 . Thus
1

S

i[i loo-,i
A [ 12 .S] is the s by t matrix A' ¢ Wm(d) with ele-

jl,jz,...,jt
ments A'(k,h) = A(ik,jh), 1 <k «s and 1L <h < t, and if

-

i ,i,...,1 i.,i,..., 14 1,2,...,8
12 S = get A[.l 2 .S} =a |, , .
31’321.‘..'35 ' 72 & o o g

This notation is a géneralization of that used in [GAF59],
Chapter 1, where it is required in addition that il < i2 < eee
< 1S and I < J, < veea < Jg-

Let Q@ be the set of all finite sequences of positive

integers, including the null sequence g of length 0. The

lexicographical ordering (>) of Q is defined as follows.
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If one of K and L in Q is g, then K > L if and only if K # 4.

For two nonnull elements K = (k ...,ks) and L = (hl""'h )

1’ t

of O, we have K > L if and only if (1) either there exists
a least integer i: 1 < i < min(s,t) such that ki # hi,
where in fact ki > hi' or (2) s > t and ki = hi' 1 i < t.
(K <« L means L > K.) Of course, K =1, if and only if s = t
and ki = hi' 1l i < s. We note that (0 is linearly ordered
by > and so every fiﬁite nonempty subset of ( has a least
element (see [KND681]).

Two subsets of Q will be of paiticular importance in
this discussion and are defined here. TLet 7 denote the set
of all sequences J of positive integers in ascending order,
including g:

7 ={(]l'32""'33): s 20 and"l <3J; €3, - < ]S}.

Moreover, let &h, m > 0, denote the sef of all permutations
on the first m positive integers 1,2,...,m. Each 7 ¢ ﬁn can
be represented uniquely as the sequence (n(l),#n(2),...n(m)).
For u, v e Pm' the product yv is defined in the standard
way: pv = (p(v(1)), w(v(2)),...,u(y(m))), Clearly, £ C Q.

w0
Let P = Y

=1 Fﬁ, the set of all permutations defined in terms

of an initial segment of the positive integers. Thus, g < Q
and ¢ < Q and so > is a linear ordering of ¢ and P, We can

extend > to a linear ordering of § x P in the following way.
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For any two elements (J, I) and (K, L) of 9 x P, we have
(x,1) > (J,I) if and only if either K > J, or K = J and
L > 1T.

We now define for a matrix A ¢ T(Jd) elements JA e g
and IA ¢ P, which are uniquely determined by A. We will
then define two matrices in (&) corresponding to A which

play an essential role in the solution of linear equations.

Let A be an m by n nonzero matrix in mn(d) of rank r

1,2,...,m

. .] , 1< j < n, the matrix consisting
1,2,....,]

and let Mj = A [
of the first j columns of A. For 1 <h <r, let j be the
least infeger j:+ 1 £ j < n such thag rank(Mj) = h. Since
0 < rank(Mk) < rank(Mh) < r, for' 1 £k £h < n, clearly

1l <3, < Jy < eee < 3L Hence, defining JA = (31,32,...,jr),

1

we see that JA is unique for A and JA e J. For A a zero

matrix we take JA = g.
Let A be nonzero as above. Then jl exists and there is
an integer hl: 1 < hl < m such that A(hl'jl) # 0 and,
hl
hence, such that A 3 = A(hl,jl) # 0. If r > 1, suppose
1

inductively that hl,..., 1 «k < r, distinct integers,

h ,
k-1
1l < ht <m, 1 £t < %k, have been found such that

hl'-.o,hs R .
A . # 0, for 1 < s < k. Columns jl,...

. of A
jl,...,js

'jk

are linearly independent and so rank A[?""’mj } = k.
IS
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Since the row rank equals the column rank of a matrix, there

is a row, say row h , of A },...,m. linearly independent
k jl,...,jk

1,...,m
l""'hk—l' Rows hl""’hk—l>0f A [jl""'jk} are

hl""'hk-l
linearly independent, since A | . # 0, and so

U

hys«..,h h ,...,h,
rank A[.l .k] = k. Thus, A .l .k # 0 and we ha
Jpreeerdy : Jpreeeedy

of rows h

defined a sequence h hr of distinct integers, 1 < ht <

ll".'l
h,,...,h

1l <t < r, such that A : js # 0, for 1 £« s < r. If

_ yreeerdg

we let hr ,..;,hm be the remaining integers, in any ordex,

+1

such that {h ..., ) P

l,...,hm} = {l,...,m},‘then L = (h

Define £ as the set of all such sequences L:

h s

l,-.- 3

€
1’ m m

ve

m,

A
= s eees 2 H o, .
PA {(hl hm) s P 2 A # 1 s < r}

m jll-ool]s

h h inimal el t, = {1,,...,1 ). If
Then PA as a minimal elemen IA ( 1 m)

i
D

A is a zero matrix, we let IA = (1,2,...,m) and PA
Given the lexicographical ordering > of p, if A is

nonzero, then IA will be minimal only if il is the least
il
integer i: 1 < i < m such that A { . # 0 and, if r > 1,

1

for s = 2,...,r, only if is is the least integer i:
1l i <mand 1 # it' 1 ¢t < s, such that A

Moreover, if r < m, IA will be minimal only if the remain-

< i < ve. < 1 £ m.

i o i T i
ng components satisfy: 1 < 1o r+2 *
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We define two special matrices in m(.8) corresponding

tc any given matrix A ¢ W(J9). If A is m-by n and nonzero

= (i ,...,im), define the

and if JA = (jl,...,jr) and IA 1

m by n matrix A in n(Jd) by:

i

= . A(.l . }?>,15ksfandlsjsn
A(k,]) = jll.-.'Jk"l’J

0, r<kcgsmand 1l £ j < n

-

Similarly, we define the m by n matrix A in m(d) by:

} . (11, ......... e e es e ,lr) , 1 <k < r and
a(k.3) = Jpreeerdgo1r 3 Ik o0 1 <3 <n

0, r <k smand 1 < j £ n.
If A is a zero matrix, then we take A = E = A. Hereafter,

for every matrix A ¢ m(4), A and A will be the matrices so

defined.
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2.1.2. Row Echelon Matrices and Row Equivalence. In

Chapter 7 of [BIG657] row echelon matrices and row equivalence
are discussed for matrices over a field. 1In what follows
these concepts will be treated for matrices over an integral

domain and some basic results derived.

An m by n nonzero matrix B ¢ I(Jd) is a row echelon

(RE) matrix (is in row echelon (RE) form) if there is a

sequence of integers 1 < k

<k <...<k < n, for some s:
1 _ 2 s

l < s «£m, such that, for 1 £ 1 < s, the ith row Bi of B
satisfies: B(i,ki) # 0 and B(i,3) =0, 1 <3 < ki. If
’ [

s < m, the rows B y++.,B are zero. Trivially, we say
S m

+1
that a zero matrix in m(JI) is the case s = 0 and is in RE

form. The sequence K = (kl,...,ks), for s > 0, or K = §4,

for s = 0, is called the row echelon (RE) sequence for the

RE matrix B. Furthermore, an m by n nonzero matrix C ¢ T(JI)

-

ig called a reduced row echelon (RRE) matrix (is in reduced

row echelon (RRE) form) if C is an RE matrix and, in addition,

satisfies the condition that the only nonzero element in

column k., 1 <i < s, is Cc(i,k.) # 0, where K = (k.,....,k )
i i 1 S

is the RE sequence for C. The elements C(i,ki), 1 <1 < s,

constitute the diagonal of C. Trivially, a zero matrix is

also in RRE form.

The following theorem shows that the matrices A and

A for A ¢ m(I9) are, in fact, RE and RRE matrices, respectively,
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in m(J).

Theorem 2.1.2.1. For every matrix A ¢ M(J), A is an RE

matrix and A is an RRE matrix, both with RE sequence JA'

Proof: If A is a zero matrix, then A=A=2a and JA =g

is their common RE sequence. Suppose A is m by n and non-

zero, with Ty = (]l,...,]r) and I, = (11,...,1m). Of
_ ll""'ik
course, for 1 =k < r, A(k,j,) = A} . X # 0 and
k Jareces]
1 k
ll’ooo’l

Alk,3,) = & ; jr # 0, by the definitions of J, and
l'o-o'r )

IA. Consider rows k: 1 <k < r of A and A. For 1 <h < jk'

il""""'ik 1,00ece... , 0
rank|A ]| . . h < rank(A . . h])s k-1 and
Jl, .o-ljk-ll jl'“..."]k—l' )

R 1

so a(k,h) = A.(.l . k) = 0. Similarly, for 1 <h < j .
jl,...,jk_l,h k

ill-oo...ocaot---coo-olir
rank|(A} | . R4 . < rank(
R N R T R
A[:Jlilgl----to-ool;-....a-c.ool.m:])s rank(A[il;..'.'...';:])'l' (r"k),
’ I"'Ijk_ll ljk+ll"‘ljr I"'Ijk_ll
for by adjoining r - k columns to a matrix we increase its

rank by at most r - k. Thus, rank

il' ------- e o o @ @ o s 0 o .nlir
Al .7 . h - U < (k-1) + (r-k) = r-1 and
‘ e

# @ @« o 8 0 @ & & 0 9 c--coo.-.[i
1 r
= 0. Moreover,
r

so A(k,h) = al . . h - .
RN I L R LR

for 1 <k <srand 1l <sh <r, h #k, i(k,jh) =
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11,...... ..... s eesovons 'lr
A.(. . , . ) ) = 0. Since rows r+l,...,m
jl’...’jk—-l’jhljk’*"l'...'jr

of both A and A are zero by definition, it has been shown
that A and A satisfy the definitions for RE and RRE matrices,

respectively.//

ith = (J.seeer] I = (i.,...,1
For A nongzero wit JA (jl, ,jr) and A (:Ll lm)

il,...,ir

we define §(a) = A and for A a zero matrix we

Jpreeeedy

define §(A) = 0. Thus, if A is nonzero, the diagonal ele-

©

ments X(i,ji), 1 <i<zr, of A all equal §(a).

The following definitions for matrices over an integral
domain are based on the usual definitions for matrices over
a field. If A, B e m(JI), I an arbitrary integral domain,

then B is row-equivalent to A in m(J) if A can be transform-

ed to B by elementary row operations in m(d). These oper-

ations are: interchanging two rows, multiplying or dividing
a row by a nonzero element ¢ ¢ J, and adding to a row a-
nother row multiplied or divided by an element ¢ ¢ J, which
is nonzero for division. We note that a row Ai of an m by
n matrix A ¢ M(J) may be divided by a nonzero c ¢ J only if

each element satisfies: A(i,j) = C'bj, bj e d, for 1 < 3 < n.

The term "row echelon" actually pertains to all matri-

ces in W(d). We say that a matrix B ¢ m(Jd) is a row echelon
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(RE) form for a matrix A e m(d) if B is a RE matrix row-

equivalent to A. A sequence K ¢ g is called a row echelon

(RE) seqguence for a matrix A ¢ M(d), if A has an RE form

B ¢ m(J) with RE sequence K. Moreover, a matrix C e Mm(J)

is called a reduced row echelon (RRE) form for A ¢ m(J)

if ¢ is an RRE matrix row-equivalent to A. Section 2.2
will be devoted to showing that A is an RE form in m(J)

for A and then that i is an RRE form in m(Jd) for A.

The following theorem shows that, if a matrix in m(J)

has an RE sequence, then it is unique.

Theorem 2.1.2.2. If A is a matrix in m(J9) with an RE se-

quence K, then K = JA'

Proof: Case 1l: A is an RE matrix. If A is a zero matrix,

then K = # = JA. Suppose A is an m by n nonzero matrix

and let K = (kl,...,ks) and JA = (jl""’jr)' for r > 0

Then jt is the least intéger 3: 1 = j < n for which

rank(Mj) =+, for 1 < t < r, where r = rank(a). If kl > 1,

rank(Mj) 0, for 1 < j <k since each Mj is a zero

ll

matrix. Let ks+l = n+1. Then, for each t = 1,2,...,8,

rank(Mj) = t, where kt < j < kt+ The reason for this

1°

is as follows. Only the first t rows of Mj are nonzero,
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for kt <=3 <k

, and so rank(M.,) < t. However, columns
t+1 |

k k. of Mj are linearly independent and so rank(Mj) > t,

l'cno, t

k, 273 < kt+

£ Thus, rank(Mj) = t, Hence, for each t:

1
l <t <s, kt is the least integer j: 1 < j < n such that

rank(Mj) = t and so kt = jt for 1 < t < min(r,s). There-
fore, since r = rank(a) = rank(Mn) = s, we have K = JA'

when A is an RE matrix.

Case 2: A is not an RE matrix. Of course, A is non-

©

zero., Let A be m by n and let B ¢ m(d) be an RE form for

A with RE sequence K = (kl,...,kr). For each j = 1,2,...,n,
4

1etM.=Al"“’rf‘ andN.=Bl"""’”_1 . We know K = J
| 1ieees | I,...,3

B
by Case 1 and so kt is the least integgr j: 1 £ j = n such
that rank(Nj) = +t, for 1 <t <« r. Since the rank of a
matrix is invariant under elementary row transformations

and since the same sequence of elementary row Operations
which transformed A to B will trénsform Mj to Nj' l <3 =n,

then rank(Mj) = rank(Nj). Note that rank(a) = rank(B) = r.

Thus, kt is the least integer j: 1 < j < n such that

|
<

rank(Mj) t, for 1 < t < r, and so JA =

I.et E be an m by n matrix in h(Jd). ILet = ) oy
Y ( ) € e(l)(J)

1 <i, j «m, represent the operation of interchanging rows

i and j of E, giving F = ¢(E) ¢ M(J). The mapping ¢ produces
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a permutation mw = € ﬂn of the rows of E. That is,

(i) (3)

= B for 1 <« h < m, where n(h) = h, for 1 <h <m,

F o) h'

h# i, h # j, and also w(i) = j and n(j) = i. m will be

called a row-interchange permutation. The following re-

sult explicitly defines the permutation of rows which re-
sults from applying a sequence of row interchanges to a

matrix.

Theorem 2.1.2.3. Let E be an m by n matrix in m(d). For

each t: 1 =t <8, s 21, suppOse ¢ a row-

€7 (1)) _

interchange mapping, and = . . , Where 1 < i_,
g pping, a Ty ﬁ(lt)(“jt) e Pm €

jt sm. Let y = ¢ " 2y and 1 = ﬁs ey If F = y(E),

=g , for 1 <h < m.

then Ffr (h) h
Proof: For each t = 1,2,...,s define G(t) = et(G(t-l)),
where G(O) = E. For t =1, G(l) = el(G(O)) = el(E) and
hence G(l) =E, 1l <h <m. Ifs >1, suppose induc-
my (1) h
. (t-1)
tively for 1 < t < s that G =%, 1 «<h <mn.
ﬁ eee 1. (h) h
t=-1 1
e (t) _ (t-1) (t) o (t=1)
By definition G = et(G ) and so G”t(h) = Gh '

1 <h «£m. Since each of = is a one-to-one map-

g-17"77' M

ping of {1,2,...,m} onto {1,2,...,m}, so is the product

Me_q "7 " i hence, {ﬂt—l ﬂl(h) : 1 <h <sm} =
(t)

{1,2,...,m}. It follows that G_ ' =
Moyt oy ()
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G(t)
ﬂt(ﬂt—l cen nl(h))

(t-1)
Te-1

] = ’ f R
G . ”1(h) Eh or 1 £h €m

by applying the inductive hypothesis, completing the induc-

tive step.//

The permutation 7t of the rows of E produced by the mapping

v is called a row permutation of E.
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Section 2.2. The Exact Computation'of a Reduced Row Echelon

Form of a Matrix Over an Arbitrary Integral Domain

In this section an effective mapping I of W(J) into
m(d), for § an arbitrary integral domain, is constructed
such that T'(A) = X, for every A ¢ m(d). T will apply only
elementary row operations in M(Jd) in the traﬁsformation of

A to A, showing that A is row equivalent to A in m(d). It

will then follow that A -is an RRE form in m(Jd) for A.

In subsection 2.2.1 an effective mapping ry of m(J)
into m(Jd) x g x © is constructed such that Fl(A) = -
(&, JA' IA)’ for every A ¢ m(Jd). Tﬁen in subsection 2.2.2

I, is employed to construct the mapping I'. This mapping

1
is a general version of the exact division me thod for tri-
angularizing and theﬂ diagonalizing a matrix over an inte-
gral domain. See [LIP69], [LUG62] and tBAR68] for recent
alternative treatments of this method. Earlier descriptions

may be found in [BOD59], pp. 101-109, and in [FOX64], pp.

82-87.

2.2.1. The Computation of a Row Echelon Form by Exact

Division

The effective mapping T, such that Fl(A) = (A, Ty IA)'

for every A ¢ M(J), will be defined by the following algorithm.
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That this algorithm is, in fact, an algorithm or effective
mapping will be indicated in the subsequent discussion.
In the remainder of this subsect;on it will be shown that
the output of the algorithm is actﬁally (A, JA' IA) and

that A is an RE form for A.

Algorithm 2.2.1.1. Transforming a Matrix Over an Integral

Domain 4 to Row Echelon Form by Exact Division

Input: An m by n matrix A ¢ Wn(Jd).

Output: The triple (B, J, I) ¢ M(d) x g x @, where

B=AaA, J=J, and I = I_.
A, J JA a AT

(1) [Initialize.] B ~A; J « @; for 1 <h =m, I[h] ~ h;
k ~1l; s «0; D+~ 1, the identity of J.
(2) [Locate a nonzero pivot, if any.] s « s+l; if s >n,
go to (6); fo£ t =k, k+1,...,m, search for B(t,s) # 0;

if not found, go to (2); suffix s to the sequence J;

-

h « k.
(3) [Change the row order, if necessary.] If t = k, go
to (4); E ~ Bt; £ ~1[t]; for u=+t, t-1,...,k+1l, set

Bu - Bu—l and I[u] <« I[u-17; then set Bk ~ E and

I[k] «~ f.

(4) [Recompute rows B ""'Bm' if any.] h « h+l; if

K+1

h >m, go to (5); G « B(h,s); compute Bh - [B(k.s)-Bh -

GeBkj/D; go to (4).
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(5) [Initialize next pivot operation, if necessary.] If

k =m, go to (6); D~ B(k,s); k ~ k+1l; go to (2).

(6) [Return] Return B, J, and I.

Tt will not be proven rigorously that this is an al-
gorithm in a formal sense. Suffice it to observe in the
following discussion that Algorithm 2.2.1.1 will terminate
in a finite number of finite, wellAdefined, and unambiguous

steps, for every A ¢ M(J). Three sequences are generated:

50 1)

’

(g “
.\, (Tgr TypoeeerT)s and (g TpueensT)

(O) — ‘ . - 3 — " » h
- Al JO - g, andIO - (lo'l'ooc,lo’m)

it

qg 2 0, where B

(1,2,..,m), for Am by n. We will show that, for 0 <k < q,
(k)

Jk e $. I e ﬂn' and all matrices, including B , are m

k

by n matrices in m(J). The algorithm sets B = B , J = Jq,
and I = Iq. We will see that B is row equivalent to A.

Finally, after establishing some lemmas, it will be proven

-

in Theorem 2.2.1.4 that J = JA' I= IA' and B = BA' a RE

form for A in m(d), where J is an ‘arbitrary integral domain.

. . th
There are g pivot operations performed, the k of

(k)

which is accomplished in steps (2)-(5) and produces B ,

J and I., 1 <k < g. We note that, for k = 0, B(O)

X’ k = A

is an m by n matrix in m(d), J_ = f e g and I e @ . B~sS-

sume inductively for 0 < k =< g+l that B(k_l), an m by n

matrix in m(JI), JT =

k__l (jlltclljk-'l) € 9' and I =

k-1
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(lk—l,l'°"'lk—l,m) € &ﬁ have been computed.

h . . : .
The kJr pivot operation begins with the pivot search
in step (2), with initialization from step (1) or step

(5). If either 1)
B(k—l)

Jg_op = ns,0r 2) k >m, or 3) all

(i,3) = 0, for k £ i «m and jk—l < j < n, then the

th | .
k pivot operation cannot be performed and the algo-

(q)

rithm terminates with B = B , J = Jq' and I = Iq, where

g = k-1. The case g = 0 corresponds to the case of A a

zero matrix, whence B = B(O) = A, J = JO = g, and I = N

IO = (1,2,...,m). Suppose A is nonzéro and the kth pivot
(k-1)

B (t,s) # 0 does exist. Then jﬁ = 5 1ls the least in-
C o, . (k-1) .

teger 7j: Jp_p <3 =n such that B (h,j) # 0, for some

h: k <h <=m, and t is the least such h. Thus, Jk =

(Jl’.‘.’jk"l'j]{) € g.

In step (3) I, and an m by n matrix g(k) é mn(JI) are

k

computed, which computation is described as follows. Let

%0 0 S (k) 2™ ko T k) (k) ©

- . = and =
t-k =2 0. If sk > 0, let ek,u e(k+u-l)(k+u) ﬁk,u

 , and let s, =
m k

e Fﬁ, for 1 s u < s

TT(k+u—l)(k+u) K* If we let Yy =
*k,0"%k,1 "7 €k,sk and mo =Moo T, ”k,sk' then
step (3) computes B0 = v (8%™) and by theoren 2.1.2.3,

k
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g(k) = B(k—l), for 1 <h <m. It can be easily seen that
T (h) h

the row permutation r_ is the permutation:

k
h, if 1l sh <k ort <h <m
Tk(h) = k, if h
h+1l, if k «ch <t

il

t

-1 o . . .
If o = Ty o then o) is defined by:

h, if 1l «sh <k or t <h =m
ck(h) = t, if h k
h-1, if k < h = t.

il

~(k) _ 5(k) _ Rlk-1) e
Note that Bh BTk(dk(h)) Bok(hY' 1 «<h < m.

In step (3) I, = ) is computed from I

e = Gy yreeer iy k-1

such that lk'h = lk—l,ck(h)f

= T and assume inductively that Ik—l = 0 for

o " k-1’

k > 0. Then lk—l,u = o, " ok_l(u), 1 < u < m, and so

(

k-1 ck(h)= 9 77 %1

Thus, lk,hz o, Ok(h)' 1 <«<h <m, and so Ik =0, "t 9

Gk(h)) =g, " ok(h), 1 £h < m.

In step (4) the kth pivot operation is completed by

~ (k) (k)

transforming B to an m by n matrix B e M(I) by ele-

mentary row operations other than row interchanges. More

specifically, B}(lk) = Er(lk), for 1 <h <k, and, if k < m,

1 «h <m. Let o, = (1,2,...,m)
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then for ¥k < h < m, Bék) is computed by multiplying B( )
by E(k)(k jk), then adding B( ) multipligd by —ﬁ(k)(h,jé),
~(k) Y (k) _
and finally dividing by B (k-1, e ) # 0: B =
~(k) oy L (k) ~(k) ) k ~(k

(k)

To assure that B e m(J), for & an arbitrary integral

domain, it must be shown that the division is possible in
d. This will be done in Theorem 2.2.1.4. However, as-

suming that J is a field, it has already been shown that

B(k) m(JI) is produced from B(k_l) by elementary row

operations in m(Jd) and so is row equivalent in m(J) to

B(k_l). This completes the discussion of the kth pivot

(k)

operation. We note that, since B is row equivalent to
k- . .

B( l), for k =1,2,...,9, then B = B(q) 1s obtained from

B(O) = A by elementary row operations in m(J4) and, hence,

B is row equivalent to A.

-

We now present Lwo lemmas which will be required for

Theorem 2.2.1.4. The first concerns the permutations I

(x)

k

and the second concerns the matrices B

K,17 " Yk )

Lemma 2.2.1.2, Let I , I_,...,I , where I. = (i
o 1 q k

€ Eﬁ, 0 =k < g, be the sequence of permutations generated
by Algorithm 2.2.1.1 for an m by n matrix A ¢ m(Jd). Then

1l < lk,k+l < lk,k+2 Lo lk,m < m, for each k: 0 <k < q.
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Proof: We have initially that 1 =< i < i <eee< i
R O,l 0,2 o,m

< m, since iO h = h, 1 <=h =«sm. If g > 0, suppose induc-
tively, for k: 0 <k = g, that 1 =< lk~l,k <t < lk—l,m < m.

Let t = ck(k) and recall that 1 1 =h <m.

k,h lk—l,ck(h)'

For Kk <h < t, ok(h) = h-1 and so lk,h = lk—l,h—l' Apply-

ing the i i hesis e i <
ng the inductive hypothesis we have lk,k+l < lk,k+2 <

ceeg 1 For £t < h = m, ck(h) = h and so i = i .

k,t’ k,h k-1,h

Again applying the inductive hypothesis we have ik £41 <

<eeeg i . Also, since we have by

lk,t+2 k,m <

kv < Yk, e+l

< lyo1,eel T

the previous ob ti h ' = ]
P v‘ s servations that lk’t ) lk—l,t—l

< g i < i < < i . Of

Thus, 1 441 K, t K, t+1 k,m

T, el

course, 1l < and 1 < m, completing the induc-

lk,k+l k,m
tive step.//

The next lemma, stated without proof, follows as a di-
rect consequence of Sylvester's determinant identity, as

stated in [GAF59].

Lemma 2.2.1.3. Tet M be an s + 2 by s + 2 matrix in m(J),

s 2 1. Then
M 1,...,s+l M 1,...,8,s+2 M 1,..... s+l M l,...,s8,8+2
1,...,8+1/° l,...,8,s8%2 l1,...,8,8+2) " \1,..c..,5+l
1,...,8 1,0e.,8%+2
_Dd(l,...,s)'M(l,...,s+2> a4
We now state and prove the key theorem of this subsec-

tion, establishing our earlier assertions about the mapping
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Pl defined by Algorithm 2.2.1.1.

Theorem 2.2.1.4. Tet A ¢ M(J), & an arbitrary integral do-

main, and suppose Tl(A) = (B,J,I). Then J =J_, I =1

A A’

and B = A, where A is an RE form in m(Jd) for A.

(o) (1)

Proof: Let A be m by n and let (B , B ,;..,B(q))

’

(Jo, J

l,...,Jq), and (IO, Il,;..,Iq) be the seguences

generated by T We have seen that, if A is a zero ma-

1°
trix, then Jd = g = JA, I=(l,...,m) = IA' and B = A = A,

trivially an RE form for A. For A nonzero, let JA = ‘

(jl,...,jr) and I_ = (i1,...,im). Then g > 0 and we let

A

J = (jl,...,jq) and I = (11,...,1m). Let the inductive

hypothesis for v: 0 < v < q be: J_ = (jl,...,jv) =

(jl,--.,jv), Iv _ (lv,l’.'.’lvim) = (lvllootllvl lv’v+ll
(v)

...,iv m), and B is row equivalent in W(J) to A and

is defined by:
r -
A(ll,...,lh_l,lh)

jl,...,jh_l,j r 1 £h «vand 1 £ g n

A(ll,...,iv,i

v .
58V (n, ) =4
v,h)
Jyreeerdyrd r V<h <mand 1 £ 3j < n.

L

For v = 0, the inductive hypothesis is satisfied vac-

(o)

uously by IO and JO. Also, B is trivially row equi-

valent in m(Jd) to A and is defined by : B(O)(h,j) = A(h,J)

h io h
= A(j) = A . '], for 0 = v «h cmand 1l < j < n. We
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suppose that the inductive hypothesis is true for v = k-1,
0 < k-1 < g, and show that it holds for v = k. Let jo =

i, = 0. We know that Jy 18 the least integer j: Je1 =

1., .00.,1 , 1 .
< j = n such that A(.l k=17 k l'£> = B(k l)(h,j) £ 0,

3 A
k-1 Jyreeerdy_qr3

for some h: Xk < h £« m. Hence, ¥ = k, since r = rank(a) =

i [.oc'i ,i
rank A[.l 'k 1 .k l,h]>
jllona'jk—l,j .

We first show that ji

il

k, and so jk and ik exist.

l,c‘o'
j. . We have rankla ?,
K l,...,]k

IR BRI | o
> rank<?[.l k=17 % l'g]) = k, for some h = k. How-

1l

Jpreeeedporr Ji

ever,

j, is the least j such that rank(érl""'m]> 2z k

Ll,...,j

and so jk < jé. If jé > then jk is an integer j:

]k’

S NSt i}

3., <3 <3 and so A<:l -1 .k‘l'g> = 8% m,5) = o,
Jpre eIk x

for all h: ¥ £« h < m. However, i for some h':

k = *k-1,n’
1

R | s 1 ; i9.0.0.,1 ,i
Xk <h' = m and so A(.l =17k l'b = A(:l k-1 .k # 0,
Jpreeveeeens -eeendy Jyreeees - e e Jp
a contradiction. Therefore, 3j,! =

We next show that i! = 1

X K We know that t = ck(k)

is the least integer h: k < h < m such that B(k_l)

i, eeaidi o, i
A .l k=17 &k lfh # 0. By Lemma 2.2.1.2 we also
Jyreeeeeeaenenedy

(h' jk) =

know that 1 =< lk_l'k < lk—l,k+l Lo oo lk—l,m < m. There-

. . s . . L < . i,
fore, lk—l,t is the least integer i1: 1 < 1 m and i # 1
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R N

i
1 <u < k, such that A<. ) # 0, and so i =

jl'..‘....’jk k-—l,t
lk' Since lk,u = lk—l,ck(u) = lk—l,u' for 1 < u < k, and
since lk,k = lk—l,ck(k) = lk—l,t = lk' we have that Ik =
(ll""llkllk }+l,...’lk'm).

We now show that B(k) satisfies the inductive hypoth-
esis. For 1 <h <k, B(k) = g(k) = B(k—l? = B(k_l),

h h o'k(h) h
PR |
giving B( )(h j) —‘A< 1’ 4h j>, l <j <«<n. For h=k%k
'Jl ..”Jh_l’J
(k) _ =) _ _(k-1) _ _(k-1) (k) Gy o -

we have Bk = Bk = BO (k) Bt and so B (k,3) =

. \ ] 1
1 1 i
— l"’l - ’ - ,t " : LA A 4
p® 1) 04y o A<:1 ‘k 1 .k 1 ) _ A<.1 k-1’ %)
jll.."jk-—l,] jll"'ljk_l'j

k) )

1 < j £ n. Consider rows Bk+l' "'Bm_ , assuming k < m.
' Recall that the elementary row operations in m(Jd) trans-

forming row h: Xk <h = m of B k) compute each of the ele-

ments of Bék) by : B(k)(h,j) =[§(k)(k Jk) (k (h,3)
g(k)(h,jk)-g(k)( }/B (k-1, k l) 1l <j <n. Letting
t = ck(k) and s = ck(h), thls becomes: B(k)(h,j) =

~1)

[B(k_l) (tljk) ’B(k—l) (Slj)"‘B(k (S,jk) .B(k—l) (tlj)}
i

[-oo’-l i,ooo’i ;i
/B(k—l)(k”l'jk-l) =[A<jl k-1'"k-1, £> A<.1 k-1""k-1,s

e KRR W R N SRR S R WS I B G R ]
My 3 ] A\ Speq 3 72\ '
1[ ooooooo * o 0 0oy k _llcoo' k-'l, jl’...ljk—l
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= i , if we apply Lemma 2.2.1.3 to the

Noting that lk_l't "

i ,ee.,1 ,1
matrix M = A .l .k .k Lis , we obtain the identity:
31'°~-r3k'3

S I § i sl , L i,..0,1 1
A<:l ,£>-A<.l 'k 1 'k 1,s —A(,l k-1""k lf;>.
Jpreeerdy Jprereedpqrd jl,............,]k
(Tl"......'1k> (Tl,...,lk_l R L
A\ . . .} = Ay . LAY L . . .
Jpreeer Iy Jyreoerdka Jpreerdyr
Note that this applies only for k > 1; for k = 1, we know

Ce o , :
the divisions by B( )(O,]O) = 1, taken as a convention

here, are exact. Thus, all divisions are exact in J and

5 ()

SO (h,j) ¢ &, for J an arbitrary integral domain, and

(k) ll""'lk’lk-l,ok(h)\ _

(h,3) = Al.

in fact, B . .
jl""’jk’]

i 'coo[i ,i
A jl jk jk'h , k «h cmand 1 £ j < n. All elementary
1"k’ .
row operations are defined in m(J) and B(k) is row equiv-
. (k-1) .
alent in m(J4) to B , and hence to A. This-completes

the inductive step.

We have now established that
r‘
ll' o @ » 'lh-—-l’l

Al L . .h , 1 <h<gandl =3j <n
Jyre-erIp-nr?

S T
al. 4 4% g <hs<mand 1 =j < n.

B(q) (hlj) = <

31'-’~'3qr]

-~

Also, we know that B(q)(h,j) =0, for h >g and 1 < j < n.

It follows readily that B(q) is an RE matrix with RE
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| (a)

sequence (jl,...,jq) and, hence, rank(B ) = g. However,
p(@) . _ - ra _ (a)

is row equivalent to A and so r = rank(A) = rank(B )
= g. Thus, from the definition of B(q)wgiven above, we
clearly have B(q) = B(r) = A, an RE form for A. Also,
J = (jl,...,jr) = JA'

Finally, we know from Lemma 2.2.1.2 that 1 < lr+2
<reoe< 1', since i' =i ., for r < u < m. This is the

m u ,

ordering of the last m - r components of I which would

make I the minimal elemert of PA. Hence, I = IA.// -

2.2.2. The Computation of a Reduced Row Echelon Form by

Exact Division

The effective mapping ' such that T'(A) = A, for every
A e (J), will be defined by the following algorithm. It
will be indicated in the subsequent discussion that T is,
in fact, an algorithm or effective mapping. Ié will then
be shown in a sequence of theorems that T'(A) is a RRE form

in m(4), I an arbitrary integral domain, and that I'(dA) = A.

Algorithm 2.2.2.1. Transforming a Matrix over an Integral

Domain J to Reduced Row Echelon Form by Exact Division

Input: An m by n matrix A ¢ Mh(J).

Output: The m by n matrix C ¢ M(Jd), where C = A.
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(1) [Triangularize by exact division.] Compute T (A) =

1
(B, J, I) by Algorithm 2.2.1.1.

(2) [Initialize the diagonalization.] C « B; r « rank(3);
if r = 0 or ¥ = 1, return C; otherwise, have J =
(jl,...,]r); ie«r; D« B(r,jr).

(3) [Diagonalize by exact division.] 1 « i-1; E «~ C(i,ji);

for t = i+l,....r, set F[t] «~ C(i,jt); C; « DeC.i for

t = i+l,...,r, compute C, ~ C~F[t]-C.: C,~ Ci/E; if

i >1, go to (3); return C.

This algorithm is, in fact, an algorithm or effective -

mapping T of Mm(J) into m(JI), which can be seen in the fol-

lowing discussion. B = A, J = JA' and I = IA are com-
puted in step (1) for any A ¢ m(d) by Algorithm 2.2.1.1

and so step (1) is effective. Step (2) is effective,
terminating with C = B = R, if A is a zero matrix or if

rank(A) = 1; otherwise, it initializes step (3). Let A-

be m by n and JA = (jl""’jr)' In step (3) a sequence

of matrices i1s generated: C(O), C(l),...,c(r—l), where

(o) C(r-l)

o = B and C = (1) (i-1),

. Each C is computed from C

0 <i < r-1l, by a finite sequence of elementary row oper-

ations in m(Jd), which computation may be summarized as
i.,..0.,1
1’ r

14

follows. Note that B(r,jr) = i(r,jr) =d=A 5 3
1"y

where IA = (ll,...,lm). For 1 < hAs m, h # r-i,
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(1) _ (i-1) ‘ R O
Ch = Ch , and for h = r~i: Cr—i
(i-1) r (i-1) o {i-1) (i-1) .
. i , -1, . / -
[% C. i $t=r—l+l C (r-1i jt) Ct /C (r l’jr—i)’
Thus, to obtain C(l) from C(l_l) we multiply row r - i by
- (i-1) -
d, add row t multiplied by - C (r—l,jt), for t =
(i-1)

r-i+l,...,r, and then divide by C (r—-i,jr ). All ele-

i
mentary row operations are defined in m(Jd), except pos-
sibly the divisions. It will be shown below that, for

1 <i < r-1, C(¥_l)

(r—i,jr_i) # 0 and in Theorem 2.2.2.4
it will be seen that the division is possible in 4, for

d an arbitrary integral domain. For the present, however,

we allow that 4 may be raquired to be a field.

Tt will now be shown that T is an effective mapping

of m(Jd) into m(I) and that C = T'(A) is a RRE matrix in

A = A, a zero matrix and

il

m(d). If r = rank(a) =0, C

-

an RRE matrix trivially. Suppose r = 1. Note that row

¢ satisfies: C(r,j.) = C(O)
r r

Cc(r,j) = C(o)(r,j) = a(r,j) =0, for 1 < 3j < jr' Also,

(r,3,) = Ei(r,jr) = d # 0 and

(o) - . .
C. = Ai are zero, r < i «<m, if r «m. If

rows C, =
i
r =1, then ¢ = T'(a) is defined and is an RRE matrix in
m(d). Suppose r > 1 and let the inductive hypothesis for
(v) _ =
Ch = Ah, for r-v < h < r,
(h,j) =0, 1 <3 <«

vei 0 £ v <« v be: for 1 £« h < r-v,

(v) , 3 (v) . .
o] (h,jh) =d # 0 and C Iy, and j = o
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C(V)

n is a zero row. This

h <t <r; and for r <h = m,
hypothesis is clearly true for v = 0. Assuming it is
true for v = k-1, 0 <k < r-1, it will be shown to hold
for v = k.

Since Cék) = Cék—l), for 1 <h =m, h #r-k, we

have only to show that row Cr satisfies the hypthesis.

-k

Letting z = r-k, we know that, for 1 < j =< n:

¥ (2,9) = [ac® Y @p-st_ L % (23 (e,9)]
e (2,5 ).
For 1 = 3j <3, c(k‘l)(z,j) = a(z,j) = 0 and c(k"l)(t,i) = 0,

z <t < r, by the inductive hypothesis, since jz < jt'

(%) (k-1)

J,’-
< t Y ° h h ’ ,' — (Y " -
Z < x Therefore (? j) {d 0-3 C (z Jl) 0]

/C(k—l)(z,jz) =0, for 1 = j < jz. For j = jz we have as

above that C(k—l)(t,jz) = (0, for z < t £ r and so

¢® 2,5 = [ac®™ Va5 ) -5 ¥z 00]

t=gz+]1 ;
(k-1) . . . .
/C (z,jz) = d. Finally, for j = Jyr 2 <wsr, we have

by the inductive hypothesis that =)

(k-1)

(t,ju) = 0,

z <t <r and t # u, and C (t,3,) = d, for t = u.

t
k), ., _ [ _(k-1) : (k-1) . ]
Hence, C (z,]u) = {d4-C (Z,ju) C (Z,ju) d
(k-1) ) . .
/C (Z,ju) = 0, z <u < r. This completes the induc-

tive step. These results are summarized in the following

theorem.
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N = N(r—l)' and let a',...,cé be the seduence of permuta-

1

tions employed to define Iy Of course, rank{(M) = r,

i.,.0.,1
since A .l T ) #£0. Tet I = (3',...,3') and for
Foreees] M 1" r
1 r
convenience let Jopyg =9 and P = Opyy Oy 0 <k <r.

l,...,v, p;\/(V“f'l): ---:pv(r)}

We first show that M(v) = B(v)[ . .
. jl’...’.....’..."Jr'jr-}-l

i
o)
Q

Il
=
Al
o]
Qs

for 0O < v < r. For v = (Q, note that Po

(o)

hence po(z) = iz, l <z <r. So, M =M = -

ST | | '
‘A[.l T = B(O)Qo(l)"f"po(r{]. Assume inductively,-
]1"..,Jr+l Jll...’jr+l

for some k: 0 <« k¥ < r, that M(k_l) = B(k_l)

[l,...'k—l'pk-l(k)'""pk—l(F)] Note

(k—l)(
jl[a.o ------ ® 600000 008 e ’jr’l-l

that M z,2) =

B (z,jz) # 0, for 1 < z <k and so jé =z, 1 <2z <k.

il

Note that p _,(k) = o cero (k)

k (O 41
(k-1)

ck(k), for 1 <k < r.

(k-1)

So, M (k,k) = B (k-1)

B (o

(pp_y () 03,)

k) (k)

(k ) # 0 is the kth pivot for computing M and no

'Jk
row interchanges are performed, making Gi = (1,2,...,1),

(k)( y (E-1)

the identity in Pr' For 1 <z <k, M z,h) = (z,h)=

B(k—l)(z,jh) _ B(k)(z:jh)' 1 <h <r+l. For z = k,
™ oe,m) = w Y om) = B(k"l)(pk_l(k)'jh) =
B(k_l)(ok(k)rjh) = B(k)(k,jh), 1l <h < r+l. Consider z:
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Theorem 2.2.2.2. For every A ¢ Mm(Jd), I an integral do-

main, T(A) = ¢ is defined and is an RRE matrix in m(dy) .

If A is nonzero with JA = (jl,...,jr) and IA = (11,...,1m),

N i ’o.o’i
then C has diagonal elements C(i,ji) = A .l

Jllooo[jr

1 <i < r.

It will be for us to show in Theorem 2.2.2.4 that
I'(a) is obtained by elementary row operations in m(J),
for § an arbitrary integral domain, and that, in fact,

r(a) = A. We first prove the following lemma.

Lemma 2.2.2.3. Let A be an m by n ngnzero matrix in m(J)

with r = rank(a) < n. Let JA = (]l,..f,jr) and IA =

ll,...,ir )
(i,,...,1 ) and define a matrix M = A}. , N
l m Jhl"..'jrlj

for some j: 1 < j < n. If N =T(M) and ¢ = I'(a), then
N = C{%,.....:,r'] .
31,---,]r,j

proof: ret 5800, 8, ..., 80 ana c©), o)

be the sequences of matrices generated by Algorithm 2.2.2.1,

where B(O) = A, C(O) = B(r) = ﬁ, and C = C(r—l), and let

GpreeerO be the sequence of permutations employed to de-

fine IA' Analogously, let M(O), M(l),...,M(r) and N(O),

1 - .
N( ),.,.,N(r 1) be the sequences of matrices generated by

(o) N = )

Algorithm 2.2.2.1, where M = M, = ﬁ, and
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k <z £ r and let z' = Qk+l--.gr(Z). For 1 £ h < r+l we
obtain:
1w (z,m) = [M(k“l)(k,k)-m(k"“(z,h)-—M(k"l)(z,k)-M(k"l) (k,h)]
) 1, xe1) = [B(k“l’<p 0,50 G 2),5-
s (o 250 8% o, Jh)]/s‘k“l)(k-l,jk_l>
) (o 00,3085 (o (21,3085 (6 (21),3)-
k-~ k- .
! l’<ck(k>,3h:]/3‘ V1,9, ) = 3% zr5,) =
8% (o (2),4,).

(k) _ B(k)lil:'...’k’pk(k+l)'..,p (r)

jl, ................ ' ], completing

Thus, M el

the inductive step. Hence, M(r) = Bfr){%""'r. ].
' Jpreeer ey

(v) (V)[l' 'E ]
We next show that N = C . . , for
Jyreeerdenn
(o) (r) _

0 v < r-1. By definition, N = M (r)[ reess ]
jl'."'3r+1

= C(o)[},...,r. }. Assume inductively that, for
Jpreeerdenn

0 <k < r-1, N(k_l) = C(k-l)[%""'r. ]. Fer 1 <z < r
Jprreerdenn

and z # s = r-k, we'havg N(k)(z,h) = N(k_l)(z,h) =

C(k_l)(z,jh) = C(k)(z,jh), l <h < r+l. We need only show
that N( )( ,h) = C(k)(s,jh), for 1 < h < r+l. ©Noting that
io,eee,1
e = N(O)(r,r) = B(r)(r,j ) = A ,1 F1=4d, we have
r Jyreesed,
80 (o,m) =[een® D (o,my-st__ w0 (s, 6y w7 ()
/N(k~l)(s,s) = {d-c(k—l)(s.jh)*2i=S+lC(k_l)(s,jt)-
c(k_l)(t,jh)J/C(k—l)(s,js) ) (s, 3y,) -
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(k) C(k)[l,...,r

Thus, N = . . ], completing the inductive
Jpreerden

step. Thus, N = N(r—l) = c(r~l)[%,...,r) ] = C[%""'r. .].
Jpreeer gy Jyreerrdprd

The main theorem of this subsection can now be proved.

Theorem 2.2.2.4. For every A ¢ m(Jd), & an arbitrary in-

tegral domain, I'(A) is a RRE form in m(J) for A and, in

fact, T(A) = A.

Proof: Let ¢ = T'(a). If A i1s a zero matrix, then C = A = X

is trivially a RRE form for A. Suppose A is m by n and non-
[

zero, with r = rank(a), JA = (jl,...,jr), and IA = (11,...,1m).

Recall from Theorem 2.1.2.1 that 3 is a RRE matrix. If

r = n, then jh = h, for 1 < h < r and the only nonzero ele-

il,...,ir

ments of C are the diagonal elements C(h,h) = A 3 :
l"‘ll r

In this case, C = A, all divisions in step (3) of Algorithm
2.2.2.1 are exact, and C is derived from A by elementary

row operations in m(J).

ll"'°'ir
Suppose r < n. Let M = A[, . .], for some j:
Jyreeerdprd

1 <3j £n. By Lemma 2.2.2.3 we know that N = T (M) =

C %,...,r. .|. In particular, ©N(h,h) = c(h,3j,) =
Jl"‘vrjrlj h

i,-c.[i
A .1 t #0, 1 £h < r. Letd be a field containing

Jpreeerdy
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lgae i
1K~51‘- .

d. By dividing each row of N by A 5 5 in M(F) we
17" r

obtain N' ¢ M(3) by elementary row operations in m(3J)

from M, where N' is defined by:

r

1, if h=u=l1l,2,...,r

N'(h,u) =1 C(h, i) -, for 1 <«h < r and u = r+l
altreris |
Jl"..’jr

LO, otherwise.

Hence, N' is a RRE form in m(%) for M. Moreover, we know
that, by Cramer's Rule, M can be transformed by elementary

row operations in m(Z) to a matrix N" ¢ m(3JF) defined by:

r‘
1, if h=uv=1,2,....,¢

Ml'n..---o-.-oo-.o.oo-lr
1,...,h=-1,r+1,h+1,...,r
; , for 1 £h < r and
M(l,..-,r)
l,...,r . U':-‘r“’r'l

0, otherwise.

N"(h,u) =4

.
N' is also a RRE form in {3 for M.

It is shown in Chapter 7 of [BIG65] that every matrix
in m(¥, ¥ a field, has exactly one RRE form with diagonal
elements equal to unity. Therefore, N' = N" and so, for

1 <h < r,

M(l,........... ...... ..,r>

c(h,i) - \1,...,h=1,r+l,h+l,..., T
il,...,i l1,..0.,1

A o M (l,...,r)

Jyereeedy
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(1,...rr> il,...,ir (l,...................,r>

ince M = A\, . and M

S ¢ l'-..,r Jll-coijr l,...,h—l,r+l,h+l,...,r
il;oona‘o.ootuanocnonoli

= A , we have that C(h,Jj) =

Jprems gt dneyr o e

ll’oo--.oaco.o..o‘-ooo’i

t , for 1 «h < r and 1 < j < n.

ARV LS L WS R

All other elements of C are known to be zero. ,6 Hence, the
single division performed in step (3) of Algorithm 2.2.2.1
on each element must be exact. Thus, for every A ¢ Wm(J),
r@a) = ¢ = a by definition of A and T'(A) is a RRE form in

m(d) for A.// .

= [
We will call A the determinantal RRE form for A, for every

A e ().
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Section 2.3. The Commutativity of an Induced Mapping

with the Effective Mapping T

Let Jl and JZ be integral domains and suppose 8 is a
homomorphism of &l to Jz. 8 can be extended to a mapping
' of m(Jl) to m(J2)as follows. If A ¢ m(&i), define

A* = §'(A) such that each element A*(i,j) of A* satisfies:
A*(i,3) = 6(a(i,3j)). For simplicity let 8', called the
mapping induced by 8, also be denoted by 6. In this sec-
tion the equaliéy of oT'(A) and T'e(A) is discussed, for

any A e m(&l), and sufficient conditions for this equality

derived. In the case that 6T'(A) = To(a), we will say that

6 is a commuting induceé mapping for A; otherwise, 6 will

be called a noncommuting induced mapping for A.

We begin with the following lemma.

-

Lemma 2.3.1 ILet 6 be an induced mapping of m(gl) to m(J2),

where Jl and 32 are integral domains, and let A* = ¢(a),

for A ¢ m(gl). Then rank (A*) o rank (a).

Proof: Let s = rank(A*). Then there exists an s by s
submatrix B* such that det(B*) # 0, where B*¥ = g(B) for

the corresponding submatrix B of A. Hence, det(B) # 0,

for otherwise we would have det(B*) = det(s8(B)) = o(det(B))
= 6(0) = 0, a contradiction. Therefore, r = rank(A) =

rank (B) = rank(B*) = rank(A*) = s.//
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This lemma will now be used to prove the following

theorem, which will be employed }n the algorithms of Chapter

4.

Theorem 2.3.2 Let 8 be an induced mapping of m(&l) to
m(&z). Let A ¢ m(&l), A* = g(A), r = rank(A), and r* =

rank (A*). Then either r > r* or (JA,IA) < (JA*'IA*)°

Proof: If A is a zero matrix, then JA =g = JA* and IA =

(L,2,...,m) =1 and so (JA'IA) =

Ak ). Suppose A

JA*' IA*

is m by n and nonzero. By Lemma 2.3.1, r 2 r*, Supposing’

t = r*, it ' - T ’ .
hat r r it need only be shown that (JA A) < (JA* IA*)
1., = ] '.ol[‘ = l*,--.'l* . . -
Let TA (jl jr) and JA* (jl jr) By Lemma 2.3.1
we know that ranklA l,...,m > rank Aﬁl""'m = i,
1,...,j§ l,...,j;

Since ji is the least integer j: 1 £ 3 < n such that rank(A

1,...,m . . . . . .
= * & =~
[1"..’;]> 1, clearly J, = 3%. Hence, 1f 3y < 3t for

-

some i: 1 < i < r, then J. < J., and so (JA,IA) < (JA*CI ).

A A* A*
Suppose JA = JA*' If IA = IA*, we are finished, since then
(JA,IA) = (JA*’IA*)' Hence, assume IA # IA*' Let IA =
(il,...,im) and IA* = (ii,...,i;) and suppose u is the

least integer, 1 < u < m, such that iu # iz. But then

u < r; so, ia is the least integer i: 1 < i <« m and i # ih'
i*,-no[i* ,jm
1 u-1

. # 0. Hence,
* *
jl"oo.--olju

1l < h < u, such that A¥*

il""'iu-—l'iz
Al : # 0. Since i 1is the least integer i:
jllnbuo.o--'jll u



47

1 ,...,lu_l,l

1 < h < u, such that A{. # 0,

1 <i <mandi#i .
jl'.......’Ju

hl

that 1i i*, ‘hus, I I and so (J_.,1I
we see a g < ik Thus IA < I,y ( A’ A) <

%

(Tpsr Tpu) /7

ax’
The next theorem gives a sufficient céndition for the
equality of T'e(A) and oT'(a), hence, a sufficient condition

for a given induced mapping to be a commuting mapping for A.

Theorem 2.3.3 For every A ¢ m(&l) and any induced mapping

8 of M(J;) to m(J,), (A%) = (B)* whenever (J,.I.) = (J ).

ax’ Tax

Proof: Suppose (J_,I_ ) = (JA*'iA*)' The theorem is trivially

J
A A

true for A a zero matrix; so, assume A is nonzero and m by

n. Let JA = JA* = (jl,...,jr) and IA = IA* = (11,...,1m).
Then, for 1 «<h < r and 1 < j < n, (i)*(h,j) = (i(h,j))* =

il'""""""""""ir e il’ ........... I £

L O o L W R R

[«

(A%) (h,j). Also, for r <« h <mand 1 < 3j < n, (A)*(h,3) = 0

-

(Xi)(h,j). Thus, we have shown that (K)* = (Ki).//

The following theorem provides another sufficient con-

dition for an induced mapping to be commuting.

Theorem 2.3.4 Let A be an m by n nonzero matrix in m(&l)

: - (4 : = (3 ; ’ * =
with JA (jl,...,jr) and IA (ll""'lm) and let A 8(a),
where ¢ is an induced mapping of m(Jl) to m(gz). Then
i i
l' - o ¢ k
' = , i if A*| . ) 0, for
(JA IA) (JA* IA*) if and only if A Jpree #

1l <k < r.
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Proof: Let JA* = (ji,...,j;) and IA* = (ii‘:,...,lr’;). TO
show necessity, we simply observe that, if (J ,IA) =
l ’-o-,l
- 1 k\ _
(JA*' A*)' then r = s and A* 3 e =
% * 1 k
Toeeendg
A*| L % # 0, for 1 <k < r. To show sufficiency,
Jyr-err g
suppose that (J ,I ) # (JA*' A*)' Then applying Theorem
2.3.2 either 1) r > r*, or 2) r = r* and JA <-JA*' or 3)
] * o=
r r*, JA JA*' and IA < IA*" If 1) holds, clearly
i—l’-oa’ir
A*{ , = 0. If 2) holds, let t be the least integer
jll"'ljr ¢
K Lok . .
k such that Iy # k- Then I, < 3% and so
il,...,it l1,...,m
rank|a*| . . < rank|A* 1 . < t; hence,
jl'...’jt ,oao,jt
il"..'i‘t
A*{ , = 0. Finally, if 3) holds, let t be the
Jyeeeendy
least integer k such that ik # iﬁ, where in fact, it < i;.
1,000, 1 ix, ..., ix _,1i
Then A* ,l .t = A% ,i t-1 x ] = 0 since iz is
jl"o.,jt jl'-oo-.o.o’jt

the least i: 1 <1 <m and i # iu' 1l <u < t, such that

*, .., 1%

A* ji t- lj* # 0. Thus, it has been shown that, if
l, * e s 800 0 t
ll[ LY o,lk

A* j . = 0, proving sufficiency.//
e ll LA 4 k

A*)' then there is a k: 1 < k < r such that

Let an induced mapping 6 be rejected if (JA A) #

(JA*"A*) and accepted if (JA A) = (JA*'IA*)' Thus, there

may be commuting mappings 8§ which are also rejected mappings.
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t 10
For example, let A =10 t 1 and let t be a nonzero element
10t
such that 6(t) = 0 and t3 + 1 &~ 0. Then JA = JA* = (1,2,3);
but T, = (1,2,3) and I,, = (3,1,2). Hence, 8 is a rejected

mapping for A. Yet, A and A* are diagonal'matrices with di-
agonal elements t3 + 1 and 1, respectively, and so (X)* = Zﬁ
since e(t3+l) = 1. Thus, 6§ is also a commuting mapping
for A. A specific example of such a mapping is found in
the next section; that is, take 6 to be a mod-p mapping
wp' p prime, and take t = p. |

We note that every non—commut%ng mapping is a rejecteé
mapping. Theorem 2.3.3, therefore, provides a test for de-
tecting rejected mappings for a matrix A and, hence, a suf-
ficient criterion for eliminating all non-commuting mappings
for A. This critefion will be employed in the algorithms

of Chapter 4. By Theorem 2.3.4, § is an accepted mapping

-

# 0, for 1 <k < 1.

i ,...,ik

for A if and only if A% .
Jpeeeerdy

This fact will be employed in subsequent sections to bound

the number of rejected mappings for a matrix A.
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Section 2.4 Reduction Modulo a Prime and the Chinese Remainder

Theorem For Matrices

Let T be the ring of integers and I[xl,...,xsj be the
ring of polynominals in s variables over I. For any prime
p eI, let @p be the unique homomorphism of I onto GF(p),
the finite field of p elements, such that cb(q) = a, for
0 <a <p. Let @é be the homomorphism of I[x] onto GF(p)[x]

induced by qb; that is, for A =AZP a, x" e I[x7, gé(A) =

i=0"1
P

i v
lzogb(ai)x . Denote qb simply by @p. @p can be extended

to I[xl,...,xsj, for any s > 1, in the following way. Sup-

pose the homomorphism qb has been defined on I[xl,...,xs_l].
n i

te t , f XeveoosX 1, =2, X,
Note that or any A e I[xl x.] A(xl XS) “1=OA1XS

where each A, e Ifx.,...,x since Ifx.,...,x 1 £
i Y ! s-l]' [ 1’ e

be the homomorphism of

r ‘
ILXl""'Xs—l] [xS]. Thus, let

v T -

I[Xl,...,xs] onto GF(p)[xl,...,xS induced by Gb; that is,

' - 59 . :
for A ¢ I[xl,...,xsj, q@(A) 2: _o Gb(Ai)XS. Again denote

mé by - Each such homomorphism @b is called a mod-p

homomorphism.

Wwe define the mapping norm on I and I[x ..,XSW, s =2 1,

1’ .
as follows. For a ¢ I, let norm(a) = |a| and, for A =
Z@ a xi e I[x], let norm(a) = 7? norm(a.). Next we de-
1=0 "1 ! Ti=0 i

fine recursively the mapping norm on I[x coxx J, s > 1.
S

1

i
For A = Z? A.X ¢ I[xl,...,xS], where each A e I[xl,...,x

1=071%s s--lj'



51

let norm(a) = 3N norm(Ai). The mapping norm has the important

1=0
properties that, for A, B in I[xl,...,xsj or in I, norm(A+B)
< norm(a) + norm(B) and norm(A-B) < norm(A) - norm(B). Note
that, for A ¢ I[xl,...,xsj, s 2 1, each integer coefficient

of A is bounded in magnitude by norm(aA). The mappings @p

and norm are discussed in [COG69b].

Suppose pl,...,p are distinct odd primes and let

t .
a; e GF(pi), 1l i = t. By the Chinese Remainder Theorem,

there is a unigque a ¢ I such that a, = o (a), for 1 <1 < t,
, i )
and —pl---pt/2 <a<p,---p/2. (See [COGEOD] or [KNDE9],
)

Section 4.3.2) A seqguence (al,...,at), where a, e GF(pi),

1 i < t, is called a modular representation of an integer

a ¢ I if mpk(a) =a. for 1 sk < t, and wpl"°pt/2 < a < pl"'pt/z.
Hence, by the Chinese Remainder Theorem, (al,...,at) uniquely
determines a. A method for computing a ¢ I from a modular

representation (a ,...,at) with respect to the distinct odd

1
primes p,,...,p, is as follows. Let bl = a; e I, if a, < pl/z,
and bl = al—pl, otherwise. Then, if t > 1, for i = 2, 3,...,t,
. . -1
perform the following computations: q; = [¢p (pl---pi_l)]
i
(ai - @pi(bi_l)) in GF(pi); next qi = q, ~ P, if q, = pi/2,

and qi = dq; otherwise; then bi = bi—l +oq; 1

the conclusion of these computations we have a = bt' This

method is referred to as Garner's Method. (See [TAI6l] or

[KND69 7], Section 4.3.2)
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We can extend Garner's Method and the concept of a mod-
ular representation to I[xl,...,xsj as follows. A sequence
+---.B ), where B, GF (p. X.ose0..% 1, 1 <1 t,
(Bl t) i€ (}l) [ 1 S] < and

the p, are distinct odd primes, is called a modular repre-—

sentation of a polynomial A ¢ I[x.,...,x ] if o (A) = B,
1 s . Py k

for 1 <k < t, and there is a bound ¢ on the magnitudes of
the integer coefficients of A such that c < pl'°'pt/2.

Garner's Method can be extended to I[x ..,xs], for all

17"
1, let (B.,...,B )

s 21, in the following way. For s = 1 ¢

be a modular representation of A = Z? xT e I[x] with

a,
1=0 "1

. . . .th
respect to odd primes pl,...,pt. For 0 < 1 <« n, the 1

coefficients of B]""'Bt form a modular representation of

a; with respect to primes Ppre-esPy and, herce, a, may be

computed from these coefficients by Garner's Method for the

integers. This constitutes Garner's Method for I[x].

Suppose Garner's Method has been defined for

I[xl,... ], s > 1, such that B ¢ ILxl,...,xS_l] can be

X
'Tg-1

computed from a modular representation for B. Let A =

Z;zoAixs e I[xl,...,xsj, where each Ai e I[xl,...,xs_l],
have the modular representation (Bl""'Bt) with respect
to odd primes PyresesiPy- Garner's Method for I[xl,...,xS]

]

consists simply in applying Garner's Method for I[Xl,...,xs_l

recursively to the coefficients of Bl""Bf' This is possible,
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. . .th o
since, for O < i < n, the i coefficients of Bl""’Bt
form a modular representation of Ai with respect to

PyressPys and this modular representation uniquely de-

termines Ai'

These concepts can be extended to matrices in a
straightforward way. Let M be an m by n matrix in m(I[xl,...,xS])
and let qb be a mod-p homomorph;sm on I[xl,...,xsj. The map-
ping gé of m(I[xl,...,xs]) ?nto m(GF(p)[xl,...,xS]) in-
duced by Qb is defined such that N = q%(M) if and only if _
N{(i,7) :,Ub(M(i'j))’ for 1 <i < m a?d 1 < j «n. The

mod-p mapping q% of m(1) onto m(GF(p)) is defined anal-

ogously. Again we denote qé by o .

P
. (1) (t)
We say that a sequence of matrices (N yese N ),
(%) - | ,.
where N ¢ m(GF(pk)Lxl,...,xS]), 1 <k < t, and the Py

are distinct odd primes, is a modular representation of a

_ )

matrix M ¢ Mm(I[x ,...,xs]) if mp‘(M) , for 1 < k < t,
) k

and there is a bound ¢ on the magnitudes of the integer co-

1

efficients of the elements of M such that c < pl-'°pt/2.

Given such a modular representation for an m by n matrix

M ¢ m(I[xl,...,x 1), we note that, for 1 <i sm and 1 < j < n,
S

(1) (t)

(™ (i,9),...,N (i,3)) is a modular representation for
M(i,j) with respect to the primes pl,...,pt. Hence, Garner's

Method is extended to m(I[xl,...,xS]) by applying Garner's




54

Method for I[xl,...,xs] elementwise to N(l),...,N(t). The

definition of a modular representation and Garner's Method
are extended to nn(I) similarly.
Let ¢ 2 max ‘{norm(M(i,j))} , for an m by n matrix

l<i<m
l<j<n

M ¢ m(I[xl,...,xS]). Note that ¢ bounds the magnitude of
the integer coefficients of each M(i,j). Hence, if Ppse--sPy
are distinct odd primes such that ¢ < pl~'°pt/2, then the
sequence (o (M),...,0_ (M)) of matrices, where o (M)
P. b, p
1 t k
e m(GF(pk)[xl,.Q.,xs]), is a modular representation of M,

from which M may be constructed by Garner's Method. Sim-

ilarly for M ¢ I (I).

)

Given an m by n nonzero matrix A in m(I) or m(I[xl,...,x 1)
) S

with J_ = (jl,...,jr)‘anﬁ IA = (i

ce.,1 ), we wish to find
A m

1’
an upper bound on the number of primes required to obtain
a modular representation of ;, from which to cgnstruct Z by

Garner's Method. From Theorem 2.1.2.1 we know that the only

possibly nonzero elements of A are X(i,j) =

R R i
A (. . .o . > , 1 <1 < r and ji < j < n and
Jqreeerdyqrdedyqre--rds ;

j # ju' i «u < r. Thus, bounds on the norms of these elements
will have to be found, which will require bounds on the norms

of determinants. The following lemma gives one such bound.

Lemma 2.4.1 For every m by m matrix B in m(I) or in
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m(I[xl,...,xS]).

norm(det(B)) < m! -1 W max norm{(B(i,73)).

1=1
* l<j<m
Proof: Let an arbitrary element (tl,...,tm) e P be desig-
nated by 7. Since det(B) = 2, sgn(r) - B(l,tl)--~B(m,tm),
Ter

norm(det(B)) < 2. norm(B(l,tl)--~B(m,tm)) <

Tef
m

Z H?*l norm(B(i,ti)) < m!-max Hm_ norm(B(i,ti)) <
Tel A Tef
m m

T=l max norm(B(i,73)).//

Tep . lsjam
m v

m!'HT 1 max norm(B(i,ti)) = m!-q]

Using this lemma, a different bound on the norm of a
determinant 1is derived and will be applied in Theorem 2.4.3

to certain elements of A.

Lemma 2.4.2 Let B be an m by m matrix in m(I) or in n

(I[xl,...,xsj). Then, for any integer i: 1 <1 < m,
norm(det (B)) < m!-/ max norm(B(k, 1))\ - HT e )/min e, ,
h=1"h h
1<ks=m I<cham
where e, = 1 + max norm(B(h,t)), 1 =h < m.
l<tam
t#£1

Proof: From the Laplace expansion theorem:

l,...,k—l,k+l,...,m)

itk .
det (B) = Zizl (-1) B(k,1) B(l,...,i~l,i+l,...,m

Thus, norm{det(B))

) 1,...,k-1,k+1,...,m
< ZZ=1 norm (B(k,i)) norm(?(l,...,i—l,i+l,...,m))

l,...,kml,k+l,...,m>>)

< m- (max norm(B(k,l))).(max norm(B(l,...,i-l,i+1,...,m

1<k «m 1 <k gm
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< m-f- [ max (m-lﬂﬁ?ﬁl max norm(B(h,t)) .

1<k <m hik 1<t am

t#i
where f = max norm(B(k,i)), applying Lemma 2.4.1. Let
l<k=m

eh = l+max norm(B(h,t)), 1 <« h <« m. Then

l<t«<m

t#AL

. , m m .
norm{det(B)) < m!-f-max i e, <mi-f- (1 e )/min e .//
h=1 "h h=1 "h h
1<k <m itk 1 <h <m

The following theorem obtains bounds on the norms of the

possibly nonzero elements of the determinantal RRE form X.

Theorem 2.4.3 For A an m by n nonzeyro matrix in m(I) or in

m(I[xl,...,xS])w1th JA = (jl,...,jr) and IA = (11,. o

for 1 £« i < r and 1l < 3J < n,

norm(Z(i,j)) < r! [ max norm(A(ik,j))”- (Hf_l eh)/min e
1<k <r = l<hsr
where e, = 1 + max norm(A(i, ,j.)), 1 <h < r.
h h -t
l<t<r

t#L

Proof: This theorem follows readily if, for 1 < i < r and

1 <j <« n, we apply Lemma 2.4.2 to the matrix

L ettt aann ;1 _
B = A .l . .. .r , noting that A(i,j) = det(B).//
Jpreeerdioar Il Jy
Let & be the maximum of the bounds of Theorem 2.4.3.
Then § could be used to obtain a modular representation of

Z. We now proceed to find a lower bound w on the number of
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primes sufficient to obtain a modular representation of

el
3

Theorem 2.4.4 Let M be an m by n nonzero matrix in either

m(I) or m(I[xl,...,xS]) such that norm(M(i,j)) < c, 1 =i <m
and 1 <« j < n, for some positive integer c¢. Given any integer

g = 2 and any base B = 2, let w = {log 2c/logé ul . If

B

pl,...,pw are distinct odd primes such that P 2 U 1 <=k < w,

then (@p (M),...,@p (M)) is a modular representation of M.
1 W

Proof: We have w 2 1ogB 2c/logP w and so log8 pw =

*Moreover, P ttp, 2

w-log w2 log 2c; hence, uw 2 2c,
B R w

pw z 2c sO pl---pw/Z > ¢ and we have pl---pw/2 > norm (M(i,7)),

for 1 <1 «m and 1 < j < n. Thus, (N(l),N(Z),...,N(w)),

‘ k . .

where N( ) = ¢ (M), 1 <k 2w, is a modular representation
k - 7

of M with respect to primes pl,...,pw.//

This theorem can now be applied to M = A with ¢ = s,

giving the next theorem directly.

-

Theorem 2.4.5 TLet A be an m by n nonzero matrix in m(I) or

in m(I[xl,...,xS]) and let ¢ = 6§ be the maximum of the bounds
on the norms of the elements of A from Theorem 2.4.3. If W e
8, and w and the primes Pys---sp, are defined as in Theorem

2.4.4, then (o (Z),...,@p (E)) is a modular representation
1 \

for X.
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If the mp of this theorem are commuting mappings for
k

A, then o (X) = ¢ (A), for 1 <k < w, and we have the
Py Py

following corollary.

corollary 2.4.6 If the mod-p mappings o  ,..., 0 of
Py Py

Theorem 2.4.5 are commuting mappings for A, then

(mp (B),...,0o_ (B)) is a modular representation for A.
1

Puw

We will now fiad an upper bound p on the number of non-
commuting mod-p mappings for a nonzero matrix A. Let .
JA = (jl,...,jr) and IA = (ll,...,¥m1. By the remarks fol-
lowing Theorem 2.3.4, we need only compute p as a bound on

the number of rejected mod-p mappings for A. That is, we

will compute a bound on the number of primes p for which

o | Al . ) = 0, for some k: 1 <k < r.

-

Theorem 2.4.7 Let A be an m by n nonzero matrix in either

. [ | & = (3,0eenrd o= (i
m(I) or m(ILx ,...,xS]) with JA (jl, jr) and IA (1

1 1°°
. k . .
For 1 =k <r, if p' = ki-1I max norm(A(i ,3 )), then
k u=1 u v
lsvek
Pp = (log pé] is an upper bound on the number of prime di-
2 iy, i
. k
visors of normi{Af . . .
jl,...,]k
il""'ik
Proof: Let p!' = norm|Af. : , for 1 <k < r. For
— k jl,....jk

any k: 1 =k < r, by applying Lemma 2.4.1 to the matrix
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os}
|

i i

R § K
= A .l .k we see that p! = norm(det(B)) < ki- 1
jll-‘-ljk k

max norm(B(u,v)) = pﬁ. Letting Op = [10g2 Q'1 , we have

lcv<k
Px
and so 2 2 pp 2

= log X

n o 4
0 Let Py Hi= z., where

Px 2 P - 1%4

the z, are primes, not necessarily distinct. Then

p
q k . P
. ; . . , 1t
Hi=l Zi < 2 Suppose ¢ > Py Since each zl = 2, 1

P
follows that pﬁ = Hg_l zi > 2q‘> 2 k, contradicting the fact
p
that 2 k = pﬁ. Thus, g =< Py and, since ¢ is an upper bound

on the number of prime divisors of p sO 1is pk.//

k'
Using this theorem, we are now able to obtain an uppex

bound on the number of non-commuting mod-p mappings for a

nonzero matrix A.

Theorem 2.4.8 Let A be an m by n nonzero matrix in either

mn(I) or m(I[xl,...,xS]) and let Pr be as defined in Theorem
2.4.7, for 1 <k < r. Then p = Z§=lpk is an upper bound on

the number of non-commuting mod-p mappings for’ A.

Proof: A bound on the number of primes p for which

il,...,ik
w | Al . ) = 0, for some k: 1 <k < r, will give us a
p jl""']k

bound on the number of non-commuting mod-p mappings for A.

i, ..0.,1
For 1 <k < r, o (A .l .k = 0 if and only if p divides
p Jpreeeedy

il,...,ik

. ; hence, we seek a
jl,...,jk

each integer coefficient of A

bound dk on the number of distinct primes, each of which
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i, e..,1

.. k
divide the coefficients of A .l . , for 1 -~k < r.
jl, - » .,jk o
For 1 <k < r, consider the following argument. Let

S be the largest absolute value of the integer coefficients

i,--o,i, |
of al.?t k). Then (;092 c?} > d. and also pé of Theorem

Jqreeerdy . .k
TR
2.4.7 satisfies p'! = norm{Al. , 2 ¢, . Thus, p, =
k Joreess] k k
1 k J
[1og2 p;] = [1og2 ckw ES dk and’ so Py 1s an upper bound on

the number of distinct primes, each of which divides the

ll,o--,lk

JyreceJx

over k, we have that p = Zizl Py

integer coefficients of 1 . Finelly, by summing

is an upper bound on the

number of non-commuting mod-p mappings for A.//

There are an infinite number of primes p. Hence,
Theorem 2.4.8 implies that, .given the integer y = 2, there
are an infinite number of commuting mod-p mappings N with

p = u, for any nonzero matrix A in In(I) or m(I[xl,...,x 1) .
X s

k]
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Section 2.5 Evaluation and Interpolation of Matrices

Let &4 be an integral domain and J[x] the ring of poly-
nomials over J4. For any a ¢ J, let Ya be the mapping of J[x]
onto J such that Ya(A)=A(a), for every A e J[x]. Ya is a

homomorphism, called an evaluation homomorphism for J[x].

Let Q(J) be the quotient field of 4 and let aé, al,...,aq
and bo,bl,...,bq be sequences of elements of Q(Jd), where
the ai are distinct. It is well-known that there exists

a unique polynomial A ¢ Q(J9)[x] of degree at most ¢, which

I

interpolates to bi at a.. that is, such that bi v, (n),
‘ . i

for 0 < 1 < g. A seguence (bo,bl,:..,bq), where bi e J,

0 <1 < ¢, is called a value representation of a polynomial

A ¢ J[x] if deg(a) < g and there exist distinct elements

. = 1
ao,al,...,aq of 4 such that bi ?ai(A), 0 =i =< q.

Thus, every sequence (a.,a ,...,aq) of distinct ele-

01

-

ments of J determines a value representation of some poly-
nomial A ¢ Q(Jd[x]), for which A is the unigue interpolating
polynomial. This polynomial may be constructed in Q(J) [x]

by a method called incremental interpolation, which is de-

scribed as follows. For 0 < k =< g, let Pk(x) = H?zo(x—ai)

and suppose Ak(x) is the unigue element of Q(J)[x] with

degree at most k such that A (ai) = bi' for 0 < i1 < k.

k

Then, letting A (x) = 0 and P_ (x) =1,

1 1
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a () = Ao = () VB (a) by )+ a (),
A

for k =0, 1,...,9, whence A = These concepts are dis-

cussed in [COG69b7] and have been applied more recently in

[cOG71lal and [BRO711.

Let GF(p) be the finite field with p elements and let
GF(p)[xl,...,xS], s =z 1, be the domain of polynomials in s
variables over GF(p). If s = 1, then the above definitions
hold for J = GF(p). If s > 1, fhen we take 4 = GF(p)[xl,...,

xs_lj and apply the definitions to J[xS], for GF(p)[Xl,...,

xS] = GF(p)[xl,...,xs_lj[xS]. In this latter case, Pk(xs)

k ’ . .t
= Hi=0(xs—ai)’ 0 <k < g, and if we choose a; e GF(p), for

0 =i < g, then [bk— (a, ) 1/P ) ¢ &, for 0 = i < q.

Ak—l k k-1""k

Thus, for 4 = GF(p) or 4 = GF(p)[x ...,XS 1, we will have

A e 4[x], for 0 = k =< g.

It is a simple matter to extend these concepts to
m(afx1]), for & an arbitrary integral domain. ;f Yo is an
evaluation homomorphism on J{x], we define the mapping V'
of m(JI[x]) onto m(JI) such that, for an m by n matrix M in

m(sfx]), N = ¥ (M) if and only if N(i,]) = ¥ (M(i,3)),

l1 £i<mand 1 < 3 s n. W; is called the evaluation map-

ping on m(J[(x7]) induced by Wa and will be denoted simply

(0) (1)

by Wa. We say that a sequence (N N ,...,N(q)) of

matrices in mn(Jd) is a value representation of a matrix
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M e M(S[xD), m by n, if deg(M(i,j)) = g, for 1 < i < m and

1 < j £ n, and there exist distinct elements a

of 4 such that N(k) = v (M), for 0 £ k = g.

ak‘

O,al,...,aq

,a.,-..,a oOf distinct elements of
0" "1 o}

Q(Jd) and a seguence N(O),N(l),..,,N

Given a sequence a

(q) of m by n matrices

in m(Q(d)), there is clearly a unique m by n matrix
M e m(Q(I) [x]), each of whose elements has degree at most

k. : .
g, such that Wa (M) = N( ), for 0 £k < g. (i.e., simply

k
apply the results for Q(J)[x] elementwise to the N(k).)
Given such a value representation (N(O),N(l),...,N(q% of

M, one can construct M by incremental interpolation. That

(-1)

be the m by n zero matrix and letting

- _ K (0) (1)
P_l(x) = 1 and Pk(x) f nizo(x ai), the sequence M M ,

(a)

is, letting M

(a)

.M of m by n matrices in n(Q(49)[x1]), where M = M ,

can be constructed by applying incremental interpolation
elementwise. Hence, for k = 0,1,...,q, the polynomial

k) ,. . . \ .
M( )(1,3)(x) of degree at most k in Q(J4)[x] such that

M(k)(i,j)(ah) = N(h)(i,j), for 0 =« h < k, is obtained by:
n® e = ™ s - u ) e
ORI BRI AN COETREOP

for 1 £ i <mand 1 < j £ n. In the cases where § = GF(p)

= i ey 1, , ‘
or J GF(p)Lxl, X _q1r s > 1, if we choose a, e GF (p)
k)

h
and N( ) e M(J), 0 £ h < g, then we will have M( e Mm(afx1),
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for 0 £ k < g.

As in Section 2.4, recall from Theorem 2.1.2.1 that,

for A an m by n nonzero matrix in m(J[x]) with Ty = (j1'°"'jr)

and IA = (i ,...,im), the only possibly nonzero elements of

1

|
>

are X(i,j)

>

, for 1 <1 < r

and ji < j <n and j # ju’ i <u < r. Hence, if a bound g
on the degrees of these-elements is known, then a value
representation of g+l elements for A is sufficient to con-
struct X by inc#emental interpolation. The computation of-
such a bound will require bounds on the degrees of deter-
minants. We begin with the following lemma, giving one

such bound.

Lemma 2.5.1 For every m by m matrix B ¢ m(Jd[x]),

deg(det(B)) < Z?=1 max deg (B(i,3)).
) l<jan

*

Proof: Let 7 designate an arbitrary element (t

ERETA)

in Pm. Since det(B) = 2, sgn(7)-B(l,t

)"'B(mltm)r
Tef
m

1

deg(det (B)) < max deg(B(l,t

)+++B(m,t )) =
m
Tef
m

1

max 5o deg(B(i,t.)) = ZT max deg(B(i,t.))
i=1 i i=1 1
Teﬁn TSF%

= 5" _ max deg(B(i,3)).//

=1 l<jam

The next lemma, paralleling Lemma 2.4.2, applies this
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result to obtain another bound on the degree of a deter-

minant.

Lemma 2.5.2 Let B be an m by m matrix in m(Jd[x1]). Then,

for any integer i: 1 < 1 < m,

deg(det(B)) < max deg(B(k,1i)) + (Zm_l eh> - min ey

1<k <m h= l1<hs<m
where e, = max deg(B(h,t)), 1 £ h = m.
h
l<t<an
t#1

Proof: By the Laplace expansion theorem:
.+ A 7 o o &y =4, +l---l
det(s) =5, _; (-1)° kB(k,l)qa(]‘ kolokerd m) -

i,...,1i-1,i+l,...,m

Thus, deq(det (B))

< max deg(B(k,i)) + deg(B(l'""k“lrk+1:--.,m))}

l<k<m 1,...,1-1,1i+1,...,m

< max deg(B(k,i)) + max deg Bml"'°'¥—l'k+l"'°'m
l1,...,1i=1,3i+1,...,m
l<k<m 1<k sm

< max deg(B(k, 1)) + max 7m~ max deg(B(h,t)).,

1<k <m l<k<m . 0 lstsm
Ak sy )
applying Lemma 2.5.1. Thus, letting e, = max deg(B(h,t)),
‘ l<t<m
t#1
l «h < m, deg(det(B)) < max deg(B(k, 1)) + max e
l<k<m 1<k=m =1 h
h#k

= max deg (B(k,1i)) + (Z$=l eh) ~ min eh.//
l<k<m l<hs<m
This lemma is applied in the next theorem to obtain
bounds on the degrees of individual elements of the deter-

minantal RRE form A.
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Theorem 2.5.3 For A an m by n nonzero matrix in n(Jdlx])

il

with JA (jl,...,jr) and I = (ll""'lm)’ for 1 < i < r

A
and 1 £ J £ n,

deg(a(i,j)) = max<rdeg(A(lk,j)) + Zizl e;, - min eih’

where e, = max deg (A (i

Proof: The theorem follows directly from Lemma 2.5.2, 1if,

for 1 =1 < rand 1L £ j < n, we take

R EE R R = _
B = Al , .. . and note that A(i,j) = -
Jpreeerdi i dgqqr e dy
]
det(B).//
Let e, = max deg(A(ih,j ), for 1 < h < r, for A

lstsr
nonzero. By Lemma 2.5.1, the diagonal elements of A satisfy:

deg(A(i,j,)) = deg(s(n)) = zﬁzl e, 1=i=r. Consider

the remaining possibly nonzero elements of E:<X(i,j),
for 1 <1 < r and ji <9 <nand j # ju, i <u<r. It
is not difficult to see, for each of these elements, that

deg(i(i,j)) £ max max deg(a (i, ,h))
. k
l<k<r j, «hs<n

h#j
k<u2r
e _ : '
Y%=l i T T Cin
. r . —r oy
Since Zﬁxl e, — min e, < Zh=l ey min e ,
l<hsr l<hgr

we thus have the following theorem.
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Theorem 2.5.4 For A an m by n nonzero matrix in m(J4[x])

with JA = (31,...,jr) and IA = (ll""’lm)’

deg(g(i,ji) < Zi=l e, for 1 £« i < r, and deg(i(i,j))

x
-+ ; — 1 s AL .
< f Z£=l e min e for j # 3i where

l<hsr
f = max max deg(A (i, ,h)) and e = max deg(A(i,_,3,.),
, . k h h'-t
l<k«r 3, <hs=n l=t=rx
htj ‘
k<us<r

1 <h < r.

As a consequence of this theorem and the fact that

Ya(i) = Ya(A), for a commuting mapping vy for A, we have -

the following sufficient criterion for a sequence of matrices

in m(J3) to be a value representation for A.

Theorem 2.5.5 Let 7 be the larger of the bounds of Theorem

2.5.4 and suppose aO,a],...,aﬂ are distinct elements of J

such that each v is a commuting mapping for A e Mm(JI).

Then (Ya (a), ¥ (A),...,\ifa (A)) is a value representation
_ 0 i |
for A.

This criterion will be applied in Chapter 4 for A ¢ M(GF(p)
[xl,...,xs]).

As for the mod-p mappings of Section 2.4, a bound on
the number of non-commuting evaluation mappings for a matrix
A will now be obtained. This will be done by computing an
upper bound y on the number of rejected evaluation mappings

for A.
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Theorem 2.5.6 For any nonzero matrix A ¢ M(JI[x]) with

J, = (jl,...,jr) and I

A = (ll""'lm)' an upper bound

A

v on the number of rejected evaluation mappings for A is

given by

k L
v = Zizl 2= max deg(ali .3 )).
lev<k

Proof: From Theorem 2.3.4 we know that Ya is a rejected
ll,...,lk

evaluation mapping for A if and only if Ya A : 5
1 Ix

=O’

for some k: 1 < k < r, that is, if and only if a is a root

i, ..., 1 i,...,1 -
of A .l .k . Let Vi T deglA .l ,k , L £k = 1.
Jqreeeidy Jyreeendy
il""’ik
Since A\ . . has at most v, distinct roots a in J,
Jireeas] k
1 k
there are at most Vi distinct mappings Ya such that
i]""'ik
v (Al .~ ) = 0, for 1 <k < r. Thus, v = Zi v
a\ \Jyr---0Jy =1l 'k

bounds the number of rejected evaluation mappings for A.//

-

If & = GF(p) or J = GF(p)[x xs].and if, for each

10
mapping Y, we require a ¢ GF(p), then there are at least
p - v accepted evaluation mappings for A, Moreover, if
the bound 71 of Theorem 2.5.5 is used to obtain a value

representation for A and if n £ p - v, then the value rep-

resentation exists and can be found.
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Section 2.6 The Computation of a Reduced Row Echelon Form

of a Matrix Over a Field

In this section an algorithm or effective mapping A

of m(3) into m(3Z), for F an arbitrary field, is defined

such that A(A) = A, the determinantal RRE form for A. This
algorithm is a Gaussian elimination method and applies only
elementary row operations in m(¥) to obtain A. The matrix
A is transformed first to a matrix A and then to a matrix

A - =
A, which are similar in form to A and A, respectively.

These are defined as follows. Let A be m'by n and nonzero

(11,...,1m). Then the

and let J = (jl,...,jr) and IA =

A

m by n matrix A in T(35) is defined by:

1 1 » & s o 0 OIIlA 1 ,...,l
~ A(.l . B)/A(.l .k>, l =k <x
A(k,3) =4 M1oordkard Jpreeeidy
and 1 < j £ n
0, r <ksmand 1 £ j = n.

Similarly, we define the m by n matrix A in M(3J) by:

i/ ------ ...-oo-o-‘oc!.,i i 1--'li
A 1 r /A 1 r

s IS RS s S W Jyreeesdy

-

A(k,3) =4
l <k =rand 1l < j

A
oo}

L 0, r<kszmand 1 =3 =< n.

If A is a zero matrix, then we define A=A=A1A.

The effective mapping A is constructed by first de-
fining an effective mapping by of m(F) into F x m(3¥) x 2 x P

such that Al(A) = (&(A),A,T

A,IA). Then, using by, an ef-
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fective mapping A, of W(Z) into F x m(3F) is defined such

2

AZ(A) = (5(A),A). Finally, using A2' the mapping A is

obtained. 1In effect, A, performs a triangularization of

1

a matrix A ¢ Mm(3), A, performs a complete diagonalization

2

of A, and p diagonalizes A and then modifies that result.
Note that this section parallels Section 2.2, in

which the effective mapping T is constructed. Hence, fre-

gquent reference will be made to that section. In particular,

the algorithms and theorems of this section closely paral-

lel those of Section 2.2. The algorithms are likewise )

stated in terms of elementary row oéeraticns, this time

for matrices over a field F. Also, as in that section, the

effectiveness of the algorithms will not be proved but will

be assumed to be clear from the discussion.

We begin with the algorithm defining Aq-

-

Algorithm 2.6.1 Transforming a Matrix over a Field & to

Row Echelon Form by Gaussian Elimination

Input: An m by n matrix & ¢ m(3).

Output: The quadruple (D,B,J,I) ¢ JF x N(3) x g x P,

b=

where D = §6(A), B =A, J =4J and I = 1T

A’ A’
(1) [Initialize.] B « A; J « f; for 1 < h < m,
Ifh] « h; X « 1; s « 0; D « 1, the identity of 3.

(2) [Locate a nonzero pivot, if any.] s « s+l; if
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s >n, go to (5); for t = k, k+1,...,m, search

for B(t,s) £ 0; if not found, go to (2); G « B(t,s);

suffix s to the sequence J.
(3) [Change the row order, if necessary.] If t = k,

go to (4); E « Bt;

set Bu - Bu—l and Ifu] « Ifu-17; then set Bk -« E
and Ick] -~ £,
. : ' - Df—-— - 7 - G
(4) [Recompute rows Bk,...,Bm'] D:G; By Bk/G,

£« I[t]; for u = t, t=-1,...,k+1,

if k = m, go to (5); for h = k+1,...,m, set G ~ B(h,s)

and compute B, « B, - G-B k « k+1; go to (2).

h h k'
[}
(5) ([Return.] If J = @, set D « 0 ¢ &; return D,

B, J, and I.

This algorithm is very similar to Algorithm 2.2.1.1.

Let A be an m by n matrix in (%) and suppose Algorithm

(0) 5(1) ~  plrh

bl

""’Ir) in computing Il(A) =

2.2.1.1 generates the sequences (B

(JO,Jl,...,Jr), and (I, I;

(A,J

A’IA)' Let 7,,...,T_  be the sequence of row permu-

l 1

tations employed by Fl and OpreeesOy be the sequence of

permutations used to define Il""’Ir' As in Algorithm

2.2.1.1, Algorithm 2.6.1 performs a sequence of pivot oper-

(0) (1) (q))

ations, producing the sequences (B' B feeeB!
g

4

(JolJ l"'qu)l (I /I ---II )I and (DOIDll---IDq)I q. 2 Ol

1o ig
(0)

! - [ e (1 - -
where B A, JO a, IO (1,2,...,m), and DO 1 e 3.
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Also, a sequence of row permutations Ti,...,Tq are employed,

with Gi"”'oé being their inverses used to define Ii,...,Ié.

th | . . . .
The k pivot operation is accomplished in steps (2)-

k
(4) and produces B'( ) e M(F), Jﬁ e Ié e P, and Dk e 3.

Step (2) is identical to step (2) of Algorithm 2.2.1.1 in

performing the pivot search and computing Jﬁ. Also, step

(3) is identical in performing the row interchange to de-

(k) and in computing Ii. In step (4) B'(k) is com-

(k) , =, (k)

puted from B' ' by transforming rows B

fine B'

h , Kk <h <m, )

by elementary row operations; also, Dk is computed.

If the pivot search of step (2) fails, then B = B'(q),

J=J', I =1I', and D =D (if q = 0, then D = 0), where
g gq q

(k-1)

k-1. If the pivot B' (t,s) is found, then

Q
il

<
i

'), where J } and

k= Gpeeeee I3y k-1 - (jl""'jkl
(k)

Jyp = si also, Th and o are determined and Bh, =
B‘(k—l) 1 <h sm nd I.! = 1. o' in st (3) Th

g (h) ’ s a k k-1 k step . en,
K (k-1) (k)
in step (4), Dk = Dk_l-B' (t,s) and B’ is computed

o k) o (k) (k)
as follows: Bh = Bh , for 1 < h < k, and Bk =
(k) : (k) =, (k) ~, (k) .
' k, , d £ 11 ' = B/' - B! 300
/B ( jk) an inally Bh Bh B (h jk)

Bk , for k « h «m. Clearly, B is obtained from

, (k=1) : .
B by elementary row operations in m(3F).

We now present a theorem, justifying the claims of

Algorithm 2.6.1, which parallels Theorem 2.2.1.4.
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Theorem 2.6.2 Let A ¢ (3% and let Al(A) = (D,B,J,1).
Then D = §(A), B =24, J = JA' and I = IA; and A 1s an RE

form in W (3) for A.

Proof: If A is a zero matrix, then D = 0 = §(a), J = Jé =

g = JA' I=(1,2,...,m)

il

Il
w
Il
>
i
ED

IA' and B an

RE form for A. Suppose A is m by n and nonzero and let

J. = (]l,...,jr) and IA = (i

...,1 ). Recall that
A m

ll

. “ , ) ~(v)
.1 > = PP d
Algorithm 2.2.1.1 genera=:es Iv (lv 1 i, m) and B

’ 1

th |, . , .
at the v pivot operation, v > 0, in computing Fl(A).

consider the following inductive hypothesis: for v:

0 <v s.q, Jv f (]l,...,jv), Iv = (ll'""lv'lv,v+l""'lv,m)’
ll'.oo’lv (v) . .
D = Al . ) , and B' is row equivalent in m(JF)
v 31,...,jv
to A and is defined by:
~
i '...’:i— i ’...’i
A jl jh j>/A jl ‘jh , 1 <h < v and
B'(V)(h,j) _d 1 h-1 1 h 1 <5 <n
io,.0.,0 1 R T W
A .l Y 'v,h /A .l V), v<h sm
Jpreeeedyed C\dqee e 3y .
L and 1 = j < n.
il,...,i .
Note that for v = 0 we take A ; jv = 1 by convention.
17Ty

For v = 0, the hypothesis is satisfied, since Jé = g,

(0)

IO = (1,...,m) = (lO,l""’lO,m) = IO’ DO = 1, and B
N N ' (O) N N h io }41
is defined by: B (h,3) = a(h,j) = A(j) = A( j' ) /1,

0 =v<h<mandl £ 3j < n. Suppose that the inductive

hypothesis holds for v = k-1, 0 < k < g; we show that it
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holds for v = k.

For k £<h <mand 1 <€ j < n, we know from Theorem

1.,...,1
2.2.1.4 that B(k l)(h,j) = A .l k-1 k“l’h and from
SRS

k- .
the inductive hypotheSLS that B'( l)(h,j) =

i ,...,1 i, ..., 1 ‘
A .l k-1’ k 1.h /A(.l .k l> . Hence, for
JpreeeeIxord U I 1 |

(k-1)

k £h <mand 1l < 3j <n, B'

B(k_l)(h,j) = 0 and so B’(k—l)

(h,j) = 0 if and only if

th | .
(t,s) is the k pivot in

computing Al(A) if and only if B(k—l)(t,s) is the kth

pivot in computing T, (A). Therefore, . 1is the kth row

1 k

permutation in computing a, (a) and so B'(k) = B'(k"l)’
1 h o (1)

) = J,_ and I' =

1 <h <m. BAlso, J = <Jl:--.'3k_1'3k

Moreover, D, = (t,s) =D °B' (ck(k),jk) =

-1
. Bpoeeerdy l1’ by, o (k) , A<il”"’lk—l
Jpreee I 31’ SRR R PR S |
ll""'l]"l k ' . . .
= Al . , Slnce 1 = 1 = 1

sFURTRS NPT k-1, 0, (k) k,k k

(k)

satisfies the inductive

3 l(k) — ~1(k) — I(k l) — |(k_1)
hypothesis. For 1 < h < Kk, Bh = Bh = Bc ) Bh ,

satisfying the hypothesis. For h = k, Bi(k) = Bé(k)/

Finally, we show that B'

, (k-1)

2 0 50 = e

(k-1
B ' )

(Gk(k),]k) and so, for

1 <3 <n,



B' (k,3)

(k-1)

(ck

e o as lk"l' lk-—l, ck(k))/A(‘L
I]k_llj

(k)
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(k-1)

,j)/B" (CT

17 ke

l\>
k-1

-, 1

TR kL () 1T Tkl
ceer Iy Ty jl,...,jk_l

i, ...,1 ;1 io,...,1
k-1
= A<.l . .k) /A & K
o R R Iy )k
For k <« h £ m, the elements of row B}'l(k) are computed by:
(k . ~ (k , ~ (k) K . .
B'( )(h,j) = B'( )(h,j) - B'( )(h,jk)'B'( )(k,j), 1 €3 < n.
So, letting t = ok(k) and u = ck(h) and recalling that
lk-l,c7k(k) = lk,k = lk and lk-l,crk(l}) = lk’h, we obtain:
k . (k-1 . (k-1 . , (k=1 .
B'( )(h,J) = B ( )(u.J) - B ( )(u,jk)-B ( )(t,:))/
, (k-1) .
B (’C,Jk)

i, ..., i i
Z\(.l 'k 1" k-1,
Jqr--

T, ..
jl, o

g
<O
T

<ll" "lk—-l’lk,}> <1'l""'lk-—l'lk,h> (ll""'lk >

al . . . al . )-al . .

_ jl,.. ’jk—l,] _ jl, .......... ,jk ]l,...,jk—lfj
i, ....1 i, .. d, i, ....d
N k-1 A<:1 k-1 .A<;1 *
ORI | Jirori k1) VarrJk
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i, eee,1 i,,00.,1 , 1 i, ..., 1 , 1
~|a _l 'k A .l .k 1 ‘k,h - A .l 'k 1"7k,h
Jpreeeedy Jyeeeerdy_q3 Jpreeendy

i, ..., 1 i,...,1
{é 'l .k 1 A 'l .k ].
jl’...'jk-—-l ]1,o..’jk
As in Theorem 2.2.1.4, if we apply Lemma 2.2.1.3 to the

S I § "
matrix M = A 1 k' kb , we obtain the identity:

jl""’Jk'J

i ,...,1 i, e0.,1 , 1 i.,...,1 , 1
- k, - ’

2 'l .k A .l .k 1 ' h _ A ‘l k-1 k.h
Jpo-eeedy Jyreeerdy_q03 Jpreeeeeeees Jy
Ly eennn. JETAN i,...,1 i, ..., i, 4 -

k '
A .l ' S .l k-1 A .l k 'k b
Jpreeer Iy g3 jl,n..,jk_l CFRERRREE 1 Iy 3
i.,...,1, ,1 1., .e.,1
Hence, B'(k)(h,j) = A .l ,k .k'h /A .l .k , for
Jyreeerdprd Jyreee eIy

k «h <mand 1l £ j < n. This completes the inductive
step.

It has been shown above that the same number of pivot
operations are performed in computing F () and Al( A).
Hence, g = r and we have I‘ =
JA' and D = Dr = A 31"" ) .
defined by: ,

io,... ,...,1
A ! ) .h , L £h < r and
/B

(r) 31""'7}1 1’ SN

ll,...,lr,l el

jl,...,j l,...,j

1l 3 <n
, ¥ <« h £ m and

l <3 <n,
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(r)

we have that, for 1 < j < r, B' (h,3) = B(r)(h,j)/

.'l_l,...,lh (r)

al . Ml cncr, anas P w2 8 )y
3 l""j
1 h
il""'ir
At . , Y <h <m. Thus, for 1 <h <mand 1l < j < n,
jl,oooljr

5 ) h,5) = 0 if and only if %)

il

(h,3j) = A(h,j) = 0. This

(r)

implies that, for 1 <h < r, B'

(r)

o < - .
(h,3) 0, 1 J < dy.

and also B' (h,3)

(r)

O, for 1 £ jJj £n and r <« h < m.
Therefore, B = B' = A, which is also row equivalent to

A, making A an RE form for A.//

Note that the diagonal elements A(h,jh) =1, for 1 £ h < r,
1

where A is nongzero.

We next present the algorithm defining the effective

mapping A, of Mm(3) into F x M(3F) . This algorithm closely

2
parallels Algorithm 2.2.2.1, which defines the effective

mapping T on m(J4).

-

Algorithm 2.6.3 Transforming a Matrix over a Field 7 to

Reduced Row Echelon Form by Gaussian Elimination

Input: An m by n matrix A ¢ m(3F).

Output: The pair (D,C) in 3 x m(3F), where D = §(A)
and C = 2.

(1) [Triangularize by Gaussian Elimination.?] Compute

A, (BA) = (D,B,J,1I) by Algorithm 2.6.1.

1
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(2) [Initialize the diagonalization.] C « B; r «
rank(a); if r = 0 or r = 1, return D and C;
otherwise, have J = (jl,...,jr): i« r.

(3) [Diagonalize by Gaussian elimination.] i « i-1;
for t = i+l,...,r, set F & C(i,jt) and compute

Ci - Ci - Fsct; if i > 1, go to {(3); return D and C.

Similar to Algorithm 2.2.2.1, a sequence of m by n

(0) -

matrices in m(%) is generated, where C° = B = A and

(1) (i-1)

r-1 . ,
= C( ). Each C + 1 =1 5 r-1, is computed from C

C
by a finite sequence of elementary row operations. This

. . . -3
computation 1s summarized as follows: for 1 £ h < m,

C(4) _ (i-1) o
h # r-i, Ch = Ch , and for h = r-1i:

,(i) ___ (i"‘l) T‘r (i__l) ) . (i“l)
Cr"i h Cr—i LJt::r_.i_i.l c (r_‘ll jt) Ct °

Thus, C(l) is row equivalent in m(3) to C(l—l), for

(r-1)

1 <1 < r-1, and hence C = C is row equivalent to

A

C = B = A. Since A is row equivalent to A, C is row

equivalent to A.

We now show that C is an RRE matrix with diagonal
elements C(i,ji), l <1 £ r, equal to unity. Let the

inductive hypothesis for v: 0 = v < r be: for 1 < h < r-v

or r < h < m, Cév) = Ah, and for r-v < h < r, C(V)(
(v)

and C (h,3) =0, 1 =7 < jh or j = jt' h « t < r. Letting
(v)

2z

h,jh) =1

z =xr-v, 0 «v £ r-1, the elements of row C are computed
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by

(v-1)

29y = ¢ (z,3) -

< C(V~l)( (v-1)

“r=gz41 )-c

ZI:]t (t-'lj)o

Using this equation, the proof of the inductive hypothesis
follows exactly as in Theorem 2.2.2.2 and we shall not re-

peat it here for Algorithm 2.6.3. We note, however, that

C(v—l) (v-1) (v=-1)

) c (23,00 = ¢ (2.3 )

(Z'jz) - (Z'jz) " "f=z+l

and so C(z,jz) = C(V)(z,jz) = C(O)(z,jz) = A(z,jz) = 1.

r-1) , . .
Thus, C = C( ) is an RRE matrix row equivalent to
A and so is an RRE form in (%) for A. These results are

summarized in the following theorem, which is similar to

Theorem 2.2.2.2.

Theorem 2.6.4 For every A ¢ m(F), % a field, A2(A) = (D,C)
is defined, where D = §(A) and C is an RRE form in m(3F) for
A. If A is nonzero with JA = (jl,...,jr), then the diagonal

elements C(i,j.), 1 < i < r, equal unity. R
Ji

The following lemma will be required to prove Theorem

2.6.6. It parallels Lemma 2.2.2.3.

Lemma 2.6.5 ILet A be an m by n nonzero matrix in m(3) with

JA = (jl,...,jr) and IA = (ll""'lm)' Define the matrix

lll---r Iir
M = A}, ) .|, for some j: 1 = 3 < n. If A (M) =
jl""']r'j 2

(E,N) and A.(aA) = (D,c), then N = C{},...,r ].

2 jl""'jr'j
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This lemma is proved in a manner identical to that of
Lemma 2.2.2.3 and its proof is not included. Simply re-
place J by F and the mapping T by A2- The next theorem

~

shows that the RRE form C computed.by A2 is, in fact, A.

Theorem 2.6.6 ILet A ¢ M(F and suppose AZ(A) = (D,C).

Then C = A.
Proof: If A is a zero matrix, then C = A = A. Suppose

is m by n d no , with = (Jyseesrd ), and I_ =
A is m by and nonzero, w JA (jl ]r) a A

(ll""'lm)' If r = n, then iy = h, for 1 £ h < r, and

the only nonzero elements of C are the diagonal elements

c(h,h) = 1; so, C = A.
Ll,...,ir
Suppose r < n. Let M = A}l. , . .|, for some j:
]l'.‘.’jr’j N
l <j<n., By Lemma 2.6.5, if

A.(M) = (E,N), then N = C %' """ 't |. Moreover, by
jl“."jr']

Cramer's Rule M can be transformed hy elementary row oper-
ations in Mm(3) to a matrix N' defined by: °

~

1, if h=%kxk=1,2,...,r
M L, e e e et it e e , r oy 1,...,r
J 1,...,h=1,r+1,h+1,...,r 1,...,c/ '

for 1 £« h < r and k = r+l

N'(h,k) =

L 0, elsewhere.

Hence, N' is an RRE form in n(3) for A with diagonal ele-

ments equal to unity. By a theorem in Chapter 7 of [BIG65],
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we know that there is exactly one such RRE form for a matrix
over a field and so N' = N. In particular, for 1 <sh < r

and for any j: 1 £ 3j < n,

c(h,j) = N(h,r+l)
1, et et it e et s , T 1, . r
= M(l,...,h-—l,r+l,h+l,.. ,r)/M(l,.. ,r)
L e eeeeananas Ceerene 1 i, ...,1
= A<jl . L T)/al t .
L R I S R Jyprreerdy

= A(h,q).
We know that C(h,j) = 0 = A(h,j» elsewhere, and so we have

that ¢ = A.//

We finally present *he algorithm defining the effective

mapping A of m(F) into m(F) .

Algorithm 2.6.7 Transforming a Matrix over a Field 3§ to

Determinantal RRE Form by Gaussian Elimination

Input: An m by n matrix A ¢ m(3F).

>l

Output: The m by n matrix W = A.

(1) [piagonalize by Gaussian elimination.] Compute

() = (D,C) by Algorithm 2.6.3.

(2) [Modify the first r rows of C, 1f necessary. ]
W < C; r « rank(a); if r = 0, go to (3); for

i=1,2,...,r, compute Wi - D'Wi.

(3) [Return.] Return W.
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This algorithm simply employs Algorithm 2.6.3 to ob-
tain D = §(A) and C = A and possibly modifies C, obtaining
W e m(3). IfAis a zero matrix, then W= C = A =A = a.

If A is nonzero, then W is produced by multiplying rows

i, ..., 1
C.,...,C_ by &(n) = 2 .l 'r . Hence, for 1 < i < r,
1 r Jreoes]
2 1 r
W, = a(A)-Ai and so W(i,j) =
1 ,...,i i ) o s 0o o0 e 0o o0 e 6 easeeoe , 1 i l“'li
1
A T .al t . 2\ /alt . =
Jir Iy SRR R I R Jyrcoordy
O ,ir\ _
al. . . .)=A(i,j),jisjsnand
jl,.-.,]l l,]ljl+ll..-l]r

j # ju' 1 <u < r. All other elements of row Wi are zero.
L]

Since rows Wr ""Wm are zero, we have that W = A. We

+1°

have just proved the following theorem.

Theorem 2.6.8 For every A ¢ N(3), A(A) is defined and

A(B) = B.

Possible fields & to which Algorithm 2.4.7 may be ap-
plied to compute a(A) = 3, for A ¢ (¥, are the finite field
GF (p) with p elements, the rational number field Q(I), and

the field of rational functions Q(I[xl,...,xsj).
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CHAPTER III.
ALGORITHMS FOR MATRIX ALGEBRA

In this chapter we present algorithms for computing
the sum, difference, and product of two matrices. Aux-
iliary algorithms related to these algorithms will also
be included. Computing times will be obtained for all al-
gorithms in this and succeeding chapters; hence, the basic
concepts and notation for the computing time analysis are
presented in Seétion 3.1. The classical algorithms for
computing the sum, difference, and product of two matrice;
are given in Section 3.2. 1In Section 3.3 algorithms for
applying mod-p and evaluvation mappings to matrices and
for applying Garner's method and incremental interpolation
to matrices are presented. These auxiliary algorithms are
employed in an evaluation mapping algorithm fqr multiplying
matrices over GF(p)[xl,...,xS], s 21, and in a mod-p map-
ping (or modular) algorithm for multiplying matrices over
I[xl,...,xS], s = 0. The new algorithms for matrix multi-
plication are given in Section 3.4. These algorithms will

be required in the algorithms for solving systems of linear

equations, which will be presented in the next chapter.
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3.1 Computing Time Analysis

Let f and g be real-valued functions on a set S. 1If
there is a real number c¢ such that |£(x)]| = c-|g(x)]|, for
all x ¢ &, then we say that £ 1is dominated by g and we
write £ £ g. If £ { g and g £ f, we say that £ and g are

codominant and we write f ~ g. Of course, £ Z g means ¢ Af

and is read: f dominates g. This is the notation to be used
to analyse the computing times of the algorithms and has
been introduced by G. E. collins, [COG7la], and W. S.
Brown, [BRO71]. |

The general framework for the ‘analyses is as follows.
We are given an algorithm G and a set § of "inputs" to G.
Note that each x ¢ § can be considered an n-tuple. We also
have a set R of m~-tuples y = (yl,.,.,ym) describing the in-
puts; more precisely, therevis a mappihg which assigns to
each vy ¢ f a unique finite nonempty subset 8y1of 3. Let
tG(X) denote the time (in some convenient unit) to apply
algorithm G to the input x. We then define the function
T, on ® by: Ta(y) = max{ta(x):x € Sy}. We call Tq the maxi-

mum computing time function for the algorithm G with respect

to the set ®. Analogously, we can define the minimum com-

uting time function UG for algorithm G by: U _(y) = min{tG(x):

G
X e Sy}. For some algorithms there is a great discrepancy

between the maximum computing time (i.e., the worst case)
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and the time for a typical performance. A computing time
function VF reflecting the expected behavior of an algo-
J
ithm G is t fine ows 2 = .t
rithm G is thus defined as follow VG(y) (ZX68 G(X))/

HSyH, where ||Ql] is the number of elements in a finite set

Q0. The function VG is called the average computing time

function for algorithm G with respect to R.

The relation between TG' UG' and VG is given, in terms
of dominance relations, by: U

o X Vo £ T,- For we clearly

have, for all y ¢ R, that VG(y) = (2

lg |
oS thX))/LSyH < (

X eS

y
for each y ¢ !, U

Y
Z s TSy /8 N = s Nz (/18 Il = T (y) - similarly,

g
y

G(y) < VG(Y)' For each algorithm, a dom-

inance relation will be found. That is, a function £ on R

will be found such that TG { £. Hence, without ‘it explicitly

being stated, we will have U(1 2 £ and VG { £. For some al-

gorithms, however, it will be possible to show that UG ~ T(1
~ f. 1In such cases it is clearly also known that VG ~ £.

guch a function f as above will be referred to, when the need

arises, appropriately as a dominating (or codominating)

function for the maximum computing time function and will
be denoted by Té.

Roughly, the approach in analysing an algorithm G will
be to obtain the computing time for each step from the num-

ber of times it is executed and the times for the individual

executions. The times for these steps are then combined to
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form the total computing time for the algorithm G. To be
more precise, we let Ni denote the maximum number of times

step 1 is executed, T, denote ‘the maximum computing time

i,
.th . . ) .

for the j execution of step i, and Ti denote the maximum

total computing time for all executions of step i. Each

of these quantities will have a dominating (or codominating)

function, denoted by Ni, Ti ., and Ti, respectively. For

’ .

the more complicated algorithms, the analysis may be orga-

nized by means of a computing time table. Such a table will

usually have four columns, labeled: i, Ni' T, ., and Ti.

14

The entries in the latter three columns are explicitly given

functions Ni, 7! ., and Ti, which are assumed to be domi-
nating functions, unless otherwise stated. If<Ni = 1,
then Ti will be omitted, since in this case Ti = Ti 5

The elements of the input set & will usually be de-
fined in terms of the integers I, the elements of a finite
field GF(p), or polynomials over either I.or GF (p) - Wé
note that in what follows, when s‘= o, I[Xl,...,xs] denotes
I and GF(p)[xl,...,xS] denotes GF(p). It will be necessary
to define the sets SY in order to do the computing time anal-
yses and frequently this will require the definition of cer-

tain subsets of I[x ,...,xsj, s =2 0, and GF(p)[xl,...,xS],

1

s = 1. The required subsets are defined as follows. Let

P(d) denote the set of all integers b such that |b| = d and
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let P(d,m ,...,ms) denote the set of all polynomials A in

1

I[xl,...,xs] such that norm{(a) < d and the degree of A in
X, is at most m, - We introduce :the convention that P(d,ml,
...,ms) denotes P(d), for the case s = 0. Also, let P*(ml,
...,ms) be the set of all polynomials A in GF(p)[xl,...,xS],
s = 0, such that the degree of A in Xs is at most m, - Sim-

ilarly, P*(m ,...,ms) denotes GF(p), when s = 0.

1

Typically, some components of the inputs x ¢ 8 will
be matrices over I[xl,...,xS], P(d,ml,...,ms), GF(p)[xl,...,
xs], or P*(ml,...,ms)( for s » 0. Hence, we define M(m,n,S)
as the set of all m by n matrices with elements in the se% S.
Since the sequence ml,...,mS of degree bounds occurs
often, we let is denote the vectorf(ml,...,ms),"s > 1, and
ﬁo denote the null vector @. Similarly, ES denotes the

vector (nl,...,ns) of degree bounds and 50 = @g. Thus,

for example, P(d,ﬁs) denotes P(d,ml,...,ms) and P*(ﬁs) de-

-

notes P*(m ,...,ms), for s = 0. In fact, the sequence

1

m ...,mS and the vector is can be used interchangeably.

ll

Similarly for n ,n and ﬁs

l,--. s

The algorithms of this and subseqguent chapters are
designed to expect mathematical objects which are represented
as list structures in the SAC-1 Mathematical Symbol Manipu-

lation System. The list representations for elements of I,

I[xl,...,xsj, s =z 1, and GF(p)[Xl,...,xc], s = 0, are as
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described in [c0Gé8a], [COG68b], and £COG69a], respectively.
The construction of other kinds of lists is done by means

of the capabilities supplied in [Cc0G67]. The algorithms de-
scribed in these references will be referred to by name when
employed in the algorithms. Their computing times can usu-
ally be found in [c0G6%a] or [c0G69b]. If they are not
given there, then they may be -easily derived.

The data representation for several mathematical ob-
jects consists in single-precision integer representation
(i.e., atoms), that is, integers with magnitudes less than
y, the maximum single-precision positive integer (Fortran-
integer), plus one (see [COG68al). Some integer quantities
assumed to be less than vy are: the radix B for the infinite-
precision integer (Lfintegér) representation, prime numbers
p when used to specify a finite fiéld GF(p)., the elements
of GF(p), the degrees and dégree bounds for polynomials, the
integer elements of sequences in Q, and the dimensions of
matrices.

Two list structures of special importance which should
be described are those for sequences (vectors) in Q and
for matrices. Thus, a non-null sequence H = (hl,...,hk) in

'), where

Q0 is represented as the first-order list (hi""’hk

hi is the atom representing hi' The null sequence g is re-

presented by the null list (). A matrix A in M{(m,n,s), for
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some set S, is represented rowwise by the list (Al,...,Am),

where Ai is the list (Ai ,...,Ai m) representing row i.

’

P L

’

Thus, if S = GF(p), then A.L : is the atom representing A(i,J)
and if g is I, I[xl,...,xs3, or GF(p)[xl,..,,xS], s =1, or
a subset of one of these sets, then Ai ., is the list repre-

14

senting the integer or polynomial A(i,3j). The columnwise

representation is defined similarly as the list (Al,...,An),

where Aj is the list (Al j""'Am j) representing column j.

The rowwise representation will be taken to be standard and
exceptions will be properly noted.

A polynomial in P(d,m ...,ms)"or in P*(ml,...,ms),

1’

. 8 .
s 2 1, may conceivably have ™ (mi+l) terms. This expres-

1

sion will occur often enough to warrant a more compact no-

tation and so we define by = mi+l, for 1 <1 < s, and y =

max u.. In some algorithms, polynomials in P(e,nl,...,ns)
l<i<cs
or P*(nl,...,ns), for a different set of degree bounds, are

also involved and similarly we define vy =-ni+l, for 1 £ 1 < s,

and v = max Vi Again, for convenience we define Ki =
l1<ixs

b, + v, 1 =1 s, and ¥ = max K,.

+ 1 ' l<igs

By consulting the indicated references, one finds that
the number of cells needed to represent an integer in P (d)
is ¥ log d, that the number of cells to represent a polynomial

in P(d,m.,...,m ) is 3 (log d)(n? ), and the number of

1 s 1=1M4
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cells to represent a polynomial in P*(m.,...,m_) is < TR
1 S i=1"1
To represent an m by n matrix requires m + mn cells for the
matrix structure plus the cells to represent the elements of
the matrix. Hence, the number of cells to represent a matrix
in M(m,n,GF(p)) is ~ m + mn ~ mn and to represent a matrix in
M(m,n,P(d)) is pS mn(log d). Also, the number of cells to re-

present a matrix in M(m,n,P(d,ml,...,mS)) is % mn (Log d)(ﬂizlui)

and to represent a matrix in M(m,n,P*(ml,...,mS)) is 1 mn

bS]

frimgks) -

We adopt the convention that the expression ni"lti has
the value 1 for s = 0 and that Zf_iti has the value 0 for
s = 0. Hence, for example, we have that the number of cells

to represent an element of P(d,m ,.Q.,ms) = p(d,m ) is 2

1

(log d)(ﬂi ui), for s = 0. Similarly for an element of

=1
p*x(m ), s = O.

s

The SAC-1 System, being a reference count.system, re-
quires the erasure of all lists which are ‘to be discarded.
The computing time for any erasure is codominant with n+1,
where n is the number of cells returned to the available
space list by the erasure. Consequently, dominance relations
for the times to erase integers, polynomials, and matrices
can be deduced from the above dominance relations for the

number of cells. The times to erase other kinds of lists

(i.e., sequences) can be similarly dominated. It will be
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seen in the analyses below that the times for erasures do
not dominate the times for the algorithms (except, of course,
for erasure algorithms).

Before concluding this section, some remarks concern-
ing the primes p will be made. Several of the algorithms
will require a list of distinct odd single—pre;ision primes
(pl,...,pt). SAC-1 provides such a list, called PRIME,
which may be generated by GENPR with a reference such as:
PRIME = GENPR(A,k,m), where A is a one-dimensional array of
length k and m is an odd integer = 3 (see [COG69a]). Usu-
ally, m is chosen such that m =2 y/zuﬂ for u a small posi-
tive integer and so each prime Py of the list PRIME 1is
nearly as large as the maximum single-precision integer.
The list PRIME will be communicated to“the SAC-1 routines
implementing the algorithms by declaring the identifier
PRIME as the first element of COMMON block TR4. Recalling
that each prime p satisfies p < Q, it follows that each
arithmetic operation in éF(p), including the computation
of multiplicative inverses, is bounded. Hence, the comput-
ing time for each of these operations is ~ 1.

We note that each algorithm is identified both by a
name and by a number. Hence, reference to an algorithm may

be made by either of these.
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Section 3.2 The Classical Matrix Arithmetic Algorithms

In this section we describe and analyze the classical
algorithms for computing the suh, difference, and product

of two matrices over I[x .,XS]; for s =z 0. We begin

l,--

with the algorithm for matrix addition.

Algorithm 3.2.1 (MSUM) Matrix Addition

Input: m by n matrices A and B over I[xl,...,xs], s =z 0.

Qutput: The m by n matrix C = MSUM(A,B) over I[xl,...,XS]
such that each element satisfies: C(i,j) = A(i,]j) +
B(i,3).

(1) T[Initialize.] X « A; Y « B; C ~ ().

(2) [Begin next row D.] ADV(E,X); ADV(F,Y): D « ().

(3) [compute and prefix next element of row D.] D « PFL(

PSUM(FIRST(E),FIRST(F)),D); E « TAIL(E): F ~ TAIL(F) ;

if E # (), go to (3).

(4) [Prefix next row of sum matrix.] C « PFL(INV(D),C);

if X # (), go to (2).

(5) [Return.] C ~ INV(C); return C.

This algorithm obtains the elements of C = A + B row-
by~row from top-to-bottom and left-to-right by applying
algorithm PSUM to corresponding elements of A and B. The
next algorithm (MDIF) for matrix subtraction is almost
identical to algorithm MSUM with the exception that PSUM

is replaced by PDIF in step (3).
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Algorithm 3.2.2 (MDIF) Matrix Subtraction

Input: m by n matrices A and B over I[xl,...,xsj, s = 0,
OQutput: The m by n matrix C = MDIF(A,B) over I[xl,...,xs]
such that each element saﬁisfies:,c(i,j) = A(i,73)
B(i,3)
(1) [Initialize.] X « A; Y ~ B; C « ().
(2) [Begin next row D.] ADV(E,X); ADV(F,Y); D « ().
(3) [compute and prefix next element of row D.71 D « PFL(
PDIF (FIRST(E),FIRST(F)),D); E « TAIL(E); F « TAIL(F):
if E# (), go to (3).
(4) [Prefix next row of difference matrix.] C « PFL(
INV(D),C); if X # (), go to (2).

(5) [Return.] C « INV(C); return C.

,n,d,m _,e,n th i
Theorem 3.2.3 Let TMSUM(m n ms e ns) be e maximum

computing time of MSUM for A ¢ M(m,n,P(d,ﬁS)) and

- 4 .
’ ’ ’ 7 - - i +
B ¢ M(m,n,P (e ns)) s =0 Then TMSUM “ mn(log d log e)
s s . :
+ . £ IE.
(ﬂizl by 1 vi) Similarly for MDIF
Proof: Step (1), being executed once, clearly has Tl ~ 1
Each of the m executions of step (2) is ~ 1 and so T2 ~ m.

Step (3) is executed mn times, the time for each being

(d,m ,e,n ) %

dominated b nd so T, { mn T
milnate y T a S 1 PSUM s s

PSUM 3
mn{log 4 + log e)(n§=l Wy + nizl vi). Step (4) is exe-

cuted m times, the time for each being dominated by

TINV(n) ~ n and so T4 ¥ mn. Finally, T5 = TINV(m) ~ m.
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Clearly, T, dominates the times for the other steps and so

~ T giving the theorem.//

3[

Since the algorithm for mattrix multiplication will

TMSUM

require the computation of the transpose of a matrix,

there now follows an algorithm to accomplish this.

Algorithm 3.2.4 (MTRAN) Matrix Transpose

Input: An m by n matrix A over GF(p)[xl,...,xS] or
I[Xl,...,xsj, s =z 0.
Output: The n by m transpose matrix B such that B(i,j) =
A(3,1). | i
(1) [Initialize.] G « CINV(A); F - G; C « FIRST(F);
t « TYPE(C); n « LENGTH(C); construct the list B =
(O, 0),...,0)) of length n.
(2) [Begin next column of transpose. ] ADV(C,F); S « B.
(3) [Prefix next element of current column.] ADV(D,C);
if £ = 0, ALTER(PFA(D,FIRST(S)),S);: if t ¥ 0, ALTER(
PFL (BORROW(D) , FIRST(S)),S); S ~ TAIL(S); if s # (),
go to (3); if F # (), go to (2).
(4) [Return.) Erase G; return B.
This algorithm in step (1) constructs the matrix G,
consisting in the rows of A in reverse order, and the list
B of n null vectors. Then in steps (2) and (3) the columns

of the transpose of A are added to the matrix B in the
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order m, m-1,...,2, 1. Finally, in step (4) B is returned
as the transpose.

Theorem 3.2.5. Let TMTRAN(m'n) be the’maximum computing

. _ . ) h _ _
time of MTRAN for an m by n matrix A Then TMTRAN mn

Proof: Step (1) is executed once, the time being T1 ~

T (m)

+ T ~ m + n. ' t
CINV iLENGTH(n) m n. Step (2) is executed m

times and the time for each is ~ 1l; hence, T2 ~ m. Step
(3) is executed mn timeé and the time for each is ~ 1;
henhce, T3 ~ mn.. The time for step (4) is ~ m, the time

to return m cells to the available space list. Clearly, -

T dominates these times and so T m,n) ~ T. ~ mn. ,
3 50 Typran (™ ™) 3 z

We note that this time is, in fact, codominant with the
minimum computing time of MTRAN, since the Zime for every
m by n matrix is ~ mn.

The final algorithm of this section is the classical

algorithm for computing matrix products.

Algorithm 3.2.6 (MPROD) Classical Matrix Multiplication

Input: An m by n matrix A and an n by g matrix B, both

at

over I[X.,...,Xx 1, s = 0.
[ 1 s

Output: The m by g matrix C = MPROD (A, B) over I[xl,...,xs],

il

where C AB.
(1) [Initialize.] X « CINV(A); Y «INV(MTRAN(B)); C «~ ():

V « X.



(2) [Begin next row of product C.] ADV(R,V); W « Y; D « ().
(3) [Begin next element of current row.] S « R; ADV(T,W);
E « ().
(4) TAdd next term of inner product.] F « PPROD(FIRST(S),
FIRST(T)); G ~ PSUM(E,F); erase E and F; E « G;
S « TAIL(S); T « TAIL(T); if S # (), go to (4).
(5) [Prefix next element of current row.] D « PFL(E,D);
if wW# (), go to (3).
(6) [Prefix next row of product C.] C ~ PFL(D,C); if V # (),
go to (2).
(7) [Return.] Erase X and Y; returnt C.
C is formed by taking inner products of the rows of A

and the columns of B: C(i,3j) = Zn

(1) the matrix X, consisting of the réws of A reversed in
order, and the matrix Y, consisting of the columns of B in
reverse order, are constructed. Using X and Y, in steps
(2)-(4) the elements of C = AB are computed from row m to
row 1 and within each ro@ from column g to column 1. Steps
(5) and (6) are clear and in step (7) the product C is re-
turned, after erasing the auxiliary matrices X and Y.

Theorem 3.2.7. Let TMPROD(m,n,q,d,ﬁs,e,ﬂs) be the maximum

computing time of MPROD for A ¢ M(m,n,P(d,ﬁS)) and B ¢

L 7’ ’ l—- k4 - 1h < j
M(a,qg.P(e ns)) s 20 Then TMPROD { mng(log d) (log e)

S S

(ﬂi:lui)(ni

s
=lvi) + mng(log n)(ni:lhi).
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Proof: The following is a maximum computing time table

for MPROD.
1 N,

- -

1

2 m

3 mg

4 mng

5 mg

6 m

7 1

- m + ng
1 m
1 mqg

(see below) mng (log d) (log e)(ﬂizlui
mng (log n)'(ni:lﬂi)

1 mg

1 m

- m + ng

Selected explanations of these computing times follow.

For step (1), T, ~ T (m) + T (q) +

(m,n) ~m + g

1 CINV INV TMTRAN

+ ng ~m + ng. Steps (2) and (3) are clear. 1In step (4)

each of the elements C(i,]j) is computed as a sum Zi

=1 T

where F, = A(i,k)-B(k,j). This requires computing the n

k

products F, and the n - 1 sums G_ = F,_ +

k=2,...,

and B(k,Jj)

is T (d,m ,e,ﬁs) { (log d) (log e)~(wi=

PPROD

Also, since F. ¢ P(de,ES) and G

K K k T CGgqr O

t —_
= 5 . | i
n, where Gt 2 =1 F,. .Since ali,k) ¢ P(d,ms)

€ P(e,as), the maximum time to compute each Fk

S
1) (Mg vy)

€ P(kde,E y, where

N
s
S

k k-1

k = (m.+n_.,...,m +n ), the maximum time to
s s

s 1

compute each G, 1is

S

(ﬂilei)

log e ¢

{ (log nde)(ns

1

< Jk ,kde,k ] :de) -
K < TPSUM(de < kde S) { (log kde)

). = 1 a +
l=lhi) Note that log de log

(log 4d) (log e) and that ﬂ?z

_< S S .
g=1 ¥ % (mpogug) (Mg vs)

L
LIL



Summing over k, we find that the maximum time to compute

S
v, ) +

c(i,j) is ¥ 22:1[(109 d) (1ng e)(ﬂizlui)(ﬂizl i

s s S

o { T~

(log n + log de) (nizlui)] { n(log 4d) (log e)(uizlui)
s . S

=lvi) + n(log n)(nizlyi) + n(log d)(loge)(ni=1_u,:.L

_1v;) ~ n(log @) (log e) (m;_ u) (m_

)

lvi) + n(log n)

(nizlni). Since there are mg such elements C(i,j) com-

puted, we have the dominance relation for T4. Steps (5)
and (6) are clear. Finally, in step (7) m cells are re-
turned by erasing X and nq cells are returned by erasing
Y and so T, ~ m + ng. Clearly, Té dominates and so

7

¥ T', giving the theorem.//
Typrop © T4’ 9 g //

98
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~

3.3 Algorithms for Applying Mod-p and Evaluation Mappings

The algorithms of this section fall into two categories:

those for applying mod-p mappings and Garner's method to ma-

trices and those for applying evaluation mappings and in-
cremental interpolation. Each category will require some
auxiliary algorithms. We begin with two auxiliary algo-

rithms related to the former. The first of these obtains
a list of variables for a matrix, which will be required

by the algorithm for applyipg Garner's method.

Algorithm 3.3.1 (MVLIST) Matrix Variable List

-‘ISZ

-

Input: An m by n nonzero matrix A over I[xl,...,xS

Output: The list L = MVLIST(A), where L is the null list

it el

(), if A is over I, or the list of variables

(x ...xs), if A is over I[x .,XS], s > 0.

1’ '

(1) [Initialize.] X « A.

(2) [Get next row.] ADV(B,X).

-

(3) [Get next row element.]) ADV(C,B); if ¢ # (), go to (4);

if B # (), go to (3); go to (2).

(4) [Ccompute and return variable list.] L « PVLIST(C); re-

turn L.

This algorithm simply searches the matrix A row-by-row

from top-to-bottom and left-to-right for a nonzero element

and, when found, obtains the variable list L from this

element.
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Theorem 3.3.2. Let TMVLIST(m'n) be the maximum computing

time of MVLIST for A ¢ M(m,n, I[xl,...,xsj), s =2 0. Then
.~ mn.

TvrrsT '

Proof: The time to apply PVLIST to a nonzero element of A

is bounded, since s is not considered variable, and so the

time for step (4), which is executed once, is _. 1. The maxi-

mum computing time for step (3) is dominated by the zero

tegts, of which there may be mn. Hence, ’I‘3 .~ mn, which dom-
inates the ti fo t 1 . ‘hus, !

s mes r steps (1) and (2) Thus TMVLIST - P3 -
mn.//

We next present an algorithm for the erasure of matrices
of integers or of polynomials over the integers.

Algorithm 3.3.3 (MERASE) Matrix Erasure

| Input: An m by n matrix A over I[x ,...,xs], s = 0.

1
Output: A is erased by executing MERASE(A). The variable A

-

is redefined to consist in its last k rows, where A

k
is the first row.which overlaps another list. In gen-
eral, however, all rows are erased and A = () is returned.
(1) [Begin erasure of next row.} If A = (), return; k «

COUNT(A)-1; if k > 0, (ScouNT(k,A); return); DECAP(B,A).
(2) [Erase next row element.] k « COUNT(B)-1; if k > O,
( SCOUNT(k,B); go to (1) ); DECAP(C,B); PERASE(C); if

B £ (), go to (2); go to (1).
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heo 3.3.4. Let ,n,d,m he '
Theorem TMERASE(m n,d ms) denote the maximum

computing time of MERASE for A ¢ M(m,n,P(d,ﬁs)). Then

< mn(log d)- (s

S
TMERASE TiapHy)

Proof: The number of cells for the list structure of 2 is

< mn(log d)(nS

i=lui)' as mentioned in 3.1. The applications

of DECAP in steps (1) and (2) return the cells.for the ma-

trix structure proper and the applications of éERASE in step
(2) return the cells for the matrix elements. Since the time
to return a cell to available space is bounded, the maximum

time to erase A is £ mn(log d)(ﬂizlui).//

Next, an algorithm for applying‘'a mod-p mapping to a

matrix is presented.

Algorithm 3.3.5 (MMOD) Applying a Mod-p Mapping

Input: 2An m by n matrix A over I[x ...,XS], s 2 0, a prime

ll
number p, and the non-negative integer s.

Output: The m by n matrix B = MMOD(p,A,s) over GF(p)x ,...,XS]

1
such that the corresponding elements of A and B
satisfy: B(i,j) = mp(A(i,j)).

(1) [Initialize.} X « A; B« ().

(2) [Begin next row.1l ADV(T,X); C « ().

(3) [apply ?p to next row element.] ADV(R,T); R « CPMOD(p,R);

if s = 0, C « PFA(R,C); if s # 0, C « PFL(R,C): 1if
T# (), go to (3).

(4) [Prefix next row.1l B « PFL(INV(C),B): if X # (), go to

(2).
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(5) [Return.] B « INV(B); return B.
A is traversed row-by-row from top-to-bottom and left-

to-right. The elements of B are generated in this order.

Theorem 3.3.6. Let PMMOD(m,n,d,ms) be the maximum computing

' - | <
time of MMOD for A ¢ M(m,n,P(d,mS)), s = 0. Then TMMOD <
S

i=1hi)

mn(log 4) (n
Proof: The maximum computing time for this algorithm is

doninated by the time for the applications of CPMOD in step

3). i i ut i , 2 h
(3) Since stepi(B) is executed mn times, w ave TMMOD -

- s
mn TCPMOD(d'ms) . mn- (log d)(ﬂizlui).//

As a companion for elgorithm MMOD an algorithm for ap-

plying Garner's method to matrices now follows.

Algorithm 3.3.7 (MGARN) Garner's Method for Matrices

Input: An odd prime number p and an odd positive infinite-
precision integer Q relatively prime to p. An m by

n matrix B over I[x,,....x_ 1 and an m by n matrix

1’
A over GF(p)[xl,...,xS], for s = 0. Also, the list
L, which is the null list (), if s = 0, or is the
list (Xl,...,xs) of variables, 1if s = 1. The in-
teger coefficients of B are less than Q/2 in magni-
tude.

Qutput: The m by n matrix C = MGARN(Q,B,p,A,L) over

I[xl,...,xsj. Each element C(i,j) of C is that

unique polynomial or integer such that Cc(i,3j) =




103

B(i,3) (mod @), C(i,3j) = A(i,]) (mod p) (i.e.,
A(i,j) = @p(c(i,j)) ), and the integer coeffici-
ents of C(i,j) are each less than Qp/2 in magni-
tude.
(1) [Initialize.] X « B; Y « A; C « ().
(2) [Begin next row of C.] ADV(S,X); ADV(T,Y); D « ().
(3) [Compute next row element by Garner's Method.] ADV(U,S);
ADV(V,T); E « CPGARN(Q,U,p,V,L); D « PFL(E,D); if S # (),
go to (3).
(4) [Prefix nekt row.] ¢ - PFL(INV(D),C); if X # (), go to
(2). -
(5) [Return.] C « INV(C); return C.
Elements of C are computed row-by-row from top-to-bottom
and left-to-right as .the mafrices B and A are traversed.

Theorem 3.3.8. Let (m,n,Q,ﬁs) be the maximum computing

TMGARN

time of MGARN for A ¢ M(m,n,P*(ﬁs)), s =2 0, and B an m by n
matrix over I[xl,...,xs], each of whose elements have degree

in X, at most m. and whose integer coefficients are less than

, . s
Q/2 in magnitude. Then TMGARN . mn(log Q)(ni:lgi).

Proof: The maximum computing time for MGARN is dominated by
the time for the mn executions of step (3). The maximum time

for the mn executions of CPGARN is _ mn- mn (log Q)

T

CPGARN ~
S
Ti=1Hi

( ). This time dominates the time for the applications
of INV in step (4) and for the remaining steps, giving the

theorem.//
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We now present the algorithms of the second category:
those for applying evaluation mappings and incremental
interpolation. Analogous to the preceding set, two re-
lated auxiliary algorithms are presented. The first com-
putes the number of variables for the elements of a matrix.

Algorithm 3.3.9 (MCPNV) Congruence Matrix Number of Variables

Input: An m by n nonzero matrix A over GF(p)[xl,..,,xS],
s =z 0.

Output: The integer s = MCPNV(A).

(1) [Initialize.] B « A; if TYfE(FIRST(B))=O, ( s«0;return s ).

(2) [Begin next row search.’] ADV(C,B).

(3) [Obtain and test next row element.]l ADY(D,C); if D # O,

go to (4); if Cc # (), go to (3); go to (2).

(4) [compute and return variable count.] s « CPNV(D);

return s.

The analysis of this algorithm is similar- to that for
algorithm MVLIST and may be easily translated. We note
that algorithm CPNV is described in [COG71b71 and has a max-
imum computing time which is ~ 1.

heo: .3.10. - , b i
Theorem 3.3.10 Let TMCPNV(m n) be the maximum computing

time of MCPNV for A ¢ M(m,n,GF(p)[xl,...,xS]), s = 0. Then
i ~ 1, if = 0,
TMCPNV . mn, if s > 0, and TMCPNV ’ S

The second auxiliary algorithm erases a matrix over

GF(p)[xl,...,xS], s = 0.
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Algorithm 3.3.11 (MCPERS) Congruence Matrix Erasure

Input: An m by n matrix A over GF(p)[xl,...xS], s =z 0.
OQutput: A is erased by executing MCPERS(A). (See output
description of MERASE concerning the new value of A.)

(1) [Initialize.] t « TYPE (FIRST(A)) .

(2) [Begin erasure of next row.] If A = 0, return; k
COUNT (a)-1; if k > 0, (SCOUNT(k,A); return ); DECAP(B,A).

(3) [Erase next row element.] k « COUNT(B)-1; if k > O,
GCOUNT (k,B); go to (2) '); DECAP(C,B); if t = 1,
CPERAS (c); if B # (), go to (3); go to (2). i

The analysis of this algorithm %s very similar to that

for algorithm MERASE and is omitted. The result is stated

as follows.

Theorem 3.3.12. Let T (m,n,ﬁ ) be the maximum com-
MCPERS S

puting time of MCPERS for A ¢ M(m,n,P*(ﬁs)), s =z 0. Then

T < mn -

MCPERS MimgpHyi-

The next algorithm effects the application of an eval-
uation mapping to a matrix.

algorithm 3.3.13 (MCPEVL) Applying an Evaluation Mapping

Input: A prime number p, an element b of GF(p), an m by n
matrix A over GF(p)[xl,...,xS}, s = 1, and the
integer s.

Qutput: The m by n matrix C = MCPEVL(p,2,b,s) over

GF(p)[Xl,.,.,xs_l], such that each element of C
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satisfies: C(i,3) = A(Li,3) (xX,,....,X

1 S_llb) = Yb(A(lr])).

(1) [Initialize.]l X « A; C « ().

(2) I'Begin next row.)] ADV(W,X); D « ().

(3) [compute and prefix next row element.] ADV(U,W); if
U# (), U~ CPEVAL(p,U,b); if s = 1, D « PFA(U,D); if
s #1, D+~ PFL(U,D); if W # (), go to (3).

(4) [Prefix next row.] C « PFL(INV(D),C); if X # (), go to
(2). |

(5) [Return.] C « INV(C); return C.

heo 3.3.14. , 0, m 1 ximum com-
Theorem Let TMCPEVL(m n ms) be the maximum com

puting time of MCPEVL for A ¢ M(m,n,?*(ﬁs)x s =2 1. Then
< lws .

Tucprvr, ~ ™ i=1%i

Proof: The computing time of MCPEVL is dominated by the

n lications of CP in st 3 hich is € mn-
mn applications CPEVAL in step (3), whic s mn TCPEVAL
{ S )
{mnn,_ow /7

We close this section with an algorithm for applying

incremental interpolation to the elements of a matrix.

Algorithm 3.3.15 (MCPINT) Interpolating the Elements of a

Matrix
Input: A prime number p, an element b of GF(p), an m by n

matrix A over GF(p)[x ,...,XST, s =2 1, the integer

)

1

s, an m by n matrix C over GF(p)[xl,...x and

1
s=-1"-'

a univariate polynomial D(x) = n?_o(x—bi) over
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GF(p), where b # bt’ 0 <t <k, and the bt are
distinct. The degree of each element of A in X
is at most k. ‘

Output: The unique m by n matrix H = MCPINT(p,A,b,C,D,s)
over GF(p)[xl,...,xs], where each element H(i,7j)
is the unique interpolating polynomial of degree
k+1l or less in Xs such that H(i,j)(xl,...,xs_l, "

A(i,j)(xl,...,x bt), 0 <t <k, and also

s-1'

H(i,j)(xl,...,x b) = C(i,j)(xl,...,x ).

s-1" s-1

Note that the special case k = -1 is permitted in
MCPINT, in which case D(x) = 1 and A is th; m by n zero
matrix.

(1) [Initialize.] X « A; Y « C; H « ().
(2) [Begin next row.] ADV(W,X); ADV(T,Y); E « ().
(3) [Interpolate to get next row element.] ADV(U,W);

ADV(V,T); F « CPINT(p,U,b,V,D,s); E « PFL{F,E); if

w# (), go to (3). |
(4) [Prefix next row.] H « PFL(INV(E),H); if X # (), go

to (2).

(5) [Return.] H « INV(H); return H.

heo 3.3.16. ,m ) b i -
Theorem 16 Let TMCPINT(m'n ms) e the maximum com

puting time of MCPINT for A e M(m,n,P*(ﬁS)), where ﬁs =

)). Then T 3

k), and ,n,pP* -
) C e Mm (m MCPINT

{m ""'ms—l'

1
mn@{+2ﬂni;iui)-

s~1
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Proof: The time for each execution of step (3) is domi-

. ) ) -1 i
nated by the time for CPINT, which 1is < (k+2)'ni=lul.

Since step (3) is executed mn times, we have T3 < mn (k+2)

S

Mo Wy which dominates the times for the remaining steps.//
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3.4 A Modular Algorithm for Matrix Multiplication

In this section a new algorithm for multiplying two
matrices with integer or polynomial entries is presented.
This algorithm actually consists of three basic algorithms:
the outer, middle, and inner algorithms. The outer or main
algorithm applies mod-p mappings and Garner's method to com-
pute the product of two matrices over I[xl,...}xsj, s = 0,
rgquiring a special algorithm to compute a bound on the in-
teger coefficients of the elements of the product. The
outer algorithm employs the middle algorithm to multiply
two matrices over GF(p)[xl,...,xS], s = 0. Evaluation mapl
pings and increméntal interpolatioﬁ are applied by the mid-
dle algorithm and a special algorithm is used to compute a
bound on the degrees in the main variable of the elements
of the product. This middle algorithm is recursive, apply-
ing itself to the images (under evaluation mappings) of the
input matrices. In case these images are matrices over
GF(p), the inner algorithm is applied to compute the product
by the classical algorithm. After each algorithm a comput-
ing time analysis is done and so we present the inner algo-
rithm first, and then the middle and outer algorithms in that
order.

We begin with an auxiliary algorithm which tests for a

zero matrix.
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Algorithm 3.4.1 (MZERO) Zero Matrix Test

Input: An m by n matrix A over I[xl,...,xS] or GF(p)[xl,...,
XS], s = 0. )
Output: The integer k = MZERO(A), where k = 0, if A is
nonzero, and k = 1, if A is zero.
(1) [Initialize.] X « A; k «~ O.
(2) [Obtain next row.] ADV(Y,X).
(3) [Test next row element.] If FIRST(Y) # O, return k;
Y « TAIL(Y); if Y # (), go to (3); if X # (), go to
(2); k « 1; return k.
This algorithm scans the matrix A roQ—by—row from top-
to-bottom and left-to-right, testing for a nonzero element.

If none is found, k is set to 1 and returned.

Theorem 3.4.2. Let TMZERO(m'n) be the maximum computing

i rix. " .
time of MZERO for A an m by n matrix Then TMZERO . mn
Proof: The highest number of elements tested nonzero in

step (3) is mn, which occurs, for example, for A a zero

matrix. Thus, T3 . mn and this time dominates the time for
the other steps.//

We now give the inner algorithm for matrix multiplica-

tion over GF(p).

Algorithm 3.4.3 (MCMPY) Classical Matrix Multiplication

Over GF(p)

Input: A prime number p and matrices A and B over GF(p),
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where A is m by n and represented rowwise and B
is n by g and represented columnwise.

Output: The m by g matrix C = MCMPY (p,A,B) over GF(p) such

that C = AB.

(1) [Initialize.] X « CINV(A); Y « CINV(B); C « (); V « X.

(2) [Begin next row of product.] ADV(R,V): D ~ (): W « Y.

(3) [Begin to compute next element as an inner product.]

S « R; ADV(T,W); e « O.

(4) [Add next term of inner product.] e ~ CSUM(p,e,CPROD (p,
FIRST(S),FIRST(T))); S « TAIL(S); T « TAIL(T); if s # _(),
go to (4); D ~ PFA(e,D); if W #%*(), go to (3); C ~ PFL(
D,Cc); if VvV # (), go to (2).

(5) [Return.] Erase X,Y; return C.

A is represented as the list of fOWS (Al,...,Am) and

B as the list of columns (B ..,Bq). The element C(i,3)

1
of the product is computed as the inner product of Ai and
Bj in steps (3) and. (4): Cc(i,]j) = Z§=l A(i,k) B(k,3j).

h A4.4. 0y h i i
Theorem 3 4 Let TMCMPY(m n,q) be the maximum computing

time for MCMPY for A ¢ M(m,n,GF(p)) and B ¢ M(n,q,GF(p)).

Then TMCMPY . mng, which is codominant with the minimum com-

puting time also.

m+qg, T. . m, and

Proof: It can be easily shown that T 5

1~

TS _ m+tqg. Step (3) is executed mg times, where each exe-

cution is -~ 1, and so T3 ~ mg. Step (4) is executed mng
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times, where each execution time is . 1, since each algo-
rithm evoked has a bounded computing time. Thus, T4 . mng.

ince T. dominates the times for the other steps, T -
S 4 S StePS. Tvempy

T4 . mng. We note that, since the time for applying MCMPY
to any such matrices A and B is . mng, this is also the

minimum computing time for MCMPY.//

There next follows an algorithm for computing a degree
bound for the product of two matrices whose entries are
polynomials over GF(p).

Algorithm 3.4.5 (MCPMDB) Congruence Matrix Multiplication

Degree Bound N
Input: Matrices A and B over GF(p)[xl,...,XS], s =21,
where A is m by n and represented rowwise and B
is n by g and represented columnwise.

Output: A non-negative integer z = MCPMDB(A,B), where z is
a bound for the degrees in the main Yariable X of
the elements of the product AB.

(1) [Initialize.] X « A; Y « B;i z ~ O.

(2) [Begin degree bound for next row.1 ADV(R,X); W « Y.

(3) [Get degree of next row element.] S « R; ADV (T, W) .

(4) [compare degree of next term of inner product.] ADV(

U,8); aDV(V,T); if U =0 or V=0, go to (5); e ~ deg(U)

+ deg(V); if e > z, z «~ e.
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(5) [Termination tests and return.] If S # (), go to (4);
if W# (), go to (3); if X # (), go to (2); return z.
This algorithm is very similar to MCMPY in the way
the matrices A and B are scanned. However, in place of ad-
ding the product of A(i,k) and B(k,j) to the partial inner
product sum in MCMPY, we have in MCPMDB that the sum of the
degrees (in xS) of A(i,k) and B(k,j) is compared with the
previous maximum degree sum. This occurs in step (4). The
degree bound computed is z = max max max {deg(a(i,k))
l<igm 1l<j=<g l<kzn

+ deg(B(k,3))}. . -

Theorem 3.4.6. Let TMCPMDB(m,n,q) be the maximum computing

time of MCPMDB for A ¢ M(m,n,GF(p)[Xl,...,XS]) and B ¢ M(

n,q,GF(p)[xl,...xsj), s =2 1. Then TMCPMDB ~ mnqg, which is
codominant with the minimum computing time also.

Proof: As for MCMPY, the maximum computing time for this

algorithm is dominated by the mng executions Of step (4),

~

each of which has a bounded computing time. Hence, TMCPMDB
'I'4 . mng. This is true of every pair A,B of input matrices

and so the minimum computing time for this algorithm is

. mng.//

Algorithm MCPMDB is applied in the following algorithm
for computing the product of matrices of polynomials over

GF(p), using evaluation mappings and incremental interpolation.
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Algorithm 3.4.7 (MCPMPY) congruence Matrix Multiplication

Using Evaluation Mappings

Input: A prime number p and matrices A and B over GF(p)[xl,
...,XS], s = 0, where A is m by n and represented

rowwise and B is n by g and represented columnwise.

i

Output: The m by ¢ matrix C MCPMPY (p,A,B) over GF(p)[xl,

AB.

t

,.,,XS] such that C
(1) [Initialize.] m ~ LENGTH(&); q ~ LENGTH(B) -

(2) [compute product over GF(p).] If TYPE (FIRST(RA)) # O,

go to (3); C ~ MCMPY(p,A,B); return C.

(3) [construct the m by g zero maﬁxix c.jJc « () for i
1,m do: (D - (); for § =1, g do: (D « PFL(0,D)); C ~
PFL(D,C) ); if MZERO(A) = 1 or MZERO(B) = 1, return C .

(4) [Finish initializing the interpoiation.] S « MCPNV(A);
kX ~ MCPMDB(A,B); i « 0; D « PFA(O,PFA(1,0)).

(5) [apply another evaluation mapping, if one exists.] If
i = p, print error message ‘and stop; A* — MCPEVL(p, A,
i,s); B* « MCPEVL(p,B,i,s).

(6) [Apply algorithm recursively.] C* « MCPMPY (p, &%, B*) ;
erase A* and B*.

(7) ([Apply incremental interpolation.]c' ~ MCPINT(p,C s i
c*,D,s); erase C , C*¥; C « C if i <« k, go to (8):
erase D; return C .

(8) [Recompute polynomial D for next interpolation.] E «

.

PFA (1, PFA (L, PFA(CDIF (p,0,1),0))): W ~ CPPROD (p,D,E) ;
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erase D and E; D - W; 1 « i+l; go to (5).

I1f A and B are over GF(p), the product C is obtained
in step (2) by applying MCMPY. Otherwise, the initializa-
tion is completed in steps (3) and (4), including comput-
ing the variable count s and degree bound k in X Steps
(5)-(8) are executed in order k+1l times. Tﬁe algorithm
applies itself recursively to the images A* and B¥* of A
and B under evaluation mappings Yi to obtain the products
c* = a*B* = ¥ (aB) = ¥.(C), O < i sk, which form a value
representation 5f C. The k+1 applications of incremental
interpolation in step (7) thus assures that the product Aé
is constructed. Note that it may be safely assumed that
each prime p satisfies p >> k and so in general the algo-

rithm will not fail. -

Theorem 3.4.8. Let TMCPMPY‘m'n'q'as'Hs) be the maximum

computing time of MCPMPY for A ¢ M(m,n,P*(ﬁs)) and B ¢ M(

* n =
n,q,P Ug)), s = 0. Then, for s 0, TMCPMPY . mng and,
< s + ‘i s
for s =2 1, TMCPMPY < mnq(nizlﬂi) mn{Zizl(wjzlpj)(njzixj)}
i s S
+ng(Z)_y (ni_yvy) (w0 )+ maf(mg g ) (%) 3

Proof: For A and B over GF(p), only steps (1) and (2) are

executed and so T (m,n,q,ﬁo,ﬁo) ~ T

,n, . mndg.
MCPMPY Mempy (M P Q) d

Supposing s = 1, the following is a maximum computing time

table for MCPMPY.
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- mng
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s T R AR R\ g Wy /TRAR AT, g
6 ¥y Tyepupy ™ DTGy g y) Mo Tyepmpy MM e Mgy
s-1 s-1 s-1
+ mn(nizlui)+nq(ﬂi=lvi) + mnws(nizlui)+nqxs(
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n1=lvl
7 % omgs («S Ty ¥ ( X.)
s DA77 S e A
2
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Selected explanations of these computing times follow.
Steps (1) and (2) are clear. 1In step (3) the time to con-

struct C is . mg and the maximum computing times to test A

and B zero are TMZERO(m'n) _ mn and TMZERO(n'q) ~ ng, re-
spectively. For step (4), T4 - TMCPMDB(m’n’q{ ~ mng.

Clearly, the degree bound k < m +n_ < y +v_ = ¥ _ and so
s s s s s
the maximum number of times steps (5)-(8) are executed is

< KS. In step (5) the maximum time to compute A* is

S

. . - that t * ]
ﬁlzlul) and at to compute B* is

-y <
Tyeppyr, M 0vmg) = mo

Tyepryr (B dr i)

A

nq(ni“lvi). We note that A* ¢ M(n,n,P*(
m l)) and B* ¢ M(n,q,P*(ﬁS_l)). Hence, in step (5) the

. e -1
time to erase A* is 2 mn(w.wl

(5]

gi) and the time to erase B* is

P

s—~1

1=lvi)' This also explains the arguments of T

<
f nqlm MCPMPY
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. .t .
in step (6). Before the j h execution of step (7), C' ¢

M(m,q,P*(ml+n PR i ,j-1)) and C* ¢ M(m,q,P*(ml+

+
s-1 rls--l
)). So, for j = 1,2,...,k+1, i

1

n L

+
s-1""g-1

1" ]
. -1 . l

< mqj(ﬁizlw.). Since T 5 4 qus(nS Z?

3,

MCPINT

i=1" 1 7 3 $

(k+1) mq(n K.) < Ksmq(n§ X.). Finally, T_. . %X

since
i=1"1

l i 8,37

.t . . . .
the j b application of CPPROD is to D ¢ P*(j-1l) and E ¢ P*(1l),

<+1 2 2
o i < (k X K.
and so T8 1, Z§=l j (k+1)" 3 %S

ow obtai . ' . +T_+ LT o=
We n ain TMCPMPY Clearly Tl T2 T3 4 mng

£ o= S mo,n ) < o
and T8 8 T7 mq% (n': K.). So, TMCPMpy(m,n,q,mS,ns) 3 T4

) + ng¥ (ﬁ? v.) + K_-

+ T+ T+ T +
T T T7 mng mn% (n 1 s Mi=1Vi s .

5 6

T (m,n,q,m

S
I + o). fOoxr -1 =1,
MCPMPY ns—l) mak (m _g%y). For s

i=] i

+ o I
* naky vy + ¥ Ty ey

s-1

T (m,n,q,m,,n.) < mng + mn¥

MCPMPY 11 11

+ ngy + ¥, amng +

1v1

N, gm0 ) + mgk, "X, o~ +
m, 0, g, m no) mg¥. X mng + mn¥ 1

11 141

2
+ mg¥. .

mq}{2 ~ ¥,mng + mnk 1

1 1 + ngkX. v

1%1 11

ind ti ’ 2 ’ h IRIYRC ]
Suppose inductively, for s = 2, that TMCPMPY(m n,q

- = s— - i

m n__.) < mnq(ni= Ki) + mn{?ﬁz (ﬁj=luj)( 3‘1%3)} +

-1, i -1 1 -1

nq{7i=l( ;:lvj)(ﬂiziﬂj)] + mq{(nj l}ﬂ.)(V\S K.)}. One can

easily see that this hypothesis is satisfied for s-1 = 1.

. - = <

We show that it holds for s. For TMCPMPY(m’n’q'ms'ns) )

mng + mn% (ws w.) + ng¥ (ns v,) + H ol mnq(ﬁ lH ) +
j_—_l j g j.:l 7 i=1"1

-1 -1 l

)(nS K)o+ nq{Zﬁ (ﬂ. v.) (nm _1

s—
mn Z. . .
{ 1= j= luj J=1i"73 i=1" j=177 =

Hi)) o+

(
mq{(ni i (Z, )} ]+ qus(n§ K.) ~ mnq(n._ M.) +
(

1= l i i=1"1
mo (5T () (RS (nS e )+ nq{??_l (nt_yvs)

PRNEIE L .
30 3= j=1%5
8 S
T._ ML)+ (g JK o+ . oo . =
(w2 65) + (nS_yv )R )+ maf(nl_ ) (1K) + (n5_ %)% )

1
i
T,

j=
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i
)Y+ naT ) Gy vs)

J
S ¥.)}. This completes the in-

(mli%5) )+ mq {(m_ %,

i
ductive step.// :
(ot <
We observe that hi:l(ﬁjzlp.)(ﬂ.z X.) ~ Z§=lui(ﬂ‘~
s i s s
{
and that Zﬁ=l(nj=lvj)(nj=iwj) 1 Zizlvi(ﬂ._ Hi)
lowing corollary, giving a weaker result, follows directly.

S

.9. m . n <4
Corollary 3.4.9 T (m,n,q,ms,ns) S (”i=1Ki)(mnq +

MCPMPY

. S
mn (Z5_uy) o+ ona(Z_jvy) +oma(Z_ %) ).
Applying the definitions of y, v, and ¥ from 3.1, we
obtain as an immediate consequence the following compact

but crude dominance relation.

(mng + mny +

corollary 3.4.10. T (m,n,q,ﬁs,ﬁs) <X

MCPMPY 5

ngy + mg¥) .

The main algorithm will require the following algo-
rithm, which computes a bound on the norms of the elements
of the product of two matrices with integer or polynomial
coefficients.

Algorithm 3.4.11 (MMCB) Matrix Multiplication Coefficient

Bound

Input: Matrices A and B over ITx ,...,xS], s = 0, where

1
A is m by n and represented rowwise and B is n by
g and represented columnwise.

Qutput: An infinite-precision integer K = MMCB(A,B) such

that K/2 = norm(c(i,j)), for all elements of C = AB.
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(1) [Initialize.] X « A; Y ~ B; K « 0; n « LENGTH(FIRST
)); T« CO,0,...,0) ), alist of length n; J «

( O, () ), a list of length n.

(2) [Begin column bound list for A.] ADV(R,X); S « I.

(3) [compare next row element.] ADV(U,R); U « PNORMF (U);

V ~ FIRST(S); h - ICOMP(U,v); if h = 1, (erase V;
ALTER(U,S):; if h # 1, erase U; S « TAIL(S); if 8 # (),
go to (3); if X # (), go to (2).

(4) [Begin row bound list for B.] ADV(R,Y); S ~ J.

(5) [compare next column element.] ADV(U,R); U « PNORMF (U);
V « FIRST(S); h «~ ICOMP(U,v);_if h = 1, (erase V; ALTER(
U,S8)): if h # 1, erase U; S « TAIL(S):; if S # (), go to
(5): if Y # (), go to (4).

(6) [Compute and return norm bound.]~DECAP(U,I); DECAP (V,
J); R « IPROD(U,V); erase U and V; S ~ ISUM(K,R); erase
Kand R; K « S; 1if I # (), go to (6); U « PFA(2,0); V «
IPROD(U,K); erase U, K; K « V; return XK.

In steps (2) and (3) the vector I = (Il""'In) is

computed such that Ih = max norm(a(i,h)). 1In steps (4)

and (5) the vector J = (Jlf...,Jﬁ) is computed such that

Jh = méx norm(B(h,j)). Finally, in step (6) K = 2'2?21

Ih-Jh ig computed. Since norm(C(i,di)) < Zgzl norm(A(i,h))-

norm(B(h, j)) < ZE=1 Ih-Jh = K/2, for each element of C, K

is a bound on the norms of the elements of ¢ and, hence, a
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bound on the integer coefficients of these elements. The
algorithm PNORMF is described in [COG70].

heorem 3.4.12. t ,n,q,d,m ,e,n ) be th &
Theorem 4 Le TMMCB(m q m_ ns) e the maximum

computing time of MMCB for A ¢ M(m,n,P(d,mS)) and B ¢ M(m,

n,P(e,ES)), s = 0. Then T < mn (log d)(ﬂi=

+
MMCB )+ nql

1Mi

log e)(nizlvi) + n(log d) (log e) + n(log n).

Proof: For step (1), T, -~

1 (n) .~ n. The time for

TLENGTH

steps (2) and (3) is dominated by the maximum time for the
mn applications of PNORMF. The maximum time for each is

- < S . .
TPNORMF(d'ms) 2 (log d) (m;_,u,), since the time for each

of the possibly nizlui additions is % log d, and so T, +

I mn (log d)(wi=Lui)' Similarly, T, + T { ng.T

3 4 5 : PNORMF(

e,ﬁs) < ng(log e)(ni_lvi). For step (6) the maximum time

is dominated by the n applications of IPROD and ISUM.

Since Ih e P(d) and Jh ¢ P(e), the time for the multipli-
. . L2 . _ K
cations Ih Jh is 4 n(log d) (log e). Letting Lk Zh=lIth'

¢ P(de) and I. ¢ P(kde) and so the time

clearly each I K

R

for the sums is % n(log nde). Thus, T6 < n(log d) (log e) +

n(log n + log d + log e) . n(log d) (log e) + n(log n). Com-
bining the maximum computing times for all the steps, we

) + ng(log e) (n> . v,) +

. < S
find that Tymep mn (log d) (i, 1=1"1

i=1M1
n(log d) (log e) + n(log n).//

The main or outer algorithm for computing the products

of matrices of integer or polynomial entries, using mod-p
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mappings and Garner's Method, is now presented.

Algorithm 3.4.13 (MMPY) Matrix Multiplication Using Mod-p

Mappings

Input: Matrices A and B over I[xl-,...,xsjf s = 0, where A
is m by n and B is n by (.
Output: The m by g matrix C = MMPY(A,B) over I[Xl,...,xsj
such that C = AB.

Note that this algorithm requires the list PRIME of

0dd single-precision primes which was discussed in 3.1.

(1) [Initialize.] B' ~ MTRAN(B); Z ~PRIME; m ~ LENGTH(A);
q ~ LENGTH(B'). -

(2) [construct the m by g zero matrix ¢ .] C «~ (); for
i =1, mdo: (D« (); for j =1, g do: (D ~ PFL(O,D) );
¢ « PFL(D,C ) ):; if MZERO(A) = 1 or MZERO(B) = 1, go
to (8).

(3) [Finish initializing Garner's method. ] vV - MVLIST(A) ;
s ~ LENGTH(V); I ~ PFA(1,0); J ~ MMCB(A,B').

(4) [apply a mod-p mapping, if aQailable.] 1f z = (), (print
error message; stop ); ADV(p,Z): A* ~ MMOD(p,3,s): B* «
MMOD (p,B',s) .

(5) [2pply evaluation mapping algorithm.] C* ~ MCPMPY (p,
A%*,B*); erase A*,B*.

(6) [Apply Garner's method.] C’~ MGARN(I,C ,p,C*,V): erase

C,C*; C « C'.
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(7) [Recompute I and test.] T « PFA(p,0); U « IPROD(I,T):
erase I,T:; T « U; if ICOMP(I,J) # 1, go to (4); erase
v,I,d. 1

(8) [Return.] Erase B'; return C l
In steps (1)-(3) initialization and initial zero matrix

tests are performed. An integer coefficient bound J for the

elements of the product C = AB is obtained which satisfies

J = 2-norm(C(i,j)), for each element of C. Steps (4)~(7)

are iterated in order, once for each new prime pj employed.

In step (5), MCPMPY is applied to the images A* = P (p) _

. J
and B* = @p (B), computed in step (4), and the product
J
C* = A¥B* = ¢ (AB) = % (c) is obtained. Garner's method

J J
is then applied to C' and C* in step (6) yielding a new

. . . .. .t
matrix C' with coefficients < Py -pj/2. The 7 h

execution of step (7) computes I = pl---pj and tests I > J.
When this test succeeds, say for j = k, we have I = Plfo‘pk
> J = 2.norm(C(i,]j)) or pl".pk/2“> norm(C(i,3j)), for all
i,j, and so (referring to the discussion in 2.4) C¢' = C.

We show that k ¥ log nde as follows. From the proof
of Theorem 3.4.12 it can be seen that C ¢ M(m,q,P(nde,m +

1

nl,...,ms+ns)). Also, it is easily seen that J/2 < nde

from the discussion following algorithm MMCB. We know that

o < J and so Pyt Py q < 2nde. Hence, Pyt Py <

2ndepk; thus, log pl---pk < log 2ndepk = log 2 + log nde +
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log pk < log nde + log 2 + log vy, whence log pl.-.pk ﬁ
log nde. We conclude by showing that log pl---pk ~ k.

k
First, note that pl---pk < yk and so log pl---pk < log v

k(log vy). Hence, log p,---P, < k. On the other hand, from

the discussion of 3.1, each prime pj 2 y/c,hfor some small
positive number ¢, and so log Pp--ePy 2 log(y/c)k = k(log
v/c), whence log Pyt Py > k..

Thus, the number k of primes employed to compute C =
(and the number of iterations of steps (4)-(7) ) is {4 log
We now obtain the maximum computing time of MMPY.

Theorem 3.4.14. Let TMNPY(m,n,q,d,ﬁs,e,ﬁs) be the maximum

computing time of MMPY for A ¢ M(m,n,P(d,ﬁs)) and B ¢ M(
s

n ‘ <
n,q,P(e,ns)), s 2 0. Then T 3 (log nde) [ mnq(nlzlxi)

MMPY
mn { (log d)(nizlui) +-Z§:l(n;=luj)(ﬂ§=iﬂj)} + ng{(log e) (
- _

) (m .}cj)'} + mq{(nizl‘}{i) (log de +

i
4 j=l=

3=1"3
X.)31 1. *

Ti=1"1

n? v.) + 7§=l(ﬂ

i=1"1 i

Proof: We first give a maximum computing time table for

AB

nde.

-}~

MMPY.

S R W | T

1 1 - m + ng

2 1 - mg + mn + ng

3 1 - mn (log d)(ni=lgi) + ng(log e)

s
(ﬂizlvi) + n(log d) (log e

n(log n)

)+
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N T4 5

4 log nde mn(log d) “‘i:l“i) + (log nde) (mn(log d) (nf_zlui)
nq(log e) (w_yv;)  + nallog e) (m_;vi) )

5 log nde TMCPMPY(m'n’q’&s’Es) - (log nde) - [mnq(nf 1'i) +
+mn (s _ug) mn (2, ; 1“‘3)( j___i}ﬁj)}
+ nq(ni:lvi) + nq{?s vl)(ﬁ§=1Kj)}

+ mg{ (] 1“1”7—11“1” ]
6 log nde mqj(ﬂizlﬁi) mg (log nde) (m =1Mi)
7 log nde j (log nde)2

8 1 - ng . -
Selected explanations of these computing times follow.

o} t L), - ' + (m) - + .
For step (1) Tl TMTRAN(n q) TLENGTH(W) ng m For

step (2), the time to construct C is . mg, the time to test

A zero is . mn, and the time to test B zero is . ng. So,
T2 . mg + mn + ng. Assuming that neither A nor B is zero,
t 3)- re each ex ted at least once. ~ T
steps (3)-(7) are each executed a as 'nc T3 MMCB(

m,n,q,d,ﬁs,e,ﬁs), which is given in Theorem 3.4.13.

As shown in the discussion preceding the theorem, Ni <

log nde, for i = 4, 5, 6, 7. 1In step (4) the maximum time

to compute A* is TMMOD(m,n,d,ﬁS) 3 mn (log d)(n -1 l) and
the maximum time to compute B* is T (n,q,e, n ) < ng(log e)

MMOD
s
i=1

S

vy ) In step (5), the time to erase A* is < mn(nizlpi)

(r

S

and the time to erase B* is ¢ nq(ni=

lvi)' each of which is
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¥X.). Hence T_ . <

S {(m, n m
Mi=1"1 5,7 (DM

dominated by mng( Tyepmpy

.t .
n ). We note that for the j h execution of step (6) MGARN
s

is applied to C' ¢ M(m,q,P(pl---pj,ml+nl....,ms+ns)) and

C* ¢ M(m,q,P*(ml+nl,...,ms+ns)). Hence, for this execution

... . < ... 5
(m, q.py pj.m1+nl,.--,ms+ns) 2 mq(log py pj>(ni=lxi)

~ mqj(ni_l%i). Since the time to erase C' is ¥ mg(log Pyt

TMGARN

p.)(ﬁizlxi), which dominates the time to erase C*, we have

D I iz,ki
T6,j { mqj(ﬂizlwi) 1 mg(log nde)(nizlﬂi). So, T6 =1 T6,j
kmg (log nde)(nS X,) % mqg (log nde)z(nS ¥.). For the jth exe-

i=1"i" 7 i=1"1
cution of step (7), I = pl---pj_l is multiplied by pj and
the maximum time for this is X log_pl---pj - j» which domi-
: ‘ { sk £ .2
nates the time to compare I and J. Hence T, 2 Zﬁzl T, 507 k
f(log nde)z. In step (8) the erasure of B' always returns
ng cells to available space and so T8 . nqg.

We now obtain the maximum computing time for the algo-
rithm. Clearly, Ti, Té, and Té are dominated by mng(log nde)
(ns ¥.) £ 7' and T! {T'. Balso, mr: (log d)(nS u.) + n(log 4d)

i=17i’ 7 75 77 Cer T i=1%i

(log e) + n(log n) ¢ mn(log nde) (log e)(nizlpi) and ng(log e).

S_,v;) { nq(log nde) (log e) (m,_

(nizlvi lvi)’ which gives T} { T, -
We note that Té = mq(log n) (log nde)(ﬂi=lxi) + mg(log de) (log
nde)(nizlxi) and that mg(log n) (log nde)(nzzlxi) % mng(log nde)
(ﬂi=lxi) < Ty -

Thus, TMMPY £ Té + Té + Té - (log nde)[mn (log d)(ﬁi=l“i)
+ nqg(log e)(ni=lvi) + mnq(ni=lni) + mn{Zizl(nizluj)(ﬂjziKi)}
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ﬂ?zi%j)} + mq{(nizlui)(Z§=lnin + mg(log de)

i

S
1=1(My=1 ) ¢

(n_1%;) 1 = (log nde)-[ mnq(ni—__’l}ﬁi) + mn{(log @) (mj_qu;) +

i s ' s s i
Zizl(njzlpj)(ﬂjzixj)} + ng{(log e)}nizlvi) + Zi=l(nj=lvj)
(n_g¥y) ) +mal el Ky (log de + T )} 3//

The following somewhat weaker result, paralleling
corollary 3.4.9, follows easily from the same observations

which gave that corollary.
s

1=1Hi)

m n <
corollary 3.4.15. T Y(m,n,q,d,ms,e,ns) Y (log nde) (wm

[ mmg + mn(log d + Zf lui) + ng(log e + Zi"lvi) + mg(log de +
1= : =

S
2% 2
Paralleling Corollary 3.4.10, we have the following

still weaker but yet more compact dominance relation for

the maximum computing time.

. _ _ . .
Corcollary 3.4.16. TMMpy(m,n,q,d,ms,e,ns) S (log nde) X (

mng + mn(y + log d) + ng(v + log e) + mg(¥ + log de) ).

-
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CHAPTER IV

ALGORITHMS FOR THE SOLUTION OF LINEAR EQUATIONS

In this chapter are presented the algorithms for com-
puting general solutions to systems of linear equations with
integer or polynomial coefficients. Some basic theoretical
results and definitions are obtained in Sectidn 4.1. Aal-
though the algorithms of Chapter 3 will be employed in the
algorithms of this chapter, additional more specialized al-
gorithms will be required in the solution of linear equations.
These are given in Section 4.2. The next three sections pre-

.

sent the modular algorithm for soiving linear equations. The
innermost part of this algorithm, the nucleus, is presented
in Section 4.3. This is a Gaussian elimination algorithm for
computing the determinantal RRE form of a matrix over GF(p)
and 1s essentially Algorithm 2.6.7 but rewritten for Sac-1
data structures. As for all the algorithms p;esented in this
thesis, a computing‘time.analysis is performed immediately
following a discussion of the algorithm. The intermediate
algorithm, employing evaluation and interpolation to compute
an RRE form for a matrix of polynomials over GF(p), is given
in Section 4.4. Then the complete modular algorithm follows

in Section 4.5.

A modular algorithm for computing determinants is pre-
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sented in Section 4.6. The great similarity between this
algorithm and the algorithm for solving linear eguations
is noted. i

Finally, in Section 4.7 algofithms are described for
computing matrix inverses and for null space basis generation.
These two algorithms turn out to be simply skeletons for ap-

plying the linear equation solving algorithm. We begin now

with some basic theory.



4.1. Basic Definitions and Results

We first consider the construction of null space bases.
Suppose E is an m by n nonzero RRE matrix with RE seqguence
JE = (jl""’jr) and with common diagonal value d. Let

1 s‘hl < h2 R RS hn—r < n be the sequence of integers which

complements jl’ j2,...,jr with respect to 1, 2,...,n. We

-

define the n by n-r matrix Z such that, for 1 = j < n-r,

E(l,hj), if u =‘ji and i; < hj
Z(u,j) =<-d4, if u = h_j (1)
0, otherwise

We now prove the following theorem concerning the matrix Z.

Theorem 4.1.1. Let E be an m by n nonzero RRE matrix with

JE = (jl""’jr)' r < n, and common diagonal value d. If

Z is the n by n-r matrix defined by (1), then Z is a null
space basis for E.

Proof: Let M = EZ and consider any element M(i,j). If

-

ji < hj, let k be the largest integer, k =< r, such that

jk < hj; otherwise, let k¥ = 0. By the definition of Z,
. . —_ * . . [ + . ,. — . .'.
M3,9) = T E(L3 )20, 3) + B(Lh)zh,3) = BB

E(t,hj) —dE(i,hj). Since E is an RRE matrix, E(i,jt) = 0

for 1 # t. Hence, if ji < hj' then M(1i,3) = E(i,ji)E(i,hj)

I

-dE(i,hj) = 0, since E(i,ji) d. If j, > hj, then E(i,hj)

1

i

= 0 and so M(i,]J) = ~dE(i,hj) 0. Thus, M = 0 and so every

column of Z is in the null space of E.
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By the definition of 37, Z(hj,j) = -d # 0, while
Z(hj,u) = 0 for u # j. It follows that the columns of Z
are linearly independent. Since there are n-r columns,
they therefore constitute a basis for the null space of E.//
Suppose E = E, for a nonzero matrix C. Then Z is a
null space basis for c and, since C and C are. row equiva-
lent, C = AC for some m by m matrix A. Thus, CZ = (AE)Z =
A(EZ) = 0 and so Z is also a null space basis for C, giving

the following corollary.

Corollary 4.1.2. Let C be an m by n nonzero matrix with

rank r <n. If E =C and 2 is defirfed by (1), then 2z is
a null space basis for C.

If ¢ 1is the augmented matrix of a consistent linear
system of equations, then this corolla?y, in fact, provides
a general solution to the linear system.

Theorem 4.1.3. Let C = (A,B) be the augmented matrix of a

consistent linear system AX = B,Hwhere A is m by n and non-
zero and B is m by d. Lét E be an m by n' RRE matrix, n' =
n+g, with common diagonal value d and rank r, and suppose

JE = JC. Also, let Z' be the n' by n'-r matrix constructed
from E according to (1) and assume CZ' = 0. Then, if Z con-
sists of the first n rows and first n-r columns of Z' and if

Y consists of the first n rows and last g columns of z',

then (d4,Y,Z) is a general solution of AX = B.
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z(l) 2(2) (1)
Proof: Let Z' be partitioned as , where Z

3

Z( ) Z(4)

. 1

is n by n-r. We have CZ' = (A,B)Z' = (AZ( ) + BZ(3), AZ(Z)

+ BZ(4)). By referring to the definition of Z', one sees
(3) L (4) .

that Z is the g by n-r zero matrix and Z is the g by

g diagonal matrix with diagonal value -d. Since CZ' = O,

it follows that 0 = AZ(l) + BZ(3)= AZ(l) and 0 = AZ(2) +

BZ(A) = AZ(2) ~ dB. Hence, letting 7 = Z(l) and Y = Z(2),

we have AZ = 0 and AY = dB. Since the columns of Z' are

linearly independent by Theorem 4.1.1, it follows immedi-

ately that the columns of Z are also linearly independent.//
If E = é, then CZ' = 0 by Corbllary 4.1.2. Hence, since

d = 8(c) = §(nr), the triple (8(n),Y,2) constitutes a general

solution, called the determinantal general solution.

The next result provides a sufficient condition for de-
ciding if the RE sequence of some RRE matrix is the RE sequence
of another matrix. This test will be applied - in Sections 4.4

and 4.5.

Theorem 4.1.4. Let C be an m by n nonzero matrix of rank r < n

and E an m by n nonzero RRE matrix of rank r' < r, where J_ <

C
JE if r'* = r. Suppose Z is the matrix constructed from E as
defined by (1). Then, if ¢Z = 0, it follows that JC = JE.
Proof: If r' < r, then CZ is nonzero, for Z then has more

than n-r linearly independent columns. So, r' = r. Sup-
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pose JE = (]l,...,jr) > (jl,...,jr) = JC. Then there is

an integer k: 1 < k < r such that ji = ji, 1l i <k, and

3! 3, < et
I > 3y Let 1 h, <h_ < < hn , SN be the complement

1 2 -
. - - 4. (t) (t)
of jl,...,jr. For some 7, hj = Jy Let ZA and C de-
note the tth columns of Z and C, respectively. Then
- k"' O' 1 1 = L= 3
) E(k,J.) 7 if i hJ 3y
73117 =< E(0,k), ifi=3'=3,1suc<k
0, elsewhere
; ~ (3y)
Hence, 1f CZ = 0, then CZ(j) = Z§=1Z(j)[jujc Y is a zero
: (3. : (3x)
vector. Since Z [jk] # 0, either C 1s a zero vector
3ye) | (34) o)
or ¢ ¥’ ig linearly dependent on columns C 71 ,...,C(jk—l ,

each of which is contrary to the definition of JC' There-

fore, and we have J_ = JE'//

I T Ik c

We know that a large number of elements of a nonzero
RRE matrix E are known to be zero. The algorithms of Sections
4.3-4.5 can be made more efficient by discarding these
elements from the representation of E. To do this we let
k be the least nonnegative integer such that ji = 3j, + 1,

+1 1

for k < i £ r, where J_ = ( ...J ) and we take j = n+l
B r r+

Iy 1

and jO = 0. Thus, k is in the range: 0 <« k <« r. If k = 0,
then the only nonzero elements of E are the diagonal ele-
ments. If k > 0, then rows 1,...,k of E have non-diagonal
elements which are possibly nonzero; for row i, these are:

E(i,3), ji < j sn and j # ju, i<us<r,
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We define the list V as follows: If k = 0, V is the

null list (). If k > 0, V is the list (V ""'Vk)' where

1

Vi is the list of the possibly nonzero non-diagonal ele-

ments of row i of Vi' That is, Vi is the list ( E(i,ji+l),
e s .I.- - , 'I.‘ + 7 e ey ‘l.— ’ .I'+ ? oo ey

e B(L, 3, -1 E(L, G, 4] E(i,3 -1),E(i,] +1)

E(i,n) ). Clearly, E can be constructed from.J d, V.

EI

Hence, we call the triple (JE,d,V) the compact representa-—
tion of the RRE matrix E. The list V will be referred to

as the non-diagonal part of the compact representation of

E. i
We note that, when the non-diagbnal part V is non-null,

it has a structure similar to that for a matrix. However,

its "rows" V

...V, are of unequal lengths. Nevertheless,

1’ k

certain algorithms which receive matrices as inputs apply

as well to non-diagonal parts which are non-null. Algorithms
already presented to which a non-null non-diagonal part may
be input with the desired result are MVLIST, MERASE, MMOD,
MGARN,MCPNV, MCPEVL, MCPiNT, MZERO. More will be presented
in the next section: MZCON, MEQ, MCPEQ.

It is easy to verify that (1) is equivalent to:

z(3.,3) = E(i,h.)
* J (2)
_ (-4, u =93
Z(hj,u) =10, u# jj

Thus, when V is non-null, its rows Vl,...,vk are identical

to the rightmost segments of rows jl""’jk of the null
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space basis matrix Z constructed from E by definition (1).
The remaining elements of these rows of Z are zeros. The
only nonzero elements of the reéaining rows of Z have the
value -d and the positions of theée elements are computable
from JE. Hence, Z can be constructed directly from the com-
pact representation (JE,d,V) of E. We note that the integer
n is equal to JE[r], if v= (), or JEFr] plus the length

of the first row of Vv, if V # (). It may be more conve-
nient to simply input n along with (JE,d,V). This is done
in an auxiliary algorithm, giveh in the next section, which

accomplishes this construction.
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4.2. Auxiliary Algorithms for Solving Linear Equations

Several supporting algorithms will be required by the
modular algorithm for solving systems of linear equations.
These algorithms are given in this section, the first of
which performs the lexicographical comparison of any two
vectors in Q.

Algorithm 4.2.1. (VCOMP) Vector Comparison

Input: Vectors H and K in Q.

Qutput: The in?eger z = VCOMP(H,K), where z = -1, 0, or
+1, depending on whethér H <K, H=XK, or H > K,
respectively.

(1) [Initialize.] S8 « E; T « K.

(2) [Test if H exhausted.]'lf S # (), go to (3); if T # (),

go to (5); z « 0; return z.
(3) [Test if K exhausted.] If T # (), go to (4); go to (6).

(4) [compare next elements.] ADV(u,S); ADV(V,T): W « u-v;

if w= 0, go to (2); if w > 0, go to (6).
(5) [H < K return.) z ~ -1; return z.
(6) [H > K return.] z ~ 1; return =z.
Theorem 4.2.2. Let T (m,n) be the maximum computing

VCOMP
time of VCOMP for H of length m and K of length n. Then

~ mi , + 1.
TVCOMP min (m, n) 1

Proof: For each step Ti . ~ 1. Steps (2), (3), and (4)

’

are each executed at most min(m,n) + 1 times and so
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T2 + T3 + T4 5 min(m,n) + 1. Since Tl, TS' and T6 are ~ 1,
TycoMp { min(m,n) + 1. Also, if H is an initial segment of
K, then N_. = m+l = min(m,n) + 1 and so T ~ min(m,n) + 1.//

2 VCOMP
The next algorithm constructs a zero matrix of the

same size as the input matrix.

Algorithm 4.2.3. (MZCON) Zero Matrix Construction

Input: 2n m by n matrix A over I[x ,...,XS], s = 0, or

1
GF(p)[xl,...,xS], s = 1.
OQutput: 2An m by n zero matrix B obtained by B = MZCON(A).
(1) [Initialize.] B « (); S « A. ) -
(2) [Begin next row.] ADV(U,S); X « ().
(3) [Prefix next row element.] X - PFL(0,X); U « TAIL(U):;
if U # (), go to (3); B « PFL(X,B); if S %(), go to
(2).
(4) [Return.] B « INV(B); return B.
This algorithm traverses the matrix B2, pfefixing a
zero element to a row of B for each elemeﬁt of A visited

in step (3). Thus, N3 = mn and T3 . 1 and so T3 ~ mn,

which dominates the time for the other steps. The computing

time is given in the following theorem.

Theorem 4.2.4. Let TMZCON(m'n) be the computing time of

M fo b trix. hen ’ .
MZCON r A an m by n matrix T TMZCON mn

There now follow two simple algorithms for testing

matrix equality.
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Algorithm 4.2.5. (MEQ) Matrix Equality Test

Input: m by n matrices A and B over I[xl,...,xs], s = 0.

Output: The integer z = MEQ(A,B), where z =1, if A = B,
‘and z = 0, if A # B.

(1) (Initialize.] X « A; Y « B.

(2) [Obtain next rows.] ADV(S,X); ADV(T,Y).

(3) [Test next row elements.]vc ~ PDIF(FIRST(S), FIRST(T)):
if ¢ #0, go to (4); S « TAIL(S); T « TAIL(T); if
s # (), go to (3); if X # (), go to (2); z « 1; re-
turn z. -

(4) [Unequal return.] Erase C; z ~ 0; return z.

Theorem 4.2.6. Let T (m,n,d,m ,e,n ) be the maximum com-
MEC s s

puting time of MEQ for A ¢ M(m,n,P(d,ﬁs)) and B ¢ M{m,n,P (e,

) .

s
+

— “ S
nS)L s > 0. Then T { mn(log d + log e) (n i=1Vi

MEQ i=1Mi
Proof: The maximum time for this algorithm is dominated by
the maximum time for the applications of PDIF in step (3).
There are at most mn such applications and the time for

s
+ 11,

each is T (d,m ,e,n ) % (log d + log e) (n§ 121V

PDIF s s i=1Mi
The next algorithm performs such a test for matrices
of polynomials over GF(p).

Algorithm 4.2.7. (MCPEQ) Congruence Matrix Equality Test

Input: A prime number p and m by n matrices A and B over

GF(p)[xl,...,XS], s = 1.

v,).//
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Outgﬁt: The integer z = MCPEQ(p,A,B), where z =1, if
A=2B, and z = 0, if A # B.

(1) [Initialize.)] X ~ A; Y « B.

(2) [Obtain next rows.] ADV(S,X); ADV(T,Y).

(3) [Test next row elements.] C ~ CPDIF(p,FIRST(S), FIRST(T));
if ¢ #0, go to (4); S « TAIL(S): T « TAIL(T): if s # (),
go to (3); if X # (), go to (2); z « 1; return Zz.

(4) [Unequal return.] Erase C; 2z ~ 0; return z.

This algorithm is identical to the preceding algorithm,
with the exception that CPDIF is applied in Step (3). Since

(m ,n ) < ns nS

) .+ ., the computing time is as
TCPDIF s s i=1%1 i=1"i p El
follows.
heo .2.8. et m,n,ﬁ ,n be the maximum com-
Theorem 4.2 L TMCPEQ( < s)

puting time of MCPEQ for A ¢ M(m,n,P*(ﬁS)) and B ¢ M(m,n,

% _(, 8 o+ S
p (ns)), s =z 1. Then TMCPEQ S mn(rri:lp,:L ﬂi=lvi)'

The next algorithm constructs a null spacde basis ﬁor an
RRE matrix from its compact represention.' This was dis-
cussed briefly at the end of the preceding section. It
will be employed in the substitution tests of the modular
algorithm, for solving linear equations.

Algorithm 4.2.9 (NULCON) Null Space Basis Construction

Input: A positive integer n, the RE sequence J of an m by

n RRE matrix F of rank r: 1 < r < n, over I[x ,...,xs],

1



139

s = 0, or GF(p)[Xl,...,xS], s é 1, the integer or
polynomial P, where -P is the common diagonal value
of E, and the list W such that (J,-P,W) is the com-
pact representation of E.
Output: The n by n-r null space basis matrix Z = NULCON(n,
J,P,W) for E, as defined by formula (2) of Section
4.1.
(1) [Initialize.] L « cf; W' ~ CINV(W); r « LENGTH(J); t «
r - LENGTH(W); if t > 0, apply W' « PFL(O,W') t times;
W' « INV(W'); e « n~-r; Z « (); ADV(h,L); i « 0; k « O3
(2) [Beygin next row of Z2.] i « i+l; if i > n, go to (5):
if i = h, go to (4).
(3) [construct next row using P.] k « k+l; U « ();: t « e-k;
if £t > 0, do U « PFL(O,U) t tir'nes;.U ~ PFL (BORROW (P) ,U);
t « k-1; if £t > 0, do U ~ PFL(0,U) t times; Z ~ PFL(U,2Z);:
go to (2). |
(4) [construct next row from row of W'.] DECAP(U,W'); U «
INV(CINV(U)); t « e - LENGTH(U); 1f t > 0, do U ~ PFL(0O,U)
t times; Z ~ PFL(U,Z); if L # (), aDV(h,L); go to (2).
(5) [Return.] Z « INV(Z); return Z.
Let h.,...,h be the complement of jl,...,jr. The

1 n-r

kth execution of step (3) constructs row h, of Z, which con-

k

sists of all zeros except for the value P in position k.
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The kth execution of step (4) constructs row jk of Z, which
consists of the elements of row k of W, if such a row exists,
preceded by sufficiently many zeros to make its length n-r.
Tf W has less than k rows, then the new row of Z is a row

of zeros. The rows are constructed in the order 1, 2,...,n.
In step (4) the statement: U - INV(CINV(U))'constructs a

new row U indentical to the row of W by borrowing the ele-
ments of W. The list W' constructed in step (1) is identical
to W, except that sufficently many null vectors have been
suffixed so tha£ W' has length r.

Theorem 4.2.10, ILet TNULCON(n'r) be the maximum computing

time of NULCON for E a matrix with n columns and rank r. Then

Tyurcony | m(ATE)-
Proof: Step (1) is executed once, the time being dominated
8 + 7 ~ . i ! + i ,A
by TLENGTH(r) TINv(r) r Step (2) is executed n+l times
where 'I'2 : ~ 1, and so T2 ~ n. Step (3) is executed n-r
times and T3 3 ~ n~-r; so, T3 ~ (n—r)z. Step (4) is executed
. K
r times, where T4,j ~ n-r, and so T4 ~ r(n-r). T5 ~ TINV(n)
~“ n. Since Té + Té = (n—r)2 + r(n-r) = n(n-r), the maxi-

mum time for steps (3) and (4) dominates the times for the
other steps, giving the theorem.//

The last algorithm of this section computes a degree
bound for the determinantal RRE form of a matrix of poly-

nomials over GF(p). In fact, this bound will also hold for
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certain other RRE forms for ¢, which are described as fol-

lows. Let C be an m by n nonzero matrix with RE sequence

= 3 ’_..'. 1 i i = k 7 e v 0y
JC (jl jr) and pick any permutation I ( 1 km)
€ QC. Define the m by n matrix F as follows:
) - c(&l""'f""f'ﬂ ....... 'Er) 1 <ho<r
*J Jiro o Ine1r ) her o Ir) and 1 £ 5 < n

0, otherwise
That F is an RRE matrix with RE sequence J = Jc follows
by Theorem 2.1.2.1 with I replacing IC. By applying row

interchanges to C the matrix C' can be obtained, where

Ci = Ck , 1 <=1 < m. Then the exact division algorithm, -
i .

Algorithm 2.2.2.1, applied to C' produces C' with JC' = JC

and IC' = (1, 2,...,m). This can be shown in a straight-

forward manner, using the methods of Section 2.2. We note

that C' is an RRE form for C. For 1 <h < r and 1 < j =< n,

?(l«llj)._.___Cl(l:lzl---c.o-.--.--. ........ ,.1’_'):
Jll...’Jh“l'j’jh‘f"l’-'-,jr

0

kl,kz, ................ ,kr )
(, . .. . > = F(h,j). Since all other
Jll"‘ljh_l'j’jh+l""’jr .

elements of E? and F are zero, F = (¢' and so F is an RRE
form for ¢. Formula (1) thus defines a certain class of
RRE forms for C, which includes E.

Algorithm 4.2.11. (DBRRE) Degree Bound for a Class of RRE

Forms of a Matrix

Input: 2n m by n nonzero matrix C over GF(p)[xl,...,xS],
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n
N

1, and its RE seguence J = (jl""'jr)'
Output: An integer b = DBRRE(J,C), which bounds the degrees
in the main variable x; of the elements of each
RRE form F for C as defined by (1).

(1) [Initialize.] X « MTRAN(C); Y « X; K « J; e « 0; £ ~ O;
L~ ();: i+ 0.

(2) [Obtain next column of C.] If Y = (), go to (5); ADV({
U,Y); 1 « i41l; if K = (), go to (4); if i # FIRST(K),
go to (4); g « 0.

(3) [Get maximum degree of pivot column.] ADV(T,U); if
T#0, (d«deg(T); ifd>gqg, ge4d); if U # (),
go to (3); L « PFA{(g,L); K ~ TAIL(K); go to (2).

(4) [Get maximum degree of non-pivot column.] ADV(T,U);
ifFT#0, (de-deg(T); ifd > £, £d); if U # (),
go to (4); go to (2).

(5) [Compute sum and minimum of elements of list I.. ] DECAP(
d,L); e - e+d; if d <g, g »dd; if L'# (), go to kS).

(6) [complete computation of degree bound.] b « e; h « f-g;
if h > 0, b « bt+h; erase X; return b.
In step (1) the transpose X of C is computed, yielding

X as a columnwise representation of C. This facilitates

the computation of the maximum column degrees reqguired to

compute the bound b. 1In step (3) the maximum column degrees

e 1 <k < r, are computed, where e, = max deg(c(i,jk)),

K l<i<m
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and the list L = (e ,...,el) is constructed. 1In step

r'Sr-1
(5) the sum e = Zi e. and also g = min e are computed.
=1 "k K k
We note that Lemma 2.5.1 might just as easily have

established:

deg (det(B)) < ZT=1 max deg(B(i,3j))
J 1<i<m

Thus, Theorem 2.5.4 could have been obtained with the eh's,

which will be called e' here, defined by: eﬁ = max deg(C(

h
lzusr
lu,jh)), 1l <h < r. Clearly, ey S & 1 «<h < r, and so
Vo . ' £ _ . - _
Zi=l e min el =< Zh=l e, min e e g. 1In step
l<hgr l<h<r

(4) the maximum degree f of the elements in columns j # ju
is computed. Clearly, this f bounds the f of Theorem 2.5.4
and so deg(é(h,j)) < f+e-gqg, for j # ju’ l <usr. It
is also true in a completely analogous fashion, for F as
defined by (1), that deg(F(h,j)) < £ + e - g, for j # ju'

1 <su < r. Of course, we also have deg(s(C)) f Zi=l ey =
e and similarly deg(F(h,jh)) < e. Finally, since b is com-
puted in step (6) so that e < b aﬁd f +e - g < b, we see
that b is a single degree bound on the elements of E and,
in fact, on the elements of every RRE form F for C defined

by (1).

Theorem 4.2.12. Let TDBRRE(m'n) be the computing time of

DBRRE for C e M(m,n,GF(p)[xl,..o,xS]), s = 1. Then

TDBRRE mr.
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f: t 1) i ted d ~ .
Proof Step (1) 1s executed once and soO Tl TMTRAN(m n)
~ mn. For steps (2)-(5), Ti . ~1, i =2, 3, 4, 5, and
sO Ti ~ Ni' i =2, 3, 4, 5. Step (2) 1s executed n+l
times; hence, T2 ~ n. Step (3) is executed m times for

each of r pivot columns and so T, ~ mr. Step (4) is ex-

3

ecuted m times for each of the n-r non-pivot columns; if

n =r, step (4) is not executed. Hence, T4 ~“ m(n-r).
Since step (5) is executed r times, T5 ~ r. PFinally,
step (6), being executed once, has T6 ~ mn, the time to re-

turn mn cells to available space by the erasure of X. There-

fore ince T. + T_ 2 T. + T, ~ mr + n-r) “mn ° ~ ,
+ S , t Ty R Ty + Ty " mr £ min-r) oo TT, 7T

h ~ .
we have TDBRRE mn.//
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computing the Determinantal RRE Form over GF(p)

In this section the inner algorithm CRRE, employed in

the solution of linear equations is presented and analyzed.

The middle and outer algorithms will be presented in the next

two sections. CRRE employs a Gaussian elimination algorithm

to produce, in effect, a diagonalized matrix with 1's on the

diagonal. The elements of this matrix are then multiplied

by -an element of GF(p) to give A. Not all elements of A are

retained; instead the compact form of A is computed. The al-

gorithm now follows.

Algorithm 4.3.1. (CRRE) Computing thé Determinantal RRE Form

by Gaussian Elimination over GF(p)

Input: A prime number p and an m by n nonzero matrix A over

GF(p), whose list does not overlap another list.

a.
&

Output: The list W = (J,1,d,V) obtained by W = CRRE(p,3),

(1)

(2)

(3)

where J = JA' I = IA' d = 8(an), and V is the non-
diagonal part of the compact representation of a.
The input list A is erased. -
[Initialize.] B' « A; m ~ LENGTH(B'); n ~ LENGTH(FIRST(
B)); I« (i Je(ide-1l; Ve (B~ 0:I « 0
for k =1, mdo: ( I' « PFA(m+1-k,I') ); z «~ O.
[Begin next step of triangularization.] z « z+l; B" « B';
B' « () I" «I'; I' « ().

[search column z for next pivot element.] DECAP(F,B"):




(4)

(5)

(6)

(7)

(8)

(9)

(11)
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DECAP (e, F); DEcCAP(k,I"):; if e # 0, go to {(4); I' «
pFA(k,I'); if F # (), B' « PFL(F,B'); if B" # (), go

to (3): go to (8).

[Update d, J, I, and B, and begin elimination.] d -
CPROD(p,e,d); J « PFA(z,J); I ~ PFA(k,I); B ~ PFL(F,B);
if P = (), go to (8); e ~ CRECIP(p,e): Gﬁw F.
[Transform pivot row.] ALTER(CPROD(p,e,FIRST(G)), G);

G « TAIL(G); if G # (), go to (5).

[Begin to transform next row, if any.] If B" = (), go
to (8); DECAP(G,B"); DECAP(u,G); B' « PFL(G,B'); if
u=20, go to (6); H~ F. ot

[Recompute next element of row G.] s « CPROD(p, u, FIRST(
H)); t « CDIF(p,FIRST(G),s); ALTER(t,G); G ~ TAIL(G);:

H ~ TAIL(H); if G # (), go to (75; go to (6).

[Test for end of triangularization.] B' « INV(B'); I' «~
€ONC(INV(I'),I"); if B' # (), go to (2};-I « CONC(INV(I),
T'); if B" # (), erase B".

[Initialize splitting of row.] If B = (), (U« V: V «
(); go to (15) ); DECAP(H,B); H « INV(H); H « (); M «
(); 2z «~n; L «J.

[split row.] If H = (), go to (11); DECAP(u,H); k « FIRST
L); if z =k, ( M+~ PFA(u,M); L ~ TAIL(L) ); if z # k,
H « PFA(u,ﬁ); z « z=-1; go to (10).

[Initialize diagonalization of row.] T - V: H « INV(H).
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(12) [Prepare transformation by next row of V.] If M = (),
go to (14); DECAP(u,M); if T = (), go to (12); ADV(S,T):
H ~ H.

(13) [Transform by next row of V.] If § = (), go to (12);
ADV(%,S8); W « FIRST(H); w ~ CDIF(p,w,CPROD(p,u,x):
ALTER(w,H); H « TAIL(H); go to (13). |

(14) ([Prefix row to Vv.] If H ¥ (), V -~ PFL(ﬁ,V); go to (9).

(15) [compute next row 6% non-diagonal part.] If U = (), go
to (17); DECAP(T,U); S ~ ().

(16) [Multiply next row element by §(A).] DECAP(e,T); g «~_
CPROD(p,d,e); S « EFA(g,S); 1f T # (), go to (16);

V « PFL(S,V): go to (15). |

(17) [construct output list and return.] V -~ INV(V); J «
INV(J); W ~ PFL(J,PFL(I,PFA(d,PFL(V,0)))); return W.
This algorithm accompli;hes the same computations as

does the algorithm of Section 2.6 in transforming A to

determinantal RRE form. That is, the triangularization

performed in steps (1)-(8) of CRRE is essentially the same

as would be performed by Algorithm 2.6.1. The back substi-
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tution phase of the complete diagonalization, as done in
steps (2) and (3) of Algorithm 2.6.3, is accomplished in
steps (9)-(14). The multiplicaéion of the elements by
d = §(a), as done in step (2) of Alg@rithmn2.6.7, is ac-
complished in steps (15)-(16). 1In place of computing Z,
CRRE computes the compact representation (J,d,V) of A and
returns it along with I = IA' An explanation of the indi-
vidual steps now follows.

In step (1), J = J, = g, 1' = IO =(1,2,...,m), and
B' = B'(O) = A are initially defined. Stgps (2)-(8) ac-
complish each pivot operation. Fof the kth pivot operation
the following lists have the indicated roles. B is the list
of the first k-1 triangularized rows, with latest, k-1, be-

ing first: B = ( B.). For row Bi the lead-

Bro1r B2 B
ing ji—l zeros and the 1 in column ji have been discarded,
the first of the remaining elements being in column ji+l.
B" is the list of rows Bk’ Bk+l"f"Bm' which have yet to
be searched for a pivot element in column z or, if one has
been found, have yet to be transformed by the pivot row.
The first z-1 elements of a row of B", which are zero, have
been discarded. The non-pivot rows, which either have been
searched in column z or have been transformed by the pivot

row, appear in reverse order as the elements of B'. The

first z elements of these rows are zero and have been dis-
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carded. The lists I, I', 1" have an analogous function with

respect to the permutation I = ( ) as

k-1 Tk-1,17 7 k-1, m

. . k-1
have B, B', B" with respect to the matrix B'( ), refer-

ring to Section 2.6. Thus, just after the element in the

.th , .t
i row has been tested against zero or the 1 h row has

been transformed, the three lists appear as: I = (ik 1 k-1’

.ol ), and I"= (i

R TR LA S K-1,i+1" """

ik—l m). If the element in the last row has been tested

lk—l,m""'lk—l,k) and

I" = (). If the kth pivot has been found in row t and all

nonzero unsuccessfully, then I' = (

)

the rows transformed, then I = (lk—I,t'lk—l,k—l'""lk—l,l

Vo U= Uy e Tke1, e ke, em1

), and 1" = ().

(lk,k,...,lk'l
) = (4

k,m’ """ Tk, k+l

ik-l,k
In step (2), B" and 1" receive the elements of B' and

I', respectively, which are then redefined as null lists

to begin the next pivot operation. During the pivot search

in step (3), elements are removéd from B" and I" and pre-

fixed to B' and I', respectively. When the pivot element

is found, d is recomputed and the required elements are pre-

fixed to the lists J, I, and B in step (4). We note that

z = is prefixed to J to form the list (jk'jk~l""’jl)'

T
Multiplying the pivot row, which now appears as the first

element of B, by the inverse e of the pivot element in step

(5) prepares it for the elimination on the remaining rows,
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which constitute B". The leading elements of these rows,
which are to be zeroed, are not recomputed but are simply
discarded, after being used in the transformation in steps
(6) and (7). The transformed rows are removed from B" and
prefixed to B'. In step (8) the inversion of B' and TI'

puts their elements in the correct order. If B' is non-
null, the next pivot operation is begun in stép (2). Other-
wise, I 1s inverted to form the list (ir l,...,ir r) and

’ 14

PR 1 ) to form I =

concatenated with I' = (i
r,c+l r,m

. . . . . th .
(lr 1,...,1 } = (i ,...,lm). However, 1f the r pivot

’ r,m 1

element was found in column jr = §,.then transfer is made
directly to step (8) from step (4) and no further row trans-
formations (eliminations) need be performed. In this case,
in step (8) we have B" either as a siﬁgle column matrix
(of elements to be zeroed) or the null list and also I' =
r,r+l""'ir,t) and I" = (ir,t+l""’ir,m)’ for r =t <m.
Sso, if B" # (), B" is erased and, after the two concatenations,
I = (il,...,im). B is left with the triangularized rows in
the reverse order.

The diagonalization (back substitution) now begins in

step (9), where the initializations for diagonalizing the

next row of B are performed. Suppose the list B is (Br’B

7

r-1

...,Bl) upon finishing the triangularization (i.e., rows in

reverse order). The list V, which is initially (), is to
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receive the diagonalized rows as they are generated. Let

Vi be the list resulting from transforming row Bi' The

1

following lists have the indicated rolls in transforming
Bi' H is initially set to Bi in étep (9),. but with elements
reversed: H = (B(i,n),...,B(i,ji+l)). Row H is then "split"
into two lists: H and M. H is to consist in the elements

in non-diagonal columns: H = (B(i,n),...,B(i,j _+1),B(i,]
r Jp-

1)

...,B(i,ji+l)). M is to consist in the elements in the di-
agonal columns: M = (B(i’ji+l)""'B(i’jr))’ done in steps
(9)-(11). i

. have been diagonalized,

Suppose that rows Br,...,Bi+l

for i =2 1, with Vv = (V.

l+l,...,Vr) and B = (Bi""'Bl) result-

ing. H and M are first computed as defined above. There

then follows a sequence of iterations of steps (12) and (13),
which accomplish the transformation of H by vi+l"°"vr' That
is H is replaced by H - B(i,jt)-vt for t = i+1,...,r. Con-
trol finally goes from step (9) to step (15) with U = (Vl,...,
Vr) and Vv = ().

In steps (15) and (16) V is redefined as the nondiagonal
part of the compact represéntation of X but with rows reversed
in order. This involves discarding those Vt at the end of V
which are empty, reversing the order of the elements of each

remaining v, while multiplying each element by d. In step (17)

\ is inverted to properly order its rows, J is inverted
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to form J = (jl""'jr) and the output list W = (J,I,d4,V)
is constructed and returned.

For the maximum computing time of CRRE a codominance
relation will be obtained. This will require the following

result.

Lemma 4.3.2. If r, m, and n are integers sucp that 1 = r <
min(m,n), then ff (m—1+l (n-i+1) = mnr/8. |

Proof: Let k = min(m,n) and assume 1 <= r < k. If 1l < i <

[k/27, then m-i+l > m-k/2 and n-i+l > n-k/2. Thus, if

_y (m=i+1) (n-i+l) > I, (m-k/2) (n-k/2) =

Zizl(m/Z)(n/Z) = mnr/4. On the other hand, if r > [k/27,

r = [k/27, then Zi

then 7o _, (m-i+1) (n-i+1) > %2 (m-ivd) (m-ivn) > 2272
m/2) (n/2) = [k/2mn/4 = lv/2mn/4 = mnr/8.//

Theorem 4.3.3. Let TCRRE(m,n,r) be the maximum computing

time of CRRE for A ¢ M(m,n,GF(p)) and A of rank r = 1.

he ~ mnr. .
Then TCRRE

Proof: To establish codominance requires showing that
dominance holds in both directions. We first show that
TCRRE { mnr. To begin, the following maximum computing

time table is derived.

i N, T, . T,
— L Y _t
1 1 - m+n
2 n 1 n

W

mn 1l mn
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z Ti Tii Ii

4 r 1 r

5 nr 1 i nr

6 mr 1 mr

7 mnr 1 mnf

8 n m mn

9 r n nr

10 nr 1 nr

11 r n-r+l r (n-r+l)
12 r2 1 r2

13 r  (n-r+l) 1 rz(n—r+l)
14 r 1 r

15 r 1 r i
16 r(n-r+l) 1 r({n-r+l)
17 1 - r

Selected explanation of these computing times now fol-
low. 1In step (1) the times to compute m, n, and I' are

“m, n, m, respectively, and so Tl “m+n+m~m+ n.

Step (2) is executed once for each pivot operation, plus

possibly once more, and soO T2 ~ N_2 ~ r. In step (3) the

maximum number of elements of A searched for the pivot ele-

ments is < mn and soO T3 - N3 < mn. Step (4) is executed r

times; so T4 ~ N4 = r, Step (5) is executed at most n-1

times for each pivot operation and so T_. = N { nr. Step

5 5

(6) is executed at most m-i+l1 times for the ith pivot oper-

ation and so T6 ~ N6 { mr. Step (7) is executed at most

. , .th . .
(m=-i+1) (n-i+1) times for the 1 pivot operation and soO
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~ —r 3 - — ] - o
T7 N7 1 Zi=l(m i+l) (n—-i+l1) < Zizlmn mnr. For step (8),

which is executed at most n times and for which T8 5 f m

for 1 < j = r, we have Ty { rm. Thus T, =

mnr clearly dominates the times for the forward elimination
steps.

Step (9) is executed r+l times, where T9,j Ty

n-r+3j) <{ n, and so T9 { nr. 1In splitting row H, step (10)

is executed once for each of possibly n-1 elements of each

of possibly r rows of B. So, TlO ~ NlO { nr. Step (11) is

executed once for each of possibly r rows of B, where the_

time for each execution is 5 n, and so Tll ﬁ rn. Step (12)

is executed r~k times to transform Bk' 1 2k <« r, and so

~ < _ 2 : - .
le le A Z§=l(r k) <€ r~. The number of executions of

step (13) to transform B

" by 8§ = V

& is equal to the number

of elements of Vt’ plus one, which is n—jt—(r—t) + 1 < n-t

- +1 = n-r+li. i PR ’
r+t+1 n-r+l Since Vk+l Vr are used for each Bk

1 <k < r, the total number of executions of step (13) is =
-1 <r _ <r-1 2
Z§=1 Zi=k+l(n—r+l) = Zk=l(r k) (n-r+1) < r (n-r+l). Hence,

- 4 2, - -
Tl3 N13 3 r ' (n-r+l). For step (14), T14 Nl4 r and

very clearly, the total time for the individual steps of

the back substitution is ﬁ Té + Ti3 = nr + r2(n~r+l) é rzn.

In step (15), since U has r elements initially, le ~

r+l and T ~ ~ r. Step (16) multiplies each of the

15 Nis

elements of U by d, of which there at most r(n-r+l), and
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sO we have Tl6 N16

< -1+ i ~ ~
\ r{n-r+l). Finally, Tl7 TINV(r) r.

2
herefore, < mnr + nr- 7 mnr.
T TCRRE

> mnr, we shall produce a matrix A

t
To show that TCRRE z

in M(m,n,GF(p)) of rank r = 1 for which the time for step
AN N . th . .

(7) is £ mnr. This will be the case if the k pivot is

found in row k and column k (i.e., JA = (1,2,...,r) and

IA = (1,2,...,m) ) and each element below the pivot element

in rows k+1,...,m is nonzero. Then at least (m-k+1) (n-k+1)

arithmetic operations are required by theukth pivot oper-_

ation and at least N = (m-k+1) (n-k+1) arithmetic oper-

o
“k=1
ations are required in the forward elimination. From Lemma
4.3.2 we have that 8N = mnr and so we would have TCRRE N

N .. mnr.

Such an m by n matrix A can be defined as follows:

ij_l isr N
A(i,3) ={ ., (1)
J- .
r , 1 >r .

It is easy to see, for k = 1,2,...,r, that each upper left-
hand minor of order k is a Vandermonde determinant and,

hence, is nonzero; that is,

i 01 1 . 1
Y | N
ghmlgh=l k=l

1 (t-s) # O.
lss<ts=k

Il
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This of course follows, provided that p does not divide

1 (t-s). This is assured by the assumption in Sec-
l<s<t =<k
tion 3.1 that dimensions of matrices are less than any prime

p on the list PRIME. For then we have that, if p[ n (t-s),
l<s<t<k
then p|(t-s) for some pair t,s, which is impossible, since

(t-s) <« k « p. Note that, since the initial segments of
the same length of rows r,r+l,...,m are identical, all min-
ors of the form (2) vanish for k > r.

Thus, r = rank(a), J. = (1,2,...,r) and IA = {(1l,2,...,m).

A
1,...,k

Also, & (A) = A(l,...,k

) , 1 £k < r. Finally we show that

. . th |,
for every pivot operation, the elements below the k pivot

element in column k are nonzero. From the proof of Theorem

(k-1)

2.6.2 we know that these elements B' (h,k), k «h < m,

have the form:

i, .., i i (T |
]_3‘(k‘--1)(h'k)=A 1 k-1 kk 1,h /; 1 k-1
jl,...,jk-l. jl,. .'jk"l
1,...,k=1,h / 1,...,k-1
=B\, .. 7 N L U |

These elements will be shown to be nonzero if the numerators

are shown to be nonzero. It is not difficult to show that

1,...,k=-1,h

each minor A
(l, ------- ,k

) is a Vandermonde determinant and,
hence, is nonzero.
Thus, CRRE will reqguire at least N arithmetic operations

when applied to the matrix A defined by (1). Therefore, it

> mnr, establishing dominance in

h bee hown that
as been s a TCRRE Z
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the reverse direction and so T ~ mnr.//
CRRE
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4.4. BAn Evaluation Mapping Algorithm for Computing an RRE

Form of a Matrix

We now present the middle algorithm in the complete
modular algorithm for solving linear equations. This algori-
thm computes some RRE form for a matrix of polynomials over
GF(p) or, as a special case, a matrix over GF(p). In this
latter case, C is obtained. For a matrix of polynomials
over GF(p), images C* under evaluation mappings are obtained,
to which the algorithm applies itself recursively to obtailn
RRE forms F* for the Cc*. The F* are, in fact, images of some
RRE matrix F, assuming certain tests have'been passed, whiéh
is being constructed by incremental interpolation. When a
substitution test is satisfied, it is known that F is an RRE
form for C. When a degree bound is attained, it is known

that F has been obtained. It is shown that it is reasonable

to expect that with high probability F = c. .

Algorithm 4.4.1. (CPRRE) Computing an RRE.Form Dby Evaluation

and Interpolation

Input: A prime number p and an m by n nonzero matrix C over
feessX 1, > 0.
GF (p) [x, 1s
Output: The list W = (J,I,D,V) obtalned by W = CPRRE (p,C),
where J = JC'I e PC' and (J,D,V) i1s the compact rep-
resentation of the RRE form F defined from C, J,

and I by formula (1) in Section 4.2. C 1is erased,
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(6)

(8)
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[Apply Gaussian elimination algorithm.] s « MCPNV(C);

if s > 0, go to (2); W « CRRE(p,C); return W.
[Initialize evaluation mapéing algorithm.] r « 0; a « p;
h « O.

(Apply evaluation mapping Ya.j a « a-1l; if a < 0, print
error message and stop; otherwise, C¥* « MCPEVL(p,C,a, s);
if MZERO(c*) = 1, terase G*; go to (3) ).

[Apply algorithm recursively.] W « CPRRE(p,C¥*); DECAP (
J*,W*); DECAP(I*,W*); DECAP (D*,W*) ; DECAP (V*,W*) .
[Rejection tests.] r* « LENGTH(J*); %f r* < r, go to

(6); if r* > r, go to (7): uw~ VCOMP (J*,J); if u = 1,

go to (6); if u = -1, go to (7); u «~ VCOMP(I*,T); if
u=1, go to (6); if u= -1, go to (7); erase J*, 1%*;
go to (8).

[Discard ?a.] Erase J*, 1I*, V*; if s > 1, erase D¥;

go to (3). -

[Discard previously retained_evaluation mappings and
initialize interpolation.] If r > 0, ( erase J, I, D,
V, E); J « J%; I « I%; D e« 0; V « (); if V* A (), V «
MZCON(V*); E « PFA(O,PFA(1,0)); r « r*.

[Retain Y, and apply interpolation.] D' ~ CPINT(p,D,a,
D*,E,s); if s > 1, erase D*; if V # (), ( V' « MCPINT (
p.,V,a,V*,E,s); erase V¥ ); T « PFA(1,PFA(1l,PFA(CDIF (p,

0,a),0))); E' « CPPROD(p,T,E); erase T,E; E « E'; if
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h =20, go to (9); erase D; D « D'; 1f V # (), ( erase

V; Ve« V' ); go to (12).

(9) [Bquality test.] T ~ CPDIF(p,D,D'); erase D; D « D';

U e« 1; if v # (), (u e« MCPEQ(p,V,V'); erase V; V «

vt ); ifu=1and T = 0, go to (10); erase T; go to

(3).

(10) [Substitution test.] n « LENGTH(FIRST(C)); if r = n,
(h«1; go to (11) ); D' ~ CPNEG(p,D); Z ~ NULCON(n,
J,D',V); T « MCPMPY(p,C,%Z); u « MZERO(T); erase D',Z,T:
if u = 0, éo to (3); h « 1.

(11) [compute degree bound.] b « DBRRE(J,C).

(12) [Degree test.] If CPDEG(E) < b, go to (3).

(13) [construct output list and return.] Erase E,C; W « PFL(
J,PFL(I,PFL(D,PFL(V,O)“))),- return W.

A discussion of this algorithm now follows, which will
attempt to show that, for every input matrix G, CPRRE com-
putes an output list w = (J,I,D,V), where J = Jc,Ier, and
(J,D,V) is the compact representation of the RRE form F for
¢ defined from C,J, and I by formula (1) of Section 4.2. If
C is a matrix over GF(p), the list W = (JC,IC,é(C),V), where
(Jc,s(c),v) is the compact representation of c, is computed
by CRRE and returned in step (l). ¢ is altered and erased

by CRRE. This establishes the case s = 0.
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If C is over GF(p)([x ,...,XS], s = 1, we assume that

1
CPRRE computes a list W* = (J*%,I*,D*,V*) satisfying the

output definition for every matrix C* over GF(p)[xl,...,xS l].

We show in what follows that CPRRE computes a list W = (J,I,
D,V) satisfying the output definition. 1In step (1) s is
computed and the evaluation-interpolation aigorithm is then
initialized in step (2). 1In particular, the variable r,
representing the common-rank obtained by the most recently
retained evaluation mappings, is set to 0 and the flag h,
which is set toul when a degreevbound b has been computed,
is set to O. )

There then follows a sequence of iterations involving
various subsets of steps (3)-(12). In step (3) the image
C* = Ya(C) is computed, fo? a disﬁinct aeGF(p), and, of

course, Ya is discarded as rejected evaluation mapping for

C, if ¢* is a zero matrix. CPRRE then applieg itself re-

cursively in step (4) to C*. We have by the inductive as-
sumption that a list W* = (J*,I*,D*,V*) is obtained, where
J* = J I* ¢ Fb*, and (J*%*,D*,V*) is the compact represen-

c*’

tation of an RRE form F* for C*. Letting J* = (ji"""jé*)

and I* = (ii,...,i&), F* is defined by:
ii, .................... ,i&
C*<j, 5 Y 5 > , 1 «h < r and
L _l Y +lo-., *
PE(h,5) = 1 h-1 h+1 r 1< <n

0, otherwise

(1)




162

This is simply definition (1) of Section 4.2 for C*. W* is
obtained, of course, barring termination of the algorithm
in step (2) during the recursive application.

In step (5) Theorem 2.3.2 is applied in the rejection
tests, for the induced mapping 6 being either Ya or one of
the previously retained (and not yet discarded) evaluation

mappings Ya , 0 £1 <« k. We note that each of the matrices

i
H = Ya (Cc) have rank r, RE sequence J = JH' and permutation
i ~
I ¢ PH in common. Let r = rank(c). It can be inferred from

Theorem 2.3.2 that exactly one of the following disjoint

cases occurs: .

~

(a) r* < r;

~

(b) «r* r and J% > Jc;

il

(2)

¢) rt =1, g* =J_, and I* > I _;
(c) o c

~

(d) r*x = r, J*

Il

JC' and I* = Ic.
Of course, these cases hold for r,J, and I reglacing r*,J¥%,
and I*. In each of’the cases (2a)-(2c), Ya is a rejected
evaluation mapping and should be discarded. The following
cases, paralleling formulas (2a)-(2d), might be detected in
step (5):

(a) r* < r;

(b) «r*

Il

r and J* > J;
(3)

(¢) r* =1, J¥ =J, and I* > I;

() r* =r, J¥ = J, and I*¥ = I,
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If (3a) is detected, then r* < r, since r = r. If
(3b) is detected, two possible subcases occur: r = r or
r<r. Ifrs= f, then J = JC and so J¥* > JC. If r < f,

then r* < r. If (3c) is detected, two subcases occur:

r and J = JC’ or ii) r < r or J > JC. If i) occurs,

’.J.
H
i

then I = IC and so I* > IC. If ii) occurs, then either
r* < r or J* > JC. In each of cases (3a)-(3c), Ya is found
to be rejected and is discarded, with the consequent eras-
ures of J%,I*,D*, and V* in step (6). If case (3d) is de-
tected, Ya is retained, although it may be shown in a sub-
sequent iteration to be rejected alqng with the other )
retained evaluation mappings. 1In case (3d), transfer is
to step (8) for the interpolation step.

Three other cases can occur and ﬁay be detected in
step (5). These are given by cases (3a)-(3c), if we merely
reverse the roles of r*¥ and r, J* and J, and I¥ and I. 1In
these cases we find, using arguments similar to those above,
that the previously retained evaluation mappings Ya. are re-
jected mappings for C. The Wa. are then discarded,lwith the
result that in step (7) J,I,D,;, and V are erased and re-
placed by J*%, I*, and the zero of GF(p)[xl,...,xs_l], the
univariate polynomial 1, and a non-diagonal part with the

same structure as V* but consisting of all zeros, respectively.

Also, r is replaced by r*. This constitutes a re-initiali-
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zation of the interpolation. We note that when a nonzero
c* ig first obtained in step (3), r* > r = 0 is found in

step (5), whereupon step (7) performs the first initiali-
zation of the interpolation.

Thus, whenever the new evaluation mapping Ya is re-
tained, whether or not the previously retained Ya. are dis-
carded, the interpolation in step (8) 1is performe;. This
involves applying CPINT to D and D* and, if V and V* are
non-null, MCPINT to V and V* to obtain new interpolants D'
and V', respectively. Also, the univariate polynomial E(x)
is replaced by (x-a)-E(x). . )

Let G be the RRE matrix for which (J,D,V) is the com-
pact representation. Suppose the matrix F of formula (1)
of Section 4.2 were defined using J ="(ji,...,j£). Then

the matrices F* as defined by formula (1) above, where r* =

r, satisfy: F* = Ya (F), letting C* = Ya (C) .., Hence, the

i i
F*'s are the values used in the sequence of interpolations
of step (8) for constructing F and G is (in its compact form)
the most recent interpolant. In step (8) the compact rep-
resentation (J,D',V') of the next interpolant G' is obtailned.

th th .

Thus, G and G' are the k and (k+1) interpolants, re-
spectively.

If in step (8) flag h = 1, the degree bound b has been

previously obtained and, after redefining D and V as D' and
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V', transfer is made directly to step (12) to test if this
bound has been attained. If h = 0, the equality of D and D'
and of V and V' are tested in séep (9). 1If one or the other
pair are not equal (i.e., G # G'); transfer is made to step
(3) to begin another iteration. 1In any case, D' and V' re-
place D and V, respectively, and D and V are erased.

By Theorem 2.5.6, we know that there are a finite
number of rejected evaluation mappings for C. Hence, it is
assured that eventually sufficiently many evaluation mappings
will be retained to produce successive interpolants which
are equal. For example, if in thevworst case all rejected
evaluation mappings had been applied and later discarded,
then retaining accepted mappings would eventually result in
G=G' =C being obtained. It is possible, however, that
equality could occur with all retained mappings being re-
jected mappings. Thus, the equality test is guaranteed to
succeed at some time, whereupon the substitution test will
be applied in step (10).

If in step (10) it is found that r = n, then r = r' = n,
since r £ ¥r' < n. In this case it i1s known that J = JC'
since J = (1,2,...,n) s JC and J = JC, and so h is set to
1 and transfer is made to compute the degree bound. If

r < n, then the matrix 2z satisfying formula (1) of Section

4.1 can be computed from n,J,-D, and V by NULCON. By Theorem




166

4,1.4, if T = CZ 1is a zero matrix, then we know that J =

JG = JC and the substituticn test is successful. In this
case, h is set to 1 and the deggee bound b is computed in step
(11). If the substitution test féils, that is, if CZ is non-
zero, then transfer is made to step (3) to begin another
iteration. We note that the matrix product Cz is computed

by the evaluation mapping algorithm MCPMPY.

As for the equality test, it is assured that eventually

the substitution test will be satisfied. For, if in the

worst case, the equality test resulted in'G = G' = C, the?
by Corollary 4.1.2 the matrix Z cdnstructed by NULCON from
n, J = JC, -D = -4(C), and V would result in CZ being a zero
matrix.

In step (11l) DBRRE is applied to J = JC = (jl,...,jr)
and to C to compute a bound b on the degrees in XS of the
elements of every matrix F defined by formula-(l) of Section
4.2. This includes the particular matrix'F being constructed
by interpolation in step (8). We note that h is set to 1
and the bound b is computed only once for C. Thereafter,
during subsequent iterations transfer is directly from step
(8) following the interpolation to step (12) to test the de-
gree bound. It may happen that all retained mappings will

be discarded following the computation of b. 1In this case,

the interpolation is begun again and the first sequence of
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b+l retained evaluation mappings will produce an RRE form
F for C. Note that E(x) > b is required for return in step
(12). Suppose k+l iterations have been performed. Then the
maximum degree attainable by the elements of G is k. How-
ever, deg(E(x)) = k+l. So, to assure that the maximum de-
gree attainable is k = b, we must require that deg(E(x)) =
b+l > b. Until this criterion is satisfied, transfer is
back to step (3). When it is satisfied, the list W is con-
structed and returned in step (13) and E and C are erased.

This concludes the inductive step in an informal veri-
fication of CPRRE. Although a formal proof of the algorithm
has not been intended, the discussion should be sufficient
to show that the output description is correct.

We now consider-what would be . the most likely behavior
of CPRRE for the input matrix C consis£ing of randomly chosen
entries from GF(p)[xl,...,XS], more specifically, from P*(

m .,ms), s =2 1. A rigorous treatment of those parts of

17
the discussion relying on the properties and implications
of randomness will not be attempted. In such cases the as-
serted properties seem plausible; but attempts to establish
them rigorously would probably be quite difficult and would
distract from our main concern here. We first sketch an

argument showing that the probability of the occurrence of

a rejected evaluation mapping is small.




168

ll,...,lk

) ) , 1 £k < r. From Theorem
]l,...,jk

Let & (C) = C

k

2.5.6 we know that an upper bound on the number of rejected

evaluation mappings for C is given by o = Zi 1% where

o = deg(ak(c)). By applying Lemma 2.5.1 to each 5k(C),
we find that o < Zi=l max deg(C(lu,jv)) < Zﬁzl m, =

lgvgk )
kmS < kus, for 1 =k < r. Thus, ¢ < Zi:l k”s = r(r+l)“s/2

< r2 by giving a crude upper bound on the number of rejected

evaluation mappings which could be chosen. The crudeness
derives from the fact that each ak(C) has been considered
to have roots only in GF(p), from which the elements a for

the mappings Ya are selected.

g ooesX with the main

By interchanging each of x o1

1
variable X and applying Lemma 2.5.1 as above, we find that
degxi(ak(c)) < kmi, I < i sﬂs. Hence, 5k(c) e P*(kml,...,
kms); for 1 <k < r. We assert as plausible that, since

each element of C is randomly chosen from P*(ml,...,ms),

each determinant 5k(C) possesses similar properties of be-
ing randomly generated in P*(kml,...,kms). It then is rea-
sonable to expect that any element of GF(p) has equal likeli-
hood of being a root of 6k(c), for each k. Hence, each of
the p mappings Ya has equal likelihood of being a rejected
evaluation mapping for Cc. Thus, a crude upper bound on the

probability that a rejected evaluation mapping occurs is

¢ = r2us/p > P(@k(a) = 0 l a ¢ GF(p) and 1 < k < r).
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Recall from Section 3.1 that dimensions of matrices
and degree bounds of polynomials have been assumed to be
less than any prime p on the list PRIME. It is, in fact,
true that these quantities are much smaller than p, where
typically p = 1010. Thus, r << p and r2 << p and also
Mg << p, whereupon it is still reasonable to expect that
¢ << 1. Thus, the probability that a rejected evaluation
mapping occurs is small. This implies that with high prob-
ability J = JC and I = IC are computed for all mappings Ya

employed. Hence, with high probability F = C is being con-

structed by incremental interpolatign.

Another aspect of the expected behavior of CPRRE con-
cerns the equality test in step (9). Recall that the equal-
ity test succeeds when D = D' and theAcorresponding elements
of V and V' are equal (i.e., successive polynomial interpolants
are equal). Suppose that k consecutive evaluation mappings

y ,¥Y ,..., Y have been retained and let A be some
a a a . k-1

o) 1 k-1
specific k = intérpolant obtained (i.e., Ak—l = D or Ak—l

an element of V). Given that Bk—l is the next value obtained,

the next interpolant Ak is obtained by the formula:

= r - e oy ’
Ak(xl,...,xs) {,Bk(xl,...,xs_l) Ak_l(xl,. X 1 ak)]

‘ (4)
/E(ak)}.E(xS) + Ak_l(xl,...,xs)

(%,,...,%

(%.,...,% o1 ¥

Let f(xs) = Bk 1 a1

) - A ,X ), that is,
1 s

s~1

a polynomial in XS with coefficients in GF(p)[Xl""'xs~l]'
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Then A, =

" Ak-l if and only if f(ak) = 0. Since f has degree

at most k-1, f has at most k-1 roots and, hence, at most k-1
roots in GF(p). Assuming that each element of GF(p) has
equal likelihood of being a root of f, the probability that

ak is a root of f, and hence that Ak = Ak-lf

is at most k/p.

We now can obtain a single bound on the probability that
the equality test in step (9).succeeds prematurely. We saw
above that with high probability the compact representation
of F = C is being constructed by the interpolation. Since
the polynomial elements of this representation are minors

of order r, it can be stown by the same argument as that

used above that these polynomials are in P*(rm ,...,rms).

1
The bound b computed in step (11) by DBRRE satisfies b < rms,
since it is computed in such a way as to be attainable. Thus,
rus is an upper bound on the number of iterations of the
interpolation. If t is the degree of a particular poly-
nomial element R of F = E being constructed by interpolation,
then the probability of two successive interpolants being

equal before R has been obtained is P(A_ = A 1 <k < t)

k k-1 ‘
t 2 2 . .
< 'k=l(k/p) = t(t+1)/2p < t7/p < (rps) /p = ('. Since the
compact representation has at least one polynomial element,
this is an upper bound on the probability that the equality

test succeeds prematurely. Since r << p and by << Py it is

still reasonable to expect that (rp,s)2 << p, which implies
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To illustrate further the unlikelihood of a premature
equality test success occurring: suppose t is the maximum
degree in xs among all elements of F = E and suppose there
are z polynomial elements in the compact representation of
F. Let t' be the minimum of their degrees. The probability
that the equality of successive interpolants occurs at the
kth iteration, k < t' for all z polynomials is at most
(k/p)z. Thus, the probability of a premature equality test

success before the (t'+l)th iteration is < Zﬁzl(k/p)z <

—

Yy, /0% s ‘rLi___l(k/p):jz = (¢')%, which is indeed much
smaller than (¢'. This implies that the probability of a
premature equality occurring at all is some value much less
than ¢' = (rus)2/p, when more than one polynomial interpo-
lation is involved.

Consider now the matter of obtaining computing time
dominance relations for CPRRE. Sgppose dominance relaéions
were desired for the strict maximum or average computing
time functions, as defined in Section 3.1. Then those in-
put matrices C would have to be accounted for, for which a
large number of rejected evaluation mappings exist, possibly
close to r2ps. Moreover, matrices C, for which all possible
premature equality test successes and the resulting substi-

tution tests might occur, would also have to be included.
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Ssuch premature substitution tests would most likely fail,
thus requiring further tests. Unusual cases such as these
would be relatively few; howeveé, theilr computing times
tCPRRE(p'C) could be extremely lafge.

The effect of the possible existence of such cases on
a maximum computing time analysis of CPRRE is to cause the
dominating functions to be exceedingly large. Again, if
an average computing time analysis were to be performed,

the computing times for all extreme cases would have to be

(p,C), or a

included in computing the sum: Z(p C)es tCPRRE
’ y

. s, m )I

bound for this sum. Here, for each y = (m,n,r,ml,. s

g is the set of all input pairs (p,C), where C ¢ M(m,n,P*(
Yy
..,ms) and r = rank(C¢) = 1.

1"
It‘seems likely however, that, in view of the very

small probability with which these extreme cases occur, the

expected performance of the algorithm will not be seriously

affected by these cases. Hence, what will be obtainedAfor

CPRRE are dominance relations on the maximum computing times,

under the assumption that no rejected evaluation mappings

are used and no premature equality test successes occur.

Then we can expect that F = C is being constructed by the

interpolation and that the first equality test success oc-

curs when J = J _, I = 1

c D = s(c), and (J,D,V) is the com-

Cl
pact representation of E. Subsequent iterations will then
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produce the same interpolants until the bound b is attained.
We note that a similar analysis and related assumptions
were made in [Bro711 for an evaluation-interpolation algo-
rithm for multivariate GCD calculation.
The following elementary result will be convenient to
have in the computing time analysis of CPRRE.

Lemma 4.4.2. Let r and n be integers such that 1 £ r < n.

Then n < 2r(n-r).
Proof: If r < n/2, then r(n-r) =z r(n-n/2) = rn/2 = n/2.

If r > n/2, then r(n-r) > (n/2)(n-r) = n/2.//

heor 4.4.3. t T , ,r,f be the maximum compu-
T em Le TCPRRE(m n ms) jo)

ting time of CPRRE under the assumption that no rejected
evaluation mappings are used and every substitution test
is successful, for C a nonzero matrix of rank r in

M(m,n,P*(ﬁS)), s =2 0. Then TCPRRE ~ mnr, for s = 0, and

T

CPRRE . r° (1 )[mﬁ2 + ¢m+n) (n-r+1) r “ilei)]’ for s > O.

s
i=1Mi
Proof: If C is over GF(p), only step (1) " is executed. Thus,

,n,r,h ~ m, + m,n,r) ~ mn 4+ mnr ~
T eprre (™ m) T Tyepny (™) F Toppg )

mnr. Suppose C is over GF(p)[x .,XS], s 2 1. The fol-

1°°°

lowing maximum computing time table (under the given assump-

tions) is obtained for CPRRE.




A
1 1
2 1
3 T
4 g
5 Tug
6 0
7 1
8 rus
9 T
10 1
11 1
12 Iy
13 1
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] Ti

- mn

- 1

o (117 _y ;) mar (07 g )
TCPRRE(m,n,r,ﬁS_l) ruS.TCPRRE(m'n’r’fﬁs—l)

m mry,

- 0

- r{n-r) + 1

(e -n)+ D) e (S Te) (eten) ) ey ()
(r(n-r)+l)rswlj(ni;iui) (r(n—r)+l)rs+lus(ni£lpi)

(n—r+l)rs(ni=lui)-[mn +
(m+n)r(Z§=1ui)]
mn

rus

S
o (T _y )

]

Selected explanations of the times obtained for the

individual steps is now given. For step (1), T, ~ T (

~

m,n)

mn.

1 MCPNV

Step (2) is trivial. It was noted above that

the bound b computed in step (1l) satisfies: b < T - Thus,

b
rus ou
(9), an
(8) occ

(12).

nds the

d (12),

ur, and

We note

number of executions of steps (3)-(5), (8),
since b+l executions of steps (3)-(5), and
at most b executions of each of steps (9) and

that C* is never zero in step (3), since Ya
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has been assumed to be accepted. In step (5) we always
have r* = r, J* = J, and I* = I and so step (8) is al-

ways executed next, except for %he first execution for
which r* > r = 0 and step (7) is next. Step (9) is not

executed after the degree bound has been computed, which

may not occur until just after the (b+l)th execution of

step (9). The degree test in step (l2) is executed after
every interpolation once the degree bound has been computed.
Thus, N, < ry_. for i = 3,4,5,8,9,12. Step (6) is not exe-
cuted, given the assumption that no rejected mappings occur,
and similarly the only execution of step (7) is to initialize
the interpolation for the first iteration. Since it has

been also assumed that no substitution test failures occur,

NlO = 1. Also, only one bound b is computed and so Nll = 1.

Of course, Nl3== 1. Thus, all the Ni have been established

and we now turn to the Ti . and the Ti' -

’

~

. T (m,n,m ) < mn(n? we ) giving
3,3 MCPEVL s 7 i=1"1

Clearly, T
Té easily. Since a dominating function is not yet known for

T the function name must be used for step (4). For

CPRRE’

step (5), T, . 3T (r*) + T (r*,r) +

3 T (m,m)
5,73 LENGTH VCOMP VCOMP

~

r* + r¥ + m ~ m. For step (7), the largest T7 : would oc-
!

cur when MZCON is applied to a non-diagonal part V* with the

maximum number of elements. In Theorem 4.3.2 this was found

to be r(n-r), when r < n. Thus, T7 ~ T7 3 { r{n-r) + 1. 1In
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step (8) at most r(n-r)+l polynomial interpolations occur:
at most r(n-r) when applying MCPINT to V and V* and one
.th . .
for D and D*. For the j iteration, D and the elements
of V have degree at most j-1 in xé and degree at most r“i in
the variable X4 i < s. This latter fact follows, since each

compact form (J*%,D*,V*) computed in step (4) represents a

i i 14 I* AL A4 h 14 . 4
matrix in M(m,n,P (rml rmSml)) Thus T8,j A TCPINT(
t ey I.. + =L, 7 e s ey I. 5« - +1
rm, rm__y 3) TMCPINT(r n-r,rm; rm__y ) (r (n-r)+1)
s-1,, s-1

., .51 _ . .
j(ni=lrui) = (r{n-r)+l)r j(nizlui), which clearly domi

nates the time for the erasures and the application of CPPROD.

This assumes that r < n; but the relation clearly holds for

_ ‘ < bg o g o s-1, _s-1
r = n. Thus, Tg 2 Zgz T8,j < Zgzl(r(n r)+1)r QU

s+1 S
(r(n-r)+l)r u‘s(n.i=lp‘i

) <

). We find that for step (9) T9 5 ﬁ

Y + T (r,n-r,rm.,

(rm,,...,¥m -1 MCPEQ 1

Tepprr '™ NETERETES

l,.«.,l"f’(lS

{ 7' ., assuming r < n; but

...,rms_l,j) Y Tg, 5

PR il ;J-1,rm

s-1 1’
7 . { T ., for r = n also. Thus, similar to step (8), T £
9,73 8,7 - 9

~

Té. Skipping step (10) for the moment, we see that T11

S

j=1ky)e the

~ . o4 <
TDBRRE(m'n) mn. le is trivial and Ti3 ~ mn (11

function required to dominate the time to erase C.
We now return to step (10). The time to construct D'

. s,.S .
is £ TCPNEG(rml""'rms) $r (Hi:l“i) and the time to con-

t: i n,r) “ n(n-r). We have Z M(n,n-r,P* (rm
struct 7 is TNULCON( ;) ( ) e M(n, ( 1’

., T .  Thus, the time to compute CZ i { T =T
crm ) S © 3 S 2 MePMPY |

] - S -
.,ms,rml,...,rms) 5, mn(n r)(Hi:l(ui+rwi)) +

M, N, AT, Wy .
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mn[2§=l(ﬁ§:luj)(H;zi(uj+ruj))} + nnme) (2] (T ruy) (15

S s .
(uj+ruj))} + m(n—r){(ni=l(“i+r“i))(Zﬁ=l(“i+rui))}' Since
- o _ s, s S s—1i
by + ruj ruj, T ¥ mn(n-r)r (nizlui) + mnr(nj:luj)(Zlepir )

+nnen) =l w0 5 ) + min- 0)° Sy k) =

(nl l“ -[mn(n—r)rs + mnr(Zﬁzluir ) + (m+n)(n-—r)rS+l

. ‘ y s-1i

(Zizlui)]_ Applying Lemma 4.4.2, we see that mnr(Zizluir )
S-—

1kt

ﬁ m(n—r)r2(Zi= i) < (m+n)(n~r)rs+l(Z§=lui). Thus, f é

s+1

(nizlpi)-[mn(n~r)rs + (m+n) (n-r)r (Z} .)] = (n—r)rS

S

T S — o ! pod g
i=l“i) (mn + (m+n)r(Zﬁ=lui)] T'. We note that T' £ T

(n

and that, if we replace (n-r) by (n-r+l) in %', this rela-

tion is not changed. Clearly, f' dominates the time for
CPNEG, NULCON, MZERO, the erasures, and all other operations

. - {A|=|
in step (10). Hence, TlO A T10

We now obtain a single dominance relation for the total

time for all steps. It is easily seen that Tf ﬁ Té, for

i=1,2,5,6,7,11,12,13. Moreover, T, = mnry (nl 1hg) 4

(m+n)r(n—r+l)rs(2§ Wy )(nl 1M ) ﬁ T since n 4 r(n-r+l).

10’
. v _ s+2 s 4 _ s+1
Also, T8 + T9 3V (n-r+l)r us(nizlui) 2 {n~r+l) (m+n)r
4 o g om
Qf ~1 Mg ) (1 lp ) 2 Tio: Thus, we have Toprre ~ Ta t Tio-
= m < . m
For s 1, TCPRRE(m,n,r,ml) £ Ty TCPRRE(m,n,r,mO) +
v~ . - 1 = -r+
TlO Ly g mnr + {(n r+l)rul[mn + (m+n)erJ mnrul(r+(n r+1))
+ (m+n)(n—r+l)r2ui ~ mnzrul + (m+n)(n~r+l)r2ui. Let the
inductive hypothesis be: T (m,n,r,m, ) < mnzrt(nt Mo )t
CPRRE t ~ i=1"1

t+1

t
(m+n) (n-r+1l)r (n S Mg )(Z& 184 ), for t =2 1. CcClearly, the
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hypothesis holds for t = 1. Assuming that it holds for

t = s-1, where s > 1, we show that it holds for s. For

T (m,n,r,m ) % ry -T
s s

ma%s—l(ns—l

m,n,r,m + T4 ry -
( oop) t Ty R TRt

-1 10
-1 <s-1 S
) Li:lui)} + (n-r+l)r

CPRRE

s, S
i=l“i) + (m+n) (n-r+l)r (nizlui

S

(m.

jerby) 00 (men) v (Z_yu) ) = rs(ni=1@i)'{mﬂ2+ (m+n) (n-r+1)

S )

r(Zi;ipi) + (n-r+l)mn + (n-r+l)(m+n)r(Z§=lpi)} ~ rs(ﬂizlpi

[mn2 + (m+n)(n—r€ﬂr(2§=lpi)].//

Thus, the time for the substitution test nearly domi-
nates the time for the remaining steps, were it not for
the mnz—term in brackets, contributed by the recursive
application of CPRRE. The probability that an accepted
evaluation mapping occurs at the first execution of step
(3) is at least 1 - o/p = (p—g)/p, which is close to 1.
So, with high probability any rejected mappings occur after
the first iteration, are discarded immediately, and no in-
terpolations are wasted on such mappings. Moreover, the
probability that a succession of t rejected evaluation map-
pings are retained, with the required interpolations being
performed, is some value less than [@/pjt, an extremely small
number. Thus, it appears that, even 1f rejected mappings do
occur, the time for the computation required for applying

such mappings will not be significant.
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4.5. A Modular Algorithm for Solving Linear Equations

In this section the outer or main algorithm for com-
puting a general solution to a system of linear equations
AX = B with integer or polynomial coefficients is presented.
If the system is inconsistent, this fact is detected and re-
ported. There is a clear similarity between this algorithm
and CPRRE, which will be detailed below. The basic method
is to compute images C* under mod-p mappings of the aug-
mented system matrix C = (A,B), to which algorithm CPRRE
is applied to oﬁtain RRE forms F* for the C*¥. The F* are
images of some RRE matrix F, which 1s being constructed
from these images by Garner's Method, assuming certain
tests have been satisfied. When at some point a substitu-
tion test is satisfied, F is known to be an RRE form for C
with RE sequence J = JC. Using J, it can be decided whether
or not system C is consistent. If it is, then a general so-
lution (D,Y,%) to the system A2X = B is constructed. BAs was
done for CPRRE, arguments are sketched which make it rea-
sonable to expect that with high probability F = C is ob-
tained and, hence, that the determinantal general solution
((A),Y,2) is computed. The complete modular algorithm now
follows.

Algorithm 4.3.5. (PLES) Computing a General Solution to a

System of Linear Equations

Input: A positive integer n and an m by n' matrix C over




Output: A list G obtained by G

(3)
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I[xl,...,xs], s = 0, where n < n'. C is the aug-
mented matrix for a linear system AX = B, where A

is m by n and nonzero and B is m by (.

il

PLES(n,C). If the sys-
tem C is consistent, G = (D,Y,Z), representing a
general solution to the system AX = B. If the
system is inconsisteﬁt, G = (), the null list.

Note that this algorithm requires the list
PRIME pf distinct odd primes.

[Initialize.] X « MVLIST(C); L « PRIME; r « O. )

[Apply mod-p mapping @p.] If L = (), print error mes-

sage and stop; otherwise, ADV(p,L); C* ~ MMOD(p,C,s):;

if MZERO(c*) = 1, ( erase C*; go to (2) ).

[Compute an RRE form F* for C¥ by the evaluation map-

ping algorithm.] W* ~ CPRRE(p,C*); DECAP (J*,W*); DECAP (

I*,W*): DECAP(D*,W*); DECAP (V*,W*). .
[Rejection tests.] r* ~ LENGTH(J*); if r* < r, go to

(5); if r* > r, go to (6); u « VCOMP(J*,J); if u = 1,

go to (5); if u = -1, go to (6); u «~ VCOMP(I*,I); if
u =1, go to (5); if u = -1, go to (6); erase J*,I1*;
go to (7).

[Discard @p.] Erase J*,I*; if X # (), erase D¥*; if
vx # (), erase V*; go to (2).
[Discard previously retained mod-p mappings and

initialize interpolation.] If r > 0, ( erase J,1,D,V,



(7)

(8)

(9)

(10)

181

E); JeJ% I «1I% DeO0; Ve (); if Ve # (), V.
MZCON(V*); E « PFA(1,0); r « r*,

[Retain % and apply Garner's Method.?] D' « CPGARN(E,
D,p,D*,X); if X # (), erase D*; 1f V # (), ( V' « MGARN(
E,V,p,V*,X); erase V¥ ); T « PFA(p,0); E' ~ IPROD(T,E);

erase T,E; E « E'.

[Equality test.] T ~ PDIF(D,D'); erase D; D « D'; u « 1;

if v#I(), (ue-MEQ(V,V'); erase V; V « V' }); if u=1

and T = 0, go to (9); erase T; go to (2).

[Substitution test.] If r >n, ( G « (); erase D; go to (12));
n' « LENGTH(FIRST(C)); D' « PNEG(D); Z' « NULCON(n',J;

D',V); T « MMPY(C,%); u « MZERO(T); erase D',T; if u = O,

( erase Z2'; go to (2) ).

[Inconsistent system tést.] J « INV(J); if FIRST(J) > n,

( erase 2'; G « (); erase D; go to (12) ); Y« (); Z « ();

h « n-r-l; u « n. N
[Construct general solution.)] u «~ u-1l; DECAP(T,2'):; if
h =0, (2« PFL(T,2); if h > 0, do T « TAIL(T) h times;
W e T; T « TAIL(T); SSUCC(O,W) ); Y « PFL(T,Y); if

u > 0, go to (11); erase Z'; G ~ PFL(D,PFL(INV(Y),PFL(
INV(Z),0))).

[Final erasures and return. ) Erase J,I,V,E,X; return

G.

An explanation of the individual steps is now given,

which is intended to show that the list G, as defined in the
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output description, is obtained for every valid input pailr
(n,c). 1In step (1) the initialization obtains the list X =

(% .,X ) of variables, if C is over I[x X 1, s =21,

X < IRERERE
or X = (), if C is over I. Also, L is set to the list of
primes and the variable r, giving the common rank obtained
by the most recently retained mod-p mappings, is set to O.

A sequence of iterations then follow involving various sub-
sets of steps (2)-(9). These steps are a direct parallel
with steps (3)-(10) of CPRRE, the main differences due to
replacing evaluation mappings by mod-p mappings, incremen%al
interpolation by Garner's Method, arld, in general, opera-
tions in GF(p)[xl,...,xS] by operations in I[xl,...,xs].
Hence, much of the discussion of CPRRE pertains directly

to PLES.

In step (2) the next prime p is obtained and the mod-p
mapping $p applied to obtain an image matrix C* = @p(c). Of
course, if C* is zero, then mp ié discarded as a rejected
mapping, C* is erased, and the next mod-p mapping selected.
If the list PRIME is insufficiently long and is exhausted,
the algorithm terminates in failure. However, since another
0dd prime can in theory always be found, this is an implemen-
tation problem which can be corrected and does not invalidate

PLES as an algorithm. 1In step (3) C* is input to CPRRE,
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which returns the list W* = (J*%,I*,D*,V*), where (J*,D*V*)
is the compact representation of an RRE form F* for C* and
I* ¢ PC*' The matrix F* is as defined by formula (1) of
Section 4.4 from C*,J* = (ji,...,jé*), and I* = (ii,...,i&).
This was shown by the discussion of CPRRE. The elements J%,
I*,D*, and V* are removed from W*.

In step (4) tests for rejecting 0 or the previously
retained (and'not yet discarded) mod-p mappings @p-, 1l <i <k,

i

are applied. Each of the matrices H = @p (¢c) have rank r,
RE sequence J = JH, and permutation I ¢ P; in common. Th?se
rejection tests are identical to those of CPRRE and, hence,
the discussion of steps (5)-(7) of CPRRE may be applied
without any significant change to steps (4)-(6) of PLES.
In so doing, 0 replaces Ya' © ) replaces Ya.' I[xl,...,xS]
replaces GF(p)[Xl,...,XS], obsefving that thé case s = 0 1is
now included, and Garner's Method replaces ineremental inter-
polation. We note that, in initializing (or re-initializing)
Garner's method in step (6) of PLES, the L-integer E = 1 is
defined in place of the univariate polynomial E = 1x° over
GF (p) required in CPRRE.

The net result is that Garner's Method is applied in
step (7), whenever the new mod-p mapping P is retained,
whether or not the previously retained P are discarded.

i
Thus, by applying CPGARN to D and D* and, if VvV and V* are
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non-null, MGARN to V and V¥, new iterates D' and V' are ob-

tained. In addition, the L-integer E = 1S is replaced

‘E. h i , = =
by p*E If the mpi ave been retained, p Pl and E
v d, if th h i , =
pl pk+l an i e mpi ave been discarded, p Py and
E = pl.

Let G be the RRE matrix for which (J,D,V) is the compact
representation. If F is the m by n matrix as defined by
formula (1) of Section 4.2, using J = (ji,...,jé), then

each RRE form F* for a C* =‘mp (c) satisfies: F* = ¢ (F).

i Pi

Thus, the F*'s are part of a modular representation of F _
which are being used in a sequence OFf iterative applications
of Garner's Method to construct F and G is the most recent
iterate (i.e., its compact representation). 1In step (7)
the compact representation (J,D',V') of the next iterate
G' is computed. G and G' are then the kth and (k+l)th
iterates, respectively. »

The eguality of these iterétes is tested next in step
(8) by comparing their compact representations: D with D'
and V with V'. If one or the other pair are unequal, step
(2) then follows to begin another iteration. Regardless of

the outcome, D and V are erased and are replaced by D' and

V', respectively. We are assured by Theorem 2.4.8 that there

are a finite number of rejected mod-p mappings for C. Hence,

if equality does not occur for all retained mappings being
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rejected mappings for C, then it will occur for all retained

mappings being accepted mappings. For each accepted mapping

@p produces F* = E;TET = ¢p(é), from which F = E will even-
tually be constructed, resulting in G = G', if the iterations
are not terminated sooner. Thus, at some time the substitu-
tion test will be applied in step (9).

In step (9) the test r > n is first applied. If it
succeeds, the system C is inconsistent, since rank(d) = n < r
= rank (G) < rank(C). In this case no substitution test is
required and so.G is defined as the null list and returned
in step (12). If r <n, then r < n' and the matrix Z' cag
be constructed from n',J,-D, and V by NULCON, satisfying
formula (1) of Section 4.1. If T = CZ' is a nonzero matrix,
the substitution test fails and sobZ' is erased and the next
iteration is begun in step (2). If CZ is a zero matrix (i.e.}
the test succeeds), then by Theorem 4.1.4, J = JC. If
J[{r] > n, then the submatrix of C consisting of its first
J[r] columns has rank greater than A and so rank(C) = r >
rank (A). In fact, this condition is also necessary for the
system C to be inconsistent. Hence, this test is applied
in step (10) to eliminate all inconsistent systems. In this
case, 7' is erased, G is defined as the null list, and return

is made in step (12).

If J(r] < n, the system is consistent. Thus, since
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cz' = 0, we have from Theorem 4.1.3 that a general solution
(D,Y,Z) to the system AX = B can be obtained from Z'. 1In
particular, the theorem specifies that the submatrix of Z'
consisting of the first n rows and first n-r columns consti-
tutes a null space basis Z for A. Moreover, the submatrix
consisting of the first n rows and last g columns constitutes
the matrix part Y of a particular solution, when paired with
D. The matrices Z and Y are constructed in step (11). Ini-

tially h is set to the number of columns of Z minus one and

u is set to the number n of rows required. If r = n, then
h = -1, indicating that there is no ‘null space basis to con-
struct. 1In this case Z remains as the null list. If r < n,

then h > 0 and the first h+l elements of each of the first

n rows of Z' are removed to form the n rows Zl""'zn of Z.
They do, however, appear in the reverse order: Z = (Zn,...,Zl).
As the rows of 7' are being prefixed to Z, the-*final segments
of g elements of each row of Z"are being prefixed to Y.

This occurs even when h = -1 and results in the entire row

of Z' becoming the corresponding row of Y. The rows Yl""'Yn
of Y also appear in the reverse order: Y = (Yn""'Yl)' Since
n <n', Z2' now consists in its last n'-n rows, whereupon Z'

is erased.

Finally, the general solution list G = (D,Y,%Z) is con-

structed, reversing the order of the rows of Y and Z. The
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last step, step (12), performs the erasures of all remain-
ing lists, which have been constructed by the algorithm,
and returns the list G.

As was done for CPRRE, we now consider the expected
behavior of PLES. First consider the probability that a
mod-p mapping @p is rejected for C. From Theorem 2.3.4 we
know that @5 is a rejected mapping if and o?ly if @p(ék(c)) =

1., ...,1
0, for some k: 1 <k < r, where § (C) = C (.l .k ,
k jl,...,jk

PR , and I = (i,,...,1 ). PFurthermore,
Jr) c ( m)

J_ = ( 1

c ' ‘
mp(ék(c)) = 0 if and only if p divides all integer coef-

ficients of 5k(c).

consider the case s = 0, i.e., dk = ak(C) an integer.

Recall that each prime p selected from the list PRIME satis-
fies: v/c = p < y. Typically, on a binary computer y = 2,
for some positive integer t, and ¢ = 2 (i.e., on the UNIVAC

1108 one might have t = 33). Thus, if |4 <.y/2, then p

x|

does not divide 4, , since p > |d

N ‘ kl' If v/2 = \dkl < v

then p divides d_ if and only if 4 = + p, since 2p =z v,

k k

for all such primes p. Assuming that y is approximately lOlO

(i.e., for y2233), by using the Prime Number Theorem (see [KND691,
p. 340) the frequency of primes in the interval [vy/2,v] is ap-
proximately 1/20. Since the number of primes in [v/2,vy] is

then approximately (v/2)(1/20) = ~/40, an estimate aof the

probability that pl.dk in this interval is 40/y. Finally, ifldkl> v
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the probability decreases rapidly with the number of po-

tential prime divisors of d The probability is small

K
that [dkl falls in an interval where the probability that

p | by is anything but minute, since the interval [v/2,vy]

is small.

Thus, it is quite reasonable to expect that the proba-
bility that @p is a rejected mapping for the integer case
s'= 0 is quite small. It may then be inferred that the
probability that P is rejected, for s = 1, is much smaller.
For p must divide not just one integer but all the integer

‘'In all the cases s = 0,

coefficients of a polynomial 5k(C)"
the summations of the probabilities for k = 1,2,...,r should
not produce a probability of @p being rejected which is any-

thing but minute. It can thus be expected that all mod-p

mappings employed are accepted. Hence, with high probability

J JC and I = Ic are computed for all mappings @p and, hence,

F é is being constructed by Gafner's Method.

We turn now to the equality and substitution tests, as
they affect and are affected by the expected behavior of the
algorithm. Equality occurs when the successive iterates D
and D' and also V and V', when they are non-null, are equal
(i.e., all pairs of successive polynomial or integer iterates).
Thus, suppose k-1 consecutive mod-p mappings @p rees

o)
1 Prq

have been retained and let bk—l be any (k—l)th integer iterate,
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where we are considering only the case s = 0. Referring
to Section 4.2, we have in applying Garner's Method that

b, =Db if and only if a

X k-1 K " ¢pk(bk“l) = (0 (mod pk), where

a, is the next image in GF(pk ) of the integer being con-
th 1
structed and bk is the k iterate. Letting b = a, bk—l

and considering b to be an arbitrary integer such that

|b| < pl-..pk/Z, then the proﬁability that %% (b) = @ (a, =b )

K K k k-1
= ak—wpk(bk_l) =  0(mod pk) is very nearly l/pk.
Thus, if C consists in integer entries (i.e., s = 0),

the probability of a premature’equality success in construc-
ting F = c by Garner's Method can be inferred to be small:
For an estimate of the probability’that a premature equality
of integer iterates occursuis at most Z§=l(l/pi) < Zi=l(2/y)
= 2k/v = 1, where k is the number of iterations required to
construct F = C. Since y and the primes p are large integer§
(i.e., on the order of lOlO), it is reasonable to assume (for
any tractable problem) that the number k of primes required
so that pl---pk/Z is greater than all integer coefficients of
F = C is small relative to vy: k << y. Hence, the above proba-
bility 1 is small. Moreover, if C is a matrix of polynomials
(s = 1) or if more than one integer or polynomial constitutes

the compact representation of F = C, then the probability of

premature equality is much, much smaller. The expected be-
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havior of PLES will, therefore, be such that no rejected
mod-p mappings occur and also no premature equality test
success occurs, which implies that only one substitution
test is applied.

Suppose that the elements of C are in P(d,ﬁs), s = 0,
and recall that the elements of the compact representation
of C are subdeterminants of C of order r. If M is any such
subdeterminant, then by Lemma 2.4.1 we see that norm(M) <
rlZ§=ld = rldr < rrdr = (rd)r. It can also be
shown, using Lemma 2.5.1, that the degree in xi of each
such subdeterminant is < rm. . 1 < i*<r, as was done in
Section 4.4. Thus, each element of the compact representa-

)3’.'

tion of F = E is in P{((xd) ,rm ,...,rms), s = O.

1

We show that the number k of priﬁes used satisfies:
k £ r(log rd). Let N be the maximum magnitude of the integer
coefficients of the elements of F = E, which is being con-
structed by Garner's Method. Then N < (rd)r. Moreover,
for the last three iterafions (j=k-2,k-1,k), we have: N =
pl"‘pk~2/2' N < pl...pk_l/z, and N < plo..pk/Z. so,
log N = log(pl"'pk~2/2) = log Pyt Py, " log 2 ~ k=2 -
log 2. Hence, k _ log N + 2 + log 2 7 log N < log(rd)r =
r(log rd).

For the same reasons as given in Section 4.4 for

CPRRE, dominance relations on the maximum computing time
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functions for PLES will be obtained, but under the assump-
tion that no rejected mod-r mappings (or evaluation map-
pings) occur and no premature eqguality test successes

occur.

Theorem 4.5.2. Let T (m,n',r,d,ﬂ ) be the maximum
PLES s

computing time of PLES under the assumption that no re-
jected mod-p or evaluation mappings are used and every
substitution test is successful, for the augmented system

matrix ¢ of rank r = 1 in M(m,n',d,ﬁs), s =z 0. Then, for

s = 0, TPLES < (log n" + r(log rd))[m(n')? + {m+n')}r(n'-r+l)

s

(log rd)] and, for s =2 1, T - (l@g n' + r(log rd)) r

PLES
S
i=1Mi

(1 )[m(n')2 + {(m+n')r{n'-r+l) (log rd + Z§=lpi)].

Proof: We begin with a maximum computing time table (under
the given assumptions) for PLES, which will be followed by
an explanation of the dominance relations obtained for the
individual steps. Note that in steps (3),{9)-=(12) the
entries i are followed by inequalities. ‘'These are uséd

to specify the particular subset of the input matrices C

to which the corresponding dominating functions Ni, Ti,j'

and Ti apply.

i N. T, . T,

— 1 i _*
1 1 - mn '
2 r(log rd) mn' (log d)(Hi=lui) mn'r (log d) (log rd)

(n°

l=lui)




1 N,
_ -
3:5=0 r(log
3:s>0 r(log
4 r(log
5 0
6 1
7 r(log
8 r(log
9:r>n 1
9:r<n 1
10:0[(r] 1

>n
10:0(r7 1

<n
11:37r7 n

<n
12:0(r] 1

<n
12:9{r] 1

>n

rd)

rd)

rd)

rd)

rd)

j=n:

n-xrx

(n'=r) (n'-x+l)
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T.
-

mn}rz(log rd)

s+1

(S ) (Log rd)

=193
[m(n')2+(m+n')(n'~r+1)r
s
(2 aymy) ]
rm(log rd)
0
r{n'-r)+1

(r(n'—r)fl)rs+2(log rd)2

S -
(M5 y uy)

(r(n'—r)+1)rs+2(log rd)2

(n° )

i=1Mi
1

(log n'+r(log rd))(n'—r+l)rs

(Hizlui)-[mn'+(m+n')r

(log rd + Zizlui)]

n'(n'-r)
r
n'(n'-r)

m+r (n'-r+l)+r (log rd)

rrH-(r(n'—r)—&wl)rs+l

(log rd) (us )
l:

1Hi
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As the discussion preceding the theorem showed, if it
is assumed that no rejected mod-p mappings occur, then the

number k of mod-p mappings which must be applied before the

equality and substitution tests afe satisfied is _ log(rd)r
r(log rd). For each of these mappings steps (2),(3), and
(4) are executed. 1In step (4) each pair r and r*, J and
J%¥, and I and I* will be compared and found equal and so
step (7) will always be executed next, except for the first
execution, when step (6) will be inserted to initialize
Garner's Method. This is the only execut;on of step (6).-
Step (8) always follows step (7) and is executed only when
preceded by step (7). Thus, we have Ni ﬁ r (log rd), for
i=2,3,4,7,8, and N6 = 1. Also, since no mod-p mappings
are discarded, N_ = 0. Since it is assumed that the substi-

5

tution test of step (9) succeeds when first applied, we have

N9 = 1. Step (10) is always executed just once. Step (11)

is executed only for a consistent system and in this case

Nll = n. Of course, Nl = le = 1.
t 1), - ') - ‘. t P
In step (1) Tl TMVLIST(m n') mn For step (2) T2,j
- s
~ TMMOD(m'n"d'ms) < mn' (log d)(nizlui)~ Letting k be the number

of iterations reqguired to obtain the output list G, then

T2 = Zf«sz : = kmn' (log d)(HS ) < r(log rd)mn' (log 4d)
J ’

i=1Mi’ -
s . . B . . .
(Hizlui) = T). For step (3), if s 0, P3,j TCPRRE(m'n '
r,mo) mn'r = T3,j and, if s =2 1, we have T3,j TCPRRE(m'
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n',r,ms)‘5rs(ni=lgi)[m(n‘fa(m+n?(d—r+l)r(Zi )] = Tl

=1Hi 3,5°

We have used rank r = r* for C*, since each mod-p mapping
is assumed to be accepted. Thusd, T, = Z§=1T3 ; < r(log rd).

- (r*)

! = ! f d i . [ ’ .
T T3 ollows directly In step (4) T4,j LENGTH

+ r*,r) + T m, ~r¥ 4+ r* + m ~ nd so T <
Tycomp ' ) veomp (™™ m and so T, =

= .< . = ! i = =
Z§=lm km ¥ r(log rd)-m T4. Since N5 0, T5 0. The

maximum time for the execution of step (6) occurs when MZCON
is applied to a non-diagonal part V* with the maximum number
of elements. Since r* = r is assumed, this is r{n'-r)+1,
as shown in Theorem 4.3.2. Hence, T6 - T6,l £ r(n'-r)+l.
In step (7) Garner's Method is appliéd to at most
r(n-r)+l integers or polynomials -- at most r(n-r) in ap-
plying MGARN to V and V* and one in applying CPGARN to D
and D*. Thus, there occur at the jth iteration at most

r(n-r)+l1 computations: H' = CPGARN(E,H,pj,H*,L), where

E e P(E, rm ,...,rms), H* ¢ P*(rm

1 ,...,rms), and E = Py-e

1
pj—l' It was shown preceding Theorem 3.4.14 that log ﬁl---

P, ~ t. Thus, the computing time for each of these compu-

)

tations is 2%

:
- TCPGARN(pl pj_lfrm1'-~-:rms) 2 (log py---p,

j~1
S ~ .S S .8 S
(m;_,cw)7dr (I_;u,). Hence, T, 5 {37 (r(nmr) +1) (07 uy)

_k
and so T7 = Zﬁ=lT7,j

r%(x (n-r)+1) (15 _ u,)/2 = k°r® (r (n-r)+1) (1]

p Zgzljrs(r(n—r)+l)(nizlui) = k(k+1)

< 2 2
i=lui) Y r~ (log rd)
s

r (r(n—r)+l)(ni=1pi) = T%. Step (8) is very similar to

step (7) and requires possibly r(n-r)+l subtractions of ele-
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.th . . .
ments in P(pl...pj,rml,...,rm )at the ]t iteration. Since
TPDIF(pl---pj,rml,...,rms) f jr (IIl 1” ), we obtain in the
same way T! = T!.

8 7
We now consider the substitution test of step (9).

Those inconsistent systems C for which r > n require no
substitution test and so T9 ~ 1 in such casgs. If r <n,
then the substitution test must be performed. NULCON is
applied to construct a matrix é' satisfying formula (1) of
Section 4.1 from n', J, -D, and V, where (J,D,V) is the

compact form of the most recent iterate G in constructing

F=C. Gismbyn' and of rank r and so the time to con-

struct Z' is TNULCON(n , ) n'(n fr). Clearly, Z' ¢ M(n',
n'-r,P«rd)r, rml,...,rmv)). Thus, the time to compute T =
cz' is < % = T (m,n',n'-r, d,m,,...,m ,(rd)r,rm s ees rm )
~ mMpy A s 1 s
. . S s i
{ (log n'de)[ mn q(H.= K)o+ mrt {1og d)(nizlwi) + Zizl(ﬂjzlujf
s i
+ ., . \ +
(n_;%,) 1 + daflog e) (m_;v;) Z5 g (W vy) (05 l}{j)}
ma { ( Hi=lMi)(log de + Zi:lxi)} 1, where e = (rd) rovy = rmi
+ 1, Wy = ug + v and g = n'-r.

Let ) = log n'de = log n'd(rd)r = log n' + log 4 +
log(rd)r ~ log n' + r(log rd). We note that vy < rm_,L +r = ry,

3 ~ . S < S — S S
and }ﬁ. < My + g Ty, - Thus Hi___l}fi 2 Hizlrp,i v (1w )

i=1

s-1i s { S -
(Zi 1¥;F ). Hi lvi A (m, _

1
s { s-i+1l,_s _ s+l , s
(m_;¥%) 25T (nj pis)E (nS_,ps) = ©0 (W

i 4 S S _ S
(n] 1M )(nj lnj) 251 j=1¥5 j___irp,j) i1
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. ‘ y, _ .

(Zizlui), and finally stlwi Y, Z§=lrui r(Zizlui). Ap

plying these dominance relations, T < x-[mn'(n'-r)rs(ni_lui)
. S - ~S s—1 1 1

+mn' {(log &) (M _,py) + r(I_qu) (Z_juyr )1+ n'(n'-r){

r(log rd)rs(nizlpi) + rS+l(H?’_ ) (Zi:__lp,i)} + m(n'-r) {rs

(M5 _qu;) ((log xd) + r(Z_,u))) 3= am_ju)-[ ma' {(n'-r)x®

+ log d + r(Z?zlpirs_l)} + (m+n')(n'~r)rs+l(log rd +
Z§=lpi) 1. Since n' < r(n'-r), by Lemma 4.4.2,

, s s-1 < - 4 , . S
mn'r(Z, e ) $ma'r (z;lui) S (mtn') [r(n'-r) Jr

(Zizlpi). Similarly, mn' (log d) i (m+n')[r(n'—r)]rs(log rd).

Thus, T i x(nizlui)-[mn‘(n'—r)rs + (m+n')(n'—r)rs+l(log rd +

~

Z§=lui)} = T'. T' can easily be shown to dominate the times

for PNEG, NULCON, MZERO, and the erasures in step (9) and

S0 T9 f T o= Té, when r < n.

In step (10), when J[r] > n, the time to erase z' is

~

n'(n'-r), since this many cells are returned to available
space, and this time dominates the times for the other oper-

ations. Thus, TlO “n'(n'-r) for an inconsistent system.

~

10
T (r) ~ r. If Jlr] < n, then step (1l) is executed, n

If the system is consistent (i.e., J[r] <n), T

times. For the first n-1 executions, at most n-r elements

of a row of Z2' are traversed and so Tll 5 i n-r, when j < n.
. th . s . .

During the n execution, Z' is erased, returning (n'-r)

(n'-r+l) cells to available space, and Y and % are inverted,

the time for each being ~ n. So, Tll i n'(n'-r). The time
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for step (12) is dominated by the times for the erasures.
The numbers of cells returned for erasing J,I,E,X are f r,
m, r(log rd), 1, respectively. "If the system is consistent,
D and the elements of V belong to the general solution (D,
Y,Z); hence, their erasure returns at most r(n-r) + 1 cells.
If the system is inconsistent, the number of cells returned
. < , s+1
by the erasure of D and V is ¥ (r(n'-r)+l)r (log rd)

1 m+ r{n'-r+l)

Y. Thus, for a consistent system, T12 )

(n°
i=1"

{m+ (r(n'-r)

+ r(log rd) and for an incoenmsistent system, le 4,

s+1 s
+1)r (log rd)(mizlui).

We may now combine the dominating functions for all the

R 2l ’ , ' + 1 + ' + 1 4 1 ’ i < t
steps Clearly, for s = O Tl T4 T5 T6 D, T2 T6 ) T7

and 7! i Té. Also, v 4+ 7). 4 n'(n'-r) ﬁ mn'r{n'-r+l)

= Ty 12 Tio 11~

< ] : 14, [ -<l+l+l+rl
Y, Tg, since n' < r(n'-r+l). So, TPLES N T2 T3 T7 Pg.

Let » = A + )., Wwhere ) = r(log rd). Con-

1 5 1 = log n' and )

2

3 - 4 ] ] 1 ] P
sider the case s 0. We have TPLES A (T2+T3£T7) + T9
xz'[mn'(log d) + mn'r + (n'—r+l)r2(log rd) ] + re[mn' (n'-r+l)

+ (ﬁ+n')(n'—r+l)r(log rd) ]. Since xz i x» and n' f r{n'-r+l),

we have xz mn' (log 4) < a(m+n') (n'-r+l)r(log rd). Also,

X2 mn'r + an'(n'—r+l)'i amn ' (r+(n'=-r+l)) Xm(n')z. More-

over, xz(n'—r+l)r2(log rd) f An'=-r+l) (m+n')r(log rd).

-

Thus, i )\-[m(n')2 + (m+n') (n'-r+l)r(log rd)], for

TPLES

s = 0.

Now consider the case s > 0. We have that Té + Té +
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Vo= s . ‘ ; 12 3 s
Ty = (M _ju) [ mn'(log d) + m(n')" r= + (m+n®)

(n'—r+l)rs+l(2§

K. . Also, T! = (xl+x

1 9
(n‘—r+1)rs(log rd) + (m+n')(n'—r+i)rs+l(2i£lui) 1= (xl+x2)

) o+ (n'~r+l)r-rs+l(log rd) ] = X (H? lg.)

=1 2 7i=1"1

2)(H§=lu;)’[ mn'(n'-—r+l)rs + (m+n')r

S
i=1"i

. 4 (n
)K2 Thus, T 3 (nizlui)[x K, + (xl+x2)K2]. We

(n PLES 271

observe that among the terms of Kl + K2 the following domi-

nance relations hold. First, mn'(log d) < (m+n')r(n'—r+l)rS

(log rd), since n' X r(n'-r+l). Also, (n'—r+l)rs+2(log rd)

{ (m+n')r(n’—r+1)rs(log rd). Thus, TPLES - rs(n. 'ui)
(log n' + r(log xd)) (m(n')? + (m + n')r(n’-r+1)

o -
(log rd +-Z£:lgi)1, for s > 0.//

The dominance relations obtained by this theorem for
the maximum computing time of PLES are quite general and
may be simplified by making some reasonable assumptions con-
cerning the parameters m, n', and r. Thus, typically we
have n' ~ m. For example, when solving a single system of
linear equations with a square coefficient matrix A we have
n =m and n' = m+l. The following corollary gives the simpli-
fied dominance relation for PLES under this assumption and is

easily proved.

Corollary 4.5.3. If the m by n' input matrices C to PLES

. 2
satisfy n' ~ m, then TPLES i (log m + r(log rd))m [m +(m-r+l)
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r(log rd)), if s = 0, and T 4 (log m + r(log rd))m

PLES

e )[m2 + r(m-r+l) (log rd + Zi lwi)j' if s > 0.

i=1P3 =

It is guite often the case that systems of linear
equations have an augmented matrix with the number of
columns on the order of the number of rows, i.e., n' ~ m,
Also, it is not unusual to have the rank r the order of m.
This is obtained by assuming m - ¢ ﬁ 1. These assumptions
provide more concise computing times for PLES. We note
that m + log md “ m + log d.

Corollary 4.5.4. If the m by n' input matrices C to PLES-

< ms+3
PLES ~

are such that m - r ﬁ 1l and n'* “ m, then T
s ]
(log md)(nizlui)(m + log 4 + Zizl“i)' for ¢ = O,
As a final corrollary, by applying the definition y =
nax gi(g = 0 if s = 0) we obtain the following crude but
compact result.

Corollary 4.5.5. If the m by n' input matrices C to PLES

+
satisfy: m - r ﬁ 1 and n' ~ m, then TPLES { m® 3 us(log md)

(y +m + logd ), for s = O.
It can be shown that the exact division algorithm (EXDIV)
for solving systems of linear equations with integer or poly-

. e s o e <

nomial coefficients has a maximum computing time TEXDIV AY

2s+5 s 2
m )

Log mdf(
(log md) (1 _yuy

when applied to augmented matrices C

under the same assumptions as in Corollary 4.5.4. The general
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superiority of the modular algorithm over the exact division

algorithm is thus apparent. In particular, to obtain the

. . . 2s+4
o ti t fo from that fo
dominating function r TPLES m a r TEXDIV'

+
is replaced by m® 3 and m(log md)(ni= ) is replaced by

1Hi

+ + .
m log d Z§=1“i
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4.6. A Modular Algorithm for Determinant Calculation

In the preceding sections modular algorithms for maﬁrix
multiplication and for solving systems of linear equations
were given. Not surprisingly: an algorithm, analogous to
those algorithms, for computing the determinants of matrices
with integer or polynomial entries exists. We present such
an algorithm in this section and, as was done for MMPY and
PLES, we present it as three separate algorithms: inner, mid-
dle, and outer. The outer algorithm PDET applies mod-p map-

pings to matrices over I[x .,XS], s 2 0, obtaining image

1’7"
1, s = b, to which the middle

)

matrices over GF(p)[xl,...,xS
algorithm CPDET is applied to compute the determinants.
The outer algorithm then applies Garner's Method to construct

the determinant in I[x ,...,XS] from these determinant images.

1
If a matrix over GF(p) is input to CPDET, the inner algorithm CDET
is evoked immediately. If a matrix of polynomials over GF(p)

is input to CPDET, evaluation maépings are applied and the
algorithm applies itself recursively to the images, obtain-

ing determinant images. The determinant is then constructed

from these images by incremental interpolation. CDET com-

putes the determinant of a matrix over GF(p) by employing

Gaussian elimination. Its similarity to CRRE will be de-

tailed below. The inner algorithm is now presented.
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Algorithm 4.6.1. (CDET) Determinant Calculation over GF(p)

by Gauss: an Elimination

Input: A prime number p =nd an m by m matrix A over GF(p).
The list represen.ing A may not overlap any other
list.

Output: d = det(a) obtained by d = CDET(p,A). A is erased.

(1) [Initialize.] d « 1; t « O; B' « A.

(2) [Begin next eliminat./on step.] B" « B'; B' « ().

(3) [Search next column-for pivot.] DECAP(F,B"); DECAP(etF);
if e #0, go to (4); if F # () B' « PFL(F,B'); t « t+1;
if B" # (), go to (3); d ~ 0; erase B'; return d.

(4) [Recompute d and begin elimination.] d ~ CPROD(p,e,d);
if F= (), go to (8); e ~ CRECIP{Hp,e); G ~ F.

(5) [Transform pivot row.] ALTER(CPROD (p,e,FIRST(G)),G);

G « TAIL(G); if G # (), go to (5). .

(6) [Begin transforming next row, if any.] If B" = (), go
to (8); DECAP(G,B"); DECAP(u,G); B' ~ PFL(G,B'); if
u=0, go to (6); H « F.

(7) [Recompute next element of row G.)] s «~ CPROD(p,u,FIRST(H)):
v « CDIF(p,s,FIRST(G)); ALTER(t,G); G ~ TAIL(G); H ~
TAIL(H); if G # (), go to (7); go to (6).

(8) [complete determinant calculation, if elimination finished. ]
Erase F; B' « INV(B'); if B' # (), go to (2); u « O;

OR(u,t,2); if t =1, 4 « p-d; return d.
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This algorithm is nearly identical to the triangulari-
zation phase of CRRE, i.e., steps (1)-(8). The differences
lie in the fact that those operations of CRRE not required
in determinant calculation are omitted. Thus, the lists I
and J are not computed and so I, I', I", J, and z have been
eliminated. Also, since the triangularized rows are not
retained, the list B has been eliminated. Of course, all
gquantities introduced for the back substitution have been
discarded. The only element of the output (J,I,d,V) of

. . . . th .
CRRE which has been retained is d. If during the k  pivot
operation a pivot elemert fails to be found in column k in
step (3) (i.e., B" = () ), then rank(ad) <m and so d = 0 is
returned. Otherwise, return occurs in step (8) at the end
th . .
of the m pivot operation.
th .
In the m execution of step (8) d = §(a) = det(C),
l,...,i
where C = A ll mm , has been computed. We know that,
when the rows of A have been permuted by IA = (il,.,.,im)
to give C, then det(c) = sgn(IA)-det(A) or det(a) = sgn(IA)-
det (C) or det(a) = sgn(IA)-é(A), where sgn is the signum
function defined on permutations. For a permutation o ¢ @,
sgn{g) = +1, when ¢ is an even permutation, and sgn(g) = -1,
when ¢ is odd. If ¢ is written as the product of transposi-
tions: o = GGy o0 Gy then ¢ is even if and only if t is

an even integer; otherwise, o is odd. In effect, what is
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occuring in step (3) of CRRE is the computation of IA as
the product of transpositions, for the row interchanges
performed on the matrix are being mirrored in the inter-
changes of the components of the permutation. Thus, al-
though the permutation IA is not computed iﬁ CDET, the
integer t is in step (3). Hence, in step (8) by applying
QR the integer t is recomputed as t(modulo 2). Then t = 1
if and only if IA is odd and in this case d is replaced by
-4 = sgn(IA)-a(A) = det(A). Otherwise, d = §(A) = det(n)
has been computed.

Consider now the maximum computing time of CDET ap-
plied to a matrix A of rank r. Recall that TCRRE(m,n,r) -
mnr, which is codominantvﬁ@ﬁuthe maximum time of step (7)
of that algorithm. Taking m = n, since steps (7) of CDET
and CRRE are identical, mnr = m2r dominates the time for
step (7) and, in fact, for all steps of CDET. " So, the
maximum computing time for CDET is ﬂ mzr. Analogous to
Theorem 4.3.3, suppose the matrix A defined by formula (1)
of Section 4.3, with m = n, 1is input to CDET. Then it can
be shown in the same way that the time for step (7) is Z’mzr.
Hence, the maximum computing time of CDET is k‘m2r. We sum-

marize in the following theorem.

Theorem 4.6.2. Let TCDET(m,r) be the maximum computing time

of CDET for A ¢ M(m,m,GF(p)) of rank r. Then T ~ mzr

“CDET
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The middle and outer algorithms apply the following
fzct in the construction of determinants by interpolation
or Garner's Method. Let 6§ be an induced mapping on matrices
over a set S and let A* = g(A). If D* = det(a*), then D* =
det(6(a)) = 6(det(n)). Hence, D* is an image of det(A) and
may be used to construct det(A) by Garner's Method, when §
is a mod-p mapping and A is err I[xl,..,xsj, s =2 0, or by
incremental interpolatioa, when 6 is an evaluation mapping
and A is over QF(p)[xl,...,xS], s =2z 1. We note that PDET
and CPDET are like MMPY and MCPMPY in that all images A* can
be used to find images D* of D = det(A); there are no re-
jected mappings in determinant calculation.

We now present the middle algorithm.

Algorithm 4.6.3. (CPDET Determinant Calculation Using Evalu-

ation Mappings

Input: A prime number p and an m by m matrix *A over

GF (p) [x ,...,XSW s = 0.

a7

1
Qutput: D = det(A) obtained by D = CPDET(p,A). The list

representing A is erased.
(1) [Get number of variables.] If MZERO(A),EQ.1l, ( D~0; erase
A; return D J; s =« MCPNV(A).
(2) (Apply Gaussian elimination algorithm.] If s > 0, go to
(3); D « CDET(p,A); return D.
(3) [Initialize evaluation mapping algorithm.] h « 0; m «

LENGTH(A):; T « (); for i =1, m do: ( J « PFA(m+l-1i,J) );
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b « DBRRE(J,A); erase J; 1 « 0; E ~ PFA(O,PFA(1,0)); D ~ O.
(4) [apply evaluation mapping ?i.] If i = p, ( print error
message; stop ); A*¥ —~ MCPEVL(p,A,i,s).
(5) [Apply algorithm recursively.? D* « CPDET(p,A*); if
D* # 0, h « 1; if h = 0, go to (7).
(6) [Interpolation step.] D' « CPINT(p,D,i;D*,E,s); erase
D; if s > 1, erase D¥; D>~ D',
(7) [Degree test and réturn.] If CPDEG(E) = b, ( erase A,
E; return D ).
(8) [Initialize next interpolafion step.] T «~ PFA(1,PFA(1,
PFA (CDIF(p,0,a,),0))); U « CPPROD(p,T,E); erase T,E;
E « U; i « i+l; go to (4).
A brief explanation ofvsome of the less trivial parts
of this algorithm is now given. 1In step (3) we construct
the list 7 = (1,2,...,m). It can be easily verified that
by applying DBRRE to J and A, a bound b on the degree in X
of det(a) is obtained. Suppose A is over P*(%S). Then, as
has been done several times in the preceding sections, it can
be shown that deg(det(n)) < mm by applying Lemma 2.5.1. 1In

fact, det (A) ¢ P* (mm ,...,mms). Hence, since the bound b is

1
computed to be attainable, b < mms < mps. There then follows
b+l iterations of steps (4)-(8) in which the evaluations, re-

cursive applications, and interpolations are performed. We

. “h . . . .
note that, during the kt iteration, k¥ > 1, the univariate



207

(x-1), where the evalu-

polynomial E is the polynomial Hi;é

ation mapping v, has just been applied. At the (b+l)th
execution of step (7), deg(E) = b and so D = det(A) is re-
turned, after erasing E and A.

If rank(A) = r < m, then det(a) = 0. 1In such cases
D* = 0 will always be obtained in step (5) and no interpola-
tions need be applied. Hence, in step (3) the flag h is
initially set to 0 and is only reset to 1 in step (5) when
a nonzero determinant D* is obtained. Thus, if the first k
values of D* are zero, no interpolations are performed,
leaving D = 0, which is what would Mave been computed had-
the interpolations been performed. Thus, if rank(A) < m,
no interpolations are performed and D = 0 is returned.

The following theorem obtains doﬁinance relations on

the maximum computing times of CPDET.

! .6.4. , ,— i: o ti
Theorem 4.6.4 Let TCPDET(m r ms) be the maximum computing

time of CPDET for A ¢ M(m,m,P*(ﬁS)) of rank r. Then, for

2 3
= .l - ’ = ll < + . if
s =0 Topppp =™ © and, for s Topppp © ™ ul(r ul)
4 3,.8 s-1 + s—-1i )
r < m, then TCPDET A m (nizlui)(m r Eizluim ), for s = 2
s+l , s 2 s
= B -+ + N . ?
If r m, then TCPDET N m (nizlul)(m My Zﬁ=2u1) for

s = 2.

Proof: If A is over GF(p), s = 0 and only steps (1) and (2)

2 ~
(m,m) " m, T

are executed, each once. Thus, T, ~ >

1 rIIMCPNV
2 - 2
Pu - , m,xr, ~or ~ r. SuppoOse
TCDET(m m,r) m r, and so TCPDET( mo) T2 m PP
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A is over GF(p)[xl,...,xS}, s = 1. The following maximum
computing time table is then derived for CPDET.

i N, T, . T,

_ i i3 i
1 1 - m2
2 1 - 1
3 1 - m2
2, 8 3 s
4 mug ™ (T uy) mop (T uy)
5 m T (m,r.,m ) +1T ( m )
b “cppET 5 M-l 5=1"cPDET ' Ty ' Ms-1
6:xran O - 0
_ . s=1, s-1 s+1 s
Grr=m mu o Jmo UMy Coom g (M)
. < 2,8 2,8
7 mu,s 1, last is ' m (Hi—”‘-'lugi) m (Hi—'—'lp’i)
. 2 2
8 Mp,  J mou

Step (1) has been analyzed above and step (2) is triv-
ial. We noted prior to the theorem that the degree bound b

satisifes: b+l < my and so the number of executions of steps

-+

(4)-(8), which constitute the iteration loop, is < My - so,

Ni = My for i = 4,5,6,7,8, except Né = 0 when r <« m, as

explained previously. For step (4), T4,j TMCPEVL(m’m'ms)

< mz(Hszlpi) and T

A (m,
1

is then obtained easily. T -

4 5,5  TCPDET

r,,ms 1), which is not explicitly known at this point, where
3 -
rj = rank(Yj(A)). Of course, rj < r., When r = m in step (6),
-1 s-1, s=-1

~ t e e ey ’ ._l .‘< j ? N = j . ’ .

6,5  Tepnr ™1 mm o o3=1) 3 m_ympg) = gme T _Juy)
. +1 s-1, s-1
; + , = S_l_) . + .

Since j = b+l =mu_, T, “j=lT6,j < (btl) (mp)m (Hl_lul) <
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( )2 ms—l( s-1 ) = ms+l (HS ) ‘
my Hi=1”i g (T gy ) In step (7} the erasure

of A in the last execution dominates the previous execution times.
In step (8) the polynomial E has degree j-1 at the jth exe-
cution and is multiplied by a polynomial T of degree 1.

. o 4 +l.< + 2 2
Hence, T8,j j and T8 N Z?zlj { (b+l)" < (mus) .

b i , T+ T+ T4+ o+ T < .
As can be easilly seen Tl T2 T3 T7 T8 Ty

' ~< 1 ' - \
T6 N T4 and so PCPDET(m'r'ml T5
vb+l - < 3 2 + +1 2 32 + +
“j=lTCPDET(m'rj'mo) 2 oMy Zg_ mor, S Mo, Z?z
3 2

Hy

For s = 1,

< 7 o+
) 2T,
2 32 2 3 _
m + (b+l)m"r < m b *MpMr = m ul(r+ul).

onsider now th e . Th ' = 0 and T 4
cons now e case r < m Then T6 a PLES -

1

Té + Té We wish to show inductively that, for s = 1, TCPDET(m'

S—-1

r, S f m (H l)(mS lr+‘“’S Z1Hs m ). This is clearly true

for s = 1. Assuming it holds for s-1 replacing s, we show

; ‘ ' < +
it holds for s. We have TCPDET(m r, m ) m by (W _1¥g )

+l 3 g~ 2 s-1 s—-1-1 3
Tb 1 lu ) (m r, + 7? . m ) = m us(nizlui) + (b+1)

s—-1 ) ( s-2 -1 s—i—l) 3 ( s
i= 1“ m r 1gim < m us I

+ i=1%4
s-1 s-2
(0 _Juy) (5% x o+ Zi
- —i-1l 3
oA B

the inductive step.

m (P )+ mus m

1. 3,8 s-2
W, m ) =m (ni=lui)EMs + m(m r +

Consider finally the case r = m. Then T4 < Té and

‘< S ' : : de 3
TCPDET N T5 T6. It will be shown inductively that, for

- +
s =2, T (m,m,ms) f m® 1

2
+ + . \ d
CPDET ) (m My Z§=2ul) an

S
H1=lui
that ,r,m ) 3 ,m,m ). = o, T = !

a TCPDET(m T ms) \ TCPDET(m m ms) For s 2 T4 T6
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and so the dominating function obtained above for the case
r < m holds also for r = m. This function, m3“1“2(mr+m“1+
“2)' clearly satisfies the inductive hypothesis for r = m.

Thus, we assume it holds for s-1 replacing s and show it

CPDET ! =] CPDET -1
s+1 ZP+1 - s+1 s 4
+
+om b (T _q 0 =1 LPDET(m'm'ms-—l) m b (Mg uy)

b+l s, s-1
Zyoy ™ (Mg
-1

holds for s. We have T (m,m ﬁ Z?+l j,_ )

2 s+1 s
) (m” o+ muy 2“‘ Yo (T gy

2 -1 s+1 s _ s+l , s
i)(m + m“l + Zizzui) + m us(Hizlui) = m (Hizlui

0

) < mus-m
( )

(m2 + My + Z§=2“i)’ completing the inductive step.//

By using the definition p = max Wy v Theorem 4.6.4 can
i
be simplified as follows. ‘

Corollary 4.5.5. The maximum computing time functions of

CPDET satisfy: for s = O, m2rvand, for s = 1,

TCPDET
s+2 s

r+ o < .
TCPDET S m (r+y), for r m

4 3 s, s-1 S
: , 2 . + .
Proof If r <mand s = 2, TCPDET S m oy (m r =1

s-i, . 3 s, s=-1 s-1 s+2 s :
m ) m oy (m r -+ ym ) = m w (r+p). The case r = m

follows similarly.//

The main algorithm will require a bound on the integer
coefficients of the determinant of a matrix of integers or
polynomials over the integers. Such a bound is computed by
the following algorithm.

Algorithm 4.6.6. (CBDET) Coefficient Bound for a Determinant

Input: An m by m matrix A over I[x ..,XS], s =z 0.

ll
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OQutput: An L-integer J = CBDET(A) such that J/2 bounds the

magnitudes of the integer coefficients of det(a).

(1) [Initialize.] B « A; m ~ LENGTH(B); J « PFA(2,0).

(2) [Begin to compute maximum norm of next row.] ADV(C,B);
K « O,

(3) [Compare norm of next row element. ] AD&(D,C); I. — PNORMF (D) ;
u ~ ICOMP(L,K); if u = l; ( erase K; K « L ); if u # 1,
erase L; if ¢ # (), go to (3).

(4) [Recompute‘coefficient bound.] L ~ IPROD(J,K); erase
J,K; J « L; 1f B # (), go to (2). )

(5) [Final computations for bound.] K « IFACT(m); L « IPROD(K,

J); erase K,J; J « L; return J.

From Lemma 2.4.1 we have that J' = ml(H?lei) is a bound
on norm(det(a)), where K. = max norm (A(i,j)). 1In step (1)
l<jam

J is set to 2. 1In steps (2)-(4) the Ki are computed. Thus, in
.th . . .
the 1 execution of step (2) K is set to zerco and in the
next m executions of step (3) K = Ki is computed, whereupon
. . .th .
J is replaced by J-K; in the i execution of step (4). When

B = () in step (4), J = 2(H?= Ki) has been computed. In step

1
(5) J is replaced by m!J and returned. (See [COG70].)
Thus, J = 2J' and so J/2 is a bound on the magnitudes of

the integer coefficients of det(a).

heorem 4.6.7. t m,d,ﬁ be the ximum computin
The m Le TCBDET( S) maxim g

) ] | <
time of CBDET for A ¢ M(m,m,P(d,m )), s 2 0. Then T ... 7%
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2
mz(log d) (log md + Hi=l“i) + mz(log m) .

Proof: From the preceding remarks, we clearly have Nl = N5 =
2 : ~
m, and N, = m . 8o, T

3 T (m) ~ m. Since

1 LENGTH

e
Z
I
Z
f

T2 3 ~ 1, T2 ~ N2 = m. In each execution of step (3) T

Toyorup (37 M) ® (109 ) (T _quy

3,3

), since this function domi-
nates the times for ICOMP and the erasures, which are f log d.

so, T. % m2(log d) (m (2a7,d) 2 (log 2a”)

3
(log d) ~ j(log d)z, since |J| < 2d7 and |K| < d.. Hence, T

2

j=1

S ~
i=1*i' 4,5~ Trprop

4

i 2 < 2 2 ~ o7
j(log d)” 2 m"(log d)”. For step (3, T, TIFACT(m)

-

) < m%(log m)2 + m°(log m) (log d) = m® (Log m)

m m
Trprop ™ » 29

(log m + log d). Ccombining these aominating functions, we

- . 2 ]
v LR to= ) . . +
have TCBDET(m,d,mS) < T, * T, *tT.=m (log d)(lelul)

2

mz(log d)y” + m2(log m) (log m + log d4) = m2(log d) (log m +

)y + mz(log m)2 = m2(log d) (log md + H? ) o+

s
tog d * Ij_qwy =1
2 2
m” (log m) .//
We now present the main algorithm for computing deter-

minants.

Algorithm 4.6.8. (PDET) A Modular Algorithm for Determinant

Calculation

Input: 2An m by m nonzero matrix A over I[xl,...,xsj, s = 0.
Output: D = det(A) obtained by D = PDET(A).

Note that this algorithm requires the list PRIME of dis-
tinct odd primes.

(1) [Initialize.] D « 0; V « MVLIST(A); s « LENGTH(V); J «~
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CBDET(A); I « PFA(1,0); L ~ PRIME; h « O.

(2) [Apply mod-p mapping @p.] If L = (), (print error message;
stop); ADV(p,L); A* « MMOD(p,A,s); if MZERO(A*) = 1,
( erase A*; D*¥ ~ 0; go to (4) ).

(3) [Apply evaluation mapping algorithm.] D* ~ CPDET(p,A*).

(4) [Apply Garner's Method.] If D* # 0, h - 1; if h = 0, go

to (5); D' . CPGARN(I,D,p,D*,V); erase D; if V#0, erase D*;D«D'.

(5) [Integer coefficient bound test.] T « PFA(p,0); U ~

IPROD(I,T): erase I,T; I « U; if ICOMP(I,J) # 1, go to

(2).

(6) [Final erasures and return.] Erase V,I,J; return D.

This algorithm is analogous to MMPY, as was mentioned
earlier. The initializatiog, which is accomplished in steps
(1)-(3) of MMPY, is done in step (1) in PDET. The similarity
of the two algorithms then proceeds step-by-step; that is,
steps (2)-(6) of PDET correspond to steps (4)-(8) of MMPY.
Some particular aspects of PDET should be explained. We note
that in step (1) an L-integer coefficient bound J on the mag-
nitudes of the integer coefficients of det(a) is computed.

In fact, J/2 is also a bound. I is set to the L-integer 1.
Then a sequence of iterations of steps (2)-(5) follows, each
accomplishing an application of a mod-p mapping ¢p, computing
a determinant in GF(p)[xl,...,xS], applying Garner's Method,

and testing I against J. In step (5), before the coefficient
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_ th |, .
bound test, I is replaced by p-I. At the k iteration I =

Pyt Pr_q is used in step (4) and then I is recomputed as
I = Py Py for the test in step (5).

Suppose the elements of A are in P(d,ﬁs), s =2 0. From

Lemma 2.4.1 we find that norm{det(a)) < midm < (md)m and,

by Lemma 2.5.1, degX (det(n)) < mm, < My, Hence, det(d) e
i

m , .
P (md) ,mml,...,mms). It can easily be shown that J is com-

puted such that J/2 < (md)m. If k primes p; are used, then

on the (k—l)th iteration I = pl---pk_l < J and on the kth

iteration I = Pycpy > J. Thus, k-1 7 log Pyt P

< 1og(2(md)m) = log 2 + m(log md) ftm(log md). Hence, k ﬂ

< log J

nm{log md).

Similar to CPDET, a special test is used to omit the ap-
plication of Garner's Method when r <Nm (i.e., det(n) = 0).
Hence, in step (1) flag h is set to 0 and is not reset to 1
in step (4) until D* # 0 is obtained. Garner's Method will
then be applied in every subsequent iteration.

Theorem 4.6.9. Let TPDET(m,r,d,mS) be the maximum computing

time of PDET for A ¢ M(m,m,P(d,ﬁs)) of rank r, for s = O.

3
< m (log md) (log d + r) and, for s

Then, for s = 0, TPDET A =1,
TPDET { m3(log md)ul(log d + mr + mul). For s = 2, TPDET 4
m3(1og md)(ﬂjzlui)(log a + n°r + mZizluimS’l), if r <« m, and
T, ep S0 0 (log ma) (W5 u;) (log @ + m® + muy + 5 _,u). if
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r = m.
Proof: The following maximum computing time table is de-
rived for PDET. Note that the i-column specifies the class

of matrices to which the corresponding dominating functions

apply.
i N. T, | T.
—_ -3 xed 2
1 1 - m2(log d) (log md +
s 2 2
Hi=lui) + m” (log m)
2 m(log md) mz(log d)(ni=l“i) m3(log d)(log md)
s
T g by )
2 3
3:8=0 m(log md) m « m r(log md)
3:s=1 m(log md) m3ul(r+ul) m4(log md)ul(r+ul)
3, s s-1 4 ’ s
3:522 m(log md) m (H'=l“i)(m r + m (log mé)(ni=lui)
S S—1i s~1 + «s s—-1
r <m 2 _qwm ) (m™ Tr 2 e )
‘ s+1l,_s 2 s+2 s
3:522 m(log md) m (Hizlui)(m + m (log md)(nizlui)
2 -
r=m my, + Z§=2Mi) (m™ + mp, * Z§=2“i)
4:ram m{log md) 1 : m(log md)

.. S,_8 s+2 2,._8
4:r=m m(log md) jm (Uizlui) m (log md) (Hi=l“i)
5 m(log md) j mz(log md)2
6 1 - m(log md)

The values of Ni should be clear from the preceding

. . - - £ 2
. 4, - d +
discussion Then Tl TCBDET(m d ms) m” (log &) (log m
s 2 2 ~ -
Hi=l“i) + m” (log m)~. For step (2), T2,j T OD(m,m,d,ms)
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f mz(log d)(ni ). In step (3) the dominating functions

=1¥i

for the several cases of CPDET are used, with rank(a*) = r*
replaced by r = rank(A), since r* < r for each mod-p mapping.

In step (4), when r < m, mo applications of Garner's Method

~

occur and so T, . 1. If in step (4) r = m, then T :

4,7
s

4
oy, .. mm ) % (log py pj_l) m- 1

{ m(log md) and, if r = m,

Z

(P --p kg 2

Teponry ‘P1 j-1"1

N ORI

. S, S . '
jm (Hizlpi). Thus, if r < m, T,

_<<..SS ~ . s,_S £ .
T, % Z%zljm (I _yu;) 2 k-m(log md) m™(m_,p,) 2 m(log md)

S, s s+2 S
m{log md)m (I, ) = m (log md)(nizlui). T5

<
i=1% .5 = T1prOD

< 'y <,
(py pj_l.pj) 2 (log p,y pj_l)(log pj) S j. Hence, T_. 3

5
Z§=lj < k-m(log md) 5 m2(log md)2. ‘Finally, in step (6) the

time to erase I and J is % log Pyt Py ~k % m{log md) = Té.

We may now obtain dominance relations for the maximum

computing times for PDET. For s = O, Ti = mz(log d) (log md)

S ) + mz(log m)2 < m3(log d) (log md)(nizlui) =

2
+ m” (log d)(Hi__:lp,i 2

Té, since each term of Ti is clearly dominated by Té. Also,

T! < T! = mz(log m) (log md) + m2(log d) (log md)‘é T

6 ~ T for

2'

each term of T' is dominated by Té. Thus, for s = 0, T

5 PDET ~

'L ' v
T2 T3 T4

- l_< 21 2:I¢<l
For s = 0, T, Y m"(log md)” = T¢ T T). Thus, T, (m,

r,d,ﬁo) é Té + Té = m3(log d) (log md) + m3r(log md) = m3(log md)
3

(logd + xr). For s =1, T f m3(log md)2 =n” (log m) (log md)

4 M1
3 < 4 3
Wy + m” (log d) (log md)p,1 4 m (log md)ul(r+ul) + m” (log d) (log md)
1 1] — 1] 1 —— 3
Wy = T3 + T2. Hence, for s 1, TPDET . T2 + 'I‘3 = m” (log md)
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+ + .
ul(log d + mr mul)

Now suppose s =z 2. If r <« m, then T4 A T2 and so TPDET
Lmi 4 omr o= o3 g 4 s
N T2 T3 m (log d) (log md)(ni=1“i) + m (log md)(ni=l“i)

s-1 s-i, _ 3 s s-1
(m r + Zizluim ) = m (log md)(nizlui)(log d + m{m r +
s=i, 3 s s s—-1i
Z§=l“im ) = m” (log md)(nizlui)(log d +mr + mz§=1“im ).
If r = m, then T' < T' and so T LD T o= ms+2(log md)

2 7 T4 PDET ~ 3 4
S 2 -8 s+2 2,8 _
(M _qug) (@7 + mpy + 20 p) + w7 " (log md) " (W, _ u;) =

+ . .
m° 2(log md) (1 (log md + m2 + My + 52 ) ms+2(log md)

S _qu)
i=1%i “i=2Hi

(Hi=lpi)(log da + m2 *omp, o+ Zi=2“i)' Note that we have ap-
plied the fact that log md + m2 = log m +.log da + m2 ~ log d
rm.//

The following result parallels Corollary 4.6.5 in ob-
taining more compact but cruder dominance relations for the
maximum computing times of PDET. The definition y = max Wy
is applied.

Corollary 4.6.10. The maximum computing time functions of

PDET satisfy: for s = 0, TPDET < mB(log md) (log 4 + r) and

{ 3 s S .
for s =2 1, TPDET L m oy (log md) (log d + m™ (r+yu)), if r < m,

s+2 s .
and TPDET { m p (log md) (log d + m(m+y)), if r = m.

. < 3 s
Proof: If s =z 1 and r < m, TPDET i m (log md)(nizlu)(log d
s—-1

l) ~ m3us(log md) (log 4 + n°r + my, - m ) =

s s-
+ mr + muZ§=lm
m3us(1og md) (log 4 + ms(r+u)). The cases r = m also follow

easily.//
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4.7. Algorithms for Matrix Inversion and Null Space Basis

Generation

The modular algorithm for solving linear equations,
presented in earlier sections, may be used for specialized
applications. Two of the more important applications are
the computation of matrix inverses and null space basis gener-
ation. In this section algorithms are presented for perform-
ing these computations.ﬂ We begin with matrix inversion.

Let A be an m by m matrix of integers or polynomials
over the integers and let r = rank(A). Assuming r =m, A-
has an inverse (D,Y), where D ¢ I[xl,...,xsj and Y ¢ M(m,m,
I[Xl,...,xsj). Thus, if B is the m by m identity matrix

over I[x ,...,XS], then AY = D-B. Let C = (A,B) be the

1

augmented matrix of the linear system of equations AX = B

and note that rank(c) = rank(&) = m. Thus, when r = m, the

system C is consistent and the list G (D,Y,i) is obtained

I

by G = PLES(m,C), where AY = DB and Z (). The pair (D,Y)
is an inverse of A. However, if r < m, then rank(d) <

rank (C), the system is inconsistent, and G = () is obtained.
Thus, one need only construct C = (A,B), where B is the m by
m identity matrix, and input (m,C) to PLES to determine if

A is nonsingular and, if it is, to compute an inverse for A.

This is accomplished by the following algorithm.
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Algorithm 4.7.1. (MINV) Matrix Inversion

Input: An m by m nonzero matrix A over I[Xl,...,xs], s =z 0.

Output: The list X obtained by X = MINV(A). If rank(A) = m,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

X is the list (D,Y) representing a matrix inverse
for A and, if rank(a) < m, X 1s the null list.
[Initialize.] T - A; C « (); j « 0; P « PFA(L,0); m «

LENGTH(T); L « MVLIST(T).

[Construct integer or polynomial 1.] If L = (), go to
(3); DECAP(V,L); P « PFL(V,PFL(P,PFA(0,0))); go to (2).
[Begin next row of augmented matrix C.] ADV(U,T): R -
(): 3 « j+1. )

[Prefix element of A to row R.] ADV(W,U); R « PFL(BORROW(
W),R); 1f U # (), go to (4).

[suffix elements of identity matrix to row R.] k « j=1;
if k > 0, do R ~ PFL(0O,R) k times; R « PFL(BORROW(P),R);
k « m-j; 1f k¥ > 0, do R « PFL(0O,R) k times ; C «~ PFL(
INV(R),C); if T # (), go to (3); C - INV(C).

[Compute a matrix inverse.] X « PLES(m,C); if X = (), go
to (7); T = TAIL(X); U = TAIL(T); Ssucc(0,T); erase U.
[Return.] Erase P,C; return X.

Steps (1)-(5) of this algorithm are concerned with con-

structing the matrix ¢ = (A,B) for input to PLES in step (6),

where B is the m by m identity matrix over I[xl,...,xS].

This requires constructing the identity P = 1 ¢ I[xl,...,xsj
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in step (2). 1In step (4) the elements of A are borrowed
and appended to a row of C after which the elements of the
row of the identity matrix are ;ppended, which requires bor-
rowing P for each row. The elemeﬁts of each row are generated
in the order 1,2,...,2m and the rows in the order 1,2,...,m.
Thus, inversions of each row are required and also inversion
of the list C to obtain the augmented system matrix C. Step
(6) applies PLES either to discover that A is singular (i.e.,
X = () ) or to obtain a matrix inverse from the 1list X = (D,
Y,Z) by redefining X as the list (D,Y). )
We now obtain maximum computiﬁg time dominance relations
for MINV, assuming that in the application of PLES no re-

jected mod-p or evaluation mappings occur and no substitution

test failures occur.

Theorem 4.7.2. Let TMINV(m,r,d,mS) be the maximum computing

time of MINV for A ¢ M(m,m,P(d,ﬁS)) of rank r,” for s = 0,

assuming that no rejected mappings occur in applying PLES and

no substitution test failures occur. Then TPLES 4 mS+3
s s
+ 5 .
(log md)(HizluiHm+log d Li:lui)
Proof: Step (1) is executed once and so T, ~ (m) ~ m.

1 TLENGTH

The time for each of the s executions of step (2) is 7 1 and,

since s is not considered variable, T2 ~ 1. Steps (3)-(5)

. ) 2
construct C, the time to obtain and append each of the 2Zm

elements being bounded. Hence, T3 + T4 + T5 - m2. For step
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m ~ : m ‘< s+3 S + 1 d +
(6), To ~ Ty oo (m2mm,dm ) 2 m = (log md) (T _,u;) (@ Qg
Z?_lui) = Té, for s =z 0, by applying Corollary 4.5.4. 1In
step (7) the time for the erasufe is ~ m2. Clearly Té
. : ‘ . < mo
dominates the times for the other steps and so PPLES N T6,

giving the theorem.//

We note that a more compact dominating function for
TMINV is the same as that given in Corollary 4.5.5 for PLES.

Now consider null space basis generation for an m by n
nonzero matrix A of integer or polynomial entries. Let C be
the m by n+l matrix whose first n columnslconstitute A and
whose final column is a column B of zeros. Since rank(C) =
rank (A), C represents a consistent system of linear equations
AX = B. Hence, the list G = (D,Y,2%) is obtained by the ref-
erence G = PLES(n,C), where Y 1s a column matrix of zeros and
7 is the null 1list, if rank(A) = n, or a null space basis for
A, if rank(A) < n. All that remains to be dore is to erase
D,Y, and C and obtain Z. These ideas are implemented in the

following algorithm.

Algorithm 4.7.3. (NULSP) Null Space Basis Generation

Input: An m by n nonzero matrix A over I[xl,...,xS], s =2 0,
of rank r.
Output: The list Z obtained by Z = NULSP(a). If r <n, Z
is an n by n-r null space basis matrix for A. If

r = n, 7 is the null list.
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(1) [Initialize.) T « A; C « ().

(20 [Begin next row of augmented matrix-C.)] ADV(U,T); R «~ ().

(3) [construct matrix €;] ADV(V,U); R « PFL(BORROW(V),

R); if U# (), go to (3); R « PFL(O,R); C « PFL(INV(R),
c); if T # (), go to (2); C « INV(C).

(4) [Obtain null space basis.] n « LENGTH(FIRST(A)); G «
PLES (n,C); DECAP(D,G); DENCAP (Y,G); DECAP(Z,G); erase D,
Y,C; return Z.

Steps (l)-(B) construct the augmented system matrix C

by borrowing the elements of A and suffixing a final zero to

each row. It can be easgily shown that the time to do this

is " mn. The time for step (4) is clearly dominated by the
time to apply PLES, which a;so dominates the time for steps

(1)-(3). Thus, T6 ~ TPLES(m,n,r,d,BS) from which dominance

relations for the time for NULSP can be obtained, where we

may replace n' = n+l by n. (See Theorem 4.5.2.) This result

is given in the following theorem.

h sl exe. IIII- ’ i om-—
Theorem 4.7.4 Let TNULSP(m n,r,d ms) be the maximum com

puting time of NULSP for A ¢ M(m,n,P(d,ﬁS)), s = 0, of rank

r, assuming that no rejected mappings occur and no false

' . hen, i = 0, A
equality test successes occur Then, 1if s 0 TNULSP 2D (log

2
+ + . , . >
r(log rd)) [mn (m+n)r(log rd) ], and, for s =1 TNULSP

2
(log n + r(log rd))rs(nizlwi)[mn + (m+n)r(n-r+l) (log rd +
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S
Zi=lui) ]’

More compact dominating functions for NULSP can be ob-

tained from Corollaries 4.5.3-4.5.5 for PLES.
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CHAPTER V.
EMPIRICAL COMPUTING TIMES

The algorithms of Chapters 3 and 4 have been programmed
in ASA Fortran; the programs are listed in.the appendix.
These programs are to constitute the SAC-1 Linear Algebra
System (see [COG71lc?), which is one module of the SAC-1
System for Symbolic and Algebraic Calculation. In order
to gain some insight into the practical computing capabil-
ities of the algorithms, we now present a series of tables
of empirical computing times, in particular, for PDET, PLES,
and MINV., These algorithms are applied to matrices with
randomly generated integer or polynomial (univariate and
bivariate) entries. The cases considered were run on the
UNIVAC 1108, Since the cases were run in a multiprogram-
ming environment, precise computing times were difficult to
obtain. Consequently, one should be aware that the times
in the tables below may be as much as ten percent in error.

Tables 5.1, 5.4, and 5.7 give the times for computing
determinants of m by m matrices. Tables 5.2, 5.5, and 5.8
give the times for solving single systems of linear equations
with m equations and m unknowns. Tables 5.3, 5.6, and 5.9

give times for inverting m by m matrices. The first three

tables were obtained for matrices of randomly generated



integers in the intervals [~2k, + 2k]; k = 4,8,16,32.

Table 5.1

PDET Computing Times {sec.)

for Integral Matrices

X
k 5 10 15
4 0.12 0.51 l.é9
8 0.14 0.82 2.84
16 0.21 1.30 4.20
32 0.39 2.33 8.08
Table 5.2

PLES Computing Times (sec.) for Integral Matrices

m

k 5 iO 15

4 0.23 1.09 3.21

8 0.38 1.56 4.49

16 0.57 3.12 8.56

32 1.11 6.58 18.45
Table 5.3

MINV Computing Times (sec.)

for Integral Matrices

PN

k 5 10 15
4 0.47 3.26 10.37
8 0.71 4.76 18.35
16 1.10 8.96 33.88
32 2.08 21.86 106.98
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The next three tables were obtained for matrices of
randomly generated univariate polynomial entries with in-
teger coefficients in the interval [-15, +157 and degrees
at most t.

Table 5.4

PDET Computing Times (sec.) for Matrices

of Univariate Polynomials

m

£ 4 6 8 10

1 0.20 0.82 1.58 3.91

2 0.32 1.47 2.97 7.78 ]
3 0.53 2.37 . 4.72 12.35

4 0.68 3.22 6.16 16.42

5 0.81 3.92 7.92 21.56

Table 5.5

PLES Computing Times (sec.) for Matrices

-

of Univariate Polynomials

&A 4' 6 8 10

1 1.29 3.44 8.21 15.04
2 2.68 7.14 19.21 33.96
3 4.33 12.41 33.01 64.01
4 5.66 16.59 45.60 89,76

5 7.91 22.65 64 .24 119.70




Table 5.6

MINV Computing Times (sec.) for Matrices

of Univariate Polynomials

m

t 4 6 8 10

1 2.39 8.95 28.89 60.78
2 4.62 18.84 66.93 I's1.25
3 7.43 32.15 114.32 -
4 11.25 47 .39 - ——

5 14 .46 - - —_—

The final three tables were obf{ained for randomly
generated bivariate polynomial entries with integer coef-
ficients in the interval [-15, +157 and degrees in each

variable at most t.

Table 5.7

PDET Computing Times (sec.) for Matrices

of Bivariate Polynoﬁials

1 0.48 0.96 3.30
2 1.79 3.28 12.01
3 3.32 14.64 28.60

227




Table 5.8

PLES Computing Times (sec.) for Matrices

of Bivariate Polynomials

m

t 3 4 5

1 5.79 11.52 24.79

2 24.80 61.29 115.95

3 46.22 129.63 263.75
Table 5.9

MINV Computing Times (sec.) for Matrices

of Bivariate Polvnomials

m .
t 3 4 5
1 9.78 26.32 57.89
2 33.17 91.97 242.67
3 62.14 199.31 -
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INDEX TO ALGORITHMS

Number

Page

210
202
205
158
145
141
110
137
105
105
106
112
114
104

93
137
100
102
217
118

101
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Name Number Page
MMPY 3.4.13 121
MPROD 3.2.6 95
MSUM 3.2.1 ' 92
MTRAN 3.2.4 94
MVLIST 3.3.1 99
MZCON 4.2.3 136
MZERO 3.4.1 110
NULCON 4.2.9 138
NULSP 4.7.3 . 219 -
PDET 4.6.8 212
PLES 4.3.5 179

VCOMP 4.2.1 135



10

23

31
32
40

APPENDIX: FORTRAN PROGRAM LISTINGS

INTEGER FUNCTION CBDET(A)

INTEGER AyByCy0yJyKyLlyMyU

INTEGER [COMP,IFACT,1PROD; LENGTH;PFA;PNDRMF
B=A

M=LENGTHI(B)

J=PFA(2,0)

CALL ADVIC,8)

K=0

CALL ADVID,C)

L=PNORMF( D)

U=I1COMP (L 4K)

IF (U.NE.1) GO TC 31

CALL ERLA({K)

K=L

GO TO 32

CALL ERLA(L)

IF (C.NE.O) 6Q TO
L=1PROD (J yK) ot
CALL ERLA(Y)

CALL ERLA (K)

J=L

If (B.NE.D) GO TO 20

K=1FACT (M)

CBDET=IPROD(K 4J)

CALL ERLA (K)

CALL ERLA({J)

RETURMN

END

w
o

INTEGER FUNCTION CLET(P,A)
INTEGER A4BP, BPP, Dy EnyGyHy IsyTHU
INTEGER CODIF, CPROD, CRECIP,FIRST,INV,PFL,TAIL
BP=A

D=1

[=0

BPP=gmP

BR=0

CALL DECAP(F, BPP)

CALL DECAP(E;F)

IF (E.NE.O) GO TQ 4

IF {(F.NE.OQ) BP=PFL{F,BP)

I=1+1

IF (BPP.NE.QO) GO TO 3
CDET=0

CaLlL MCPERS(BP)
RETURAN

D=CPROL(P,E, D)
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39

31

236

If (F.EQ.0) GO TO 8

E=CRECIP(P,E)

G=F

CALL ALTER(CPROD(P,E,FIRST(G)),G)
G=TAIL(G) s

IF (G<NE.O) GO TG 5

IF (BPP.EQ.O) GO TO 8

CALL DECAP(G,BPP)

CALL DECAP(J,G)

BP=PFL(GsBP)

IF (U.EQ.0) GO TO 6

H=F

T=CDIF{(PyFIRST(G) CPROD(PyU,FIRST(H)})
CALL ALTERI(T,G)

G=TAIL(G)

H=TAIL(H)

IF {(G.NE.DO) GO TO 7

Go 70 6

CALL ERLA(F)

BEP=INVIEP)

IF (BP.NE.O) GO TO 2 '

u=0 ] -
CALL QRI(U,I42)

IF (l1.EQ.1) D=P-0

CDET=D

RETURN

EMND

FUNZTION CPDET(PP,AAQ)

AyAAyASTAR B0 0Py DSTAR yEsHy13JsMyP 4 PPyRETS,THU

COET yCDIF,CPUEGCPINT,LPPRUDy DBRREYLENGTHyMCPEVLy MCPNY
MZcR U, PFA

. K

In ez
mom
(NI R
Mmoo
XK B8R

— T I —f — =
o> M

0 Y D> Mt bt e bt

m
i
ot

50 TO 10

CPDET=D

RETURN

IF (MZERD(A).EQ.Q) GO Tu 11
D=0

CALL MCPERSUA)

GO T (1,51), RET
S=MCPHIVA)

IF (S.6T.0) GC TC 30
D=CDET(P,A)

G0 TO0 (1,51) s RET
H=0

M=LENGTH{A)

J=0

D0 31 I=1,M
J=PFa({M+1=1,.)
B=DBRRE (J,A)

CALL ERLAL(D



4Q

41

42
50

51

80

10

2G

237

0
PFA(O,PFA(1,0Q))
0

cm =
oo

IF (I.LT.P) GQ TO 42

PRINT 41

FORMAT(S2H ELEMENTS OF GF(P) EXHAUSTED. ALGORITHM CPDET FAILS.)
STQP

ASTAR=MCPEVL (PyA+1,S)

CALL STACTK3(A,S,1I)

CALL STACK3{(D,E,B)

CALL STACK2{H,RET)

RET=2

A=ASTAR

GO TO 190

DSTAR=D

CALL UNSTK2(H,RET)

CALL UNSTK3(D,E:8B)

CALL UNSTK3(A,S,1)

IF (DSTAR.NE.D) H=1

IF (H.EQ.Q) 60 T0 78

DP=CPINT(P,D, 1;0STAR,E,;S)

CALL CPERAS(D) -
IF (8$.6T.1) CALL CPERAS(DSTAR)

D=0P

IF (CPDEG(E) .NE.B) GO TD 80

CALL MCPERS(A)

CALL ERLA(E)

GO TO (1:51), RET
T‘—'-.PFA(].:PFA(119FA(CDIF(P1071)10)))'
U=CPPROD(P,T ,E)

CALL CPERAS(T)

CALL CPERAS(E)

E=U

I=1+]

GO TO 49 N
END

INTEGER FUNCTION CPRRE(P,CC)

ITHTEGER AvB'CyCC1CSTAR»DyDP'DSTAR,E1EP,H,IyISTARad,JSTAR'N,P
INTEGER RyRETRSTAR Sy T U,V VP VSTAR, Wy WSTARLZ 2P

TNTEGER CDIF,CPDEG,CPDIF,CPINT,CPNEG,CPPROD,CRRE,DBRRE,FIRST
THTEGER LENGTH,MCPEQ,MCPEVL, MCPINT ,MCPMPY,MCPNV, MTRANMZLON
INTEGER MZERD NULCON,PFA,PFL,VCOMP

C=CC

RET=1

GO TQ 10

CPRRE=W

RETURH

S=MCPNV (L)

IFf (S.GT.0) GO TU 20

W=CRRE(P;C)

GO TG (1,41), RET

=0




30

31

32

40

41

51
52
53

60

10

71

80

A=P
H=0
A=pA-1

IF (A.GE.OQ) 60 TO 32

PRINT

FORMAT{52H ELEMENTS UF GFI(P)

STOP

31

CSTAR=MCPEVL (P,C,A,S)
IF (MZERO(CSTAR).EQ.Q) GO TQ 40

CALL

MCPERS(ESTAR)

G0 10 30

CALL
CALL
CALL
CALL
C=CST
RET=2

STACK3(C,S,A)
STACK3(RsI+J)
STACK3(D,V¥,E)
STACK3(H,B,RET)
AR

G0 70 10
WSTAR=W

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

UNSTK3(H,8,RET)
UNSTK3(D,V,E)
UNSTK3(R,1,J)
UNSTK3(C,%,4)
DECAPIJSTARyWSTAR)
DECAP(ISTAR,WSTAR)
DECAP(DSTAR,WSTAR)
DECAPIVSTAR,WSTAR)

RSTAR=LENGTH ( JSTAR)
IF (RSTAR-R) ©0,51,70

IF (V
IF (v
CALL
CALL
GO 70
CAaLL
CALL

COMP(JSTARyJI) 70,52,560
COMPUISTAR,I)) 70,533,060

ERLA(JSTAR)
EQLA (IS TAR)
80

ERLA(JISTAR)
ERLA(ISTAR)

EXHAUSTED.,

IF (VSTAR.NE.Q) CALL MCPERS(VSTAR)
IF (S.67.1) CALL CPERASIDSTAR)

GO TO 30

IF (R.EQ.Q0) GO TQ 71

CaLL
CALL
CALL

IF (V.NE.D)

ERLA (J)
ERLA(I)
CPERAS(D)

CALL CPERAS(E)

R=RST
J=JS8T
I=1IST
D=0
V=0

AR
AR
AR

CALL MCPERS(V)

IF (VSTHR.NE.Q) V=MZCOM(VSTAR)

E=PFA

DP-‘-CP[NT(P:D, AYQSTAR,E,S)

IF (S
IF (V¥

(O+PFAL1,0))

«6T.1) CALL CPERAS(DSTAR)

\EQ.C) GO TG 81

238

ALGORITHM CPRRE FAILS.)
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VP=MCPINT(P,V,A;VSTAR,E,S)
CALL MCPERS{VSTAR)
31 T=PFA(1,PFA(],PFA(CDIF(P,;0,A},0)))
EP=CPPROD(P,T,E)
CALL CPERASIT) :
CALL CPERAS(E)
=EP
IF (H.EC.0) GO T} 90
CALL CPETAS(D)
D=0pP
IF (V.EQ.D0) GO TC 120
CALL MCPERS{V)
V=VP
GO TU 120
90 T=CPLIF(P,0,DP)
CALL CPERAS(DI
D=0DP
u=1
IF (V.EQ.0) GC TG 91
U=MCPEQI(P sV, VP)
CALL MCPERS(V) :
V=VP . -
91 IF (UeFlel -AND. T.EQ.Q0) GO TO.100
CALL CPERASIT)
GO Tu 30
100 N=LENGTH{FIRST(C))
IF {R.NE.N) GC 70 101
H=1
GO TO 110
101 DP=CPNEG(P,D)
Z=NULCONIN,yJ s DP+V)
ZP=MTRAN(Z)
T:MCPNPY( P,C ) ZP)
U=sMZERQ(T)
CALL MCPERSIZP) s
CALL CPERAS{DP)
CALL MCPERS(Z)
CALL MCPERS(T)
IF (U.5C.0) GG TC 30
H=1
110 B=DBRRE{J,C)
120 IF (CPDEG(E).LE.B) GO TO 30
130 CALL CPERAS{E)
CALL MCPERS(C)
W=PEFL({J,PFLIT ,PFL{D,PFL{V,0)1)))
149 GO 70 (1,41), RET
END
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INTEGER FUNCTICN CRRE(P,A)

INTEGER A,34BPyBPPyDyEyFyGyHyHBAR T4 IPyIPPyJsKyLyMyN,yP
INTEGER ST U, VaWeXsl .

INTEGER CDIFyCONCyCPRCDCRECIP,FIRST, INV,LENGTH,PFA,PFL,TAIL
BP=A

M=LENGTH(BP)

N=LENGTH{FIRSTI(BP))

— 0 << T
HoOoomrOCo

oo

0

DU 11 K=1,M

U=M+1-K

1P=PFA(U, IP)

2=0

I=7+1

BPP=RP

BP=0

ipp=p

IP=0 -
CALL DECAP(F,BPP)

CALL DECAP(E,F)

CALL DECAP{K,41IPP)

IF (E.NE.Q) GC TO 40
IP=PFA(K, IP)

IF (F.NE.OQO} BP=PFL(F,BP)
IF (BPP.MELD) GO TO 30
GO TO 80 .
D=CPROD(P,E4+D)
J=PFA(Z,J)

I=PFA(K,I)

B=PFL{F,B)

IF (F.EQ.0) GC TO 80D .
E=CRECIP(P,E)

G=F

CALL ALTER{CPROD(PLE,ZFIRSTIG)),(G)
G=TAIL(G)

IF (G.ME.DO) GC TO 50

IF (BPP.EC.O) GO TO 50
CALL DECAP(G,uPP)

CALL DECAP(J,05)
BP=PFL(G,BP)

IF (U.EQ.O) GC TG 60
H=F

T=CULF(P, FIRST(G),CPRCO(P,U,FIRST(H}I))
CALL ALTERI(T,G)
G=TAILI(G)

H=TAIL{H)

IF (G.NE.Q) GC TO 70

GO T0 60

BP=INV(BP)
IP=CONCUINV(IP),IPP)

IF (BP.NE.O) 50 TO 20
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[=CONCCINVI(I),IP)

90 IF (B.NE.O) GO TO 91
U=v
v=0
GU Td 150

S1 CALL DECAP{H,B)
H=INV(H)
HBAR=0
M=Q
Z=N
L=J

100 IF (H.EQ.0) GC TO 110
CALL DECAP(J,H)
K=FIRST (L)
IF (Z.NE.K) 5C TC 101
M=PFA(U,M)

L=TAIL{L)

GO TO 102
101 HBAR=PFA(U,HEBAR)
162 7=1-1

GO TO 100 -
1120 T=v

HBAR=TNV(HBAR)

120 IF (M.EC.O) GC TO 14Q
CALL DECAP{U,M)
IF (1.EQ.O0) GC TO 12D
CALL ADVIS,T)
H=HBAR

130 IF (S.EQ.0) GO TU 120
CALL ADVIX,S)
W=FIRST(H)
W=CD[F(P,WvCPROD(P!U1X))
CALL ALTER(W,H)
H=TAIL(H) N
GO TO 13D

140 IF (HBAR.NE.Q) V=PFL(HBAR,V)
GO T0 90 “

150 IF (U.ER.0) GC TO 170
CALL DECAP(T s U)
S=0

160 CALL DECAP(E,T)
G=CPROD(P 4D, )
S=PFA(G,5)
IF (T.NE.Q) GC TO 160
V=PFL(S,yV)
GO TU 150

170 v=Inviv)
J=Inv{d)
CRRE=PFL(J,PFLII,PFA(D,PFLI(V,0)))})
RETURM
END
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INTEGER FUNZTICN DBRRE{J,C)

INTEGER CyDyEyF,GyHyI,J,K,LyTyU,XyY
INTEGER CPDZG,FIRSTyMTRAN,PFA,TAIL
X=MTRAN(C)

- T MR -
go0ouodou
OO0 0. x

[F (Y.EQ.0) GC TG 50

CALL ADVI{U,Y)

I=1+1

IF (K.CQ.0) GO TCO 42

IF (I1.NE.FIRST(K)) GO TO 40
6=0

CALL ADV(T,J)

IF (T.€Q.0) GC TO 31
D=CPDEGI(T)

IF (D.GT.G) G=D

IF (U.NE.O) GC TG 30
L=PFA(G,L) N
K=TAIL(K)

GO TO 20

CALL ADV(T,J)

IF (T.€Q.0) GG TO 41
D=CPDEG(T)

IF (D.GT.F) F=D

IF (U.NF.0) GC TC 40

GO TQ 20 :

CALL DECAP(D,L)

E=E+D

IF (D.LT4G) G=D

IF (L.NE.Q) GC TO 50
DBRRE=E .
H=F-0

IF (HeGToD) DBRRE=DBRRE+H
CALL MCPERS(X)

RETURN

END

INTEGER FUNZTIUN MCHMPY(P,A,B)
INTEGER A,Byc7D,E,P1R751TyVywa'Y
INTEGER CINVyCPRODyCSUMZFIRST,,PFA,PFL,TAIL
X=CIv(a)

Y=CINVI(B)

C=9

V=X

CALL ADVIR,Y)

D=5

W=Y

S=R

CALL ADV(T,W)
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E=0
E=CSUM{ P, EL,CPROD(P,FIRST(S),FIRST(T)))
S=TAIL(S)
T=TAILLI(T)
IF (S«NE.O) GC TO 4
D=PFA(E,4D)
IF {(weNEoD) GC TO 3
C=PFL(D,C)
IF (V.NE.O) GC TC 2
CALL ERASE(X)
CALL ERASFE(Y)
MCMPY=C
RETURN
END

INTEGER FUNZTICN MCPEVLIPsAsB4S)
INTEGER A8y Cy0yPpSelsWeX
INTEGER CPEVALyINV4PIFA,PFL
X=A

C=0 .

CALL ADVIW,X)

D=0

CALL ADVIU,A)

IF (S.EC.1) D=PFA({U,U)

IF (SeNE.1l) U=PFLIU,LO)

IF (WeNE.O) GC TG 3
C=PFLIINV (D) ,C)

IF (X«NE.O) GC TC 2
MCPEVL=INVI(C)

RETURN

END

INTEGER FUMITICON MCPEC(P,A,B)
INTEGER A 4By CaPySeT XY
INTEGER CPOIF,FIRST,TAIL

X=A

Y=8

CALL ADV(S+X)

CALL ADV(T,Y)
C=CPDIF(P,FIRST(S),FIRST(T))
IF (C.NE-O) GC TC 4
S=TAIL(S)

T=TAIL(T)

IF (S.NE.O) GC TO 3

IF (X.ME.D) GC TC 2

MCPEQ=1

RETURMN

CALL CPERAS(C)

MCPEGQ=D

RETURN

END
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SUBRGUTINE MCPERS{A)
INTEGER A3y LK,y T

INTLGER COUNT,FIRST,TYPE
T=TYPE(FIRST (A))

IF (ALEC.O) RITURA :
K=COu T (A ) -]

IF (R.2C.0) 6C TO 21

CALL STOUNTIK,A)

RETURN

CALL DEZCAP(B,A)
K=COUNT (R )~-1

IF (K.5Q.0) GC TO 31

CALL SCCUNT(K,B)

GO 1O 2

CALL DECAP(C,B)

IF (TJEG.1) CALL CPERAS(QC)
IF (B.NELO) GC TGO 3

GO T0 2

ERND

INTEGER FUNITICN MCPINT(PyA;B+4CyD,yS)
INTEGER AgBy CyDyEyFyH P Sy TyUsV W XyY
INTEGER CPINT,,INV,,PFL

X=A

Y=C

H=0

CALL ADVUIW,X)

CALL ADV(T,Y)

E=0

CALL ADV{U,W)

CALL ADVIV,T)

F=CPINT(P9UQByV1095)

E=PFLI{F,E)

IF (W.NE.O) GC TU 3

H=PFLIINV{E) , H)

IF (X.NE.Q) GC TO 2

MCPINT=TNVIH)

RETURN

END

INTEGER FUJ{LTION MCPMDB(A,B)
INTEGER A’B' EerSy.Tle?V,w!X’YQZ
INTESER CPDEG

X=A

Y=8

=0

CALL ADV(R,X)

W=Y

S=R

CALL ADVIT,W)

CALL ADV(U,S)
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CALL aDV(V,T)

IF (UeEQe0 +URe V4EGeD) GG TG 5
E=CPOEG(U I+ PLEGI(V)

IF (E.GT,.7) 7=E

IF (S.nNE.Q) GC TG &

IF (Wenw©eD) GC TG 3

IF (Xos\-’zl‘ioO) (QC TU 2

MCcPMDg=17

RETURN

END

INTEGER FUNCTICN MCPMPY(P,AA;EB)

INTEGER Ay AA, ASTAR, B, BB, BSTARZCyCPyCSTARYDpEp I3 JsKsMyP3QsRET Sy ¥
INMTEGER CDIF, CPPRON,FIASTyLEHGTHyMCMPYMCPEVL,,MCP INT,MCPHMDB
INTEGER MCPNV  MZEROPFALPFL,TYPE

A=AA

B=B8

RET=1

GO 70 10

MCPMPY=C . -

RETURN

M=LENGTH(A)

G=LENGTH(E)

IF (TYPE(FIXST(A)).NELO) GO TQ 30

C=MCPY (P 4A5 E )

GO TO 90

C=D

DO 32 I=14M

D=0

DO 31 J=1,Q

D=PFL(0,D)

C=PFLI(D,C)

IF (MZEQO(A) e EQ0e1 oCRe MZERO(B).EG.L) GC TO 90

S=MCPaV {(A)

K=MCPMDE({ A,8)

I=0

D=PFA(Q4PFA{1,0))

IF {(I.LT.?P) GC TC 52

PRINT 51

FORMAT(S3H ELEMENTS UF GF(P) EXHAUSTEZD. ALGORITHM MCPMPY FAILS.
sTaop

ASTAR:MCP EVL ( PyAy 1 ¥ S
BSTAR=RMCPEVL AP 0,145
CALL STACK3(A,B4()
CALL STACZK3(D,I,K)
CALL STAUKZ2(SHHET)
A=ASTAR

B=BSTAR

RET=2

GO Tu 10

CSTAR=C

ASTAR=A

BSTAL=8

)
)
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CALL UMNSTK2(S,PET)
CALL UNSTK3({D,1,4K)
CALL UNSTY3(A,8,C)
CALL MCPERS(ASTAR)
CALL MCPERS(ESTAR)
CP=MCPINT (Py Cy[beTARyD,S)
CALL MCPERSIC)

CALL MCPERS({CSTAR)
C=CP

IF (1.LT.K) GC TO 8Q
CALL CPERAS(D)

GO TU 90
E=PFA{1,4PFAl1,PFAICDIF(P,0,1),0)))
W=CPPRODIP;D,yE)

CALL CPERAS(D)

CALL CPERAS(E)

D=W

I=1+1

GO TO 50

GO TD (91,61) 4RET
END

INTEGER FUNCTION MCPNV(A)
INTEGER A4BsC o0

INTEGER CPNV, FIRST,TYPE
B=A

IF (TYPE(FIRST(B)).EG.L) GO TO 2
MC PNV =0

RETURHN

CALL ADVI{C,B)

CALL ADVI(D,C)

IF (D.NE.O) GC TC 4

IF (C.RE.O) GC TO 3

GO TU 2

MCPLV=CPNV(D)

RETURY

END

—
P
—~

JINCTION MOIF(A,B)
By CaDyFaFyXyY
RSTINV,PDIF,PFL,TATL

~e

OrrO WD — — —
—t -

el

ADVEE,X)
ADVIF,Y)

T OO OO X e
- r

[T I = > L

PFLIPPIFI(FIRST(E) ,FIRST(F))4D)
E=TAIL(E)

F=TATL(F)

IF (E«NE-0) GG TC 3

246
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C=PFLLINV(D),C)

IF {(X.NE.D) GU TC 2
MDIF=INV(C)

RETURN

END

INTEGER FUNCTIGN MEQ(A,B)
INTEGER A4ByCySyT XY
INTEGER FIRST,.PDIF, TAIL
X=A

Y=8

CALL ADV(S,1)

CALL ADVI(T,Y)
C=PDIF(FIRST({S),FIRST(T))
IF (C.NE.O) GC TG 4
S=TAIL(S)

T=TATLI(T)

IF (S.NE.Q) GC TO 3

IF (X.NE.O) GG TO 2

MEQ=1

RETURN

CALL PERASE(C)

MEQ=0

RETURN

END

SUBRCUT INE MERASE(A)
INTEGER A5y C 4K
INTEGER ZOUNT

IF (A.2Q.0) RETURN
K=COUAT (A) -1

IF (KoQeD) GC T 11
CALL SCOUNT({K,4A)
RETURN

CALL DECAP(B,A)
K=COUnT(B)-1

IF (K.EGQ.0) GC TG 21
CALL SCOUNT(K,B)

GO TG 1

CALL DECAP(C,B)

CALL PERASE(C)

IF (B.NE.D) GC TC 2
GO TOU 1

END

247
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INTEGER FUILTION MGARN(Q.ByPyA,L)
INTEGEQ A«yt’),CyUyE,L,P,({,S’ T,UyVyXQY

INTEGZR CPOARN, INV,PFL
X=58

Y=A

C=0

CALL ADV(S,X)

CALL ADVIT,Y)

D=0

CALL ADV{U,S)

CALL ADV(V,T)
E=CPGARNIGU,4PyV,4L)
D=PFL{E,D)

IF {S«HE.D) GC TO 3
C=PFL{I!WV(D),C)

IF (X5 D) GC TO 2.
MGARN=TIV (C)

RETURN

END

INTEGER FUNCTICN MINV(A)

INTEGER ACa T 4JdsKyLatMePeReTyUsV WX
INTEGER BURRUWy TNV LENGTHyMVLIST,PFA,PFL,PLES,TAIL

T=A

C=0

J=0

P=PFA(],0)
M=LENGTH(T)
L=MVLIST(T)

IF (L.EC.OQ) GC TQ 30
CALL DECAP(V,L) _
P=PFL(V,PFL(P,PFA(0,0)))
GO TO 20

CALL ADV(l,T)

R=0

J=J+1

CALL ADVI(W,U)

R=PFL (3CRROW (W) 4R)
IF (U.NE.OQ) GU TO 4D
K=J-1

IF (KJEGC.DO) GO Tu 52
DO 51 I=1,K
R=PFL(.JsR)
R=PFL{BCRROW (P)4R)
K=M=-J

IF (K.EQ.0Q) GC TC 54
D0 53 I=1,K
R=PFL{O,R)
C=PFL{INVIR) ()

IFf (T.NE.O) GC TO 30
C=I1nVIC)

X=PLFS(M,C)

IF (X.IZQ Q) GC TC 70

248
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T=TAIL(X)
U=TATL(T)
CALL SSuUCC(D,T)
CALL ERASE(U)

70 MINV=X 1
CALL PERASE(
CALL MERASE(
RETURN
END

P
)

THTEGER FUNIZTION MMCDB(A,B)
INTEGER 5161H,[prKyL?NYR’SyUyV,XyY
INTEGER FIRST,,1COMP,1PKOL, ISUMLENGTH,PFA,PFL,PNORMF,TATL
16 X=4
Y=8
K=0
N=LENGTH{FIISTI(X))
I=0
DO 11 L=1,N
11 [=PFL(O,T) -
J=0 "
DO 12 L=1,N
12 J=PFL(0,J)
20 CALL ADV{HR,X)
S=1
30 CALL ADLV(U,R)
U=PNIORMF(U)
V=FIST(S)
H=1CUMP (U ,V)
IF (H.NE.1) GC TC 31
CALL ERLA (V)
CALL ALTER{(U,S)
50 TU 32
31 CALL ERLA(U)
32 S=TAIL(S)
IF (S.NE.O) GC TG 30
IF (X.4E40) GC TG 20
40 CALL ADVI(R,Y)
S=d
50 CALL ADV{U,R)
U=PNORMF(U)
V=FIRST(S)
H=ICOMP {U V)
IF (HeNEol) GC TG 51
CALL ERLA(Y)
CALL ALTER(U,S)
GO T 52
51 CALL ERLA(U)
52 S=TAIL(S)
IF (SONEOO) LU TO 50
IF (Y . HE.0) LU TO 40
60 CALL DeCAP(U, D)
CALL DECAP(V, J)
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R=IPROD (U V)
CALL ERLA(U)
CALL ERLA(V)
S=ISUM({K, )
CALL cala(x)
CALL ERLA(R)
K=5

IF (I.0Ee0) GC TC 60
U=PFAlL )
Y=1PRUN (U ,K)
CALL cRLALY)
CALL ERLA{K)
MMCB=V
RETURN

END

INTEGER FUNITICN MMCD(P,A,S)

INTEGER A48 CaPsRyS$T4X
INTEGER CPMUD,INV,PFA4PFL
X=A

B=0

CALL ADV(T,X)

=0

CALL ADV(R,T)
R=CPMOD (P yR)

IF (S.5G.0) C=PFA(R,C)
IF (S NE.O) C=PFL{R,C)
IF (T.NE.DO) GC TCU 3
B=PFL{IV{C),B)

IF (X.NE.D) GC TU 2
MMOD=INVIB)

RETURN

END

QI‘SYT7U1V?Z

THTEGE?R ICOMP 4 IPROOyLENGTHyMCPMPY s MGARN ¢ MMC By MMGD y MTRAN,,MVLIST

INTEGER MZEROPFA,PFL
COMMON /TR4/ PRIME

A=AA
BP=MTRAN(ZB)
I=PRIME

M=LENGTHUA)
Q=LENGTH{ 8P)
C=D

D0 22 T1=1.M
D=0

DU 21 J=1:Q
D=PFL(0O,D)
C—"—PFL(DyC )

R FUNCTIGN MMPY(AA,RB)
ER A ZAA G ASTAR BB BP BSTARZCHyCPHCSTAR Dy 14 J 9y M,P,PRIME
R
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V=MVLIST(A)

IF (MZERO(A) EQel .0Re MZERO(EP)EQ.L) GU TO 80
S=LENGTH(V)

I=PFA(1,0)

J=MMCB (A, BP)

IF (Z.liE.0) GC TC 42

PRINT 41

FORMAT(48H LIST CF PRIMES EXHAUSTCD. ALGORITHM MMPY FAILS.
STOP

CALL ADVIDP,Z)

ASTAR=MNMOD(P 3 A,S)
BSTAR=MMOD(P, BP,S)

CSTAR=MCPMPY (P, ASTAR,ESTAR) .
CALL MCPERS{ ASTAR) '
CALL MCPZRS(ESTAR)
CP=MGARN(I4C,P,CSTAR,V)

CALL MERASE(C)

CALL MCPERS(CSTAR)

c=Cp

T=PFA(P,0)

U=IPRUDI(I,,T)

CALL ERLAC(D)

CALL ERLA(T)

I=U - e
IF (ICOMPI(I,J).NE.1) GO TO 40
CALL ERASE(V)

CALL ERLA(D)

CALL ERLALD

CALL McRASE(EP)

MMPY=C

RETURNA

END

INTEGER FUNCTION MPROC(A,B) ?
INTEGER AyByCaD3EsFsGeRISH» Ty VW XsY

INTEGER CINVFIRST,y INV,MTRAN,PFL,PPRUOD,PSUM,TAIL
X=CINV{A)

Y=INVIMTRAN({B))

C=0

V=X

CALL ADV(R,V)

W=Y

D=0

S=R

CALL ADVI(TqW)

E=0

F=PPROD(FIRST(S)FIRST(T))

G=PSUM(E, F)

CALL PERASE(E)

CALL PERASCc(F)

E=0G

S=TAIL(S)

T=TAIL(T)

)
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IF {(S.ME.Q) GC TO 4
D=PFL{E,LD)

[F (WeNE.O) GC TC 3
C=PFL(D,C)

IF (V.NELO) GT TC 2
CALL ERASE(X)

CALL ERASE(Y)
MPRGD=C

RETURN

END

INTEGER FUNCTION MSUM(A,B)
INTEGER AyByCyDyEyFyXyY

INTEGER FIRST,,INV.PFLaPSUM,TATL
X=A

Y=8

C=0

CALL ADVI(E,X)

CALL ADVI(F,Y)

D=0
D=PFL(PSUM(FIRST(E),FIRST(F)),D)
E=TAIL(E)

F=TAIL(F)

IF (E.NE.O) GG TO 3
C=PFL(INVID),C)

IF (XeME40Q) GO TO 2

MSUM=TINVIC)

RETURN

END

INTEGER FUNCTION MTRAN(A) ?
INTEGER A4ByCyDyFaGylaNeSHT

INTEGER BORRUW,CINV,FIRST,LENGTH,PFA,PFL,TAIL,TYPE
G=CINV(A)

F=G

C=FIRSTI(F)

T=TYPE{(C)

N=LENGTHI(C)

B=0

DO 15 I=1,N

B=PFL(0,B)

CALL ADV(C,F)

$S=B

CALL ADVID,C)

IF (TWEG.0) CALL ALTER(PFA(D,FIRST(S)),S)

IF (T.ilE.O) CALL ALTER(PFL(BORROW(D)FIRSTI(S)),S)
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S=TAILILS)

IF (SNE.0) GU TC 3
IF (F.NE.O) GC TC 2
CALL ZRASE(G)
MTRAN=B

RETURN

END

INTEGER FUNLTICM MVLIST(A)
INTEGER A3B,yC X
INTEGER PVLIST

X=A

CALL ADVIB,.X)

CALL ADV(C,3)

IF (CeME.O) GL TU 4
IF (LeNEWwQ) GC TC 3
GO 10 2
MVLIST=PVLISTI(Q)
RETURN

END

INTEGER FUNCTION MZCUN({A)
INTEGER INVy PFL,TAIL
B=0

S=A

CALL ADV{U,S)

X=7

X=PFL{0O,X)

U=TATL(U)

IF (U.NE.O) GC TO 3
B=PFL(X,8) .
IF (S.NE.O) GC TC 2
MZCOGN=TAV (B)

RETURN

END

INTEGER FUNCZTION MZERO(A)
INTEGER A4 X, Y

INTEGER FIRST,TAIL

X=A

MZERO=0

CALL ADVI{Y,x)

IF (FIRST(Y}). N0} RETURH
Y=TAaIL(Y)

IF (Y NELO) GC TGO 3

IF {AXNE.O) GC TO 2
MZERO=1

RETURD

END
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11
12

20

31
32

33
34

40

41
42

50

10

20
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INTEGER FUNZTICH NULCONINyJyP W)
INTEGER EnyI,JyK,L,M,P,R,S,TyUyW,WP,Z
INTEGER BORRCWyCINV,COUNT,y INV,LENGTHPFL
L=J

WP=CI{IV (W)

R=LENGTH( J)

T=R-LENGTHI(W)

IF (T.EG.0D) GC TC 12

DO 11 S=1,T

WP=PFL{Q,WP)

WP=INV(WP)

E=MN-R

=0

CALL ADVIH,L)

1=0

K=0

I=1+1

IF (1.5T.N) GG TO 50

IF (1.EQ.H) GG TG 4D

K=K+1

U=0

T=E-K -
IF (T.EC.D) GC TO 32 '

DO 31 S=1,T

U=PFLI(0O,U)

U=PFL{BCRROW(P),U)

T=K-1

IF (TeEQ.O) GC TC 34

D3 33 S=1,T

U=PFLI{0O,U)

Z=PFL(U,2)

G0 T0 20

caLl DECAP(U s WP) :

IF (UJNE.O) CALL SCOUNT(COUNT{U)=-1,U)
U=sTNVICINVIU)) )
T=E-LENGTHU)

IF (TLEC.0Q) GC TO 42

0O 41 S=1,T7

U=PFL(2,U)

I=PFL(U,y2)

IF (L.NE.Q) CALL ADV{H,L)

GO T0 20

NULCON=TINVI(Z)

RETURHN

END

INTEGER FUNCTIGN NULSP(AA)

INTEGER AyAA,C,DpG,N,R,T,U,VyY,Z

INTEGER PORAOWsFIRSTINV,LENGTHPFLSPLES
A=AA

T=A

€=9

CALL ADVI(U,T)
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R=0

30 CALL ADV(V,U)
R=PFL{BCRROA (V) 4R)
IF {UsNE.O) GC TG 30
R=PFL{O4R)
C=PFLIIMNV(R),C)
IF (T<NEWD) GC TO 20
C=1nVIC)

40 N=LENGTH(FIRST(AY))
G=PLES(N,C)
CALL DECAP{D+6)
CALL DECAP(Y,06)
CALL DECAPI(Z,06)
CALL PERASE(D)
CALL MERASE(Y)
CALL MERASE(C)
NULSP=Z
RETURN
END

INTEGER FUNCTION PDET(AA) -
INTEGER A,AA,/—\STAK,D,DP;DST[\&,HnyJyL7P,PRIME,S,T7U1V
INTEGER CBDET sCPDETCPGARN, ICOMP, IPRUDyLENGTH,MMCOD,,MVLIST
INTEGER MZERQ,PFA
COMMON /TR4/ PRINME
A=AA
1G 0=0
V=MVLIST(A)
S=LENGTH(V)
J=CBDET {A)
[=PFA(1,42)
L=PRIME
H=0
20 IF (L.NE.O) GO TG 22 *
PRINT 21
21 FORMAT(48H LIST CF PRIMES EXHAUSTED. ALGORITHM PLET FAILS.)
STOP
22 CALL ADV(P,L)
ASTAR=MMDD(P ; 4,5
IF (MZERO{ASTARILEG.D) GO TO 30
CALL MCPERS(ASTAR)
DSTAR=0
GO T0 40
30 DSTAR=CPDET(P yASTAR)
40 IF (DSTARE.Q) H=1
IF (H.EG.Q) GC TG 50
NP=CPGARN(1,D4P+DSTAR,V)
CALL PERASE(D)
IF (VoNELO) CALL CPERAS(DSTAR)
D=DP
50 T=PFA(P,D)
U=1PR0OOI(I,T)
CALL ERLA(IL)
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20
21

22

30

41
42
43

50

60

CALL
I[=U
IF (ICOMP(I,J)uNE.1) GO TO 20
PDET=D

CALL cRLAL(])

CALL ERLA(J)

CALL ERASE(V)

ERLA(T)

RETURN

END

INTEGER FUNCTICN PLES(NN,CC)
INTEGER C4CC s CSTARSD9LPHUSTARVEEP
INTEGER NPZPy PRIMEZRyRSTAR, S, THU,V
INTEGER CPOARN,CPRREyFIRST,IHV,1PR
INTEGER MMPY, MVLIST MZCON,MZEROyNU
INTEGER TAIL,VCOMP

COMMON /TR4/ PRIME

N=NN

C=CC

X=MVLIST(C)

S=LENGTH(X) .
L.=PRIME '
R=0

IF (L.NE.OQ) GC TC 22

PRINT 21

FORMAT(49H LIST CF PRIMES EXHAUSTE
STCP

CALL ADV(P,L)
CSTAR=MMODI(P,(4S)

IF (MZEROICSTAR)Y.CQL0)
CALL MCPERS{CSTAR)

GO Tu 20
WSTAR=CPRAE(P,CSTAR)
CaLL DECAP(JSTAR,WSTAR)
CALL DCECAP(ISTAR,«WSTAR)
CALL DECAP(DSTARSZWSTAR)
CALL DECAP(VSTAR,¥WSTAR)
RSTAR=LENGTH ( JSTAR)

IF (RSTAR-R) 50,41,60
IF (VCOFPLJUSTARGJ)) 60442450

IF (VCOMPLISTARYI)) 60,443,550

CALL ERLA(JSTAR)

CALL ERLA(ISTAR)

G0 T0 70

CALL ERLA(JSTAR)

CALL ERLA{ISTAR)

IF (X.iiCa0) CALL CPERAS(DSTAR)

IF (VSTARCNE.O) CALL MCPERS(VSTAR)
GO 70 20

IF (ReEG.0Q)
CALL ERLAC(Y)
CALL ERLA(D)
CALL PZRASE(D)

GO TO 30

GC TO 61
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61

70

80

81

90

91

100

101

110

IF (V.NEsO) CALL MERASE(V)

CALL EXQLA(E)

R=RSTAR

J=JSTAR

[=1STAR

D=D

V=0

IF (VSTARGNE Q) V=MZLCH{VSTAR)
E=PFA(1,0)
DP=CPCARN(Es 4P, DSTAR,X)

IF (X.iiE.0) CALL CPERAS(USTAR)
IF (Vo.£ECe0) GC TC 71
VP=MGARN( E,V 4Py VSTAR,X)

CALL MCPES(VSTAR)

T=PFal(P,0)

EP=IPRGC(T,E)

CALL ERLA(T)

CALL ERLA(E)

E=EP

T=PLIF(GC, DP)

CALL PERASE(D)

D=DbP

u=1

IF (V.EC.0) GC TO 81 .
U=MEQ(V 4V P) '
CALL MERASELV)

V=VP

IF (UeFECel &
CALL PERASE(
GO 1O 20
IF (R.LE.N) GC TC 91

6G=0

CALL PERASE(D)

GO TO 120
NP=LENGTH(FIRST(C))
DP=PNEG (D)

ZP:'-NULCUN(WP [ JyDP1V)
T=M¥MPY(C,ZD)

U=MZERD({T)

CALL PERASZE(EP)

CALL MERASE(T)

IF (U.EC.1l) GC TC 100

CALL MERASE(ZP)

GO TO 20

J=INV(J)

IF (FIRST(J).LELN) GO TO 191
CALL HERASE(ZPR)

6=0

CALL PERASE(P)

GO TO 122

“Oe TWEQ.O0) GO TO SO

AN
)

i
CIZ:%C)O
s
i
|

cCCIN<
|
o

[HI L T |
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111
112

113

120

CALL DECAP(T,ZP)

IF (HeLT.0) GC TG 113
I=PFL(T,2)

IF (H.EQ.0) GC TQ 112
DO 111 K=1,H
T=TAIL(T)

W=T

T=TAIL(T)

CALL SSUCCI(O . w)
Y=PFL(T,Y)

[IF(U.GT.D) 50 TO 110
CALL MERASE(ZP)
G=PFLI(D,PFLLINVIY)yPFLLINVIZ)Y,0)))
caLL ERLA(J)

CALL ERLA(I)

IF (VeNE.O) CALL MERASE(V)
CALL ERLA(E)

CALL ERASE(X)

PLES=G

RETURN

END

IMTEGER FUNCTION VCCMP(H,K)
INTEGER HeKySyTaUysV W

S=H

T=K

IF (S.NE.O) GC TC
IF {(T<NE.O) GC TC
vCearr=0

RETURN

IF (TJ.NE.O) GC TO 4
GO TO 6

CALL ADV(U,5)
CALL ADV(V,T)
W=U-V

IF (W.EQ.0) GC TC
IF (W.GT.0) GG TCO
VveOMpP=-1

RETURN

vCamp=1

RETURN

END

Ul w

[0 38 aN]
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