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ALGORITHMS FOR POLYNOMIAL FACTORIZATION

David R. Musser

ABSTRACT

Algorithms for factoring polynomials with arbitrarily
large integer coefficients into their irreducible factors are described.
These algorithms are based on the use of mod p factorizations and
constructions based on Hensel's Lemma. The concept of an "abstract
algorithm'" is defined and used in the development of general algorithms
which are applicable in numerous polynomial domains, including
polynomials with either integer or finite field coefficients.
Included is a new generalization of Hensel's p-adic construction which
is applicable to multivariate factorization. For the case of univariate
polynomials over the integers, full specifications are given for
algorithms which have been implemented and tested using the SAC-1
System for Symbolic and Algebraic Calculation. Theoretical computing
times for the univariate algorithms are also derived and empirical

data obtained during tests of the algorithms are reported.




CHAPTER 1: PRELIMINARIES

1.1 Introduction

This thesis deals principally with computer algorithms for
the factorization of polynomials in several variables with integer
coefficients into polynomials which are irreducible over the integers.
For the univariate case we shall present full specifications of
algorithms for solving this problem which are based on the use of
mod p factorizations and constructions based on Hensel's Lemma as
suggested by Zassenhaus. These algorithms have been implemented
and tested using the SAC-1 System for Symbolic and Algebraic Calculation.
An analysis of the computing time of each of these algorithms is also
included. Our discussion of the theoretical basis of these algorithms
encompasses the multivariate case and also applies to other cases such
as factorization of polynomials in several variables with coefficients
from a finite field.

A theoretical solution to the factoring problem is provided
by Kronecker's algorithm [VDW49,Section 25]. For the case of
univariate polynomials with integer coefficients, the algorithm may
be stated as follows:

To factor a given polynomial C(x) of degree n, let k be
the greatest integer < n/2, choose k+l integers aO,...,ak, and let
Si be the set of all integral factors of C(ai), 0 <1i < k. Choose an
element bi from each Si and compute by interpolation the unique
polynomial A(x) of degree < k such that A(ai) =by, 0 <1<k
Attempt to divide A(x) into C(x). If it divides exactly a factorization

has been found and the method may be applied recursively to the



two factors. Otherwise, discard A(x) and try another choice of the
by. 1If all of the choices are exhausted in this way, then c(x) is
itself irreducible.

This method has been the basis for several computer algorithms
for polynomial factorization and works well enough when the degree
and coefficients of C are small. If the coefficients of C are large,
however, then considerable time may be required just to factor the
C(ai) into primes. And if the degree of C is large then the number
of possible choices of the b; may be enormous.

Although these obstacles are apparent to anyone who has
ever tried to use the method to factor a polynomial of any size by
hand, one might think that they would easily be overcome by the sheer
speed of modern computers. This is not the case, however, as experience
with the computer algorithms has shown. The reason is not difficult
to see. Because of the number of tentative factors which must be
considered, it is rather evident that the time required to perform
the method is an exponential function of the degree of C. Also, the
time required to factor an integer of length m (i.e. with m digits in
some base) by the best methods known is an exponential function of
m. Thus increases in either the degree or the length of the coefficients
of C cause exponential growth of the computing time and any given
speed of computation is easily overwhelmed.

There are a number of ways in which Kronecker's method can
be speeded up, some of which, involving mod p factorizations for

various small primes p, are discussed in [vDw49]. S. C. Johnson




suggests additional improvements in [JOH66]. However, none of these
changes relievesthe basic problem of exponential growth, and thus
alternative methods have been sought in the past few years.

The principal breakthroughs in this area have been
(1) the development of an efficient algorithm for mod p factorization
by Berlekamp [BER68, Chapter 6] and (2) the suggestion by Zassenhaus
[zAS69] that one could combine Berlekamp's algorithm and Hensel's
p-adic construction [VDW49, Section 76] to obtain a practical method
of factoring polynomials with integer coefficients.

Berlekamp's algorithm opened the way to the design of
algorithms based on mod p factorizations rather than on integer
factorization. Knuth [KNU69, Section 4.6.2] sketches an algorithm
based on the factorization of the given polynomial modulo several
different primes and the construction of tentative factors using the
Chinese Remainder Theorem. This method, viewed abstractly, has the
game basic structure as Kronecker's method. Although the problem of
factoring integers is replaced by that of factoring polynomials mod p,
which is efficiently accomplished by Berlekamp's algorithm, there
remains the problem of considering a huge number of tentative factors.
The mod p - Chinese Remainder Theorem approach has been highly
gsuccessful in a number of other areas, e.g. polynomial greatest
common divisor calculation and solution of systems of linear equationms,
but it does not appear to be practical for the factorization problem.

Zassenhaus showed, however, that under certain conditions a

construction based on '"Hensel's Lemma'" could be used to progress



from a mod p factorization to a corresponding factorization modulo
any power of p. Taking pj sufficiently large, we can determine from
consideration of all mod pj factorizations all true factorizations.
The number of mod pj factorizations is the same as the number of

mod p factorizationms.

In Chapter 2 we discuss in detail the theoretical background
for polynomial factorization, including several "abstract" algorithms
based on Hensel's Lemma. We have in many cases used abstract algorithms
instead of theorems as our basic tool for the presentation of general
theory, and this has permitted a smoother transition from theory to
practical application.

Chapter 2 concludes with a discussion of a new ''generalized
Hensel algorithm'" which is applicable to multivariate factorization
and promises to yield algorithms which are far superior to Kronecker's
algorithm.

Chapter 3 presents detalled specifications of algorithms
for the case of univariate polynomials over the integers. The algorithms
which are described have been implemented in the SAC-1 System for
Symbolic and Algebraic Calculation, [COL71lal, a system for performing
operations on multivariate polynomials and ratiomal functioms with
arbitrarily large coefficients. It is programmed almost entirely in
ASA "Standard" Fortran and is thus extremely accessible and portable.
The SAC~1 #ystem's capabilities are discussed briefly in the remaining
gsections of this chapter. It should be noted here that the system

makes use of mathematically sophisticated algorithms which are




generally far more efficient than the "obvious" algorithms, and the
availability of these highly efficient algorithms for basic operations
has simplified the task of implementing factorization algorithms
tremendously.

Within Chapter 3 we have attempted to describe the factoring
algorithms in an informal language which is largely independent of
the idiosyncrasies of Fortran or the SAC-1 system. The descriptions
are, though informal, hopefully precise and detailed enough that they
can be programmed in other lanpuages with little difficulty. For a
completely precise statement of the algorithms, we refer the reader
to the Fortran program listings in the appendix.

For each of the algorithms described in Chapter 3, we have
included an analysis of its computing time. The methods used in
these analyses, which are outlined in Section 1.4, permit computing
time bounds to be expressed independently of the computer on which the
algorithms are implemented. The comparison of such bounds for several
alternative algorithms for the same operation often proves the
superiority of one of the algorithms, making 1t unnecessary to
implement and empirically test them all. 1In a number of cases in
Chapter 3 we point out how such comparisons have determined our choice
of a particular algorithm to implement.

We conclude in Section 3.6 with the results of some
empirical tests which demonstrate the practicality of application of
the univariate algorithms to polynomials with large degree and large

coefficients.



1.2 Polynomials

We shall use, for the most part, standard terminology
and notation for polynomials. We briefly summarize these here and
discuss the SAC-1 representation of, and operations on polynomials.

A polynomial

- n-1
A(x) = anx“+an_1x +...+a xta,

1

with an%O is said to have degree n, leading coefficient a,, and

trailing coefficient (or constant term) ao; we write

deg A = n, ldcf A = as tlcef A = ag-
By convention, we define

deg 0 = ==, 1dcf 0 = 0, tlef O = 0.
We say A(x) 1s a monic polynomial if ldcf A = 1.

The coefficients aj belong in general to some ring &; we

say that A is a polynomial (in x) over ®. QR is permitted to be a
polynomial ring in other variables, say & = R[{v,w]. In this case
A is actually a polynomial in v, w and x although we have explicitly

shown only the variable x. We may write

a = ak(w) = Z ajka

]

where the ajk are members of the polynomial ring R[v]:

a., =a.  {(v) = z a vi

3 ijk

jk ik { 3

where the aijk belong to the ring R. Thus

A(x) = A(v,w,x) = 2 a, viwjxk, (1)
1,50 3%




but it is more useful, in both theory and practical computation,

to consider A to be a polynomial in one variable x (called the

main variable) whose coefficients are polynomials in w whose
coefficients are polynomials in v, over R. The theoretical value of
this has long been understood and the practical value in computation
has been demonstrated by the SAC-1 Polynomial System [COL68b],

which uses a recursive canonical representation of multivariate
polynomials by lists and recursive algorithms for many operations.

We define the numerical coefficients of a univariate

polynomial to be just its coefficients and of a multivariate
polynomial

AGK), ooy %) = § a3 (xp,. .0 x )xt

recursively to be the numerical coefficients of its coefficients
ai(xl,...,xn). For example, the numerical coefficients of A(v,w,x)
in (1) are the g4k

The SAC-1 Polynomial System provides operations on
polynomials in arbitrarily many variables, whose numerical coefficients
are integers. The integer coefficients may be arbitrarily large
since operations on them are performed using the SAC-1 infinite
precision arithmetic system [COL68a]. The polynomial operations
provided include addition, subtraction, multiplication, division,
substitution, differentiation and g.c.d. calculation. Similar
capabilities are provided for multivariate polynomials with numerical

coefficients from a finite field GF(p) by the SAC-1 Modular Arithmetic



System [COL69al.

We thus assume the ability to perform these operations
without discussion of the details of the algorithms used. In Section
1.4 we shall make some assumptions about the efficiency with which
some of these operations may be performed; these assumptions have

been shown elsewhere to be true of the SAC~1 algorithms.




1.3 Algorithms

The concept of "algorithm'" and the notational conventions
for expressing algorithms which we shall use are very similar to
those established by Knuth in [KNU68}. The main difference is that
our definition of algorithm encompasses non-effective computational

methods, allowing what we shall call abstract algorithms to play

the primary role in the presentation of the theoretical background
to practical factoring methods. An example of such an abstract
algorithm is:

Algorithm D (Division of polynomials over a ring). Let
R be a commutative ring with identity. Given polynomials A, B e KR[x]
with ldef B a unit of ®, this algorithm computes polynomials Q,
R ¢ R[x] such that

A = BQ+R and deg R < deg B.
(1) Set Q <« 0 and R « A.
(2) (Now A = BQ+R.) If deg R < deg B, exit.
(3) Set n < deg R-deg B, T <« (ldef R)(ldcf B) 1x%, Q <« Q+T,
R « R-TB (this reduces the degree of R), and go to (2).

This simple example illustrates most of the features of
the concept and style of the algorithms appearing in Chapter 2.
The algorithm begins with the definition of the domain or domains in
which the inputs and outputs lie. If one or more of these domains
is, as in the case of Algorithm D, an abstract set or algebraic

system such as a ring or integral domain, then we shall call the
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algorithm itself an abstract algorithm. Accompanying the inputs is

some list of assertions involving them; we refer to these as the

input assumptions. Similarly, the output generally has accompanying

output assertions.

Following these definitions and assertions about the inputs
and outputs is a series of numbered steps. Each step consists of
one or more imperative statements, some of which are conditional.
The language used is mainly that of conventional mathematics, but
there are two important exceptions. The first is the use of the

replacement operation, denoted by '<«'". For example step (1) means

replace the current value of Q by O and the current value of R by
that of A. Here Q and R were previously undefined, so this step

gives them initial values. In step (3), however, the values of Q
and R are changed by the replacement operations "Q <« Q+T'" and

"R « R-TB".

Thus each variable which appears in an algorithm generally
takes on a sequence of values. Later in this section we shall give
a precise formal definition of algorithm in which the replacement
operation is recast in terms of the conventional mathematical
concept of a sequence.

Ordinarily an algorithm is executed in sequential order of
its steps; however, this may be altered by the use of a "go to"
statement, as in step (3). This is the second iﬁportant deviation
from the language of conventional mathematics. Of course, when the

execution is directed by means of a "go to'' statement back to a
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previous step, then a sequence of steps may be executed repeatedly
until some condition is satisfied causing transfer to another step
or causing termination of the algorithm (which will be indicated by
the imperative "exit"). The fact that the computation does terminate
in a finite number of steps for all inputs must be proved. In the
case of Algorithm D a proof is indicated in the parenthetical
assertion in step (3): by the choice of the term T of the quotient
polynomial Q, both R and TB have the same leading coefficient, hence
the new value of R, R1 = R~-TB, is of smaller degree than that of R,
and thus the condition tested in step (2) must eventually be
satisfied.

We shall require this finiteness property (finiteness of
the number of steps executed) as part of our definition of algorithms.

We shall not, however, require effectiveness; that is, we shall not

require a proof that each individual step can be done in a finite
amount of time by some (real or theoretical) computing machine.

For abstract algorithms this would require further assumptions about
the existence of effective algorithms for basic operations in the
abstract domain of the inputs. The study of such questions has been
undertaken with interesting results elswhere (see, for example,
[RAB60]) but lies outside the scope of our objective in Chapter 2:
the presentation, via abstract algorithms, of the common theory
behind a number of algorithms. 1In Chapter 3, in contrast, we
replace the abstract systems with particular systems, such as the

ring of integers, for which effective algorithms for the basic



operations are known. In the "concrete" algorithms which are
thereby obtained, it is obvious that the property of effectiveness

holds.

12

If we do not require effectiveness in our abstract algorithms,

the reader may well ask, by what criteria do we construct them?
For we could in some steps of our algorithms merely cite the existence
of some quantity without any indication of a method of constructing
the quantity. While this has been done in one case in Chapter 2
(Algorithm 2.2F, a factorization algorithm for a Euclidean ring),
all of the other algorithms there have been written with the purpose
of generalizing methods which are known not just to be effective in
particular domains, but to be 'very effective', or "efficient"
methods. This is meant in the sense that each step of the abstract
algorithm is of sufficient simplicity that there are known to be
efficient algorithms for carrying it out in at least one particular
domain. In Algorithm D, for example, each step involves only simple
arithmetic operations, for which efficient algorithms are known,
when R is the ring of integers, or the rational number field, or a
finite field. (The vague idea of "efficiency" is rendered more
precise in Section 1.4.) That most of the abstract algorithms
presented do satisfy this purpose is, it is hoped, adequately
demonstrated in Chapter 3.

Besides the proof of termination, which is necessary to show

that we do indeed have an algorithm, we are also interested in
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proving the validity of the algorithm: that when applied to inputs

which satisfy the input assumptions, the algorithm produces outputs
which satisfy the output assertions. The method of proof used for
most of the algorithms in Chapter 2 is based on the method of
"inductive assertions' described in [FLO67] and [KNU68], Section 1.2.1.
A formal description of the method will be given later in this section;
but first we shall discuss it informally in terms of Algorithm D.
The basic idea of the method is to associate with some or all of
the steps or substeps of the algorithm assertions about the current
state of the computation, and to prove that each assertion is true
each time control reaches the corresponding step, under the assumption
that the previously encountered assertions are true. If this can
be done in such a way that the assertions associated with the first
step are the input assumptions and those associated with the terminal
step(s) are the output assertions, then the algorithm is necessarily
valid, by induction on the number of steps performed.

In applying the method we have usually not attempted to
list all of the assertions which actually hold at each step; in
general we have tried to maintain about the same degree of explicitness
as is usual in a conventional proof of a theorem. In Algorithm D,
we have included only one assertion, in step (2), for the purpose
of proving validity (the assertion in step (3) was included for the
sake of proving termination, as discussed previously). It is trivial
that this assertion, A = BQ+R, is true the first time step (2) is

executed. Assuming it is true at a given execution of step (2), it



may be shown to be true at the next execution as follows: let
Q; = Q+T and R = R-TB; then BQ1+R1 = B(Q+T)+R~TB = BQ+R = A;
since Q is set to Q; and R to R; in step (3), the assertion
A = BQ+R still holds when step (2) is reached again.
The assertions associated with the steps of an algorithm,

along with the input and output assertions, comprise an interpretation

of the algorithm.

In order to have a rigorous basis for proofs of the
validity of algorithms we shall now give formal definitions of
algorithms and of interpretations of algorithms.

The following definitions are from [KNU68], pp. 7-8.

a. A computational method is a quadruple (S,I1,Q,f) in which:

S is a set (called the state set);
I < S (the input set);

2 € S (the output set);:

f is a function from S into S (the computational rule)

such that f(q) = q for all q e Q.

b. Each input x in I defines a computational sequence,

X yXa X as follows:

0’ 1’ 29""
Xy = X and Xpp] = f(xk) for k > 0.

c. The computational sequence is said to terminate in k

steps if k is the smallest integer for which X, € 2, and

in this case is said to produce output X, from x. (Note

that if X, € Q, so is x4, since %44 = ¥ in such a case.)

14
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d. Some computational sequences may never terminate;

an algorithm is a computational method which terminates

in finitely many steps for all x in I.

Figure 1 shows Algorithm D rewritten to fit the above
definitions. Knuth goes on to modify these definitions so as to
include the property of effectiveness (essentially in terms of
Markov algorithms), but the definitions as given here fit our needs
precisely. Knuth does not give a formal discussion of validity
proofs, but, as we shall now show, this can easily be done in the
framework of the above definitions.

The following notation will be useful for this purpose:

f(o)(x) = x and f(k+l)(x) = f(f(k)(x)) for all k = 0;
s(k) = {yes:y-= f(k)(x) for some x € I};
s ={y :ye skK) for some k > 0}.
S(k) is the set of all states reachable from an input in k steps and
S* is the set of all states reachable in some finite number of steps.

We formally define an interpretation of a computational

method (S,I1,%,f) to be a predicate defined on S*. Such an interpretation
P is gaid to be valid if

1) P(x) is true for all x ¢ I, and

2) P(x) + P(f(x)) for all x e S”.

Theorem V. If P is a valid interpretation of a computational
method (S,I,0,f) then P(x) is true for all x ¢ S .

Proof: Let x € S°. Then for some k > 0 and some X € I,

X = f(k)(xo). If k = 0, then x = Xy» hence x € I, hence P(x) is true.



Let k > 0. Then x = f(f(k-l)(xo)) = f(x'") where
x' = f(k—l)(xo). We may assume by induction on k that P(x') is
true. From 2) above we have P(x') - P(f(x')), hence P(x) is true.

An interpretation of the division algorithm is given in
Figure 2. An informal proof of the validity of this interpretation
has already been given.

A termination function for a computational method is a
function ¢ from S* into a well-ordered set (W,®8) such that if
x € $7-0 then @(f(x)) © O(x).

Theorem T. If a computational method has a termination
function, it is an algorithm.

Proof: Let § be a termination function for (S,I,Q,f).
Given any x € I we must show that x) = f(k)(x) e  for sufficiently
large k.

Suppose, on the contrary, that X, € s”-0 for all k > 0.
Then ¢(x0),¢(x1),... is an infinite decreasing sequence in W,
contradicting the well~ordering property of W.

A termination function for the division algorithm is shown
in Figure 3. We shall omit proof of termination of most of the
algorithms presented in Chapter 2 since it is usually obvious. 1In
Chapter 3, where we discuss special cases of the abstract algorithms
of Chapter 2, we obtain an a fortiori proof of termination of each

algorithm by obtaining a bound on the computing time of the algorithm.




Algorithm:

Figure 1. Formal Version of Division Algorithm

(5,1,0,f)
T = {(1,A,B) : A,B ¢R[x], ldcf B a unit} where R is a
commutative ring with identity
Q= {(2.1,A,B,Q,R) : A,B,Q,ReR[x]}
S=1UVU{(s,A,B,Q,R) : s =2 or 3, A,B,Q,ReR[x]}

£(1,A,B) = (2,A,B,Q,A);

f(2,A,B,Q,R) = (2.1,A,B,Q,R) if deg R < deg B,
(3,A,B,Q,R) otherwise;

£(2.1,A,8,Q,R) = (2.1,A,B,Q,R);

£(3,A,B,Q,R) = (2,A,8,0+T,R-TB)

(1dcf R/1dcf B)xdes R-deg B,

L1}

where T

17



Figure 2. Interpretation of Division Algorithm
P(1,A,B) = (1,A,B) ¢ 1

P(2,A,B,Q,R)

[}

A,B € R[x] A 1ldcf B is a unit

A A = BQ+R

i

P(2.1,A,B,Q,R) = P(2,A,B,Q,R) A deg R < deg B

P(3,A,B,Q,R) = P(2,A,B,Q,R)
Figure 3. Termination Function for Division Algorithm
{—1 if A =0,

deg A otherwise;

-1} x {1,2,3};

Define 8§(A)

W

]

{integers >

well-ordering = lexicographical ordering.
Define ¢#:S° + W by

@(1,A,B) = (S8A,3),

#(2,A,B,Q,R) = (8R,2),

#(2.1,A,B,Q,R) = (8R,1),

#(3,A,B,Q,R) = (6R,1).

18
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1.4 Computing time analyses

The practical value of an algorithm is greatly enhanced if
we have some quantitative measure of its "efficiency'. Although this
could be taken to include both computing time and memory requirements,
we shall concentrate in this thesis entirely on analysis of the
computing time of algorithms.

Methods of such analysis have been developed during the
past few years, principally by Knuth [KNU68] and (particularly for
algebraic algorithms) Collins ([COL69b] and [COL71]).

These methods permit computing time bounds to be expressed
as functions only of the inputs to the algorithm; i.e. they are
independent of the computer on which the algorithm is implemented.

The basic method for this purpose has been the use of 0-
notation. Recently Collins has introduced the idea of dominance
which is generally more convenient than O-notation and which we
shall, therefore, employ in this thesis.

The dominance relation is defined as follows ([COL71]).

Let f and g be real-valued functions defined on some set S. We
write f 4 g in case there is a positive real number c¢ such that

f(x) 2 c-g(x) for all x ¢ S and we say that f is dominated by g

(or that g is a bound for f). If f4 g and g % f we write f v g
and say that f and g are codominant. Codominance is clearly an
equivalence relation. Note that this definition encompasses functions

of several variables since the elements of S may be n-tuples.
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The following theorem lists some properties of dominance
relations which are trivial consequences of the definitions.

Theorem D. Let f,g,fl,fz,gl,gz be non-negative valued
on S. Then:

a. 04 f.

b. If ¢ is a positive constant then cf ™~ f.

c. If flj_ gy and £ < gy then f

92 +f2 A gl+g2 and

1
f17£,2 8,08y

d. If flﬁ g and f2 4 g then f1+f2 A g,

e. max(f,g) ~ f+g.

f. If 14 f and 1 4 g then f+g % f-g.

g. If 14 f and ¢ is a positive constant then f v f+c

h. If S S

]

1X...xSn and £ 4 g then

f(a .sx ) 4 g(a_,x_,...,x ) for any aj e 8q-
n n

1% 1’2

In order to analyze the computing time of a typical algebraic
algorithm it is necessary to have bounds for the computing times of
the basic arithmetic and algebraic operations which the algorithm
employs. For the algorithms which we shall analyze it will suffice
to have bounds for operations on integers, polynomials with integer
coefficients and polynomials with coefficients from a finite field
GF(p). We shall now state such bounds as "axioms" on which later
theory shall be based, for integer and integer polynomial operations.

(Bounds for operations on polynomials over GF(p) will be cited in

the references when necessary, in Chapter 3).




We shall assume that integers are represented in radix
notation with some arbitrary integer base B > 1. By the length
of an integer n we then mean the number of B~digits in its
representation. We shall use L(n) consistently to denote the

length of n, with respect to some implicit base B. We have

L(0) 1
l}og8|nl}+l, n # 0.

and thus the length function has the following logarithmic properties

L(n)

for non-zero integers m and n:

L(mn) ~ L{m)+L{(n)

L(m?) ~ nL(m) (for |m| > 1 and n > 0). (1)
In fact we have

L(n) ~ 1n|n]
provided we take S = {n ¢ Z: |n| > 1}, and thus we could just use
the natural logarithm function by making proper allowances for
trivial cases. Since, however, we have the logarithmic dominance
properties (1) for L and we shall be dealing only in terms of
dominance relations anyway, it seems most convenient and natural
to use L rather than Iln.

The above assumptions are true of the representation of
integers in the SAC~1 Revised Integer Arithmetic System, where an
integer i1s represented as a list of its B-digits. (B 1s generally
chosen to be near the largest machine integer for the particular

machine on which the system is implemented.)
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Axiom Cy. Let m and n be nonzero integers.
a. The time to compute mtn or m-n is ~max(L(m),L(n))~
L(m)+L(n).
b. The time to compute men is ~“L(m)L(n).
c. Let |m| z‘ln} > 0. The time to compute a quotient q
and remainder r such that m = ng+r and 0 < r §,|nl is
n L(n)L(q) ~ L(n)(L(m)-L(n)+1) £ L(n)L(m).

Such statements should be taken as abbreviations for more
precise statements; e.g. b abbreviates the assumption that some
computer C and some algorithm A are being used, such that if t(m,n)
is the amount of time required to execute A on C with inputs m and
n, then the function t satisfies t(m,n) v L(m)L(n).

Axiom C1 can in fact easily be verified for the "classical
algorithms" for integer arithmetic, where these algorithms are
implemented on any computer on which basic operations such as arithmetic
on machine integers, replacement, transfer of control, etc.,
require a bounded amount of time. In particular, the SAC-1 algorithms,
executed on any known computer for which a SAC~1 implementation
exists, satisfy the axiom.

For the expression of bounds on the time for arithmetic
operations on polynomials it 18 convenient to define two norms for
polynomials, as follows:

a. Let ¢ be a complex number. Define

!cll = Iclw = |¢| (modulus of c¢).




m 3
b. Let A(x) = Z aix:L be a polynomial with coefficients
i=0

a; which are complex numbers or polynomials in other

variables with complex numerical coefficients. Define
m

lal, = 1 lal
1 i=0 117
IAIOo = max ]a.lw.
O0<i<m t

Thus, if A 1s a polynomial in several variables, lA[l is the sum of the
moduli of the numerical coefficients of A and |Aloo the maximum of

these values. Both and | | are norms in the usual sense, i.e.

1,
they have the properties

a. |A| > 0 unless A = 0;

b Jeal = le| |al;

c. |A+B| < [a]+|B].

Also, ‘ABll __<_,]A|1|B|1 but this does not hold for | |_.

Axiom CZ' Let A(x) and B(x) be non-zero univariate
polynomials with integer coefficients. Let m = deg A, n = deg B,
a=|al;, b= |B,.

a. The time to compute A+B or A-B is

4 max(m+l,n+1) max(L(a),L(b)).
b. The time to compute A+B 1is
A (m+l) (n+1) -L(a)L(b).
c. Assuming B divides A and A/B has integer coefficients,

the time to compute A/B is

< (n+1) (m-n+1)L(b)L( lA/BIl).

23
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This axiom could be proved as a theorem, assuming the use
of the classical algorithms, reasonable representations of polynomials,
and Axiom Cl' Such proofs are outlined in [COL69b], and the axiom is
valid for the SAC-1 Polynomial System.

Since

Al i!All < (n+1) |Ala,
where n = deg A, we have, by assuming that L(n+l) is bounded,

L(]A| ) ‘L(IAIl)
Of course, the assumption that L(n+l) is bounded implies n is bounded,
but we would not want to use the latter fact; e.g. we would write

n2L(n) ~ n? (1)
but not

nZL(n) N1 (2)
since the bounding constants implied in (1) would probably be small,
but that in (2) might be very large. We could thus prove

Theorem C3. Let A(x) and B(x) be univariate polynomials
with integer coefficients, m = deg A, n = deg B, a = |A|m, b = lB|w,
and assume that L(m) ~ 1, L(n) v 1 (i.e. that L(m) and L(n) are
bounded). Then statements a,b,c, of Axiom C2 are again true.

The reader may have noticed that in Theorem C2 we stated
the bound on the time to compute A/B as a function of one of the

inputs, B, and the .output C = A/B. 1In Section 3.4 we shall show
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that |C 1 _<__(p+1)2m"n+1 A 1 where p = KZm—n)/%J. Hence the time
to compute A/B is
i(n+l)(m—n+1)L(b)L((P+1)2m—n+1a)

.i(n+l)(m*n+l)L(b)[m+L(a)],
assuming that L(p) ~v 1. This gives the computing time in terms of
the inputs only, but this bound is not very useful since we shall
usually have lCIl 5_|All, whereas the bound on ICIl used here can
be much larger than |A|1. In cases such as this it seems most
reasonable to give the computing time in terms of the output as well
as the input.

We shall also have need of the computing time for trial
division of polynomials A and B over the integers, by which we mean
the determination of whether B divides A exactly, and, if so,
determining the quotient. As an example of the analysis of a
polynomial arithmetic algorithm we shall now describe and analyze
a trial division algorithm.

The algorithm itself is based on Algorithm 1.3D:

Algorithm T. (Trial division) The inputs are polynomials
A and B over the integers, with B # 0. If there exists a polynomial
Q over the integers such that A = BQ then the output is the value
d = "true" and Q (Q is uniquely determined); otherwise the value
d = "false" is output.

(1) Set R« A, Q+«0, i« 0, d =« "false".

(2) (Now A = BQ+R) If R = 0, set d <« "true" and exit.



(3) If deg R < deg B, exit.
(4) If ldcf B does not divide ldcf R exactly, extt.
(5) Set n « deg R-deg B, T « (ldcf R/1ldef B)x",

Q « @+T, R « R-TB, i « i+l and go to (2).

The variable i need not actually be computed; it is included
in order to simplify the assertions needed for the computing time
analysis. These assertions are inductive assertions like those used
for proving validity, but instead of including them in the statement
of the algorithm, we shall generally state them separately afterwards.

Let a = lA[l, b = IBI The key assertion for the

1°
computing time analysis is that, whenever step (2) is executed,
[Rllf_a(b+l)i. G)
This verification of this assertion is easy and is left to the reader.
Theorem T. Let a = lAIl, b = ]Bll, m = deg A, n = deg B.
Then the computing time for Algorithm T is
4 (a+1) (m-n+1)L(a) L(b)+(n+1) (m-n+1) 2L (b) 2.
Proof: The time for dividing ldcf R by 1ldcf B is
L(1ldef R)L(1def B) 4 L(|R|,)L(b). The addition of T to Q is trivial
since no coefficient addition is required. Since T has only one
term and [Tll 5‘|R|1’ the time to compute T*B is {(n+l)L(|R|1)L(b).
Since }TBll §_|T[1|B|l _5_|Rl1|B|l the time to subtract TB from R is

j(n+l}[L(|R|l)+L(b)]. Hence (n+1)L(|R|l)L(b) dominates the time for

all of these operations, and, using (3), this time is
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4 (n+1) [L(a)+iL(b+1) IL(b)

4 (n+1)L(a)L(b)+(n+1)iL(b)?,
since L(b+l) ~ L(b). The maximum value which 1 can have for these
operations is m-n, and the maximum number of executions of steps (4)
and (5) is (m-n+l). Hence the total time has the bound stated in
the theorem, and of course this bounds the time for steps (1), (2)
and (3).

The SAC-1 Algorithm PQ is essentially Algorithm T

(generalized for multivariate polynomials), and Theorem T is true

of its computing time.



1.5 Multisets and lists

In much of the discussion in succeeding sections it will be
very convenient to use the closely related concepts of "multisets"
and "'lists". Both concepts are very simple and fundamental, but
have been introduced as mathematical concepts only recently, so
we present here a brief discussion of their properties and associated
notation. Knuth introduced the term multiset in [KNU69], Exercise
4.6.3-19. A multiset is like a set, but may contain identical
elements repeated a finite number of times. If A and B are multisets
we define new multisets AWB, AUB, AN B, A~ B as follows:
an element x occurring exactly a times in A and b times in B occurs
exactly

a+b times in AW B,

max(a,b) times in A U B,

min(a,b) times in A A B,

max(a-b,0) times in A-B.
A "set" is a multiset which contains no element more than once;
if A and B are sets, so are AV B, AN B and A-B, and the definitions
given here agree with the usual definitions of union, intersection

and difference.

We write A< B and say A is a multisubset of B iff AN B = A.

To any multiset A there corresponds a unique set, denoted
by set (A), defined by: x occurs once in set (A) iff x occurs at

least once in A.
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The concept of a multiset could be formalized (e.g. as a
mapping from a set into the set of non-negative integers), but the
intuitive definitions given above will suffice for our purposes,
since we shall only be dealing with finite multisets.

If A is a finite multiset with elements from a set on
which a commutive addition operation is defined, then by either of

LA or Z a
achA

we shall mean a sum in which an element a is included as term exactly
as often as it occurs in A. For example, if A = {1,2,2,3,5,5,5} then

) a = LA = 1+2+2+3+5+545,
acA

We define I = 0 where @ denotes the empty multiset. Similarly,

assuming commutative multiplication, we may define 1 a and IA,
acA

with the convention 11§ = 1.

If A is a finite multiset with elements from a set on which
a function f is defined, then we define f(A) to be the multiset
obtained by applying f to each occurrence of an element in A. More
precisely,

£(a) = ¥ {f(a)}.

ach
If A is the multiset in the above example and f(a) = a2, then
f£(A) = {1,4,4,9,25,25,25}. As another example, let
A = {x24+1,%x~1,%x3-3%x+7,x2+1} and f = deg, the degree function: then
deg(a) = {2,1,3,2},

deg(NA) = Ideg(A) = £{2,1,3,2} = 2+1+3+2 = 8.



We define a list simply to be a finite sequence. Lists
are thus closely related to multisets; we may think of a list
A= (al,...,an) as representing the multiset {al,az,...,an};
of course, the list (ao(l)""’ac(n)) also represents the same
multiset, where ¢ is any permutation of 1,2,...,n. The concept of
a list is very useful in the design of computer algorithms, but
frequently we construct a list without really caring about the order
in which elements occur in the list, and in these cases it is useful
to replace the concept of list by that of a (finite) multiset.

We shall use the notations LA, TIA and f(A) when A is a
list as well as a multiset, with the obvious meanings. The following
notation applies only to lists. Let A = (al,...,an); then

first (A) = aj, second (A) = a,, etc.,

last (A)

an,

tail (A) (az, LRI pan) 9
prefix (a,A) = (a,al,...,an),
inverse (A) = (an, o0 931) 1]

length (A) = n.

If A= (), the empty list, we define prefix (a,A) = (a), inverse (A) = ( )

length (A) = 0. This notaticn is essentially the same as that used

in the SAC-1 List Processing System [COL67].

30

’




31

1.6 Generation of sum index sets

In some of the factoring algorithms considered in Chapters
2 and 3 a subalgorithm is required for solving the following problem:
given positive integers Dyshyyeee sl (not necessarily distinct) and
an integer n, for what sets J< {1,...,r} is ZjeJ nj = n? In the
factoring algorithms, the n, are the degrees of the irreducible
factors of a polynomiq} and the problem is to produce all factors
of a given degree n. In this section we present a simple, efficient

solution to the general problem of determining the subsets J, which

we shall refer to as sum index sets.

We first consider the solution to a simpler problem: 1is
there any set J< {1,...,r} such that ZjeJ nj = n? This problem

can be attacked by constructing the sumset of Ny,Ng,.a,yNy, which

r

we define to be the set of all sums ZjeJ nj such that Je {1,...,r};

we then have merely to determine whether n is a member of the

sumset of n_,...,nn .
1’ r

The following algorithm computes the sumset S of nl,...,nr.

(1) Set s(0) . {0}. (S(O) is the sumset of the empty set)

(2) For j=1,...,r: Set s(i) « G-y (S(j—l)+{n b

h|
(S(J) is the sumset of nl,nz,...,nj).

(3) set s <« s{T),

In step (2), S(j—1)+{nj} is the set {a+njia € S(j—l)}.

The assertion in step (2) is proved as follows:



ac S(j&?ﬁ?a e sGI-1) oy a—nj € S(j—l)

& a £ sumset of nl""’nj-l

or a—nj € sumset of nl""’nj—l (by induction)

&> a € sumset of nl,...,nj.

It will be shown in Chapter 3 that this algorithm may
be implemented in a very simple and efficient manner if a binary
representation of a set of nonegative integers is used.

If only the final result S is of interest then the above
algorithm could be simplified by removing the superscripts from S
and deleting step (3). However, for the purpose of solving the
original problem of finding all sum index sets for an integer n,
we shall make use of all of the sumsets S(O),...,S(r). The
algorithm is most easily formulated using recursion.

Algorithm G(j,n,J) (Generation of sum index sets). Let

nl’“Z""°nr be fixed positive integers and S(O),S(l),...,s(r) be
sets such that S(i) is the sumset of ny,ny,...,ny for 0<1izxr,
(S(O) = {0}.) Given a nonnegative integer j, an integer n ¢ S(j),
and a set J, this algorithm outputs all sets J'U J such that
J'e {1,...,j} and ZiEJ' ny = n. (Thus, if ne S(r), performing
G(r,n,P) causes all sets Je= {1,...,r} such that Ljgg Dy =1 to
be output).

(1) If n = 0, output J and exit.

(2) 1f n-ny € s(j“l), perform G(j-l,n—nj,{j} v .

(3) Ifnce S(j_l), perform G(j-1,n,J). Exit.
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Note: One way to interpret the imperative "output J" is

"set @ « @ U {J}" where Q is a set which is initially set to §
outside of the algorithm, so that the output of the algorithm is
a set Q of sum index sets.

Validity proof: If n = 0, the algorithm outputs J and

stops; this is correct since J = § U J and @ is the only set J'

such that J'e {1,...,j} and ZieJ'

ne S(j) implies n > 0 and j > O.

If n-—nj € S(j'l), then the algorithm is recursively
performed with inputs j—l,n—nj,{j}  J; by induction we may assume
that this causes all sets J'U {j} U J such that J'< {1,...,j-1}
and zieJ' n, = n—nj to be output. If n-ny ¢ S(j*l), there are no
such sets: in this case step (2) correctly does nothing. Similarly,

(3-1)

if ne S , then by induction step (3) causes all sets J'U J

such that J'e {1,...,j-1} and & ¢ m; = n to be output; otherwise,

ieJ
nothing is output. The combined output of steps (2) and (3) is
thus the output claimed for the algorithm.

A concrete realization of this algorithm will be considered

in Section 3.3.
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CHAPTER 2: ABSTRACT FACTORING ALGORITHMS

2.1 Unique factorization domains

This chapter attempts to provide a general theoretical
basis for polynomial factorization in numerous domains, primarily

through the presentation of abstract algorithms. In these algorithms,

as explained in Section 1.3, the domain containing the inputs or
outputs may be an abstract algebraic system, such as a ring, integral
domain, or field. We shall assume the reader has an acquaintance
with the basic definitions and theorems about such systems, as given
in, for example, [VDW49], or [GOL70]. However, many of the definitions
and theorems relating most closely to factorization will be reviewed
in this and the two following sections.

We shall begin with some basic definitions about division.
Let R be a commutative ring with identity and let a,b € R. We say
that b dlvides a and write b\a if there exists ¢ in R such that a = bc.
If c is unique, we also denote it by a/b. If b # 0 and there exists

¢ # 0 such that bc = 0, then b is called a zero divisor. If a = bc = bc',

then b(c-c¢') = 0; hence, if b # 0 and b is not a zero divisor then
c-c' = 0, i.e. ¢ is uniquely determined and we can denote it by a/b.

A unit of R is an element which has a multiplicative inverse;
equivalently, u is a unit in case u]l.

An integral domain is a commutative ring with identity which

contains no zero divisors.

Let D be an integral domain and let a be a nonzero, nonunit




element of D. A proper factorization of a is an equation a = bc where

neither b nor ¢ is a unit; b and ¢ are called proper factors of a.

We call a reducible if it has a proper factorization, irreducible

otherwise. We say that a has a unique factorization into irreducible

elements (also called a complete factorization) if there exist

irreducible elements p,,Ps;...,pP,. in D such that a = p,p,...p..; and
1252 r 1¥2 r

if a = qlqz...qs is another factorization of a into irreducible

elements, then we have r = s, and after a rearrangement, we have

Py = ulql,...,p = uq., where Uysee.,u. are units. By convention,

r

we do not consider units to be irreducible elements.

Finally, then, we define D to be a unique factorization

domain (UFD) if it is an integral domain and if every nonzero, nonunit
element of D has a unique factorization into irreducible elements.

The integral domain Z of integers is a UFD (Fundamental
Theorem of Arithmetic). Any field F is a UFD in which every nonzero
element is a unit and there are no irreducible elements. According
to a theorem of Gauss, the polynomial domain D[xl,...,xn] is a UFD
whenever D is. Thus, for example, Z[xl,...,xn] and F[xl,...,xn] are
UFDs. The proofs of these statements will be reviewed in the next
two sections. We continue this section with the definition of more
terminology that will be useful in dealing with UFDs.

In an integral domain D two elements a and b such that
a = ub for some unit u are called associates. The relation "a is an
associate of b" is an equivalence relation, which we will symbolize

by a v b. Let us single out one element from each equivalence class
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and call the resulting set of representatives an ample set D, for D.
Thus any nonzero element of D can be uniquely expressed as a = ua,

with u a unit of D and a, in Do’

o
The units of D[x] are just those of D. It follows that an
ample set for D[x] is given by the set of all polynomials with leading
coefficient in D.
In D = Z, the units are +1 and -1, and the equivalence

classes are {0} and {-n,n}, n=1,2,....

A multiplicative set S is a subset of a ring such that 1

is in S and ab is in S wherever a and b are. We will generally want
to choose an ample set for an integral domain in such a way that it is
multiplicative. The nonnegative integers are a multiplicative ample
set for Z; 0 and the monic polynomials form a multiplicative ample
set for F[x], F a field. A unique factorization domain always has
a multiplicative ample set, as will be shown below.

If S is any subset of a ring R, we shall call any polynomial

in R{x] with leading coefficient in S an S polynomial. If S is

multiplicative and contains no zero divisors, then the same is true of
the set of all S polynomials in R[x]. In particular, if D, is a
multiplicative ample ‘set for an integral domain D, then the set of all
D, polynomials is a multiplicative ample set for Dix].

In an integral domain D an element g is called a greatest

common divisor (gcd) of two elements a and b if it divides both a and

b and if any other common divisor of a and b also divides g. Similarly,

m is called a least common multiple (lcm) of a and b if it is a




multiple of a and b and any other common multiple of a and b is also
a multiple of m. Any two greatest common divisors of a and b are
associates, and similarly for lem's. If D, is an ample set for D,
then we can define the gcd of a and b to be the one contained in Dg.
We write this gcd as ged(a,b) and we similarly define lcm(a,b).

Note that g is a gcd of a and 0 iff g is an associate of
a, and 0 is the unique gcd of 0 and O.

Two elements a and b are relatively prime if any gcd of a

and b is a unit. If 1 is in DO then this means gcd(a,b) = 1.

Now let D be a unique factorization domain. An irreducible
element p of D generates a prime ideal (p) (i.e. ab & (p) implies
ae (p) or b e (p)). Hence in a UFD an irreducible element will also

be called a prime element, or simply a prime.

Let P be the set of all primes in D. Choose one prime out
of each equivalence class of associates belonging to such a prime and

call the set P, of such representatives an ample set of primes in D

( here we are using the Axiom of Choice). If D, is an ample set for
D, then P, = P D, is an ample set of primes in D.

Conversely, having selected P, we may obtain an ample set
D, for D. For any nonzero element a in D there is a unique expression

a = ullA, (1)

where u is a unit of D and A is a multiset (see Section 1.5) whose
elements are chosen from PO; in symbols, set(4) C;Po. Define

D, = {0} U {NA:A finite, set(A)C P }. (2)

Then DO is an ample set for D; this follows immediately from the

37



existence and uniqueness of the expression (1). Furthermore,

D, is multiplicative. (Proof: 1 =1II) is in S since @ C P,, and

MA, TB in D implies HAIB = N(A @ B) is in Do since set (AW B) C P,.)
Conversely, if Do is a multiplicative ample set for D, and P  is

the set of primes in D, then Dy is given by (2); i.e. a € Dy and

a v IIA imply a = IIA.

The multiset notation (1) for complete factorizations is
very convenient and we shall usually employ it. Whenever u = 1 we
shall also refer to the multiset A as the complete factorization of a.

Some of the definitions previously given for integral
domains can be recast in a UFD, using the representation (1). Let a
and b be nonzero, with a ~ IIA and b ~ NIB. Then

alp iff AC B,

ged(a,b) = N(A N B),

lem(a,b) = N(A U B).
Note that ab ~ (AW B) = I((ANB)H (Au B)) = (AN B)N(AuU B) =
gcd(a,b) lcm(a,b). Note also that a and b are relative prime iff
ged(a,b) = 1 iff An B = @.

The definitions of ged's and lem's extend in a natural
way to an arbitrary number of elements aj; " HAi, for example

gcd(al,az,...,an) = H(Ailm Aizﬁ vee N Ain)

where ail,...,ai are the nonzero elements among aj,...,a,: ged(0,...,0) = 0.

n
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2.2 Euclidean UFDs

An important concept in the proof of unique factorization

in various integral domains is that of a Euclidean ring. This is

an integral domain R for which a mapping d from R-{0} to the
nonnegative integers is defined, such that
(i) d(ab) > d(a) if ab # 0,

(ii) (division algorithm) for any elements a and b

with b # 0 there are elements q and r such that

1

a = bg+tr with r = 0 or d(r) < d(b).

The mapping d is called a degree function for R. The most important

examples of Euclidean rings are the integers Z and the polynomial
domains F[x] where F is a field. In Z the absolute value function
serves for d; in F[x], d(a) is the degree of a. For F[x] a division
algorithm is provided by Algorithm D of Section 1.3.
Theorem E: A Euclidean ring is a unique factorization domain.
We shall review the proof of this fundamental result since
it contains a number of important concepts.
Lemma 1. Let R be a Euclidean ring with degree function d. If
b is a proper factor of c then d(b) < d(c).
Proof: Let ¢ =ab and b = cg+r with r = 0 or d(r) < d(c).
If r = 0 then (ab)lb, which implies that a is a unit, a contradiction.
Thus d(c) > d(r) = d(b(l-aq)) > d(b).

From this result we obtain the following abstract algorithm

(see Section 1.3 for a discussion of the concept of "algorithm"

being assumed here, particularly the remarks regarding effectiveness):
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Algorithm F (Factorization algorithm for a Euclidean
ring R). Given a nonzero, nonunit element a of R, this algorithm
finds a factorization of a into irreducible elements: i.e. it
determines a multiset A whose elements are irreducible elements of
R such that a = [A.
(1) 1If a is irreducible, set A « {a} and exit.
(2) Find nonunits b and ¢ in R such that a = bc.
(3) Apply this algorithm recursively to obtain factorizations
b = 1B and c = IC.
(4) Set A+« B C and exit.

Validity proof: By induction on d(a). Assume the algorithm is

valid for all nonzero, nonunit elements b with d(b) < n, and let
d(a) = n. If a is irreducible, the algorithm is obviously valid.
So let a = bc where neither b nor ¢ is a unit. By Lemma 1, d(b) < d(g)
and d(c) < d(a). By the induction hypothesis, step (3) correctly
yields B and C. Hence a = bec = IIBIIC = N(B & C), and the algorithm
terminates correctly.

We have thus proved the existence of factorizations into
irreducible elements (although not constructively).

A key result for the proof of uniqueness of factorization
is provided by another algorithm:

Algorithm E (Extended Euclidean Algorithm).
Given a # 0 and b in a Euclidean Ring R, this algorithm finds a
ged g of a and b and elements s and t in R such that

astbt = g.
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(1) Set t+« 0, g« a, T« 1, G+ b.

(2) (Now any common divisor of g and G is a common
divisor of a and b: also a divides both g-bt and
G-bT.) If G = 0, set s « (g-bt)/a and exit.

(3) Find q and r such that

g = qG+tr, ¥ = 0 or d(r) < d(G).
(Then any common divisor of G and r is a common
divisor of g and G, hence of a and b.)

(4) Set ty < t-qT, t « T, T+ t;, 8« G, G+ r, and

go to (2).

Validity proof: Let t* =T, g% =G, T* = t-qT, G* = r. Then

g¥%-bt* = G-bT, hence a\G~bT implies alg*—bt*. Also G*~bT* = g-qG-b(t-qT)
= g-bt-q(G-bT). Assuming a divides both terms of the last expression,
a divides G#*-bT%.

To show that the output assertions are satisfied upon exit,
note that G = 0 implies that g is a common divisor of g and G,
hence of a and b. TFrom the definition of s we have astbt = g, and
this equation implies that any common divisor of a and b also divides
g. Hence g is a greatest common divisor of a and b.

Using this algorithm we easily obtain:
Lemma 2. Let R be a Euclidean ring. Let p,a,b € R, with p
irreducible. If piab then pla or p\b.
Proof: Suppose pfa. Then any gcd of a and p must be a unit of R.

Using Algorithm E, we obtain a gcd g and s,t in R such that as+pt

]
o

]
o

Since g is a unit we may multiply by bg"1 to obtain etbsg"1+pbtg"l
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Since p divides both terms on the left, we conclude that p|b.
Theorem El: In a Euclidean ring factorization into
irreducible elements is unique.
Proof: Suppose a nonzero, nonunit element a has two
factorizations
a = PyeeeP, = qg--edgs
into irreducible elements, with r < s. Since P divides the product
on the right, it also divides one of the factors, by the above lemma.
Renumber, if necessary, so that this factor is qq- Thus 4 = uypy
for some unit uy, and py can be cancelled from both factorizations:
Py« Py = U3q9...qg.
By induction on r we may assume that s = r and Py = w394 for some
units Ugseeesl, thus completing the proof.
We have therefore established that a Euclidean ring is a
UFD. Some parts of the proof could have been done in a different

way. It is easily shown that a Euclidean ring is a special case of

a principal ideal ring, that 1s, an integral domain in which all ideals

are principal. A principal ideal ring may be proved to be a UFD
(only uniqueness is proved in [VDW49]; see [LAN65) for an existence
proof). We chose to restrict the above proof to Euclidean rings in
order to be able to introduce the Extended Euclidean Algorithm. This
algorithm and the simpler Euclidean algorithm, which just calculates
a ged, are very important in actual computation, as will be noted

in succeeding sections.




2.3 Unique factorization in polynomial domains

Let D be a UFD and A(x) be a nonzero polynomial in D[x].
A has a factorization
A= cAp : (1)
where ¢ is a greatest common divisor of the coefficients of A. We
call c the content of A (cont(A)). The content of Ay is a unit of
D; such a polynomial is called primitive, and A1 is called the

primitive part of A (pp(A)). Note that cont(A) and pp(A) are uniquely

determined up to multiplication by units.

In Section 2.2 it was shown that F[x], F a field, is a
UFD. From this a more general result can be proved:

Theorem G (Gauss), If D is a UFD, so is D[x]. The prime
elements are those in D and the primitive polynomials in D[x] which
are irreducible in K[x], where K is the quotient field of D.

The key facts in the proof are:

Lemma 1: The product of primitive polynomials is primitive.

Lemma 2: Every nonzero polynomial A in K[x] may be expressed as
A= uA1

where u is a unit of K (a nonzero fraction b/c with b,c in D) and

A1 is a primitive polynomial in D[{x]. u and Al are uniquely

determined up to multiplication by units of D.

The proofs of these lemmas are given, for example, in
[VDW49], Section 23. Assuming the lemmas, we can complete the proof

of Theorem G. We first note that the lemmas may be rephrased using

the terminology of Section 2.1. Let DO be a multiplicative ample
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set for D and FO be the set of all primitive D, polynomials.

0

FO is an ample set of primitive polynomials for D[x]; i.e. every

primitive polynomial in D[x] has a unique associate in Fo. By

Lemma 1, F0 is a multiplicative' set. By Lemma 2, FO is an ample

set for K[x]. Thus: Fp is a multiplicative ample set for K[x].

Let P be the set of prime elements in K[x] and P0 = PN FO.
Thus P, is an ample set of primes for K{x]. By the unique factorization
property of K[x]}, we obtain for any nonzero A in K[x] a unique
representation
A = uid ' (2)
where u is a unit of K and @ is a multiset such that set(Q) < PO.
Furthermore, from the fact that F0 is multiplicative, IQ is in FO’
and thus: if A is in F,, then A = NA; that is, if A is a primitive
D, polynomial then A is the product of primitive Dy polynomials in
D[x] which are irreducible in K[x].
We therefore have a factorization of A in D[x]. The
factors are irreducible in D[x], for otherwise they would be reducible
in K[x]. The factors are uniquely determined, since any other
factorization into irreducible elements would also be different in K[x].
Now let A be an arbitrary nonzero polynomial in D[x]. It
has a unique factorization
A = cont(A)pp(A), pp(A) ¢ FO‘
Since D iq a UFD, cont(A) has a unique factorization into irreducible
elements in D; this remains the same in D[x] since a polynomial of

degree zero can only have factors of degree zero. By the above




remarks, pp(A) has a unique factorization into irreducible elements
in D[x]. The combination of these factorizations yields a unique
factorization of A in D[x] and completes the proof of Theorem G.

The obvious corollary of Theorem G is:
Corollary: 1If D is a UFD, then so is D[xl,...,xn].
Proof: Induction.

It will be convenient to have some further terminology for
dealing with complete factorization in polynomial domains. Let D
be a UFD with a multiplicative ample set Dy. Let A be a nonzero
DO polynomial over D. Thus there is a unique expression

A = cIlF

where ¢ is the content of A and F is a multiset of prime, primitive
DO polynomials. We will call this expression the complete D0

1
factorization of A. If ¢ = 1 then we will also refer to F as the

complete DO factorization of A.
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2.4 Squarefree factorization

In the previous section we have seen that the problem of
factoring an arbitrary polynomial A over a unique factorization domain
D can be reduced to the separate problems of factoring in D and factoring
primitive polynomials over D. This reduction is achieved by means of
ged calculations in D. In this section we show that we can further
reduce the problem of factoring a primitive polynomial over D to that
of factoring polynomials which are "squarefree'" in a sense to be defined
below, by means of gcd calculations in D[x]. Given primitive
polynomials A,B ¢ D[x], we may compute a ged C of A and B in K[x],
where K is the quotient field of D, by means of the Euclidean Algorithm.
Then any associate of C in K[x] which lies in D[x] and is primitive
is a gcd of A and B in D[x]. Better alternative algorithms exist in
special cases, e.g. when D = Z[Xl""’xn]’ making it much faster to
compute the ged of two polynomials than to factor a single polynomial.

We define a polynomial A to be squarefree if it has no
factor of positive degree of the form B2. Let D be a UFD and A be a
primitive, squarefree polynomial over D, deg A > 0. Then A has a
complete factorization A = PlPZ"'Pn where the P; are distinct prime
polynomials of positive degree.

Suppose A = B2C. Then the derivative A' = BZC' + 2BB'C is
a multiple of the squared factor B, hence Blged(A,A'). Hence

deg(ged(A,A"')) = 0 implies A 1s squarefree.

In case D is of characteristic zero, the converse also holds,

as a corollary of the following theorem. (If there is a smallest
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positive integer n such that nx = 0 for all x in a ring D then n is
the characteristic of D; otherwise the characteristic is zero. If
D is an integral domain, then the characteristic is a prime if it is
not zero.)

Theorem S. Let D be a UFD of characteristic zero and A
be a nonceonstant primitive polynomial over D. Let A = Pil...Pin
be a complete factorization of A. Then gcd(A,A') v Pilnl...Pﬁn”l.

1
Then A = P®Q and A' = P®Q' + ePe'lP'Q, hence Pe_lfB. If P¢|B then

Proof: Let B = gcd(A,A'), P =P , e = e_ and Q = A/PE.
1

Pe|A', hence Pe|ePe—lP'Q, hence P|eP'Q. But P and Q are relatively
prime, so PleP'. Since the characteristic of D is zero, eP' # O,
hence deg(eP') > deg P, a contradiction. So the order of P1 in B is
el—l, and the theorem follows by symmetry.

Corollary 1. 1If A is squarefree then gcd(A,A") v 1.

Corollary 2. C = A/gcd(A,A') is a squarefree factor of Aj;
in fact C ~ Pl"'Pn'

Thus to factor A we could compute C and factor it to obaain
the Pi’ then divide A by Pi as often as possible, to determine the ey.
However, we can do better than this if A is not already squarefree,
for we will show that we can then partially factor C and determine the
e; by means of further gecd calculations.

Let Qi =1 , where E; = {j:ej = i}. (Q; = 1 when

. P
JE'Ei 3

E, = #.) Then for t = max{el,...,en} we have

A= QIQ%...QE, Qi squarefree, deg Qt > 0, gcd(Qi,Qj) ~ 1 for i#j. (1)

We call this representation of A a squarefree factorization of A,
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since each Qi is either unity or a squarefree polynomial of positive
degree. The Qi are uniquely determined by the conditions in (1),
except for unit multiples.

By Theorem S, if B = gecd(A,A") and C = A/B, then B QzQé...Qz—l
and C Q1Q2...Qt. If D = ged(B8,C) then D n Q2Q3...Qﬁ, hence Ql ~ C/D.
The following algorithm shows how we can continue, computing QZ,...,Qt:
Algorithm S (Squarefree factorization). Let D be a UFD of
characteristic zero, with multiplicative ample set D,. Given a
primitive D, polynomial A of positive degree, let A = QlQ%"'QE be the
squarefree factorization of A into D, polynomials. This algorithm
computes t and Al = Ql""’At = Q¢
(1) Set B <« gcd(A,A'), C+ A/B, j « 1.
(2) (At this point B = Qj+1Q§+2 oee Qt_j and C = Qij+l v Qt')
If B = 1 then set t « j, A, «+ C, and exit.
(3) Set D+ gcd(B,0), Aj +< C/D. (Then D = Qj+1Qj+2 cee Qt and Aj = Qj')
(4) Set B « B/D, C+ D, j <« j+1, and go to (2). (This step preserves
the assertion at step (2).)
In steps (1) and (3) we assume that the gcd's computed are
D0 polynomials. The reader may easily verify the assertions in the
algorithm.
Algorithm S is based on an algorithm presented by Horowitz
in [HOR69], pp. 58-60, 69-70, which in turn was based on an algorithm

due to Tobey. Horowitz' version is equivalent to Algorithm S with

steps (3) and (4) replaced by:




(3') Set E <« ged(B,B'), D« B/E, A, « C/D. (Then E = Qj+2Q§+3...Qt
= Qi Qyep Qs Ay = Qy-)
(4') Set B+« E, C+« D, j <« j+l, and go to (2).

Note that D and E = B/D are computed in both versions, but
in different ways. Algorithm S appears to require slightly less
computation than Horowitz' version, but its main virtue seems to be
that it can be easily adapted for squarefree factorization over
finite fields (which are of prime rather than zero characteristic),
whereas it appears to bewfather difficult to adapt Horowitz' version
for this problem.

We shall discuss the general case of domains of prime
characteristic initially and later consider the finite field case.

The proof of Theorem S depended on the fact that the
derivative of a nonconstant polynomial cannot vanish identically
when the characteristic of the coefficient domain is zero. Now let D

have prime characteristic p. Suppose A(x) = Z?=Oaixi; then

A'(x) = zz=0 iaixi“1 = (0 iff iai = 0 for each i iff p!i or a; =0
P

for each i. Hence, A' = 0 iff A is a polynomial in x'.

A slight modification of the proof of Theorem S yields:
Theorem T. Let D be a UFD of arbitrary characteristic and

e e
A be a nonconstant primitive polynomial over D. Let A = Pll"'Pnn be

a complete factorization and let

0, if eiPi =0,

i 1, otherwise.

Then

t-j-1
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- -8
ged(A,A") 4 1701 penn
1 n
The condition eiPi = 0 occurs iff P; = 0 or the characteristic
of D divides e, -

e
1f, given A = Pll...Pin € D[x] where the characteristic of

D is p, we let

_ L. ' v .
Ri = ]‘H{Pj.ej = i and Pj # 0} if p ¢ 1,
1, otherwise;
and
e ‘
s = n{p_J:ple, or P' = 0},
J ] i
then we have
_ 2 t
A= RlRZ"'Rt S,

where 0 < t < max {el,...,en}.
According to Theorem T, écd(Ri,Ri) ~ 1. Since each
factor P?j of S satisfies (P?j)' = 0, we have §' = 0.

h|
It also follows from Theorem T that

-1
ged(A,A') ~ R2R§ o RIS
hence
A/ged(A,A") v RiR,...R .

It 18 now easy to verify that Algorithm S applied to A will yield

Al = Rl”"’At = R¢, but will not terminate unless S ~ 1. We must change
the test "If B = 1" in step (2) to "If B' = 0" to cause the

algorithm to terminate with B = S. Also, we must append "If C = 1,

set t « 0 and exit." to step (1), to take care of the case A' = 0.

We shall refer to the algorithm thus obtained as Algorithm T; its

input is a primitive polynomial A over a domain of prime characteristic
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p, and its outputs are t’Al""’At’ and B such that A = Al...AEB,
gcd(Ai,Ai) ~ 1, B' = 0, and Al,Az,...,At, B are pairwise relatively
prime.

If we have B~ 1, then A = Al...AE is a squarefree
factorization of A. But if deg B > 0 then further calculation is
required to obtain the complete squarefree factorization. Although
it is not apparent how this may be done with polynomials over an
arbitrary domain D of characteristic p > 0 (without resorting to a
complete factorization algorithm), we shall derive algorithms for the
important special cases when D is a finite field or a domain of
polynomials in one or more variables over a finite field.

Before considering these special cases, we recall some
further properties of domains of prime characteristic:

Theorem. Let D be an integral domain of prime characteristic

pn, where n is a positive

4

p. Let a,b e D and A,B € D[x]. Let g

integer. Then:

a. (ab)? = a%9 and (atb)? = a%pY;

q A9+pY,

b. (aB) = A9BY and (a+B)1

Proof: See [VDW49], pp. 92-93.

We now let D be a finite field of characteristic p. A
finite field is also called a Galois field and is denoted by GF(q)
where q is the number of elements in the field. Practical computation
in GF(q) 1s discussed in [BER68] and [COL69al]; here we assume the

ability to do arithmetic and gcd calculations in GF(q)([x].

The most basic facts about Galois fields are:
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1. The number of elements q is a power of the characteristic p.
2. For a given q = p® (n > 0) there exists one, and
except for isomorphism only one, Galois field with
precisely q elements.

3. al = a for all a € GF(p).

h

4. Every a e GF(q) has a unique pt root in GF(q).

n-1
(In fact al/p = aP

1
n=1, a /p = a,)

, where q = pn; note that if

For proofs, see [VDW49], pp. 115-117.

The theorem needed for application to squarefree factorization
over GF(q) is:

Theorem P. Let A ¢ GF(p™)[x]. Then A' = 0 iff A is the
pth power of some polynomial B ¢ GF(p™)[x].

Proof: If A = BP, then A' = pBP™1B' = 0. Conversely, if

A' = 0, then A can be written in the form A(x) = Z?*O a xpi,

pi

Let B(x) = X§=O aéipxi; then B ¢ GF(pn)[x] and BP = A.

From this theorem we can obtain an algorithm which applies
Algorithm T repeatedly until the complete squarefree factorization is
found. 1In stating this algorithm we shall include a modified version
of Algorithm T which uses a different test for termination.

Algorithm U (Squarefree factorization over a finite field).
Let A be a nonconstant monic polynomial over GF(pn), and let
A= Ht=1Qi be its squarefree factorization into monic polynomials.

i

Given A, this algorithm computes t and Al = Ql""’At = Qt.

(1) Set k+~ 0, m<« 1, t <« 0.
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(2) Set j «1, B+« ged(A,A"), C« A/B. If C =1, go to (7).
(3) Set r+ jm. If r> t, set At+1 « At+2 “ (.. € Ar_l~+ l, t <« r.
(4) Set D <« ged(B,C), AL« ¢/D.
(5) IfD+#1, set B« B/D, C+« D, j <« j+1, and go to (3).
(6) If B =1, exit.
1/p h
(7) Set A<« B , k<« k+l, m+ mp, and go to (2).
Throughout the execution of this algorithm we have m = pk,
and whenever we arrive at step (6) the value of t is the largest

index i such that pk + i and A has a nonconstant factor of order i.

We assume that the gcds calculated in steps (2) and (4)

are monic.
We arrive at step (7) only if B' = 0; hence we know that
, h i 1/ h i/lp _i
B is of the form B(x) = Zi=0 bipx P hence B(x) P = Xizo bip X*,

. n-1
and we may calculate b%ép using the identity al/p = aP .

We next consider the extension of Algorithm U to polynomials
in several variables. The main theorem needed is:

Theorem V. Let A € GF(pn)[xl,...,xr]. Then A = B
for some B ¢ GF(pn)[xl,...,xr] iffBA/Sxi =0 fori=1,...,r.

The proof is similar to that of Theorem P and will be
omitted.

On the basis of this theorem we obtain the following
algorithm which reduces the problem of factoring in GF(pn)[xl,...,xr]
to that of factoring polynomials E which are not only squarefree but
satisfy the stronger condition that gcd(E,QE/Dxi) = 1 for at least one

of the X (an algorithm which assumes this condition will be given in



Section 2.7.2)
Algorithm V (Factorization in GF(pn)[xl,...,xr]). Let

D = GF(pn)[xl,...,xr_l], D, = {0} V {polynomials in D with leading
numerical coefficient equal to unity}. Given a primitive D,
polynomial A € D[xr] = GF(pn)[xl,...,xr], this algorithm finds the
complete factorization F of A into DO polynomials, using an assumed
factorization algorithm for GF(pn)[xl,...,xr] which is applied only
to polynomials E which satisfy gcd(E,BE/Dxi) = 1 for at least one
of the X
(1) Set k<« 0, m+« 1, s« 0, F« 0.
(2) [Look for a nonvanishing partial derivative.]

(a) Set i <« r.

(b) If i =18, go to (d).

(c) Set A} < BA/Dxi. If Ay # 0, go to (4).

(d) Set i <« di-1. If i 21, go to (b).

h power.)

(3) (All partial derivatives of A vanish, hence A is a pt
Set A <« Al/p, k <« k+l, m <« mp, (now m = pk), and go to (2).

(4) (A =3A/axi # 0.) Set j <« 1, B « ged(A,Ay), C <+ A/B.

(5) Set D « gcd(B,C), E « C/D.

(6) (E is the product of distinct prime polynomials P such that
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bP/axi # 0, hence gcd(E,aE/axi) = 1.) Factor E into D polynomials

and put each factor into F with multiplicity jm.
(7) 1fD# 1, set B« B/D, C+« D, j < j+1, and go to (5).

(8) If B# 1, set A< B, s « i, and go to (2). Otherwise, exit.




2.5. Homomorphisms and sets of representatives

In succeeding sections we shall be studying the application
of homomorphic mappings to factorization. We shall assume the usual
definitions and basic theorems about ring homomorphisms, isomorphisms,
ideals, residue class rings, canonical homomorphisms and kernel of a
homomorphism (see [VDW49] or [GOL70]). 1In this section we review
some related concepts which are important to the use of homomorphisms
in practical computation.

Throughout this section we assume that D and E are sets
and h: D > E is a mapping of D onto E. The set P = {h’l(e):e e E},
where h'l(e) = {d e D: h(d) = el, is a partition of D. Let R be a
subset of D such that for each set S € P, R n S contains exactly one

element. Then R is a (complete) set of representatives of P. In

other words, for each e € E there is a unique d € R such that h(d) = e.

We assume this property of R in what follows.

We denote by hR the restriction of h to R. The map
hR: R + E is one-to-one. We denote the inverse map of E onto R
by h;l.

We now assume that (D,+,-) and (E,+1,'l) are commutative
rings with identity, and that h is a homomorphism of D onto E. We
denote the kernel of h by Ker h. We recall that the residue class
ring D/Ker h= {d+Ker h:d ¢ D} is isomorphic to E. The partition P
of D, as defined above, is in this case the set D/Ker h.

The set R of representatives of D/Ker hmay be made into a

ring as follows. Let h = hil ° h, and for a,b € R define
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a +2 b = ﬂ(a+b), a <, b = ﬁ(ab). (1)

We know that hil: E ~ R is one-to-one and onto. Let al’bl e E and

a = hxl(ap), b = hzl(bg). Then

]

h;l(al + b)) = hpl(h(a) + b)) = h;l(h(a+b))

il

h = = p1 -1
h(atb) a +2 b hR (al) +2 hR (bl),

hﬁl(al) . hil(bl)' From these

- -1 .
and similarly hR (al 1 bl)
relations the ring axioms for (R,+2,-2) may be verified, and it

_1.

follows that (R,+2,'2) is a ring isomorphic to (E,+l,'l) under hR

Furthermore, h is a homomorphism of D onto R: for a,b ¢ D,

[]

h(a+b) hgl(h(a+b)) = hzl(h(a) +; h(b))

hzl(n(a)) +, hpl(h ()

h(a) +, h(b),
and similarly for multiplication.
The point of this is that if we can do arithmetic in the
ring D (i.e. if we have algorithms for performing the operations +
and - on symbols representing the elements of D), then we can also
do arithmetic in E, provided that we also have an algorithm for ﬁ:
we represent the elements of E by the symbols representing the elements
of R and perform addition and multiplication on these symbols
according to (1).
As an example, take D = Z (integers); m a positive integer;
E = Z/(m), the residue class ring of integers modulo m; and h the
canonical map n + n+(m). R = {0,1,...,m-1} is a set of representatives

of E. Define a map ¢m: Z + 2 by ¢m(n) = least non-negative remainder
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on division of n by m. Then hil(n+(u0) = ¢, (n) and ﬁ = ¢,
Thus if we define

a +2 b = ¢m(a+b), a - pb= ¢m(ab) (2)

on R then (R,+ -2) is a ring isomorphic to E, and is the homomorphic

2’
image of Z under dy,.

Now suppose we take D = Z, E = {0,1,...,m-1} with +2 and

9 defined on E by (2), and h = ¢, . If we take R =E = {0,1,...,m-1},

then we have a particularly simple situation: hR and hil are the

identity map of R and h = h. The same situation occurs in general

i

when we have ECD and take R E.

When D = Z and E is isomorphic to Z/(m), it is often most

convenient to take

R = {—[-‘%‘-J,...,o,l,...,l-‘zﬂj}

(with, say, ~{%} omitted if m is even): this will be seen to be true

in the applications discussed in the following section. With

E={0,1,...,m1} and h = ¢,» as above, we have

n, if n < |m/2 ,
o | o/
R n-m, otherwise;
. ¢ _(n), if ¢_(n) < |m/2|,
ey < n [m/2]

¢ (n)-m, otherwise.
Another important example is D = F[x], F is a field;
E = F[x]/1I, where I is an ideal generated by a polynomial G(x) of
degree n > 0; and h = canonical homomorphism A(x) = A(x)+I.
R = {A(x) € F[x]: deg A < n} is a set of representatives of E.

We then have
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hil: A(x)+I > A(x) mod G(x),
h: A(x) » A(x) mod G(x),
where A(x) modG(x) is the remainder on division by G(x).

There is one more definition we need to make for use in

succeeding sections, that of an induced homomorphism. In general,

let (D,+,*) and (E,+l,'1) be rings and h be a mapping of D onto E.

For A £ D[x], A(x)

a x™+. . .+a;xta,, a # 0, define

n

h*(A)

i

h(an)xn t ey h(ap)x +; h(ag) .

Also define h*(0) = h(0). Thus h: D » E induces a mapping

h*: D[x] - E[x]. Let h be a homomorphism: then it is easily verified
that h* is also a homomorphism. We shall generally denote this induced
homomorphism by h also. If R is a set of representatives of D/Ker h
then hilz E > R similarly induces a map of E[x] onto R{x], which we
also denote by hil. Thus for each polynomial B in Ef[x], A = hil(B)

is the unique polynomial in D[x] with coefficients in R such that

deg A = deg B and h(A) = B.

Although we have in this section distinguished between the
binary operations of D and E, we shall in the remaining sections
follow the usual convention of allowing the context to determine
which operation is intended; for example if a,b ¢ E then atb means

a +l b where +l is the addition operation on E.
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2.6. TFactoring via induced homomorphisms

Let D be a UFD and h be a homomorphism of D onto a ring E.
Let C be a nonzero polynomial over D. In this section we begin the
study of ways in which induced homomorphisms may be used to find
the complete factorization of C over D. These methods are based on
the factor-preserving property of homomorphisms: if C = AB then
h(C) = h(A)h(B). Letting R be a set of representatives of D/Ker h,
we know that each factor G of h(C) uniquely determines a polynomial
F = h;l(G) with coefficients in R such that h(T) = G. Suppose that
the coefficients of the factor A of C all lie in R. If we have some
way of enumerating all of the factors of h(C), then when we consider
the factor G = h(A) we obtain F = h;l(ﬂ) = A, Thus if it is known
a priori that the coefficients of every factor of C lie in R, then
the factors can be determined bv considering each factor G of h(C)
and testing, by division, whether h;l(G) is a factor of C.

An important special case is obtained by taking D = Z, the
integers; E = Z/(m), the ring of integers modulo m: and h = the
canonical mapping n - n+(m). Given C e Z[x], it is possible to
compute a bound b for the coefficients of any factor of C without
actually factoring C. (Such bounds will be discussed at length in
Section 3.4.) Let m be an odd integer > 2b and R be the set of
integers in the range —*% < n < % . Then R is a set of representatives
of Z/(m) and the coefficients of every factor of C lie in R. Thus
by considering all factors G of h(C) in (z/(m))[x] and the corresponding

polynomials hﬁl(G) we can find the factors of C.



60

If m = p, a prime, then Z/(p) is a field called the

Galois field of order p and also denoted by GF(p). 1In this case,

h(C) has a unique factorization into prime polynomials in GF(p)[x]
from which the set of all factors of h(C) may be computed. The
complete factorization of polynomials in GF(p)[x] may be accomplished
by means of one of several algorithms discovered by Berlekamp.

(See [BER68], [KNU69], Section 4.6.2+ [COL69a}, Section 3.8: and
[BER70].)

If m is not prime, then (Z/(m))[x] is not a UFD. (z/(m)
is not even an integral domain.) However, if m = pj, a power of a
prime, then certain polynomials in (Z/(m))[x] do have a "complete
factorization'" in a sense to be defined in Section 2.7. A complete
factorization mod pj may be determined from a complete factorization
mod p by means of algorithms to be presented in Section 2.7. Thus
m may be taken as a power of a small prime p, the advantage being
that it is much easier to factor over GF(p) when p is relatively
small: although Berlekamp describes an algorithm in [BER70] which
appears to be reasonably efficient for large primes, it is much
more complicated than his original algorithm [BER68] (which is
practically efficient only for small primes).

Another important case is obtained by considering homo-
morphisms from D = Dl[w] onto E, where Dl is a UFD, w is an
indeterminate, and E is a ring. For example, let h be the canonical
homomorphism from Dl[w] to E = Dl[w]/I, where I is an ideal generated

by a polynomial A(w) of degree n > 0, with ldcf (A) a unit of Dl'
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Given a polynomial C in Dl[w,x] = Dl[w][x], we may attempt to factor
it by studying factors of h(C) in E[x]. A set R of representatives
of E is given by the set of all polynomials in Dl[w] of degree < n.
If the coefficients of C (as polynomials in Dl[w]) are all of degree < n,
then so must be the coefficients of any factor of C. Thus, again,
the factors of C will be found by considering all possible factors
G of h(C) and the corresponding polynomials hﬁl(G).
If we take D, to be a field and A(w) to be irreducible
over Dy, then E = Dl[w]/I is an extension field of D,. Hence, if
we know how to factor over this extension field, we can factor
polynomials in Dl[w,x] of degree < n in w.
In particular, if Dy = GF(p), then E 2 GF(pM), the Galois
field of order p®. Factorization over GF(p™) can be performed
with reasonable efficiency by one of Berlekamp's more recent algorithms

(I{BER70]).

2.6.1. Monic algorithm

We have thus far only vaguely indicated the nature of some
factoring algorithms based on the use of induced homomorphisms. Let
us now consider the details of such algorithms, developing them first
as abstract algorithms, then considering the special caseS of factoring
in Z{x] and GF(p)[w,x].

The first case we shall study will be that in which both
D and E are unique factorization domains, as in the above example of

7 and GF(p). We are given a polynomial C over D to be factored: to



simplify the presentation we shall initially assume that C is monic.
In Section 2.6.2 we shall generalize to allow C to be primitive with
arbitrary leading coefficient.

Let R be a subset of D and suppose that R contains the
coefficients of every monic factor of C of degree < Kdeg c)/zj. Then

we say that C is R-factorable. Obviously we have 1 € R. Suppose h

is a homomorphism of D onto E and R is a set of representatives of
D/Ker h. Then hil(l) = 1, and thus for every monic factor AO of h(C)
of degree d we have that hil(AO) is monic of degree d.

Algorithm M (Factoring a monic polynomial via the complete
factorization of its homomorphis image). Let D and E be UFDs, h be a
homomorphism from D onto E, and R be a set of representatives of
D/Kerh. Given a monic polynomial C over D which is R-factorable and
the complete monic factorization G of h(C), this algorithm computes
the complete monic factorization F of C. (G is the multiset of prime
monic polynomials over E such that h(C) = G, and F is the multiset
of prime monic polynomials over D such that C = nF).

(1) Set F « @, d « 1.
(2) 1If d > |(deg C)/2|, set F« Fu {C} and exit.
(3) For each H= G such that Ldeg H = d:
(a) Set Aj +TH, A< h‘P‘\l(AO).
(b) Tf Alc, go to (5).
(4) Set d « d+1 and go to (2).
(5) Set F « Fi{A}, C « C/A, G « G-H, and go to (2).

Note: The meaning of step (3) is that steps (3a) and (3b)
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are to be performed with every distinct multiset H< G such that
the sum of the degrees of the members of H is d. If the test in
step (3b) fails for each such H then control passes to step (4).
If the test succeeds for some H then control passes immediately to
step (5) without steps (3a)and (3b) being performed for the remaining
multisubsets. A systematic way of generating all of the multisets
H< G with Ideg H = d was described in Section 1.6.

Validity proof: Let C, be the initial value of C. We shall

0

show that whenever we begin an execution of step (2) the following

conditions hold:
a. C is R-factorable;
b. G is the complete monic factorization of h(C):

c. C, = CIIF;

0
d. all A e F are prime, monic polynomials;
e. C is monic;
f. C has no factor B such that 0 < deg B < d.
From the input assumptions and the initial definitions F « @ and
d « 1, it is evident that these assertions hold after we perform
step (1). Assume that we have arrived at step (2) with the assertions
true and that d < |[(deg C)/2]J. Then we proceed to step (3) where
we begin computing all polynomials A = hil(HH) such that H < G and
fdeg H = d. By the remarks preceding the algorithm, each polynomial
A is monic of degree d. This ensures that if C has no factors of

degree d, then the division test in step (3b) must fail for each H

and control will pass to step (4). In this case d is increased, but
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assertion f remains true. The other assertions are also unaffected
and we return to step (2) with all of the assertions still valid.

On the other hand, suppose C does have a factor A of degree
d. By e, we may assume A is monic, and by a, R contains the coefficients
of A. Also h(A) is a monic factor of h(C) of degree d; hence, by b,
h(A) = IIH for some H € G such that Ideg H = d. We conclude that in
step (3) we must eventually find a factor of C of degree d: either
A or some other monic factor of degree d.

Assume that A is the factor found; then in step (5) we put
A into F. From f we deduce that A is prime, so assertion d remains
valid. Assertions a,b,c,e, and f are also obviously satisfied by the
new values of C and G, and thus in this case also we return to step
(2) with all of the assertions true.

Termination of the algorithm is ensured by the fact that
the non-negative integer deg C-d decreases between successive
executions of step (2). When we find d > kdegC)/%Lwe put C into
F and terminate. By f, C has no factors of positive degree < kdeg C)/ZJ,
hence no proper factors at all. Thus C is prime and by c,d, and e,
the final value of F contains only prime monic polynomials and Cj = NF.
This concludes the proof.

Now suppose D is a UFD with multiplicative ample set D0
and C is a primitive D0 polynomial over D. Suppose also that we have
an algorithm for factoring monic polynomials over D. Then C may be

factored by use of a monic transformation, as in the following

algorithm:
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(1) Set n+ deg C, ¢+ ldef C, Cy(x) < cn—lc(x/c)
(C1 is a monic polynomial over D.)

(2) Find the complete monic factorization Fl of Cl'
(Cl = HFl).

(3) Set F <« {B:B = pp(A(cx)), Ae Fy, ldcf B¢ Do}

(Then C = F and F is the complete D_. factorization of C.)

0
The validity of this algorithm follows from Gauss's Lemma (the product
of primitive polynomials is primitive). Actually it can be shown

that cdes A"1|A(c:x) for A e Fy, so in step (3) we could compute
pp(A(cx)/cdeg A"l), resulting in more efficient calculation. (See
[KNU69], Exercise 4.6.2-18.)

Thus we could content ourselves with developing factoring
algorithms which are restricted to monic polynomials, such as
Algorithm M. However, transforming to a monic polynomial has its
disadvantages. For example, if D = Z and c is a large integer, then
Cl will have very large coefficients. Thus we shall consider a
generalization of Algorithm M which directly handles a primitive

polynomial with arbitrary leading coefficient, thereby making the

monic transformation unnecessary.

2.6.2. Primitive algorithm

Algorithm M and its validity proof demonstrate that in
factoring a monic polynomial C via the factorization of its homomorphic
image h(C) it suffices to comsider the monic factors of h(C). The

generalization of Algorithm M to be presented will analogously consider
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only those factors of h((ldef C)C) which have leading coefficient
h(ldcf C). This device is based on a suggestion of Collins.

We first need to generalize the definition of R-factorable
polynomials, which we previously gave only for monic polynomials.
Let R be a subset of D and C be a polynomial over D with ldecf C = c.

Let us say that C is R-factorable if R contains the coefficients of

every factor A* of C* = cC such that deg A* < Udeg C)/ZJ and
1ldcf A*}c. We have ¢ ¢ R and thus if h is a homomorphism of D
onto E and R is a set of representatives of D/Ker h, we have
hil(h(c)) = ¢. Therefore, for every factor Ay of h(C*) such that

deg A, = d and ldcf A; = h(c), we have that hﬁl(Al) is a polynomial

1
of degree d with leading coefficient c.

Lemma 1. Let D be an integral domain, R be a subset of D,
and C be a polynomial over D which is R-factorable. Then any factor
of C is also R~factorable.

Proof: Let C = AB. We shall show that A is R-factorable.
Let (ldcf A)A = AjA,, where deg A; < kdeg A)/ZJ and ldcf Allldcf A.
Then Ay | (ldef O)C, deg A < [(deg €)/2] and 1def A;|(ldef C); hence
R contains the coefficients of Al’ proving that A is R-factorable.

We shall further generalize Algorithm M by not requiring
the image domain E to be a UFD. We shall only assume that E is a
commutative ring with identity, since we shall want to use the algorithm
in applications in which E is not even an integral domain. We thus

need to extend the concept of a ''complete factorization,' which we

have thus far defined only in the case of an integral domain. For
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our purposes it seems best to give the definition directly in terms
of the properties which will be needed in the algorithm. Let C be
a polynomial over E and G be a multiset of polynomials over E, We
shall say that G is a complete factorization of C over E iff

a. C = ellG for some e € E;

b. for every factorization C = AB such that deg C = deg A

+ deg B there is a unique H< G such that A = ellH
for some e € E;

c. the leading coefficient of each polynomial in G is

not a zero divisor.

Note that if E is a UFD, EO is a multiplicative ample set
for E and G is the complete EO factorization of pp(C), as defined
previously, then C and G have the above properties. We defer until
Section 2.7 the presentation of a specific example of a complete
factorization of a polynomial over a ring which is not an integral
domain.

Lemma 2. Let E be a commutative ring with identity, C be
a polynomial over E, and G be a complete factorization of C over E.
Assume that C = AB with deg C = deg A + deg B and that A = ellH., Then
G-H is a complete factorization of B over E.

Proof: We first have to show that B = e*lI(G-H) for some
ek ¢ E, Since C = C . 1 where deg C = deg C + deg 1, we know that G is
the unique subset of G such that C = e IIG for some eo e E. We

0

furthermore know that there is a unique H* = G, such that B

[

eXI[H*

for some e* ¢ E. Hence C = AB = ee*N(H Y H*), hence H\H H*

it
Q
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hence H* = G-H, proving that B = e*l(G-H).

Next let B = Ble with deg B = deg B, + deg B2. We must

show that there is a unique H'<% G-H such that Bl = e'ITH' for some

1

e' ¢ E.

We have deg C = deg A+ deg B, + deg B, 2 deg (ABZ) + deg B

2 1’
while from C = (ABz)Bl we have deg C < deg AB2+deg Bl’ hence deg C =

deg (ABZ) + deg B Hence there is a unique H'< G such that,

1°
for some e' € E, B, = e'lTH'. We thus have

AB1 = ee'M(H\HH").
By the same argument as above we have C = (ABl)B2 with deg C = deg (ABl)

+ deg B hence there is a unique H"e< G such that, for some

2?
e" ¢ E, AB; = e"MH". Hence H" = H {JH', showing that H WH' e G,
hence that H'e G-H, which completes the proof.

Algorithm P (Factoring a primitive polynomial via a
factorization of its homomorphic image). Let D be a UFD with
multiplicative ample set DO’ and E be a commutative ring with identity. Let
h be a homomorphism from D onto E and R be a set of representatives

of D/Kerh, with 0 € R. The inputs are a primitive D polynomial C

0
and a multiset G of polynomials over E such that:

a. C is R-factorable;

b. G is a complete factorization of h(C) over E.
The output of the algorithm is the multiset F, the complete D0
factorization of C.

(1) Set F<« @, d~ 1.

(2) Set ¢ « ldef C, ¢ + h(e), C*« ¢ - C.
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(3) 1f d-> kdeg C)/%J, set F <« F{+){C} and exit.
(4) For each He G such that IZdeg H = d:
(a) Set Ay« WH, A « (c/ldcf A Ay, Ax < h;l(Al).
(b) If A*|C*, set B* « C*/A* and to to (6).
(5) Set d « d+1 and go to (3).
(6) Set A <« pp(A*) (with ldef A e DO), F <« F\){A}, C<« B*/ldcf A,

G « G-H, and go to (2).

Validity proof: We let CO be the initial value of C and
prove that at the beginning of each execution of step (3) the
conditions a and b of the input assumptions and the following
conditions all hold:

c. C0 = CIIF;

d. all A e F are prime, primitive DO polynomials;

e. ¢ = ldef C e DO,'Z = h(c), C*¥ = cC.

f. C has no factor B such that 0 < deg B < d.

These conditions hold after performing steps (1) and (2). Assume
then that we arive at step (3) with the conditions valid and that
d < |(deg ©)/2].

We first show that, for any He G such that fdeg H = d, the

product A0 = [IH is of degree d and ldcf A0|El Assertion b implies

that the leading coefficient of every member of H is not a zero divisor;

hence deg A0 = deg IH = Ideg H = d. Also h(C) = ellG for some e ¢ E,
hence h(C) = ellHI(G-H) = eAOBO, where B0 = NI(G-H). Neither ldcf AO
nor ldcf BO can be a zero divisor, hence deg h(C) = deg A0'+ deg By and

ldcf h(C) = e(ldef Ag)(ldcf Bp): thus ldcf Ag|ldef h(C), and it
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remains to show that ldef h(C) = c.

Since C is R-factorable, we have ¢ = ldcf C € R. Since
0 € R, we cannot have h(c) = 0; hence deg h(C) = deg C and
ldef h(C) = h(c) = c; hence ldef Aylc.

Thus if A = (c/ldcf Ag)Ag then A e E[x] and deg A) = d,
and if A* = hil(Al) then A* ¢ D[x] and deg A* = d.

Now consider the case in which C has no factor of degree d.
For any A% which divides C*, pp(A#*) divides C, hence C* can have no
factor of degree d. But, as we have just shown, every A* computed
in step (4a) is of degree d, so the division test in step (4b) must
fail for each H. Control thus passes to step (5) where d is increased,
but condition f, as well as all of the other conditions, remains
valid as we return to step (3).

Now assume that C does have a factor A of degree d. We
may assume that ldef A € Dy. Letting C = AB, we have deg h(A) < deg A,
deg h(B) < deg B, hence deg h(A) + deg h(B) < deg A + deg B = deg C = deg h(C)
(the last equality was proved above). But from h(C) = h(A)h(B) we have
deg h(A)+deg H(B) > deg h(C), and it follows that deg h(A) + deg h(B) =
deg h(C), deg h(A) = deg A, deg h(B) = deg B. Thus, by b, there is

a unique H< G such that h(A) = ellH for some e € E.

Let Aq = IH, Aj = (¢/ldcf Ag)Ay and A* = hTl(A]). We shall

now show that A* = bA, where b = ldecf B.

We have h(bA) = h(b)h(A) = h(b)eA0 = h(b) (1def h(A)/ldcf AO)AO =

(c/ldef Aj)Ay, hence h(bA) = A;. But ldcf (bA) = c, (ba) | c*,

1°
deg (bA) < Bdeg C)/ZJ, and C is R-factorable; hence R contains the
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coefficients of bA. Thus bA = h;l(Al) A*, as desired.

We thus have pp(A*) = pp(bA) pp(A) = A. We see that
step (4) computes from H a polynomial A* such that A*IC* and pp(A%*) = a.
Thus we must eventually find a factor of C of degree d: either A or
some other DO factor of degree d.

Assume that A is the factor found; then in step (6) we put
A into F. By f, A must be prime, so condition d remains valid. Also
B%/1dcf A = (C*/A*)/1ldcf A = (cC/bA)/ldcf A = C/A, so the new value
of C satisfies condition c¢. By Lemma 1, condition a remains valid
and by Lemma 2 so does condition b. Condition f also remains valid,
and, after executing step (2), so does condition e. We thus return
to step (3) with all of the conditions holding.

The rest of the argument is the same as in the proof of

Algorithm M.

2.6.3. Application to factoring over Z

Assuming that we have an efficient algorithm for factoring
over GF(p), the most immediate application of;Algorithm P is, as we
indicated earlier, to factoring over Z. We shall now consider this
application in more detail.

For this purpose, let us represent the elements of GF(p)
by {0,1,...,p-1} and let hp:z + GF(p) be the map n » n mod p
(least nonnegative remainder on division by p).

A polynomial over Z will be called positive if its leading

coefficient is positive.



Algorithm Z (Factoring over Z.) Given a primitive,
positive polynomial C over Z, this algorithm finds the complete
factorization F of C into prime positive polynomials over Z.

(1) Compute a bound b on the coefficients of any factor of C of
degree s.lfdeg C)/ZJ.

(2) Choose a prime integer p > 2b(ldcf C).

(3) Set C =« hp(C) and factor C over GF(p), obtaining the multiset
G of prime monic polynomials over GF(p) such that C = (ldcf C)NG.

(4) 1I1f order (G) =1 (i.e. if C is prime) then set F <« {C} and exit.
(C is prime).

(5) Apply Algorithm P (with D = Z, E = GF(p), Dy = nonnegative
integers, h = hp, R = {n:|n| < p/2}) to C and G, obtaining the
multiset F of prime positive polynomials over Z such that C = IIF.
Exit.

In step (2) we assume a method is available for finding a
prime integer greater than a given positive integer.

In step (4), we know that if C is a prime then so is C.

For if there were a proper factorization C = AB then deg A > 0 and

deg B > 0, because C is primitive. Since p > ldcf C, p > ldcf A

and p>ldcf B, hence deg hp(A) = deg A > 0, deg hp(B) = deg B > 0.

Thus C = hp(A)hp(B) would be a proper factorization of C, contrary

to the assumption that C is prime.

To show that C is R-factorable with R = {n e Z:|n| < p/2},

ldct A

suppose C* = A*B*, where deg A* < kdeg C)/ZJ and a*

divides ¢ = ldef C. Let A = pp(A*) and a = ldcf A. Thus A|C and
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deg A < [ﬂdeg C)/%J, hence !A}m <b . Also A* = a'A for some a'
and a* = a'a divides c, hence |a'| < c. Hence IA*[oo =

la'] + |A]_, < cb < p/2, showing that C is R-factorable.

The main virtue of this algorithm would seem to be its
simplicity; however, this is somewhat deceptive since the only
practical algorithm for factoring over GF(p) for large p is an
algorithm recently developed by Berlekamp [BER70], and this algorithm
is quite complicated. 1In Section 2.7.1 we shall discuss an alternative

algorithm for factoring over Z which allows the use of Berlekamp's

simpler algorithm [BER68] using only small primes.

2.6.4. Application to factoring in GF(p) [w,x]

As further illustration of the application of Algorithm P,
we shall now give an algorithm for factoring bivariate polynomials
with coefficients‘from GF(p) under the assumption that we have a
practical algorithm for factoring univariate polynomials over GF(pn).
This algorithm will be quite similar to Algorithm 2.6.3Z.

We noted earlier that GF(pn) ¥ GF(p)[wl/I, where I is a
principal ideal generated by a prime polynomial A e GF(p)[w],
deg A = n. A set of representatives of GF(p)[w]/I is given by
R = {B ¢ GF(p)[wl:deg B < n}. Thus we may take GF(p") = R, performing
arithmetic on the elements of R modulo A. We let hA be the map
B >~ B mod A.

Algorithm B (Factoring in GF(p)[w,x].) Let D = GF(p) [w],

D, = {0} y {monic polynomials in D}. Given a primitive D0 polynomial



C in D[x] = GF(p)[w,x], this algorithm finds the complete factorization

F of C into prime Dy polynomials over D.

(1)

(2)

(3)

(4)

(5)

Set b +Om§x£deg Ci}’ where Ck’Ck—l"“’Co are the coefficients of
<1

Choose a monic prime polynomial A in D of degree n > b+deg G

Set C < hA(C) and factor C over GF(p"), obtaining the multiset

G of prime monic polynomials over GF(p™) such that C = (1ldef C)TG.
If order (G) =1 (i.e. if C is prime) then set F « {Cl} and exit.
(C is prime).

Apply Algorithm P (with D = GF(p)([w], E = GF(p™), D0 as above,

h = hA, R = E) to C and G, obtaining the multiset F of prime D0

polynomials in GF(p)[w,x] such that C = NIF. Exit.
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2.7 Hensel algorithms

The algorithms of this section are based on the classical
theory of p-adic fields, which was first investigated by Hensel
about 1900. The application of Hensel's constructions to practical
factorization of polynomials was suggested by Zassenhaus [ZAS69].
The next two algorithms are based, however, on Van der Waerden's

presentation of Hensel's Lemma (Reducibility Criterion) ([VDW491],

pp. 248-250). 1In Section 2.8 we shall discuss Zassenhaus' version of

Hensel's algorithm and the generalized algorithms that result
therefrom.

Algorithm S (Solution of a polynomial equation).
Let E be a commutative ring with identity. Given A,B,S,T,U € E[x]
such that ldcf A is a unit of E and AS+BT = 1, this algorithm
computes Y,Z € E[x] such that AY+BZ = U and deg Z < deg A.
(1) Set V<« TU.
(2) Using Algorithm 1.3D, compute Q,Z € E[x] such that

V = AQ+Z, deg Z < deg A.
(3) Set Y * SU+BQ and exit. (Then AY+BZ = A(SU+BQ)+B(TU-AQ) =
(AS+BT)U = U).

Theorem S. Under the assumptions of Algorithm S, the

polynomials Y and Z are uniquely determined.

Proof: Let AY{+BZ, = U with deg Z; < deg A. Then

1
AY|+BZ, = AY+BZ, which may be written
A(Yl-Y) = B(Z—Zl). (1)

Upon multiplying both sides by T and adding AS(Z-Z;) to both sides,
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we obtain
A[S(Z—Zl)+T(Y1—Y1)] = (AS+BT)(Z—21) = Z~Zl.
Unless the polynomial in brackets is zero, the degree of the product
on the left side is > deg A, since ldcf A is a unit. But deg(Z—Zl) < deg A,
so we conclude that Z = Zq and by (1) we then have A(Yl—Y) = 0, which,
with the fact that ldcf A is a unit, implies Yl =Y,
The following lemma will be required in the proof of the
next algorithm.
Lemma 1. Let D be a commutative ring with identity and
a,b ¢ D. 1If a is a unit modulo b then, for any positive j, a is a
unit modulo bj.
Proof: For some s €¢ D we have as £ 1 (mod b). Let j > 1;
we may assume by induction that as* = 1 (mod bj-l) for some s* ¢ D.
Hence there exist t, t* ¢ D such that as+bt = 1, ast+bIlex = 1.
Therefore
asbd™l + pd ¢ = pi-1,

as* + bI™lex = agk + (asbj"l + bl t)yt*,

ot
i

a(s* + sbd7lex) + bl eex,
ast = 1 (mod bj),
where st = s* + sb3™lex, Thus a is a unit modulo bJ.

Algorithm H. (Hensel method for constructing a factorization
mod pj from a given factorization mod p). Let D and E be commutative
rings with identities, p € D, and h be a homomorphism of D onto E

with kernel (p). This algorithm takes inputs:
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m = pj for some positive integer j;
C e D[x]:
K;ﬁ;g;f ¢ E[x] such that ldcf A is a unit of E,
h(C) = KE, and AS+BT = 1.
The outputs are A,B ¢ D[x] such that C = AB(mod m), h(A) ='K,
h(B) = E} deg A = deg K, and ldcf A is a unit modulo m.
(1) Set g « p and choose A,B ¢ D[x] such that h(A) = X, h(B) = E,
deg A = deg A.
(2) (Now A,B ¢ D[x], C = AB (mod q), h(A) = A, h(B) = B,
deg A = deg A and ldef A is a unit modulo q.y If q = m, exit.
(3) Set U <« (C-AB)/q, U« h(U). (Since C = AB (mod q), we know
U e D[x], hence U e E[x].) Using Algorithm S with inputs

A,B,S,T,U, solve AY+BZ = U for Y,Z € E[x] such that deg 7 < deg A.
(4) Choose Y,Z ¢ D[x] such that h(Y) = ?} h(z) = E; deg Z = deg Z.
(Thus AY+BZ = U(mod p) and deg Z < deg A.)
(5) Set A <« A+qZ, B « B+qY, q <« gp, and go to (2).
The assertions at step (2) obviously hold for the first
execution of the step. To show that they still hold for subsequent
executions, let A* = A+qZ, B* = B+qY, q* = qp. Then

C-A*B% = C-AB-q(AY+BZ)-q°YZ

il

q(U-AY-BZ)-q2¥Z

1t

0 (mod gp),
i.e. C = A*B*(mod q*). Also we have h(A*) = h(A) = K, h(B*) = h(B) = ﬁ}

deg A* deg A = deg A and ldcf A* = ldef A; since ldef A is a unit

modulo p, ldcf A* is a unit modulo q*, by Lemma 1. Thus from step (5)
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we return to step (2) with all the assertions still valid.

We shall denote by DZ the set of zero divisors in a ring

Theorem H. Let D be a commutative ring with identity,

p £ D-D and j be a positive integer. Let A,B,A;,B, ¢ D[x] satisfy

Z!
AB (mod pj)

a. AlBl
b. deg Ay = deg A, ldef Ay = ldcf A (mod ply;
c. Ay = A and By = B (mod P):

d. 1ldcf A is a unit mod p.

1

Then A, = A and B

1 B (mod pj).

1

Proof: From c we have the conclusion when j = 1. Let j > 1. From

ldef A (mod pj—l),

i

a, we have ABy = AB (mod pj—l), and from b, ldcf Ay
so we may assume by induction that A; = A and By = B (mod pjﬁl).
Hence there exist Y,Z ¢ D[x] such that A1 = A+pj"1Z, By = B+pj’lY. Thus

AB+pi~L(av+B2)+p2i-2vz,

1

A1By
N o § j
0=p (AY+BZ) (mod pJ).
From this congruence and the assumption that p is not a zero divisor
follows

AY+BZ = 0 (mod p).

t

Also, by c we have deg Z < deg A and in fact plldcf Z. Hence by
Theorem S applied to the ring D/(p) we have Y = Z = 0 (mod p), from
which we obtain the conclusion of the theorem.

Consider now the case when the domain E in Algorithm H
is a field. This will be the case, for example, 1f D is a Euclidean

Domain and p is a prime element of D. For then if c¢ is an element
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of D not divisible by p then gecd(c,p) = 1 and we can use the Extended
Euclidean Algorithm (Algorithm 2.2E) to find s and t in D such that
cs+pt = 1. Hencs cs = 1 (mod p), hence h(c)h(s) = 1, proving that
each nonzero element of the ring E has a multiplicative inverse,
hence that E is a field.

In the next algorithm we use the fact that if the input A
to Algorithm H is monic then in step (1) of the algorithm A may be
chosen to be monic, in which case the final output A is monic.

Alpgorithm C (Construction of a sequence of factors mod pj
corresponding to a given sequence of factors mod p). Let D be a
commutative ring with identity, p € D and h be a homomorphism of D
onto a field FE with kernel (p). The inputs to the algorithm are:

m = pj for some positive integer j;

C ¢ D[x] such that h(C) is squarefree:

Gl,...,Gt, a sequence of monic polynomials over E such that

h(C) = (ldcf h(C)) Gl"'Gt'

The outputs are U,F;,F,,...,F € D[x] such that

t

C

i

UFl"'Ft (mod m);

h(Fi) = G,, deg F;, = deg G, and F, is monic, for i = 1,...,t.
(1) Set C <« h(C), i « 1.
(2) (Now we have:

a. CO z CFl“'Fi—l (mod m), where Cy was the initial value of C;

b. h(Fk) = Gy, deg F = deg G, and F, is monic for

k
k=1,...,i-1;

[¢]
ol
0

h(C) = (ldef h(c))GiGi+1"'Gt;
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d. C is squarefree.)
Set A + Gi’ B« C/A. (Thus h(C) = AB, A is monic, and A and
B are relatively prime over E, by d.)

(3) Using the Extended Euclidean Algorithm, obtain S and T over E
such that AS+BT = 1.

(4) Apply Algorithm H to m,C;K,ﬁ;g,f and let A and B be the output.
(Thus A,B ¢ D[x], C = AB (mod m), h(A) = A, h(B) = B, deg A = deg A,
and we may assume that A is monic, as noted above.)

(5) Set Fi « A, C+« B, C < ﬁ; i « i+1. (Thus conditions a,b,c and d
remain valid).

(6) If i< t, go to (2).

(7) Set U <« C and exit.

The next theorem shows that, with some additional assumptions,

the output F from Algorithm C is a complete factorization of C modulo m.

Theorem C. Given the assumptions of Algorithm C, let

[}
fl

{Gl,...,Gt} and F = {Fl,...,Ft}. Also assume p € D-D,, pfldef C,
and each Gi is prime. Then
a. C = (ldef C)NF (mod m)
b. For every factorization C = AB (mod m)
such that deg C = deg At+deg B, there exists a unique F' C F such that
A = (ldef AYIF' (mod m).
Proof: a. We have, from the algorithm, C = UNF (mod m). Since IIF
is monic, deg C = deg U+ deg IIF, Also, since p{ldef C, deg C = deg h(C) =
deg(NG) = Ideg G = Ldeg F = deg(llF). Hence deg U =0 and U = ldef € (mod m).

b. Let A = h(A). Deg C = deg A + deg B implies




81

ldef C = (ldef A)(ldef B)(mod m), hence the same congruence holds
mod p. Thus p¥ldcf C implies p%ldcf A, and hence deg‘K = deg A.
Since the Gi are prime, there exists a unique G' < G such

that A = (ldcf A)NG'. Suppose G' = {Gi +.+,G; }. Then define
1 r
F' o= (Fy ,eeo0F

Ay = (ldcf MIF',

b,

Ly

= (1dcf BYI(F-F').

o]
ot
!

From part a we have A B

181 F (1dcf A)(ldef B)IOF = (ldcf CYIF = C = AB (mod m).

We will show that the other assumptions of Theorem H are satisfied.
First, h(A;) = h(ldef A)h(IF') = (ldcf K)n{h<Fi):Fi e F'} = (ldcf A)IG' =
A = h(A), hence Al z A (mod p). Similarly, B1 Z B (mod p). Next,
deg A = deg(NF') = Tdeg F' = Ideg G' = deg (NG') = deg A = deg A.
Finally, ptldef A implies that ldcf A is a unit modulo p, since D/(p)
is a field. Thus Theorem H implies that A = Al (mod m), hence
A = (ldcf A)NF' (mod m). The uniqueness of F' follows from that of G'.

We can now demonstrate a new application of Algorithm 2.6P.
Let hj be a homomorphism defined on D with kernel (pj) and let Ej = hj(D).
Under the assumptions of Algorithm C and the additional assumption
ptldcf C we obtain from Algorithm C a set F of polynomials such that
T is a complete factorization of hj(C) over Ej‘ Assuming also that
C is R-factorable for some suitable set of representatives of D/(pj)
we can apply Algorithm 2.6P to C and G = F to obtain the complete
factorization of C over D.

In the following two sub-sections we discuss in some detail

two particular instances of this type of application of Algorithm 2.6P.
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2.7.1. Application to factoring over Z

We have already given in Algorithm 2.6Z a method of factoring
over Z which requires factoring over GF(p) for large primes p.

Using the Hensel algorithms of Section 2.7, we can now present an
algorithm which requires factoring over GF(p) only for relatively
small primes.

Given a primitive polynomial over Z we may factor it into
a product of squarefree polynomials using Algorithm 2.45. We may
therefore assume in the following algorithm that the input polynomial
is squarefree.

Algorithm Z (Factoring over Z.) Given a non-constant,
primitive, squarefree, positive polynomial C over Z, this algorithm
finds the complete factorization F of C into prime positive
polynomials over Z.

(1) Generate a new positive prime integer p > 2. (See discussign below).
(2) 1If p|ldef C, go to (1).
(3) Set C <« hp(C), B < gcd(C,C'). 1If deg B # 0, go to (1). (We
have deg B = 0 iff C is squarefree.)
(4) TFactor C, obtaining the set G of prime monic polynomials over
GF(p) such that C = (ldcf C)IG.
(5) If order (G) = 1 (i.e. if C is prime) then set F « {C} and exit.
(C is prime).
(6) Compute a bound u on the coefficients of any factor of C.
Also compute the smallest power m = pj > 2u(ldef C).

(7) Apply Algorithm 2.7C (with D = Z, E = GF(p), h = hp) to inputs




m, C, G; let F

1

1

be the output. (Thus F. is a set of monic

polynomials over Z such that C = (ldcf C)HFl (mod m).)

(8) Apply Algorithm 2.6P (with D = Z; E = Z/(m); h the canonical

homomorphism of D onto E, R ={nc¢ Z:‘n! < m/2} and Dy = non-

negative integers) to C and Fy, (regarding the members of Fy

as polynomials over Z/(m)), obtaining the set F of prime

positive polynomials over Z such that C = IIF.

Exit.

In step (1) we assume that we have an algorithm for

generating arbitrarily many primes in, say, the natural sequence

3,5,7,11,13,.... (We start with 3 since the use of 2 would complicate

the definition of the set of representatives in step (8)).

0f course, only finitely many primes can divide 1ldcf C,

but it is not so obvious that hp(C) can fail to be squarefree for

only finitely many primes.

corollary to a theorem about resultants.

Let
A(x)
B(x)
be polynomials over

determinant

res(A,B) =

]

]

m
ax + ...+ a;x + ao,

bx" + ... +bjx+ by, b #0, 0>

The proof of this is given below as a

a, # 0, m> 0,

(1)
0,

D, a UFD The resultant of A and B is the
an a ag 0 vevvennnn 0
0 a, ap.1- - a, 0 ..... 0
......... Ceeecerens e e o ,
b, bn—l . bO 0 ..... 0
0 b, by1- by 0 ..... 0

83
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which has n rows containing the coefficients of A and m rows
containing the coefficients of B.
The basic theorem about the resultant is:
deg(gcd(A,B)) = 0 iff res(A,B) # O (2)
For a proof, see [VDW49], Section 27.

Theorem G. Let D and E be UFDs and h:D - E be a homomorphism.
Let A,B € D[x] be given as in (1) and suppose that deg(gcd(A,B)) = O,
h(a ) # 0, h(by) # 0, and h(res(A,B)) # 0. Then deg(ged(h(A),h(B))) = O.

Proof: We have deg h(A) = deg A = m, deg h(B) = deg B = n.
Thus both res(A,B) and res (h(A),h(B)) are determinants of order mtn,
and since h is a homomorphism,

h(res(A,B)) = res(h(A),h(B)).
Hence res(h(A),h(B)) # 0, which by (2), is equivalent to the conclusion
of the theorem.

Corollary. Let C be a non-constant squarefree polynomial
over Z. Then C is squarefree mod p for all but a finite number of
primes p.

Proof: Since C is squarefree and the characteristic of Z
is zero, deg(ged(C,C')) = 0. Hence res(C,C") # 0. At most finitély
many primes divide ldcf C, ldcf C' or res(C,C'). For all other primes
p we can apply the theorem and conclude that C and C' are relatively

prime modulo p, hence that C is squarefree modulo p.
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2.7.2. Application to factoring in GF(p)[w,x]

In this section we consider the application of the Hensel
algorithms to factorization of bivariate polynomials over GF(p).

In Section 2.6.4 we gave an algorithm (2.6B) which reduces this problem
to that of factoring univariate polynomials over GF(p™) for some n.

The algorithm to be discussed here will make the same reduction, but

by application of the Hensel algorithms it is possible to reduce the
value of n. Most often we will have n = 1; i.e. we will be able to
factor a given polynomial in GF(p)[w,x] by factoring a polynomial in
GF(p)[x].

Let A € CF(p)[w,x]. In Algorithm 2.4V we showed that we
could reduce the problem of factoring A to that of factoring
polynomials C ¢ GF(p)fw,x] which satisfy one of

gcd(CaC/ax) = 1, @8]
ged(C,aC/aw) = 1. ; (2)
Tf (1) holds, then the following algorithm can be applied directly;
if only (2) holds then we have to write C as a polynomial in w with
coefficients from GF(p)[x] and interchange the variable names before
applying the algorithm,

Algorithm B (Factoring in GF(p)[w,x]). Let D = GF(p)lw],
DO={O} U {monic polynomials in D}. Given a primitive Dy polynomial
¢ in D{x] = GF(p)[w,x] such that gcd(C,C') = 1, this algorithm finds
the complete factorization F of C into prime Dy polynomials over D.
(1) Generate a new prime monic polynomial A € GF(p)[w] (see

discussion below). Set m « deg A.



(2) 1f A]ldcfC, go to (1).

(3) Set C < hA(C), (where hA.is'the map C > C mod A) B <+ gcd(E;E').
If deg B # 0, go to (1). (Ce GF(p™[x]. We have deg B = 0
iff C is squarefree.)

(4) Factor C, obtaining the set G of prime monic polynomials over
GF(p™) such that C = (ldcf C)IG.

(5) 1If order(G) =1 (i.e. if C is prime) then set F « {C} and exit.
(C is prime).

(6) Set p « max{deg Ci}, where Ck,Ckﬂl,...,CO are the coefficients

ot /], M« A

k
(7) Apply Algorithm 2.7C (with D = GF(p)[w], E = GF(p™, h = hA) to

of C. Set j <+ L(u+deg C

inputs M,C,C: let F, be the output. (Thus Fl is a set of monic

1
polynomials in GF(p)[w,x] such that C = (ldcf C)ITFy (mod M).
(8) Apply Algorithm 2.6P (with D = GF(p)[w]; E = {B ¢ GF(p)[w]:
deg B < deg M} with arithmetic defined modulo M; h = hys
Dy as above, R = E) to C and Fl, obtaining the set F of prime
Dy polynomials over D such that C = IIF. Exit.

In step (1), we would naturally want to generated the prime
polynomials A ¢ GF(p)[w] in order of increasing degree. Unless p is
small, the linear polynomials A(w) = w-a for a ¢ GF(p) will usually .
suffice; but in some cases it will be necessary to generate quadratic
or higher degree prime polynomials. One way to obtain all prime
A e GF(p)|w] of degree d is to compute

B(w) = (de-w)/ne‘d’e#d(wpe—w)

and factor B over GF(p); B is precisely the product of all prime A
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of degree d. (See [BER68]}, p. 103.) This will be practical only

if p and d are small; and even if they are, the computation would

be lengthy enough that it would be desirable to perform it in advance

and store a list of the prime polynomials found for use in Algorithm B.
Again it is necessary it show that h,(C) is squarefree for

all but finitely many primes A. The proof is similar to that of

the corollary to Theorem 2.7.1G: Since gcd(C,C') = 0, we have

res(C,C") # 0, by the basic theorem cited in Section 2.7.1. Now

res(C,C') € GF(p)[w], and only finitely many prime A e GF(p)[w] can

divide ldcf €, ldcf C' or res(C,C'). For other primes A we can

apply Theorem 2.7.1G and conclude that deg(gcd(hA(C),hA(C'))) =0,

hence that hA(C) is squarefree.
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2.8 Other Hensel algorithms and applications to multivariate factorization

In this section we first discuss a variation on Algorithm
2.7H (Hensel's algorithm) which was first proposed by Zassenhaus
[ZAS69]. Given a factorization over a ring D modulo p, this algorithm
computes factorizations modulo pz,pA,pS,... in successive iterations.
In the case D = Z, the algorithm turns out to be much more efficient
than Algorithm 2.7H for factoring polynomials with large coefficients.
The algorithm also has another, perhaps more important, virtue. It
allows the development of a "generalized lHensel algorithm' (Algorithm
G, below) which yields a practical method of factorization of
multivariate polynomials.

The '"quadratic Hensel's algorithm'" which follows is based
on a version discussed by Knuth ([KNU69], pp. 398 and 546.)

Algorithm §Q (Quadratic Hensel Algorithm). ©Let D and E be
commutative rings with identities, p ¢ D, and h a homomorphism from

D onto E, with Ker h = (p). The inputs to the algorithm are:

m = pJ for some positive integer j;

C e D[x];

A,B,S,T ¢ E[x] such that 1def A is a unit of E, h(C) = AB
and AS+BT = 1.

The outputs are A,B,S,T e D[x] such that ldecf A is a unit modulo m,

C = AB and AS+BT = 1 (mod m), h(A) = A, h(B) = B and deg A = deg A.
(1) Set q<« p and choose A,B,S,T e D[x] such that h(A) = A,...,h(T) = T

and deg A = deg A.




(2) (Now A,B,S,T ¢ D[x], ldcf A is a unit mod q, C = AB and
AS+BT = 1 (mod q), h(A) = A, h(B) = B and deg A = deg A.)
If mlq, exit.

(3) Set U<« (C-AB)/q. (Since C = AB (mod q) we know U € D[x].)
Using Algorithm 2.7S with inputs A,B,S,T,U, solve the congruence

AY+BZ = U (mod q) for Y,Z € D[x] such that deg Z < deg A.

(4) Set A* + AtqZ, B* ¢« B+qY¥. (Thus

C-A*B* c-AB—q(AY+BZ)-q2YZ

q(U-AY-BZ)-q Y2

i

Z 0 (mod qz);
furthermore h(A*) = h(A), h(B*) = h(B); and, since deg Z < deg A,
deg A* = deg A = deg A and ldcf A* = ldef A. By Lemma 2.7U,
ldcf A* is a unit modulo qz.)

(5) Set U, « (A*S+B*T-1)/q. Using Algorithm 2.7S with inputs

1

A,B,S,T,U,, solve the congruence AY1+le 2 U (mod q) for

1,
Yl,Z1 e D[x] such that deg Zy < deg A.

(6) Set S* <« S-qY,, T* « T-qZ,. (Thus

1
AT SHLBRTH

1
A*(S-qY1)+B*(T-q21)

= AWSHB*T-q(ARY+B*Z, )

= 1 + q(Uy-A*Y -B¥Z,)

. 2
»_1+qw1AHJM0 (mod q7)
z 1 (mod qz).)

(7) Replace q,A,B,S,T by qZ,A*,B*,S*,T* and go to (2).
The most immediate application of this algorithm is to

substitute it for Algorithm 2.7H in Algorithm 2.7C. Note that this
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does not affect the validity of Theorem 2.7C. This substitution
presents no advantage at the level of abstract algorithms, but in
the applications of Algorithm 2.7C to factoring in Z[x] and GF(p)[w,x],
an important gain in computing time efficiency is obtained. This
point will be discussed for the case of factoring over Z in Section 3.5.
The remainder of this section will be devoted to developing
abstract algorithms which can be applied to factorization of multi-
variate polynomials. This is achieved by developing generalizations
of Algorithms Q and 2.7C and Theorems 2.7H and 2.7C in which the
kernel of the homomorphism h of D onto E may be generated by more
than one element. We shall then be able to take, for example, D = Z[v,w]
E = GF(p) and h to be the homomorphism with kernel (p,v,w), so that
from C € Z[v,w,x] and a factorization h(C) = AB over GF(p) we can
construct a factorization C = AB (mod pi,vj,wk) for any positive
integers 1i,j,k. Such a factorization may then be used as input to
Algorithm 2.6P to obtain the complete factorization éf C in z{v,w,x].
We begin with a rather general lemma about homomorphisms.
Lemma 1. Let R,S,T be commutative rings, V be a homomorphism
ol x onto S and ¢ be a homomorphism of R onto T. Let Ker v < Ker o, Then:
a. there exists a (unique) homomorphism B from S onto T
such that B o v = a
b. Ker B = v(Ker ©).
Proof: This lemma could be derived as a corollary to the
so-called "Rectangle Theorem" for rings (see [GOL70], p. 120). We

shall, however, give a direct proof.




a. TFor v(r) ¢ S, define B(v(r)) = o(r). We first have

to show that this defines a mapping of S onto T. Let r,,r, € R

1’72

such that V(rl) = V(rz). Thus V(rl-rz) = 0, hence ry-r, € Ker v,

hence r,-T, € Ker 0, hence d(rl) = a(rz). B is thus a well-defined
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mapping. It is onto: for if t € T there is an r € S such that a(r) = t,

hence B(Vv(r)) = t. It is a homomorphism, for

BO(r) + v(r)) = BOu(r4r))) = a(r+r,)

i

f!(rl) + a(rz) = H(v(r]‘)) + (%(v(rz))

and similarly for multiplication. If 81 also satisfies P

LoV =
then Bl(V(r)) = a(r) = B(v(r)) for all v(r) ¢ S; thus B is unique.
p. v(r) € Ker B<& B8(v(r)) =0 a(r) = 09 r ¢ Ker «

v(r) £ v{Ker a).

o)

Algorithm G (Generalized Hemsel Algorithm). Let D and E
be commutative rings with identities, PpseeesPy be elements 0f>D and
h be a homomorphism from D onto E with kernel p = (pl,...,pn).' The
inputs to this algorithm are:

= jl = jn {ve intec i 1
m1 p1 ,...,mn pn for some positive integers Jl,...,Jn,

C) = AB and AS+BT = 1

=
~

The outputs are A,B,S,T € D[x] such that ldef A is a unit modulo
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H
et

= (my,...,m ), C= AB and AS+BT = 1 (modm), h(A) = A, h(B)

and deg A = deg A.

hy
D - D*
\\hlgD+
| %
h \\\Eg h
nt \\\&
E F*

Remark: ‘The above diagram will aid in following the statement gnd

proof of the algorithm. (The definitions and proofs given in the
algorithm will show that the diagram commutes.)

(1) If n = 1, apply Algorithm Q to ml,C;K;g;g,Y, obtaining A,B,S,T ¢ D[x]
satisfying the required conditions. Exit.

(2) Let hl be a homomorphism defined on D with kernel (pl) and let

pt = hl(D). Let h* be the homomorphism of pt onto E such that h+ohl = h.
(The existence of h't is guaranteed by Lemma 1; also Ker ht o= hl(Ker h) =
by ((pys-vsp)) = (hylpy)seeihy(p)) = (O5hy(py)s.nshy(py)) =
(hy(pg) ... -5hy(p)) ) et mb < hy(my) (= hy(py)I2), . oml« h (m)),

ct « hl(C). Working in D" and E, apply this algorithm recursively to
m;,...,m:,c+gz,ﬁ;§;f, obtaining butputs AT Bt,st, Tt ¢ DY[x]. (Thus

ldef A+ is a unit mod1ﬂ+ = (m;,...,mZ), ¢t = A+B+ and Atst +pfrt = 1
(modfﬂf), ht(at) = 4, b+(B+) = B and deg At = deg A.)

(3) Let h, be a homomorphism defined on pt with kernel (mg,...,mx)

and let E* = h, (D). Set A% « hy(A"), B* « h, (8", §* « hy(sH,

T « hZ(T+). (Thus ldef A* is a unit of E*, deg A* = deg A+,

h, (hy(C)) = A*B* and A*S*+B*T* = 1),
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(4) Let h3 be a homomorphism defined on D with kernel (mz,...,mn)

and let D¥ h3(D). Let h* be the homomorphism of D* onto E* such

that h*oh3 = h2°hl. (Ker h2 o hy = (pl,mz,...,mn), as will be shown
below, hence Lemma 1 guarantees the existence of h* and furthermore
shows that Ker h* = h3(Ker h2 o hl) = h3((p1,m2,...,mn)) = (h3(p1)).)
Set mf < h3(ml), C* « hB(C)' (Thus h*(C*) = h*(h;5(C)) = hz(hl(C)) =
A¥B*®,) Working in D* and E*, apply Algorithm Q to m?,C*{K*,ﬁ*,g*,T*,
to obtain outputs A%,B* ,S* T* ¢ D*[x]. (Thus ldcf A* is a unit

modulo mi, C* = A*B* and A*S*4DB*T* = 1 (mod mf), h*(A*) = X*,

h*(B*) = B* and deg A* = deg A*.)

(5) Choose A,B,S,T ¢ D[x] such that h3(A) = A% hB(B) = B%, h3(S) = Gk,
h3(T) = T* and deg A = deg A*. (Then hB(C) = hB(A)h3(B) {(mod h3(m1)),
hence hB(C—AB) = h3(P)h3(m1) for some P ¢ D[x], hence h3(C~AB—Pm1) =0,

hence C-mAB—Pml £ (mz,...,mn), hence C-AB ¢ (ml,...,mn), hence C = AB

(mod(ml,...,mn)). Similarly, AS+BT = 1 (mod(ml,...,mn)). Since

]

h,(hy(A)) = h*(h,(A)) = h&(A%) = A% hz(A+), we have hy(A) = At

(mod?ﬂf). It follows that hl(A) = At (mod (hl(pz),...,hl(pn))): i.e.
hy(A) - A" ¢ Ker h*, hence h*(hy(4)) = h¥(a%) = &, and finally h(a) = A.
Similarly, h(B) = B. Also deg A = deg A* = deg.X* = deg At = deg-Ki
Lastly, we have h3(ldcf A) = 1ldef A*, from which it is easily shown

that ldcf A is a unit modulo (ml,...,mn).)

The assertion in step (4) that Ker h2°h1 = (pl,mz,...,mn)

may be proved as follows:

0 = (mt +
d £ Ker h2 h1 € hl(d) e Ker hz (mZ""’mn)

= hl(d) = hl(d2>h1(m2) +...+ hl(dn)hl(mn) for some

,d €D

200 %
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< hl(d—dzmzu...—dnmn) = 0 for some d2""’dn € D
& d-dgmy-...-d m e Ker hy = (pp) for some d,,...,d € D
& d—-dzmz-—...—dnmn = dypy for some dl""’dn e D
& de (pl,m,,...,mn),
Before proceeding to generalize Theorem 2.7H, we shall
prove a lemma which generalizes Lemma 1 of Section 2.7.
Lemma 2. Let D be a commutative ring with identity,
pl,...,p € D, my = pil,...,mn = pin for some positive integers
jl,...,j s £ = (e, M= (my,...,my). Let a e D be a unit
modulo . Then a is a unit modulo M.
Proof: We use the notation of Algorithm G and divide the
proof into steps corresponding to those of Algorithm G:
(1) 1f n = 1 then Lemma 1 of Section 2.7 applies and we are done.
(2) Assume n > 1 and let at = hl(a). Since a is a unit modulo @,
there is a b ¢ D such that ab-1 EP> hence atht-1 E(P+, where b+ = hl(b)
and @+ = (hl(pZ)"°"hl(pn))' Hence a+ is a unit modulo @ﬁ, and we

-+

may thus assume, by induction on n, that a 1is a unit modulo ¢n+.

(3) Let a*

hz(a+). From the conclusion of step (2), a* is a unit of E*,

(4) Let a% h3(a). Then h#*{(a*) = 2%, i.e. a* is a unit modulo pi.

Applying Lemma 1 of Section 2.7, we find that a* is a unit modulo m{.

Hi

(5) Suppose a*b* 1 (mod mf). Choose b & D such that h3(b) = b¥*,

Then h3(a)h3(b)—l = hg(d)hg(ml) for some d, € D, hence h3(ab—1—dm]) = 0,

1
hence ab»l--dlml € (mz,mB,...,mn), hence ab = 1 (mod 4N).

Theorem G. Let D be a commutative ring with identity,

- = = jn i i
PyseesP, € D DZ’ my Py Tae ey |2 for some positive integers




Then Al :

the proof

(1) If n

i (Pyseeesp)s MU= (m,...,m ). Let A,B,A

c.
d.

A and B

P

deg

A =

roof:

1 B
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1’Bl £ D{x]

AB; T AB (mod T1);

Ay = deg A and ldef A; = ldcf A (mod 1)

A and B1 = B (mod @ );

ldef A is a unit modulo & -

B (mod 1m).

Again we use the notation of Algorithm G and divide

into steps corresponding to those of Algorithm G:

(2) Assume

Ay>B,A,B

for some

.

dy

hence A’]"—A+

and, using Lemma 2,

b

1, Theorem 2.7H applies and we are done.

n > 1.
Let &f

e D[x].

+ ot

+
’ 1

+

+ _
Let A1 ,Bl+,A+,B+ be the images under hy of

= (hl(pz),...,hl(pn)). By ¢, A=A = d1p1+...+dnpn
Hence hl(Al)~h1(A) = h](dz)hl(p2)+'"+h](dn>hl(pn)’
In this way we can prove

= At and BT = pt (mod (,\,\4.) R

-+

ldef A dis n unit modulo (P+’

A Bf = A+B+ (mod ﬁ1+),

1

the second part of

deg AT = deg AT and ldef AT = 1def AT (mod ).

1 1

. +
The first part of b follows from b and d. We may now assume, by

induction on n,
(3) Let K?,ﬁf,X*,E* be the images under h2 of A.
from the conclusion of step (2), A? = A% and BT = B¥,

(4) Let A?,BT,A*,B* be the images under h,3 of A

that a7 = AT ana Bt

I
] 1 - B (mod M
T,BT Then,

1’B1’A’B- From the

equatior h2°h1 = h*°h3, we have



hi(hy(4))) = hy(hy(A)) = Af = Ax

i

h*(Ai)

il

h,(hy(A)) = h¥(hq(A)) = h*(a%),
In this manner we obtain

* % = A% % = B*® %

c*, A1 A% (mod ‘L and B1 B* (mod pl).
From a,b,c and the definition of h3 and m?, we have

a%, A*B* = A*B* (mod m

3By ( P

b*. deg A? = deg A and ldcf A? z 1dcf A* (mod mi).
We may prove

1%, 1ldcf A* is a unit modulo pf

as follows: From d* and Lemma 2, we know that ldcf At is a unit

il

+ — —
modulo tM . Furthermore, ldcf A% hz(ldcf A+), hence ldcf A% is a

unit of E*, Finally, h*(ldcf A%*) 1dcf A*, hencé d* follows. Now

]

1t

Theorem 2.7H implies Af = A% and Bf B (mod mf).

(5) From the conclusion of step (4), hB(Al—Al) is a multiple of
h3(m1), say h3(d1). Thus h3(A1—A—dml) = (0, hence Al—A——dlm1 =
d2m2+...+dnmn for some d2,...,dn e D[x]. Hence A1 = A (mod ™M) and

similarly, B1 = B (mod ).
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In Algorithm G and Theorem G we have obtained generalizations

o 1t

of Algorithm 2.7H and Theorem 2.7H, replacing "p" by "pl,pz,...,pn”,
1] " 1" " 1t 1" - jl 1" 1" " " 1
()" by § > 'm by ml( 13 ), Myyeee s and "(m)" by "m". We

can continue along this line obtaining generalizations of Algorithm

2.7C and Theorem 2.7C by making the same substitution in their statement.

Now, however, the situation becomes much easier, for, as the reader
may verify, the proofs may be obtained merely by making the same

substitution in the proofs of Algorithm 2.7C and Theorem 2.7C.
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CHAPTER 3: FACTORING UNIVARIATE POLYNOMIALS OVER THE INTEGERS

3.1 Introduction

In this chapter we shall give detailed specifications of
algorithms for factoring univariate polynomials over the integers.
These algorithms are based on the use of factorizations over GF (p)
and the Quadratic Hensel Algorithm described in Section 2.8. The
basic structure of each of the major algorithms described here
corresponds closely to that of one of the algorithms described in
Chapter 2. However, important improvements have been made in each
case. For example, Algorithm PFZl, which is based on Algorithm 2.7Z,
performs factorizations over GF(p) for several primes p and chooses
the prime which yields the fewest irreducible factors, instead of
just taking the first prime for which the input polynomial is of the
same degree and squarefree over GF(p).

These algorithms have been implemented in the SAC-1 system
and our descriptions of them applies, in regard to the details of
input and output, to this implementation. The notation and conventions
used in stating the algorithms are essentially the same as those
discussed in Section 1.3 and used in Chapter 2. We have tried to
avoid inclusion of details which are dependent on the idiosyncrasies
of Tortran or the SAC-1 system. We have omitted, for example, details
regarding the erasure of lists which are created in the algorithms,
whereas explicit erasure is required in SAC-1 since a 'reference count"

list processing system is used (see [COL67]). Although such details
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must be attended to when actually programming in a system such as
SAC-1, they would only detract from the reader's understanding of

the basic structure of the algorithms. For a completely precise
statement of any step of an algorithm the reader can easily refer to
the Fortran program listings in the appendix, since we have maintained
a close correspondence between the descriptions in this chapter and
the actual programs, with regard to variable naming and step numbering.

For some of the simpler algorithms we give only a description
of the input and output. Again, the reader may wish to refer to the
Fortran listings in these cases.

Computing time bounds are included for each of the algorithms,
accompanied by their derivations except in the simplest cases. In
several instances we note how consideration of computing time bounds
has determined our choice of a particular algorithm to implement.

References are made, where appropriate, to the algorithms
for operations on polynomials in SAC-1. For example, the SAC-1
algorithm CPBERL, which implements Berlekamp's algorithm for factoring

over GF(p), is discussed briefly in Section 3.5.4.
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3.2 Modular arithmetic

The SAC-1 Modular Arithmetic System [COL69] can perform
arithmetic on polynomials modulo any positive integer m which is a
Fortran integer (single-precision integer). 1In the factoring
algorithms to be described in Section 3.5 we have need of some
operations modulo an integer m which can be much larger than the
bound on Fortran integers. Thus in this section we describe algorithms
for these operations which take as input an L-integer modulus. ('"L-
integer' abbreviates 'list-integer', reflecting the fact that large
integers are represented in SAC-1 by lists of digits.)

Besides the L-integer modulus m, which is assumed to be
odd and > 1, the inputs and outputs for each algorithm are other
L-integers or univariate polynomials with integer coefficients.

These polynomials are assumed to have the same list representation as
in the SAC-1 Polynomial Arithmetic System [COL68b]. The inputs and
outputs have, however, the additional property that their coefficients
are bounded by m/2 (except, of course, for the inputs to the algorithms
which perform a reduction modulo m.) The choice of integers
—Lm/ZJ,...,O,...,Lm/%J as a set of representatives of Z/(m), rather
than 0,1,...,m-1, simplifies some of the factoring algorithms (see
Section 2.7.1).

Algorithm MMOD(m,a) (Modular algorithm, reduction mod m).

The inputs are L-integers m and a, where m is odd and > 1. The
output is the unique L-integer b such that b = a (mod m) and lbl < m/2.

Computing time: A L(m)L(a).
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Algorithm MPMOD(m,A) (Modular algorithm, reduction of a

polynomial mod m). m is an L-integer which is odd and > 1, and A is
an L-integer or a univariate polynomial with L-integer coefficients.
The output is the unique polynomial B with L-integer coefficients
bounded by m/2 and satisfying B = A (mod m). (B is an L-integer if
A is.)

Computing time: < (l+deg A)L(m)L(lAlm).

Algorithm MPLPR(m,A) (Modular polynomial list product) .

The inputs are m, an odd L-integer > 1, and a list A = (Al""’Ar)
of polynomials over Z with lAiIm < m/2 for each i. The output is a
polynomial B = NA (mod m) with iBlm < m/2.

(1) 1If A is empty set B « 1 and exit: otherwise, set B « first(A).
(2) Set A<« tail(Aa). If A is empty, exit.

(3) Set B <« MPMOD(m,B-first(A)) and go to (2).

Theorem MPLPR(m,A). Assume r > O, n; = deg A;, n = ny+...+n_.

ny
Then the computing time for MPLPR(m,A) is ;$(n+l)(n+r)L(m)2.
Proof: When r = 1, the time is ~ 1. Assume r > 1. When first(A) = Ai
the time for B . first(A) is 4 (n1 +...+ ni_1+ 1)(ni+1)L(m)2 and for
MPMOD 1s 4 (n; +...% nADLmM? < (n) +..t ny_p+D) (n+1)L(m) %, The
total time is thus
T
2
4 Z (ng +...+ ni_l+l)(ni+l)L(m)

i=2

T
4 @DLm? ] () 4 () Lm) % (o)
i=2

Remarks: If n; > 0 for all i then n > r, hence the time is :$(n+l)2L(m)2.

If n; = 0 for all i then the time is 2% rL(m)z.
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The algorithm given here is superior to the alternative of
applying MPMOD only once to the product Ay - A2 v+« A, which has a
total computing time A r(n+l)(n+r)L(m)2.

Algorithm MRECIP(m,a) (Modular algorithm, reciprocal of

a mod m). The inputs are an odd L-integer m > 1 and an L-integer a
bounded by m/2 and relatively prime to m. The output is an L-integer
b bounded by m/2 and satisfying ab = 1 (mod m).

The Extended Euclidean Algorithm (2.2E) is used.

Computing time: 2 L(m)?.

Algorithm MPQREM(m,A,B) (Modular polynomial quotient and

remainder). The inputs are an odd L-integer m > 1 and univariate
polynomials A and B with L-integer coefficients bounded by m/2; the
leading coefficient of B must be relatively prime to m. The output
is the list L = (Q,R) where Q and R are the quotient and remainder
obtained upon dividing A by B using arithmetic modulo mj; the
coefficients of Q and R are bounded by m/2.

Algorithm 1.3D is used.

Computing time: 4 (k+1) (h=-k+1) L(m)2 where h = deg A, k = deg B,

provided h > k.
The following algorithm is based on Algorithm 2.7S.

Algorithm MPSPEQ(m,A,B,S,T,U,Y,Z) (Modular polynomial

solution of a polynomial equation). The inputs are:
m, an odd L-integer > 1:
A,B,S,T, univariate polynomials with L-integer coefficients

bounded by m/2, satisfying AS+BT = 1 (mod m), with ldcf A relatively
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prime to m:
U, a univariate polynomial with L-integer coefficients.

The outputs are Y and Z, univariate polynomials with L-integer
coefficients bounded by m/2 such that AY+BZ = U (mod m) and deg Z < deg A.
(1) Set W+ MPMOD(m,U), V <~ MPMOD(m,TW).
(2) Using Algorithm MPQREM, compute Q,Z ¢ Z[x] such that

V 2 AQ+Z (mod m), deg Z < deg A,

|Q|m < m/2, ’le < m/2.
(3) Set Y < MPMOD(m,SW+B0).

Theorem MPSPEQ. Assume h = deg A > 0, k = deg B > O,

n = max(h+k, deg U), deg T < h, deg S < k, u = IU[l and L(n) v 1.
Then the computing time for Algorithm MPSPEQ is
4 n?L(m)2 4+ n L(m)L(u).
Proof: 1In step (1) the time for MPMOD(m,U) is 4 n L(m)L(u)
and for T-W is % hn L(m)?. since |TW|y < |T|;[W|; < h(ntl)m?, the
time for MPMOD(m,TW) is 2 (h+n) L(m) L(h(n+l)m?) 2 n L(m)? (since
L(hn) 4 L(n?) ~ 1.)
Since deg V < deg T + deg W < h + n, the time for MPQREM(m,V,A)
is 4 (deg A + 1)(deg V - deg A + 1) L(m)2 4 (h+1) n L(m)? 4 0?2 L(m)?.
The time for computing both S-W and B-Q is £ kn L(m)?. Since
[sw]l and IBQIl are both < (k+1)(n+l) m?, the time to compute SW+BQ
is 4 (ktn) L((k+1) (n+1)m2) £ n L(m). 1sw+BQ|1 < 2(k+1) (n+1l)m?,
hence the time for MPMOD(m,SW+BQ) is < (k+n)L(m) L(2 (k+1)nm?) < n L(m)2.
We thus see that the dominant times are those stated in the

theorem.
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3.3 Set operations

This section describes SAC-~1 implementations of the set
operation algorithms discussed in Section 1.6. Of main interest
here is the subprogram for generation of sum index sets, but for
completeness we also include descriptions of the more basic
operations,

Since the binary representation of an integer is unique,
there is a one-to-one correspondence between non-negative integers and
finite sets of non-negative integers, defined by

vy 16 1= 2 5. 42" and g = S PRI
We shall write J ==é(i) and i = ¢ (J) when i <> J.

If i is a non-negative integer, let

i= 7 pdor pDe 0,11
r r
r>0
denote its unique binary representation. We define operations "A"

(logical product) and '"v'" (logical sum) on "bits" (binary digits)

in the usual way, and on non-negative integers as follows:
P ¢S (DT, 5 ys = ) D (D,
iANj= riQ(br A br Y27, i Vi = rZD(br v br Y2 .

Thus, for example,

10 = (1010,

12 = (1100),,
10 A 12 = (1000), = 8,
10 v 12 = (1110), = 14.

With these definitions the following identities obviously hold:
dGin » =4 an s,
dav =8,
d ") =@ + Wk
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Thus the computation of S U (S5 + {n}) required in the sumset algorithm
of Section 1.6 may be performed by computing i V (i‘2n), where i<+ S,

The following algorithm computes k = i A j from nonnegative
integers i and j.

(1) Set k<« 0, m<« i, n<« j, r«1l.

(2) Ifm=0 or n =0, exit.

(3) Set p+mmod 2, m + Lm/ZJ,

¢ +nmod 2, n < [n/ZJ,
(1 ifp=1andq-=1,
£ < )
\0 otherwise,
k <« rt+k, r « 2r, and go to (2).

This algorithm simply determines the bits in the binary
representations of i and j and constructs k accordingly. If the
arithmetic indicated is performed using the SAC-1 Infinite Precision
Integer Arithmetic System operations, then i and j may be of arbitrary
size.

Most binary computers have hardware logical operations
A and V for single precision integers, and on such machines the
above algorithm can be made more efficient: Let B be the base used
in SAC-1 system (a positive integer whose base B representation is

Bn-l +...+ d 1is represented by the list (d ,d.,...,d );
o o’ 1 n

de’+d
n n-1
zero is represented by the empty list), and let L = LlogZBJ.
Replace "2" throughout the algorithm by "21" and compute t (which
will be a B-digit and therefore will be single-precision) using the

hardware A operation.
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In fact, on a binary machine 8 will generally be a power
of 2 and we will thus have f’ = B, so that the algorithm can be
rewritten using list operations in place of the arithmetic operations:

(1) Set k« (), m «1i, n < j.

(2) ITfm= () orn= (), set k + inverse(k) and exit,

(3) Set p + first(m), m + tail(m),

q < first(n), n < tail(n),

"A'" here is the hardware operation),

t +p A q (where
k « prefix(t,k),
and go to (2).
The latter algorithm (named IAND) is the one which actually
appears in the program listings in the appendix. This algorithm
and the other logical operation algorithms, whose descriptions follow,
should be considered '"primitives'", i.e. machine-dependent algorithms
which, for efficiency, must be written especially for a particular
machine, based on the characteristics of the hardware. (If we
ignored the question of efficiency then we could of course obtain
machine independence by programming the first algorithm discussed

for A and similar algorithms for the other operations.)

Algorithm TAND(i,j) (Integer AND) The inputs are non-

negative L-integers i and j; the output is the L-integer k = i A j.

Computing time:  ~amin(L(i),L(j))

Algorithm IOR(i,j) (Integer OR). The inputs are non-

negative L-integers i and j; the output is the L-integer k = i Vv j.‘
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Computing time: amax(L(1),L{J))

Algorithm ILS(i,n) (Integer Left Shift) The inputs are

an L-integer i and a non-negative Fortran integer n. The output is
. X n,
the L-integer j =2 1.

Computing time: AL(L) + n.

Using the algorithms just described, we obtain the following
algorithm for computing sumsets:

Algorithm SUMSET(N) (Sumset of N). The input N is a list

(nl,nz,...,nr) of positive Fortran integers. The output is a list

S = (io, ..,ir) of L-integers ik such that é(ik) is the sumset of

for k = 0,...,r. (io = 1, representing {0}, the sumset of

il"
Mysee sy
the empty set.)

(1) Set i « 1, S <« (i), N' « N.

[

(2) 1IfN' (), go to (3). Otherwise,

first(n'), i <« 1 Vv 2ni, prefix i to S, set N' <« tail(N'),

4

set n
and repeat this step.
(3) Set S <+ inverse(S) and exit.

Theorem SUMSET. Assume r > 0 and n = n1+...+nr. Then the
r
computing time for SUMSET(N) is ~ § (n1+...+nj) < rn,
j=1
Proof: The times for steps (1) and (3) are only ~l and ar,

respectively. 1In step (2) the times to compute o™i and 1 v 2"i

are both an + L(i). Hence the total time for step (2) is

T

N z n, + L(1, )

ja1 j-1
where lj—l represents the sumset of nl’n2""’nj—1' Since
L(i, ;) n n,+...4n, ., the total is

j-1 1 j-1’
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n = rn.
1

e~

T
v 2 (nl+.,,+nj) <
j=1 J

The following subprogram is useful for determining whether
a given integer is an element of the set represented by another
integer. (As with IAND, IOR, and ILS, the Fortran version given
the appendix is machine-dependent, it being assumed that B is a
power of 2.)

Algorithm MEMBER(n,i). The inputs are a Fortran integer n

and a non-negative L-integer i. The output is a Fortran integer b
such that if n ¢ ﬁ(i) then b = 1; otherwise, b = 0. (b = [i/ZnJ mod 2.)

Computing time: ~ min(n+l, L(i)).

We now come to the implementation of Algorithm 1.6G. We
recall that this algorithm output all "sum index sets'" satisfying

certain criteria. We gave an interpretation of the command "

output
J" as "put J in the output set Q'". Here we shall be generating sum
index lists J and we could produce as output a list of all sum index
lists which satisfy the given criteria. Since, however, we may not
use all of the sum index lists generated, this would be wasteful of
time and storage. Thus we shall set up the algorithm so that each
sum index lists generated is made available immediately. Also we
shall show the stacking mechanism necessary to implement recursion in
a language such as TFortran which does not a;low explicit recursion.

Algorithm GEN (STACK,N,S,n,k,J) (Generate sum index lists).

The inputs are:
STACK, a first order list (explained below);

N, a nonempty list (n nr) of positive Fortran integers;

1,...,
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S, a nonempty list (io""’ir) of L-integers such that
& (i) is the sumset of Dy el for 0 < k < nj
n, a Fortran integer;
k, a Fortran integer satisfying 1 < k < r.
The outputs are STACK and J, a list of indices (j],...,jv)

such that

v £ k and nj1+...+njv = n. (%)

With fixed values for N, S and n, repeatedly performing

1 i'jl < ... <

GEN will yield all lists J = (jl,...,jv) which satisfy (*). The
algorithm must be performed initially with STACK = ( ). When all such
lists have been generated the values of STACK and J will be ( ). If
there are no such lists then STACK = ( ) and J = ( ) will be output
the first time the algorithm is performed.

In the algorithm, by "stack j'" we mean "prefix j to STACK",
and by "unstack j" we mean ''set j « first(STACK), STACK < tall(STACK)'".
(1) TIf STACK # ( ), unstack j, set n + 0 and go to (6).

(2) [Initialize.] Set j <« length(N), J « ( ), N' <« inverse(N)
§' < inverse(S'), R « 10, and, while j > k, repeat the following:
set N' « tail(N'), S' « tail(S') and j <« j-1. (Steps (3)-(9)
correspond to the recursive Algorithm 1.6G(j,n,J); this step has
initialized to perform the algorithm with j = k and J = ( ).)

(3) [Output?] If n = 0, stack j, and exit. (This exit allows the
current value of J to be used outside the algorithm; the algorithm

may be reentered to generate another sum index list, provided

that neither STACK nor J is altered outside the algorithm.)




109

(4) [Recursion necessary?] If n-first(N') ¢ X(second(s')), go to (7).
(5) [Perform G(j~l,n~nj,{j}\J J).] Stack N',S',R, set n « n-first(N")
N' < tail(N'"), 8" « tail(S'), R+« 6, J « prefix(j,J), j < j-1,

and go to (3).
(6) Unstack R,S',N', set j < j+1, n « ntfirst(N'), J <« tail(J).
(7) [Recursion necessary?] 1f n ¢ é(second(s')), go to (R).
(8) [Perform G(j-1,n,J).] Stack N',S',R, set N' <« tail(N'"),
S" < tail(8"'), R« 9, j « j-1, and go to (3).
(9) Unstack R,S',N', set j « j+1, and go to (R).
(10) Exit (this exit is taken when all sum index lists have been
generated) .

Computing time: The time for each execution of GEN

(producing one sum index list J) is {rs, where r = length(N), s = IN.

The order in which Algorithm GEN produces the sum index
lists will be important in the application made in Section 3.5.3
{AMlgorithm PFPL). Let J = (jl""’jv) and K = (kl,...,kw) be sum
index lists output by the algorithm. Then

> = J precedes K (in order of output).

Iy kw
This may be seen from the fact that the algorithm generates all
index lists which end with the highest index before those which do
not. (In fact the order of output could be completely characterized
by saying that the inverses of the sum index lists appear in reverse
lexicographical order).

We conclude this section with a description of an algorithm

which will be used in conjunction with Algorithm GEN.
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Given an arbitrary list A = (a ,am) and a list

1,...

I = (il’“"’in) of integers satisfying 1 s.il S S S < length(A),

define A; = P I I A= i = .
we define Ag (all, ,aln) ( I () if A= ()

Algorithm SELECT(A,I) (Select AI from A). The inputs
are lists A and I as described above (the integers on I being Fortran
integers); the output is the list AI' Those elements of A which are
lists are borrowed for use in Ay.

Computing time: %min(in,m) + 1.
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3.4 Factor coefficient bounds

In this section we shall derive bounds on the integer
coefficients of factors of a given polynomial over the integers.
Several alternative bounds will be derived, which require varying
amounts of computation.

Knuth ([KNU69]) describes two basic methods of bounding the
coefficients of factors, both suggested by Collins. Suppose we are
oiven a non-zero polynomial C over the integers and a positive
integer k, and we wish to bound the coefficients of any factor of
C of degree k. One method depends on the observation that C splits
into lincar factors over the field of complex numbers and any factor
of degree k is a product of k such linear factors. Assuming for the
moment that we have some way of bounding the moduli of the complex
zeros of C, we obtain in the following theorem a bound on the norm of
a factor of C.

Theorem A. (Collins) Let C be a polynomial over Z of
degree n > 1, A be a factor of C over Z of degree k, and r be a bound
on the moduli of the complex zeros of C. Then

'Aly < [1def cf (r+D)k.

Pro6f: Let C(x) = c(x—Yl)...(xuyn), vhere ¢ = ldef C,

and the y; are the complex zeros of C. Then A(x) = a(x-0qy)...(x-0)

where a = ldef A and ay,...,04

. 1s a subsequence of Y1s-++sY,- Hence

[A[l ﬁA[al Ix~ulll PN |x~ak|l
= Ia](l + ]ui]) el (1 + luk!)

< le]e + Dk,
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C

It is not difficult to show that 1 is a bound on the

complex zeros of C; this bound is, however, usually rather crude.

Knuth suggests the bound ([KNU69], Exercise 4.63-20):

c 1/4

n-i

CH

r = 2 max, .
1<ix<n

(1

where c -,C, are the coefficients of C. This bound will otten be

o7
much better than ]C[l, but it can be almost twice as large as |CI1
xn~1)

= 0 4
(when C(x) = ™ + c.q

While the combination of Theorem A and this bound on the
zeros of C may be useful in practice, it does not yield as good a
theoretical bound on IAIl as do methods based on the second suggestion
of Collins, to which we now turn.

This method uses the theory of Lagrange interpolation.

Let x ,X  Dbe distinct complex numbers and define

X PPN
Og l’ A

K XL, 0 << k.

L.(x) =1
J i=0 X =Xyg

i#]

Thus Lj(xi) =0 if i # § and 1 if i = j: and if A is a polynomial of

degree < n,

Alx) = i

] A(xj) Lj(x), (2)

0
since both sides of this equation are polynomials of degree < k which

assumce the same values at k + 1 points. The polynomials Li(x),

0 < j 2 k,are called the Lagrange interpolating polynomials for x,,xj,...

-

Using (1), we may relate [All to the values A(xj):

~ )

a4 5-j=0 ‘A(Xj)! {lel'

[f A is a factor of C then A(xi)[C(xj), and if C(xj) # 0 for each j then




113
k
[aly = T TeGeplingly.
j=0
The following lemma will be applied to determining bounds on the ]Lj[l.

Lemma 1. Let Kpseer Xy be real numbers and let A(x) =

(x~xl)...(xWxn).

It

a. If xp,...,x, < 0 then |A], =17 (I-x)

n i=]

i

b If x,,..0,x, 20 then IAll

n
1° s ﬂ‘_l (1+Xi)

c. In general, |Aj; < IIT (1 + {x,]|).
. Ay =@ b
Proof: Gautchi [GAU62] gives a proof for the more general

case in which the x; are complex. Restricting the X; to be real permits

the following simpler proof.

1 = n i &) b4 & > N a
a. Write A(x) =0 a;x . Then asdyse ey 2 0, hencc
n
1A1l = Z a; = A1) = (I-xp)...(1=x )

b. 1In this case («—l)n"iai > 0 for each i. hence

n . n .
J D% Fay = D] a =D}
o o

i

|aly

(-1)"A(-1) = (—1)“(_1~x1) coe (1)

(l+xl) v (1+xn).
c. We may assume, without loss of generality, that

x},»..,xj <0, Xj+l""’xn > 0. Let Al(x> = (X_xl)"’(x—xj)’
Ay(x) = Cx=xjp1) ... Gex ). Them A = AjA, and, from a and b,

J n n
1A[1 S-lAllllAzll = .ﬂ (1“Xi) 1l (l+xi) = 1 (1+]xi‘).

.

i=1 i=j+1 i=1

Theorem B. Let X 5eeesX be distinct real numbers and let

k

L.(x), 0 < j < k, be the Lagrange interpolating polynomials for X sy
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Then
iﬂiﬂ- s 02 3 < k;
i

a. leIl hS

o= e

i
i
b. If the Xj are distinct integers such that |Xj‘-i m

for 0 < j < k, then

!Lj!l_g )X, 0 < 5 < k.

Proof: a. Follows immediately from the definition of 1.i

and Lemma 1, part c.

b. Since the xj are distinct integers, lxj—xil > 1 for each
i and j; hence the result follows from a.

Theorem C. (Collins). Let C be a polynomial over Z of
degree n > 1, A be a factor of C over Z of degree k, and let

m = f(n+k)/2]. Then

n+k+1

IAll < (m+1) |c|

1
Proof: Since Z2mt+l = Z(E;EJ + 1 2 nt+k+l, and C is of degree n, C

must be nonzero at least k+l of the 2mt+l points -m,...,0,...,m.

Choose X, 5++.,X, from these points so that C(xj) #0, 0 <3 <k, and
let Lo""’Lk be the corresponding Lagrange interpolating polynomials.

Then
k
A(x) = ] A(x)L.(x)
j20 3773

and, as noted prior to Lemma 1,
le
Al < T Jeep] (L], 3
17 520 J j'l

lHence, from Theorem B, part b,
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K k
lal, < (m+1) Yoo .
. |
j=0
Letting cn,...,co be the coefficients of C, we have

jae]

jotpl < T legllaylt < ncl:

hence
1A, < @D ) w® Jofy < ™ gl
Corollary. For any factor A of C,
1372
lA!l < (n+1)“" ‘CI1

Proof: If deg A = n then lA]l.s C

1 Otherwise, we
obtain the bound stated by substituting n-1 for k in the bound
given in the theorem.

As noted earlier, the best theoretical bound obtainable from
Theorem A and a bound on the complex zeros of C is probably

|Al{ < |ldef C C

(

k
+ 1
1 )
Hence, for fixed n = deg C and k = deg A, the bound is proportional
to <!Cll + 1)k, whereas Theorem C gives a bound directly proportional

0f course, the bound actually computed from Theorem A and

to

C )
(1) may often be better than that given by Theorem C. We shall now
show, however, how we may obtain from Lagrange interpolating theory
bounds which generally are much better than that given by Theorem C.
The basic idea for improvement is to work directly with (3),
evaluating C at 0, +1,+2,... until points Koo o Xy have been found
such that C(xj) # 0, 0 < j < k. Assuming no zeros of C were actually

found, we would have ]x,‘g‘m = fk/Z}, and the points of interpolation
3
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would be -m,...,0,...,m. The next theorem shows that for this
special set of points we obtain bounds on the norms of the inter-
polating polynomials which are much better than in the general case.
Theorem D. Let L(T)(x), -m £ j < m, be the Lagrange
3

interpolating polynomials for the points, -m,...,0,...,m, where m > 1,

Then

3l M G

LY,
I j2+l (mti) ' (m=9)!

b. 1L<g>|l< 4

m
c. 3 1L<g>[1 < 4/,

j=-m
m x~1
Proof: a. L,(x) = T T
J i=-m J7F
i#]
- (~1ym-] (xtm) (x+m-1) ... (x-m)

(m+§) ! (m=3) ! (x~3)
_1ym-] m
- (-1 xtj (xz—iz).
(M) 1(m-9)!  x  i=0
i#]i]

Let Pj(x) = xt+j, Qj(x) = H?=O (x2~iz)_ By Lemma 1, part b,
1#]3]

lell = H?zO (i2+1), and since Qj is a polynomial in xz,

| i#]5]

p.aly = Iply o

I
= (|3 i=1

Now a follows immediately.

b. From n.




L] = @™ @)
_,m 1
=n,_, (I + 12)‘

Using complex variable

theory, it may be shown that

1o +52) = o sinh 4 = 3.66....

i=1

c. From a, ) n o

m, i+ em @)® Ti—g G+
]lel— ¥+l (m+i) M (m=-3) ! (2m)! (m!)?2
=_Litt£ 2m \ (2m 1 IL(m)l-
341 [m*j“m) °
Thus

m -1 \ m
L I o I G P i
m j m 1 2y (mHd

2m -1 (m)
[m ]|L m|

Using the following refinement of Stirling's approximation,

‘/ETT mm+l/2
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- L1yl - o= 1
o e(12m+-l) < m! < /o mm+l/2 oM e(lZm)

([FEL68], p. 54), it may be shown that

m

5B

from which

follows.

[Zm]‘l < Jom 4om e(7m)~l ’

]L(g)l] 4" < [(W—l sinh w) e(7m) ] /m

The coefficient in brackets is < 4 for m > 1 and one can

verify directly that X? ]L(?)]l =4 < 4v/wm for m = 1.
J=-m
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From Theorem D we may obtain several different bounds for
lA]l, requiring varying amounts of éomputation. The next theorem
gives three such bounds. In order to obtain these bounds we have to
assume that C does not vanish at the points -m,...,m. This assumption
is easily satisfied in the application to factoring, since if we find
C(i) = 0 for some i, |i| < m, then we may remove the linear factor
x~i and begin again with the remaining factor.

Theorem E. Let C e Z[x] and let A be a factor of C of

degree k. Assume C(j) # O for all integers j such that |j| « m = [k/21

Then

By (m)

a alyp < T le@] 1P
j=-m
m

b Al <4 ) el
j=-m

c [A|1_<_4/Trm max  |C(i)].

|3]< m
Proof: a. Since 2m+l = 2[k/2]+1 > k1, there are at least
k+1 points j such that ljl‘ﬁ m; hence A is determined by its values
at these points:
o (m)
A(x) = ) A L3 (0,
feem

from which a follows by an argument given previously.

b. As was shown in the proof of Theorem D, part c,

1+l (o ) -1
IL(?)Il - 3] 2m [Zm] lL(:)Il ,

3241 wHi) (m

hence

L« L™, 5 40
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Thus, from a and Theorem D, part b,

(m), ¢ ,
]A|1 s.m?xsm !L i !l iz_m lC(l)l
m m R
= lL(g)ll Yoo Je@)] <4 T ey,
i=-m i=-m

c. Follows immediately from a and Theorem D, part c.
The bound given by part b is simplest to compute, but we
shall now show that only a bit more computational effort is required
for the bound in part a.
Let m be fixed, let P = HT=1(i2+l)’ and let fj = P/[(m+i) !t (m=3)!1].
From Theorem D, part a,
|, = |31+
1" ——

P 3

fL(m>
h|

It is easy to compute fj from fj—l:

= P (m-3+1) m-j+l ¢
i () (- (m-g+1)r @t 3 il

f
. ) m . (m)
Hence the following algorithm computes b = 21=~m [C(J)! |L 3 | exactly:

(1) Set f <« n?=1(12+1)/(mz)2, b« fe

co)|, i ~ 1.

c(i) | L(‘Jf‘)l, f=f, ) If §>m, exit.

(2) (Now b Zi=»j+l i-1
(3) Set f <« (m-j+1)f/(m+j),
b« b+ GHDE[|C=9)] + [ci)]1/G>),

j <+ j+l, and go to (2).
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This algorithm is the basis of the bounding algorithm
PFB1l which we shall now describe. The main modification is to
arrange the computation so that only integer arithmetic is required,
rather than rational arithmetic. This gives a somewhat larger bound,
which is nevertheless smaller than that given by part b of Theorem D.
It is also necessary to check for cases in which C(i) = 0 for one or
more of the points i used, and to remove linear factors (x-1i) in

such cases.

Algorithm PFB1 (Co,m,C,L,b). (Polynomial factor bounding
algorithm, 1 variable) The inputs are a polynomial CO over 7 of
positive degree and a positive Fortran integer m. The outputs are a
polynomial C over Z, a list L of linear polynomials such that C, = ClL,
and a positive L-~integer b such that if A ;s any factor of C of degree < m,
then lAll < b.
(1) Set C < Co’ L+~ ().
(2) 1f deg C = 1, set b <« [c}l and exit.
(3) Compute C(0). If C(0) # 0, go to (5). Otherwise, set j <« 0.
(4) Set C(x) « C(x)/(x~3j), prefix x~j to L, and go to (2).

(5) Set f « 4, b « f-

C(O)! 3 ] < 1.

4-1° Co = CIL and C(i) # 0

(6) (Now b E‘Xg;ij+l e | L], £z
for |i] < j=1.) If j > m, exit.
(7) Compute C(j). If C(i) = 0, go to (4).
(8) Compute C(-j). If C(-j) = 0, set j « -j and go to (4).
(9) Set f « [(m-j+1)f/(m+i)],
b« b+ [(GHDE[[c-5) ] + [e [D/G2D]T,

j « j+1, and go to (6).
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Note: The Fortran version of this algorithm is written

2

with the further assumption that m“ + 1 < B, where § is the base used

in the SAC-1 integer arithmetic system.

Theorem PFBl. Lét n = deg Co and y be a bound on the
norm (I Il) of any factor of C,. Let k be the number (counting
multiplicity) of linear factors x-i of C, such that li[ < m. Assume
L{n) v 1, L{m) v 1. Then the computing time for Algorithm PFB1l is

(k+1) m[n?+nL(y)].

Proof: The time for step (4) is 4 n L{y) by Axiom CB’ part
¢, and the assumption L(m) ~ 1. Since evaluation of C at j involves
essentially the same computation as trial division of C by x-j, (this
is true of the SAC-1 Algorithm PSUBST which is used) we obtain from
Theorem 1.4T a bound for steps (7) and (8): nzL(j)+nL(j)L(y)%n2+nL(y).
In step (9), the time to compute f is 1 and to compute the term to
be added to b is £ n+L(y). The time for the addition is 2 L(bl)

where bl is the sum. Since

S

4 ) le@] and o] < v]il®,
i=-]

by

we have

o
AN

< 4 (23+1) 3T,
hence
L(bl) A n+ L(y).
Steps (6)-(9) are executed at most m times before finding one of
the k linear factors x-i such that !il < m, or terminating if the k
linear factors have already been removed, hence we obtain the bound
stated for all of the executions of these steps, and it is easily verified

that this also bounds the time for all executions of the other steps.



122

3.5 Main algorithms for factoring over the integers

We are now in a position to discuss the principal algorithms
for factoring univariate polynomials over the integers. These
algorithms are based on the abstract algorithms presented in Sections

2.6, 2.7 and 2.8.

3.5.1 Algorithm PFH1

We shall not present here an algorithm based on Algorithm
2.7H (Hensel's algorithm), since a theoretical computing time analysis
of such an algorithm shcows it to be inferior to an algorithm which
is based on the Quadratic Hensel Algorithm (2.8Q). We shall now
discuss the latter algorithm, which we call Algorithm PFH1l (a
comparison of the computing times is given following Theorem PFHI1
below).

In Algorithm PFH1, unlike Algorithm 2.8Q, we shall specify
a set of representatives of D/(q) = Z/(q) (recall that g takes on
the values p, pz,pa,....) The set to be used is {n ¢ Z:Inl < q/2}s
this choice is made in order to simplify the application of Algorithm
2.7P. The following lemma will be used to show that the coefficients
of the polynomials computed for a given value of q do lie in this set.

Lemma 1. Let m and n be odd positive integers and
U,V,W € Z[x] such that

U=V+ mW, th < m/2, |Wl00 < nf2.

w0

Then |U| < mn/2.

Proof: |U|oo 5-|V|m + mlwlw iAmgl + n-1 _ mn;l
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Algorithm PFHl (p,m,C,A,B,S,T,A,B) (Polynomial factorization

based on the Quadratic Hensel Algorithm (2.8Q), 1 variable). The
inputs are:

p, an odd positive prime integer (Fortran integer);

m = pj for some positive integer j (m is an L-integer);

C, a primitive positive polynomial over Z;

K;g;g;f, polynomials over GF(p) such that

h,(C) = AB and AS+BT = 1.

The outputs are polynomials A,B over Z such that

C = AB (mod m);

hy(a) = A, h,(B) = B:

|1dcf A] < p/2; |Alw, |Ble < m/2

Note: The conditions hp(A) A and |ldcf A|l < p/2 imply

that ldef A is a unit mod m and deg A = deg A.

(1) [Initialize.} Set q < p and obtain A,B,S,T € Z[x] such that
hy (A) ='K,...,hp(T) =T, |Alew < p/2,...,|T|e < p/2. (This
may be done conveniently using Algorithm CPGARN described in

[COL69a]).

(2) [Done?] 1If q = m, exit. (This exit is taken only if m = p.)

it

(3) [Compute Y,Z.] (Now A,B,S,T ¢ Z[x], C = AB and AS+BT 1 (mod q),
hy(A) = A, h, (B) =B, |ldef A] < p/2, |Alws |Blws |Slos |Tle < a/20)
Set U« (C-AB)/q. If q%2 > m, set § < m/q, A < MPMOD({,A),...,

T « MPMOD(d,B); otherwise, set d < q, A« A,...,% +« T, (Now
lAIm,...,li‘m < §/2.) Apply Algorithm MPSPEQ to q,A,ﬁ,é,f,U,

[=5] < q/21

obtaining Y,Z ¢ Z[x] such that AY+BZ = U (mod §), lY

|z|. < 4/2 and deg Z < deg A.
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(4) [Compute A*, B* and check for end.]. Set A* « A+qZ, B* « B+q¥.
(Then C « A*B* (mod qq); hp(A*) = A, hp(B*) = B, |ldcf A*| < p/2,
and, by Lemma 1, |A*|m, |B*|, < qq/2.) 1f q2 > m (in which case
qy = m), set A<« A*, B « B¥* and exit.

(5) [Compute Yqy,Z7.] Set Ul « (A*S+B*T-1)/q. Apply Algorithm
MPSPEQ to q,A,B,S,T,U;, obtaining Yy,Z; ¢ Z[x] such that

AY +BZ; = Uy (mod q), |Yllw, {zlloo < q/2 and deg Z; < deg A.
(6) [Compute S*,T*.] Set S* <« S—qYl, T* < T-qu. (Then A*S*+B*T#* :
1 (mod q2), |s*|_, |T*|e - a%/2).
2

(7) [Advance.] Replace q,A,B,S,T by q“,A*,B*,S* T*, and go to (3).

This algorithm differs from Algorithm 2.8Q mainly in the
method of termination: at the last iteration the modulus for input
to Algorithm MPSPEQ has been adjusted so that the coefficients of the
final output are bounded by m/2 (instead of pzk/Z where 2571 < j s.2k).
Also the computation of § and T is bypassed on the final iteration,
since they are not needed in the application of the algorithm. This
results in a non-trivial saving in computing time. (See the remark
following Theorem PFH1.)

In order to analyze the computing time of Algorithm PFHI1
it is necessary to establish some additional facts about the degrees
of the polynomials computed. The proofs will be based on the following
theorem, which is related to Algorithm 2.7S and Theorem 2.7S.

Theorem D. Let E be a commutative ring with identity and

A,B,Y,Z2,U ¢ E[x] with 1dcf A a unit of E, deg Z < deg A and AY+BZ = U.

Then
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deg Y < max(deg U -~ deg A, deg B -~ 1).
Proof: Since ldef A is a unit, deg(AY) = deg A + deg Y.
Also, from AY+BZ = U,

deg(AY) < max(deg U, deg BZ)

Ia

max(deg U, deg B + deg Z)

I~

max(deg U, deg B + deg A ~ 1);
hence

deg Y

A

max(deg U -~ deg A, deg B -~ 1).
Corollary 1. 1In Algorithm 2.7H let B be chosen initially
in step (1) so that deg B = deg ﬁ} and let Y be chosen in step (4)
so that deg Y = deg Y. Then A and B always satisfy
deg A + deg B < deg C. (%)
Proof: By the assumption, deg A + deg B = deg A + deg B
= deg(xﬁ) = deg h(C) < deg C after execution of step (l). Assuming
(*) holds at a given execution of step (2), we shall show that it holds
at the next.
In step (3) we have, by (*), that deg U < deg C, hence
deg‘ﬁﬂi deg C. By Theorem D,
deg Y = deg §'5,max(deg U - deg4K, deg B - 1)
< max(deg C - deg A, deg B - 1)
= deg C - deg A.
Let A1 = A+qZ, By = B+qY. Then
deg By < deg C - deg A = deg C - deg Ay,
and since step (5) sets A « A1 and B « By, (*) is still valid when

step (2) is reached again.
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Corollary 2. 1In Algorithm 2.8Q let B be chosen initiallv
so that deg B = degbﬁ and let Y he chosen i; step (3) with minimum
degree (i.e. so that q y ldcf Y). Then A and B always satisfy

deg A + deg B < deg C.
Proof: Almost identical to the proof of Corollary 1.
Corollary 3. In Algorithm PFH1, A and B always satisfy
deg A + deg B < deg C.
Proof: The assumptions of Corollary 2 are satisfied

w < p/2; and ‘Y]m < q/2.

since initially hp(B) = B and ‘B
Lemma 3., In Algorithm PFH1, assume deg S - deg B and
deg T < deg A. Then A,B,S,T always satisfy
deg T < deg A, deg S < deg B. (*)
Proof: Since A is chosen initially so that hP(A) = A and
EA{“ < p/2, we have deg A = deg A initially, and similarly for B,S,T.
l'hus (*) clearly holds initially. The first inequality clearly
remaing valid, since deg A remains constant and T is changed only bv
subtracting qu where deg Z1 < deg A. A new value S* of § is computed
as S* = S-q¥q; we shall show that deg S* < deg B*., Since deg S5 < deg B x
deg B*, it suffices to show that deg Yy < deg B*,
Since lYllm,tZl!w < q/2, Y; and Z; have the same degrees
when regarded as polynomials over Z/(q). Therefore, from Theorem D
we have
deg Y, < max(deg Uy - deg A, deg B - 1)
< max(deg U1 ~ deg A*, deg B* - L1).

Also




hence

and
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deg Ul_i max(deg A*S, deg B*T)

A

max(deg A* + deg S, deg B* + deg T)

I

max(deg A* + deg B - 1, deg B* + deg A* - 1)

= deg A* + deg B* -~ 1,

deg Ul - deg A* < deg B* - 1

deg ¥y < deg B* - 1.

Theorem PFH]1. Assume in Algorithm PFH1l, that degKK > 0,

deg B > 0, deg S « deg X; deg T < deg B, n = deg C, L(n) ~ 1, and

c = 4C

1

Then the computing time for the algorithm is
22L(m)? + nL(m)L(c).

Proof: Let h = deg A, k = deg B. By the lemmas just

proved, we have, at any time during execution of the algorithm

h+k < n,

deg S < k, deg T < h,

We proceed now to analyze the time for a single execution

of each step.

(1) The time for all applications of CPGARN is n
(see [COL69a]}, pp. 16-17).
(2) The time to compare q with m is L(m).

(3) The time for A B is (h+1)(k+1)L(q)2.

Since |AB 5,(h+1)(k+l)q2 and deg(AB) < n the time tp subtract AB
1

from C is

(n+1) [L(c)+L(q)] (using L(n) ~ 1.) Since c-ABI1 < C+

(h+1) (k+1)q? < C(h+l) (k+1)q%, the time to divide C-AB by q is
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A (D L(q) [L(c) + L(b+l) + L(k+l) + 2L(q)]
A (n+1)L(q) [L(c) + L(q)].

1f q2 < m then the time to compare q2 with m is 4 L(m)

and to obtain &,&,ﬁ,é,f is 41, 1If q2 > m then q < m, hence the time
to compare q2 with m is again AL(m); the time to apply MPMOD to
A,B,S and T is £ nL(q)L(q) 3 nL(q)z.

In order to apply Theorem MPSPEQ, let n = max (h+k, deg U);

then n < n and thus the time for Algorithm MPSPEQ is
4 0’L(g)? + nL(QL(w),

where u = lU‘l‘i (h+1) (k+1)cq; hence the time is
An’L()? + nL(QL(e).

(4) The time for q-Z is 4 h L(q)L(q) A h L(q)2 and the
tome to add qZ to A is A h L(q); the time for q'Y is A k L(q)2 for
B+qY is 4 k L(q). Thus the time for the whole step is ﬁrll&q)z.

(5) The time to compute both A*S and B*T is A hk L(q)2
and the time to add A*S and B*T and subtract 1 is 4n L(q). To
divide the result by q requires At11&q)2. Now let n = max(h+k, deg Ul);
again ;.i n and the time for Algorithm MPSPEQ is

4 nzL(q)z + 1 L(q)L(u;)

where u, = |U,| . < 2hkq; hence the time is < n L(q)z.

1l
(6) The time for this step has the same bound as step (4): n L(q)z.
(7) The time for this step is £ 1.

From this analysis we conclude that the total time for a

single execution of steps (3) through (7) is dominated by

nZL(q)2 + n L(q)L(c) + L(m),




To get the total for all executions, let k be chosen so

k-1 N
that p < m <p ; then
k k k k+1
2 i k+1 2
D L")~ J27L(p) v2 L(p) vL(p" ) aLm,
i=0 i=0
k k k k+1
27,2 i 2 k+1 2 2 2 2
LT )T A AL A4 L) vL(pT )T v L(m) T,
i=0 i=0

k
X L(m) = (k+1)L(m) ~ L{L(m))L(m) £ L(m)z.
i=0

i
Hence the total time for all executions of steps (3)-(7) is

4 nZL(m)2 +n L(m)L(c);
this of course also bounds the time for steps (1) and (2), and is
thus a bound for the entire algorithm.

This analysis shows that the time for the entire algorithms
is no more than a constant multiple of the time for an iteration with
¢ ~ m. Hence, the portion of time saved by not computing S and T
on the last iteration does not tend to zero as m grows large.

A similar analysis for an algorithm based on Algorithm 2.7H
yields a bound of nZL(m)3 + n L(m)zL(c), which is greater by a

factor of L(m) than the time for Algorithm PFHL.

3.5.2 Algorithm PFCl.

The following algorithm corresponds to Algorithm 2.7C, or
more precisely, to Algorithm 2.7C with the application of Algorithm
2.7H replaced by an application of Algorithm 2.8Q, since it uses

Algorithm PFH1. A second important difference is that the assumption
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that p % ldef C is made, permitting the last factor Fr to be computed
in a different, and probably more efficient, manner.

Algorithm PFCl (p,m,C,G) (Polynomial factorization based

on Algorithm 2.7C, 1 variable)
The inputs are:
p, an odd positive prime integer (Fortran integer);
m = pj for some positive integer j (m is an L-integer);
C, a primitive positive polynomial over Z such that

P * ldef C and hp(C) is squarefree over GF(p);

is a monic polynomial

G = (Gl""’Gr) where r > 2, each Gi

over GF(p), of positive degree, and
hp(C) = (ldef hp(C)) Gl"'Gr'
The output is a list F = (Fl""’Fr) of polynomials over 2 such that
C = (ldef C) Fl"'Fr (mod m)
hp(Fi) = Gi’ deg Fi = deg Gi’ Fi is monic,[ FJm < m/2,
i=1,...,r,
(1) Set C «h (€), '« G, F « ().
(2) Set A «first(G'), G'< tail(G'), B <«C/A.
(3) Using Algorithm CPEGCD, obtain S and T over GF(p) such that
ASH+BT = 1.
(4) Apply Algorithm PFH1 to p,m,C,K,g,g,E and let A and B be the output.
(5) Prefix A to F and set C<« B, C < B.
(6) If tail(G') # (), go to (2).
(7) Set ¢ « MRECIP(m,ldcf C), A « MPMOD(m,c-C). Prefix A to F,

invert F, and exit.
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Theorem PFCl. Let n = deg C, ¢ = bll, r = length(G)
and assume L{(n) ~ 1. Then the computing time for Algorithm PFCl is
4 rn'zL(m)2 + n L(m)L(c).
Proof: The time to compute hp(C) is £ (nt1)L(c). Letting
k = deg A in step (2), the time to compute C/A is < (k+1) (n-k+1) and
the time for Algorithm CPEGCD in step (3) has the same bound. By
Theorem PFCl the time for step (4) is 3 nzL(m}2 + n L{m)L(c)

Cl, < (n+l)m/2 thercafter.

the first time and 4 nzL(m)2 thereafter, since 1
Steps (5) and (6) are trivial. 1In step (7) the time for
MRECIP (m,1dcf C) is £ L(m)2, for &-C is (n+1)L(m)2 for MPMOD(m,cC) is
ﬁ(n+l)L(m)2 and for inverting F is Ar.
The time for steps (2) and (3) is ﬁnz. Steps (2)-(6)

are executed r-1 times, and the conclusion of the theorem now follows

easily.

3.5.3 Algorithm PFPL

The next algorithm to be described in PFP1l, which is based
on Algorithm 2.6P. PFPl takes an additional input, an L-integer D
which represents a set of positive integers., It is assumed in the
algorithm that this set contains the degree d of every factor A of
¢ such that 0 < d < d*, where d* = l(deg C)/ZJ. The use of D allows
the algorithm to take advantage of information about the possible
degrees of factors of C which may have been gathered from previous
computation. In Algorithm PFZ1l, which is described in the next

subsection, such information is obtained by comparing the degrees of
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factorizations of C modulo several prime integers. (If no information
about degrees of factors were known then PFPl could be performed
with D = 2+4+8+...+2d¢, representing the set {1,2,3,...,d*}.)

Another important modification of Algorithm 2.6P which is
made in Pl is the inclusion of a "trailing coefficient test'.
Before computing a tentative factor A* of C* (= (ldcf C)C), its
trailing coefficient (constant term) t is computed from the trailing
coefficients of the selected modulo m factors. If t fails to divide
t* = tlef C*, then A* cannot divide C*, and hence the computation of
A* and the trial division of C* by A* may be skipped.

In the algorithm we shall take as a set of reprcsentatives
of Z/(m) the set R = {n:|n| < m/2}. The input C is assumed to be
R-factorable, which, we recall, means that R contains the coefficients
of any factor A* of C% = (ldcf C)C such that deg A* < d* and
ldef A*|ldcf C. We showed in Section 3.4 how a bound b on the
coefficients of factors of C of degree < d* could be computed, and
in Section 2.6 that the choice of m > 2b (ldcf C) ensures that C
will be R-factorable.

In the statement of the algorithm we use the notation NJ
introduced at the end of Section 3.3.

Algorithm PFP1 (m,C,G,D) (Polynomial lactorization based

on Algorithm 2.6P, 1 variable). The inputs are:
m, an odd L-integer > 1;
C, a nonconstant, primitive, positive polynomial over Z

which is R-factorable, where R={n e Z:|n| < m/2};
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G, a list (Gl""’Gr) of monic polynomials, a complete
factorization of C modulo m;
D, a positive L~integer representing a set of positive
integers which contains the set {d:d = deg A, A|C,
0 < dx< [(deg C)/2]}.
The output of the algorithm is a list F of the prime positive
polynomials over Z such that C = NIF.
(1) Set F« ():d<+ 1; N« (nl,...,nr), where ng = deg Gy;

T < (tl,...,tr), where ty, = tlcf G k « r + length(G).

i’
(2)Set ¢ <« 1ldecf G, C* « c+C, t* « tlcf C*, S « SUMSET(N), l’+ D A last(S).

(3) 1fd-~> L(deg C)/ZJ, prefix C to F and exit. If d ¢ [} or k=0, go to (7).
(4) Using Algorithm GEN, generate a new list J = (jl,...,jv) such

that 1 i'jl < v.. < < k and ZN] = d. If all such lists have

Iy
already been found, go to (7).
(5) Set t <« MPLPR(m,prefix(c,TJ)). If t # t*, po to (4).
(6) Set A* « MPLPR(m,prefix(c,GJ)). If A* } C*, go to (4). Otherwise,
set B* « C*/A* and go to (8).
(7) Set d <« d+l1, k « r and go to (3).
(8) Set A « pp(A*), prefix A to F, and set C <+ B¥*/ldcf A.
Construct K = (kl,...,kw) such that 1 5'kl < ... <k, s
and {jl,...,jv}(ﬂ {kl,...,kw} = {1l,...,r}. Set G <« Ggs N < N,
T« Ty, ¥ « r=v, k + j -v, and go to (2).
Aside from the differences between this algorithm and

Algorithm 2.6P mentioned earlier, there is another important change,

involving the generation of sum index lists. We make use of the fact



noted in Section 3.3, that Algorithm GEN outputs g particular sum
index list J = (jl""’jv) after outputting all sum index lists
with higher final index. Hence, upon finding a factor A of degree d
corresponding to J in step (8), we know that all sum index lists
I = (i,,...,1i ) with i > j and IN_ = d have already been tried.

1 u u v 1
After removing the elements corresponding to J from lists G, N and
T, and setting r « r-v, the sum index lists J' = (jl,...,j'v.)

< wv. < j' , < rand IN_, = d which have alrcady

such that 1 < jl v 3

been tried are those with j'v, > jv~v, hence setting k <« jv—v in
this case is valid.

Thus no sum index lists are considered in the algorithm
more than once, and this fact is used in the proof of the computing

time analysis theorem which follows.

b

‘/\

Theorem PFP1., ILet C = C,C .C , di = deg Ci’ 1 <d

172°""7e 1

n = deg C, and
{xnax{de_l,Lde/ZJ} if e > 1.
|n/2] if e = 1.

Let § be the number of products P = HGJ such that J = (jl,...,jv),
1 < j1 < ve. < j_ <1 =1length(G), and 1 < deg P < u, and let T be the
number of these products satisfying the additional condition that
MMOD (m, (1dcf C) (tlcf P)) is a divisor of (ldcf C)(tlef C). Finally,
let v be a bound on IA[1 for any factor A of C. Then the computing
time for PFP1l is

4 [(eHl-e)n” + 1 + sul L(m)”

+ (Tuyn + &) L(m)L(y) + érn

A 6un L(m) [n L(m) + L(y)]
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where § < min(Zr,r“).

Proof: We first consider the time for a single execution

of each step.

(1) Since r < n the time for this step is 4 n.

(2) Since C is R-factorable, where R = {n:|n| < m/2}
we have |c| s m/2; hence the time to compute ¢:-C is n L(m)L(Y).
The time for the other operations is 2 rn.

(3) The time to test whether d 6‘15 is 4 n,.

(4) The time for Algorithm GEN is 4 rn.

(5) The time to obtain T]

the time to apply MPLPR is A4 UL(m)z. Testing whether t divides t*

requires 2 L(m)L(Y), since It! <m and !t*l S.Yz.

(6) The time to obtain GJ is £ r and to apply MPLPR is

A uz L(m)z. The time to test whether A¥* divides C* is, from Axiom
1.4c1, part ¢, and Theorem 1.4T,

{un L(m)L(y), if the quotient exists,
j

i L{m)L(y) + unzL(m)z, otherwise.

(7) 3 1.
(8) To compute pp(A¥*) requires %4 u’L(m)2 and to divide B*

by ldef A requires $n L(m)L(y).

We summarize these bounds in the following table and also

indicate the maximum number of times each step is executed.

is A r and, since length (TJ) <d
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Step Time for one execution Maximum number
(1) n 1
(2) n L)L) + rn e
(3) n e +
) rn § +
(5) £+ uL(m? + L(mLE) 5
6) r 4 L(m)? T
un L(m)L(y) e-1
un LLG) + un’Lim)? T+
(7) 1 "
(8) pL(m“ + n L(m)L(y) e-1

Assume that D = 244+..,

o l(deg ©) /2]

of executions

o
[
©

obviously the time

for the general case will be dominated by the time for the case in

which this assumption holds.

It is then easy to sce that the values given for the

maximum number of executions are exact in case e = 1 (i.e. when C

is irreducible). The wvalues for steps (1), (2), (7),

second part of step

(6) are exact when e > 1

(8) and the

as well. That

the other values given are upper bounds when e > 1 follows from: (1)

the number of products to be considered is diminished when a factor

is removed in step (8), since the length of G is reduced; and (2) no

products are considered more than once (note that this would not be

true if we always took k = r in step (4)).

The first bound in the statement of the theorem may now

be obtained from the above table using e-1 < T < 6; the second bound
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then follows using these relations and u <n.
In order to obtain the bound stated for 6, let N ==(n1,n2,...,nr))
where n, = deg Gi’ and let s(N,d) denote the number of sum index
lists J = (jl"'°’jv> such that 1< j1 < 4e. < jv\ghr and ZNJ = d.
Thus

H
§ = Z s(N,d).
d=1
If we define s(N,d) = 0 for d < 0 and observe that for N' = (nl,...,nr,n)
we have the recurrence relation

s(N',d) = s(N,d) + s(N,d-n),

then we may easily prove by induction on r the following:

n
¥ s(N,d) = 2r, where r = length(N), n = IN,
d=0

5 H

2 s(N,d) < r", where r = lengt.. N), k > 1.
d=1

Combining these results, we thus have § ;_min(Zr,ru).

Corollary. Assume the hypothesis of Theorem PFPl and,
in addition, that C is a product of polynomials of degree no greater
than some fixed positive integer k. Then the computing time for
Algorithm PFP1 is

< 0 Lm? + " lLmnon .

Proof: Use the relations e,r <n, ¥ £k V1 and

T<68 =< M ﬁ.nk to simplify the second bound given in the theorem.

For example, if C is the product of linear factors, the

computing time is

< n3L(m)2 o+ nZL(m)L(y).
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3.5.4 Algorithm PFZ1

This algorithm is based on Algorithm 2.7.1Z, but again
there are some significant modifications. Most importantly, factorizations
modulo several primes are considered, and the prime p which yields the
fewest irreducible factors is chosen for input to the Hensel algorithms.
This reduces the probability that the mod p factorization will have
many more irreducible factors than the integer factorization. This
is of critical importance since the computing time for Algorithm PFP1
can be an exponential function of the number of irreducible factors
mod p.

Secondly, important information is obtained from the mod p
factorizations about the possible degrees of factors of the input
polynomial C. The set of degrees of factors of C must be contained in
the set D_ of degrees of mod p factors for any prime p, and therefore
must be contained in D, N D_ N ... N Dp where PysPy,---»>P are the

Py ) v
primes for which factorizations are carried out. D_ is just the

P
sumset of the list of degrees of the irreducible factors mod p, and
is thus easily computed using Algorithm SUMSET (Section 3.3). If C
is irreducible then we will often find
Dpln Dp2 N ...=%0, deg C}

after a few primes PysPyseee have been tried, thus proving irreducibiricy
without ever having to apply the Hensel algorithms.

We should mention that irreducibility will not often be

proved by finding that C is irreducible mod p for one of the primes

tried, unless v is taken close to n = deg C. This may be shown by
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an argument similar to Knuth's proof that almost all polynomials over
the integers are irreducible [KNU69, Ex. 4.6.2-27]: The probability
that a random monic polynomial of degree n over GF(p) is reducible

is about 1-1/n, and by the Chinese Remainder Theorem the probability
that a random polynomial of degree n over the integers is reducible
modulo v different primes is about (1-1/m)”.  For large n, this

probability is

[(1 - %)n]v/n v e-v/n_

1 )
v/n < =, we must have v > n ln 2 * .7n; thus the

In order to have e’ o

probability of C being reducible modulo all of the primes PysPosesP
will be less than 1/2 only if we take v greater than about .7n.

Two algorithms, which are implemented in the SAC-1 Modular
Arithmetic System [COL69a]l are used for the mod p factorizations.
CPBERL implements Berkekamp's algorithm and computes the complete
squarefree factorization of any monic squarefree polynomial A over
GF(p). The computing time for CPBERL is < pn3 (assuming L(p) ™ 1).

For the purposes of finding a prime which gives few
irreducible factors and of computing the degree sets Dp, it is not
actually necessary to obtain the complete factorization modulo each
of the primes tested. All that is necessary is a list of the degrees
of the irreducible factors and this can be obtained from the output of
Algorithm CPDDF (distinct degree iactorization). Given a monic
squarefree polynomial A over GF(p) to be factored, CPDDF produces a
list ((dl’al>""’(ds’As)) where the dy are positive integers,

dy < d, < ... <dg, and Ay is the product of all monic irreducible
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factors of A which are of degree di' Thus A = Al”'As and this is a
complete factorization just in case no two irreducible factors of A
have the same degree.

The computing time for CPDDF is 5113 if L(p) v 1; hence
this algorithm is practicable for much larger primes than CPBERL. Even
for small primes it appears to be about 20 per cent faster, according
to empirical results. Therefore this algorithm is used to obtain the
lists of the degrees of irreducible factors over GF(p) for several
primes in the first phase of Algorithm PFZ1l, and CPBERL is applied
only to the single prime selected and the reducible factors output by

CPDDF for that prime.

Algorithm PFZ1(C) (Polynomial factorization based on

Algorithm 2.7.1Z, 1 variable). The input C is a non-constant, primitive,
squarefree, positive polynomial over Z. Two other inputs, v and SPRIME,
are required in COMMON block TRS (COMMON/TR5/NU,SPRIME). v is a
positive Fortran integer which specifies the maximum number of primes
for which mod p factorizations should be tried. SPRIME is a list of
small odd positive prime integers (Fortran integers). This list should
be of length no less than, say, min(20,2v), so that it will not be
exhausted in practical application (if the list is exhausted then the
algorithm terminates with no output.)

The output of the algorithm, provided the list SPRIME is
not exhausted, is a list F of the prime positive polynomials over Z

such that C = IIF.




(1)

(2)

(3)
(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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[Initialize for factoring modulo v different primes.] Set
SP « SPRIME, RMIN < deg C + 1, NP « 1, D < 29™1_1  uhere
d* = |(deg €)/2]. (D represents the set {0,1,...,d*}).
[Get next prime.] If SP = ( ), stop. Otherwise, set
p « first(SP), SP <« tail(SP).
[h (ldef C) = 07] If p|1ldef €, go to (2).
[hp(C) squarefree?] Set C < hp(C), B « gcd(C,C'). If deg B # 0,
go to (2). (We have deg B = 0 iff C is squarefree.)
[Apply CPDDF.] Apply Algorithm CPDDF to the monic associate
of46, obtaining a list G = ((dl,Al),...,(dS,As)), where the di
are positive integers, dl < .. < ds’ and Ai is the product of
all prime monic factors of C which are of degree di' (Thus
C = (ldef C) A...A_.)
[Construct N = (nl,...,nk), where the n; are the degrees of the
prime factors of El] Set N« () and for each (d,A) on G,
prefix d to N, (deg A)/d times.
fE prime?] Set r < length(N). If r = 1, set F « (C) and exit.
[Compute sumset.] Set S « SUMSET(N), D « D A last(S). If D = 1,
set F +« (C) and exit.
[New minimum number of factors?] If r < RMIN, set RMIN <« r,
p* + p, G* « G.
[v factorizations tried?] Set NP « NP + 1. If NP < v, go to (2).
[Pick prime which yields minimum number of factors.] Set p <« p¥%,

G« Gx, H<~ ().
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(12) [Obtain complete factorization of hp(C).] For each (d,A) on G:
if d = deg A, prefix A to H; otherwise apply Algorithm CPBERL
to p and A, obtaining a list F of the prime monic factors of A,
and concatenate F with H. Then set G « inverse(H).

(13) [Obtain bound.] Set d +« LlogZQJ (d is then the maximum of the
degrees in the set represented by D) and apply Algorithm PFB1
to C and d, obtaining C* over Z, a list F of monic linear poly-
nomials such that C = C*IF and an integer b such that |A{1 <b
for any factor A of C* of degree < d. 1If deg C* = 1, prefix C*
to F and exit. Otherwise, set C « C* and, for each linear factor
Aon F, set A « hp(A) and search for and remove A from G. If
length(G) = 1, prefix C to F and exit.

(14) [Compute modulus.] Set m <« p, q « 2b(ldcf C). While m < ¢
repeat: set m + mp.

(15) [Apply PFCl.] Apply Algorithm PFCl to p,m,C,G, obtaining a

list F(1) = (F{l),...,Fél)) of polynomials over Z such that

¢z (et 0 BV FD (mod m),
(L, _ (1) -
hp(Fi ) = Gi’ deg Fi deg Gi’
Fil)is monlc, and [F|§lé_m/2, i=1,...,t.

‘ 1
(16) {Apply PFPl.] Apply Algorithm PFP1l to m,C,F( ),D, obtaining a

list F(2>of the prime positive polynomials over Z such that
C = HF(Z). Concatenate F(z) with F and exit.
As we remarked earlier, if C is irreducible (and v is
sufficiently large), often only the first phase of the algorithm, steps

(1)-(10), will be performed. Therefore we give separate consideration
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in the following computing time analysis to the two phases.

Theorem PFZ1. a. Let pl'i p2 o & Py be the v smallest
odd positive prime integers such that Py y ldcf C and C is squarefree
modulo Py for i_g i < v; and @ be the number of odd positive primes < D, -
Also, let c = IC]l, n = deg C, and assume L(p,), L(n) ~ 1. Then the
computing time for steps (1)-(10) of Algorithm PFZ1 is

4 vn> + on® + enL(c).
b. Let r = min N(pi,C),
1<ix<v
where N(p,C) is the number of irreducible factors of C modulo p; k be
the number of linear factors x-i of C such that li{ < !n/ZI;Y and u be
defined as in Theorem PFP1l and m be the integer computed in step (13).
Then the computing time for steps (11)-(16) of Algorithm PFZ1 is
4 pvn3 + (k+l)n2[n+L(y)] + min(Zr,r“) punL(m) [nL{(m) + L(y)].

c. P, 4 v +n L(c).

d. L(m) % n+tL(y).

e. Hence the time for steps (1)-(10) is

$ n?L(e)2 + (n3+un)L(c) + vn3,
and for steps (11)-(15) is
A vn3 + n®L(c) + min(Zr,rU)unz(n+L(v))2.
and thus for the entire algorithm the time is
4 (n4+vn)L(c) + vn3 + min(2r,ru)un2(n+L(y))2.

f. 1If we assume p, v 1 (i.e. if we restrict the set of inputs
C to those for which p, is no greater than some fixed bound) then the time
for steps (1)-(10) is 4 n3 +n L(c) and for steps (11)-(15) is

< min(2F,run’ (0 + L

the latter bound is a bound for the entire algorichm,
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Remark: The assumption in f is actually made in the
algérithm since the list SPRIME of small primes used by the algorithm
is of finite length.

Proof: Let us first consider the time for a single execution
of each step.

(1) The time to compute D is 24 n and the other parts are trivial.

(2) ~ 1,

(3) AL(e).

(4) The time for hp(C) is 4 n L(c) and for gcd(T,E') is

n2 (using p < p, and the assumption L(p ) ~ 1).

(5) The time to apply CPDDF is <nd + nZL(p) 4 n3 (see
[coL69al) .

(6),(7). 3 n.

(8) 4 rn £ n2.

(9),(10),(11) ~ 1.

(12) The time to apply CPBERL to a polynomial of degree d
over GF(p) is A de. Let é]""’ét be the polynomials on G to which
CPBERL is applied and let ai = deg éi' Then the computing time for
all applications is % p(a% +.. .+ az) 5,p(51 +..0+ at)3 < pn3.

(13) From Theorem PFBl, the time is £ (k+l)n2[n+L(y)].

(14) The time to compute q is 4 L(b)L(c) and the time to
compute m is ﬁI&q)z o L(m)z.

(15) JFrom Theorem PFCl, the time is £ rnZL(m)z + n L(m)L(y).

(16) From Theorem PFP1, the time is £ min(2%¥,r*)un L(m)

[n L(m) + L(y)].




a. Step (1) is executed only once, steps (2) and (3) are
executed O times and step (4) at most © times. Steps (5)-(10) are
each executed v times. From these bounds and the above bounds for
the time for each step we immediately obtain the bound claimed.

b. Immediate from the bounds for each step.

c. Let Qys9ps -+ es9g_,, be the odd primes < P, such that
q;|1ldef C or C is not squarefree modulo q;. Lgtting R = res(C,C"),
we see from the proof of the Corollary to Theorem 2.7.1G that each ay
divides either ldcf C or R. But actually ldef C may be factored from
the first column of the determinant expression for R, hence each a;

divides R. Therefore ql...qG vIR and

O=-v

37 < qq.. < |R]

q@-v
0-v 3 L(R).

Using Hadamard's inequality [KNU69,p. 375] and the fact that

n n
2,1/2
<§ai> s_glail,
we find that
[’ < o® Jc] 7,

hence
L(R) £ n L(n) + (2n-1)L(c) 2 n L(c),
since L(n) ~ 1. Therefore
©3 v+n L.
According to the Prime Number Theorem, the number of primes < x is

codominant with x/In x; hence vapv/L(pv) and, since we are assuming

L(p,) ~ 1, we have p, 4 v+ n L.
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d. We have m > q = 2b (ldcf C) and either m = p or m < qp.
Hence L(m) 4 L(q) + L(p) £ L(q), since L(p) < L(pV) v 1. Also
L(q) 3 L(b) + L(ldef C) 2 L(B) + L(c),
and, as noted in the proof of Theorem PFB1l, L(b) £ n+ L(y). Therefore
L(m) 4 n + L(y) + L(c) £ n + L(y).

e,f. Immediate from a-d and the relations 0 < p., k < n.

3.5.5 Algorithm PFACT1

The final algorithm which we shall describe is PFACT1, which
factors an arbitrary nonzero polynomial A over the integers. PFACT1
first factors out the content of A using Algorithm PCPP of the SAC-1
Polynomial System. The content itself is not factored into prime
integers by the algorithm since this may not be necessary in some
applications. The primitive part of A is factored into squarefree
polynomials using Algorithm PSQFRE of the SAC-1 Rational Function
Integration system. This algorithm is based on Horowitz's version of
Algorithm 2.4S. Finally, Algorithm PFZ1l is used to factor each of the
squarefree factors of degree > 1 into prime factors.

Algorithm PFACT1 (A) (Polynomial factorization, 1 variable).

The input A must be a non-constant polynomial over Z. The output is

a list F = (C’Al’AZ""’Ar)’ where c is the content of A and A;,A),...,A
are the unique prime positive factors of pp(A). Note that ¢ < 0 if

ldcf A < 0. (¢ is an L-integer).

(1) VUsing Algorithm PCPP obtain the positive content c¢ and the

positive primitive part P of A. If ldcf A < 0, set ¢ « ~c. Then set
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F+« (c), i+ 1, Q « PSQFRE(P). (Then Q = (Ql,...,Qt), where

P=Q Q%...QE, gcd(Qi,Qj) vl for i# 3, and each 0, is a primitive
squarefree positive polynomial.)

(2) Set C <« first(Q), Q < tail(Q). If deg C = 0, go to (4). If

deg C = 1, prefix C to F, i times.

(3) Set F <« PFZ1(C), and for each E on the list F, prefix E to F,

i times.

(4) Set i < i+l. If Q # (), go to (2). Otherwise, invert F and exit.

Theorem PFACT1. Let n = deg A, Y be a bound on lBIm for

any factor B of A, and A = QlQ%Qg.;.QE be the complete squarefree
factorization of A. Then the computing time for Algorithm PFACT1 is

t
S RROL A N Y
i=1

where Ti is the computing time required to apply PFZ1 to Qi‘

Proof: Algorithm PCPP performs at most n integer greatest
common divisor calculations each requiring a time ﬁ'L(a)2 where
a= |A|M < y; the total is {n L(Y)z.

Horowitz proves that the time to apply PSQFRE is itnzL(Y)2

in [HOR69]; the theorem now follows immediately.
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3.6 Empirical results

We shall conclude by presenting several tables of empirical
results obtained during testing of the algorithms described in this
chapter.

Although numerous tests have been conducted, no systematic
empirical study of computing times has been made. The data presented
here, however, are indicative of the behavior of the algorithms and
demonstrate the practicality of their application to polynomials with
large degree and large coefficients.

The tables give the computing times observed when PFACT1
was applied to "random'" polynomials. In order to concisely describe
these polynomials, let us define P(b’dl’dZ""’dk) to be the set of
all polynomials over the integers having k irreducible factors
C15Cysev»C, such that [C,], < b and deg C; =d;, 1 <1< k.
Polynomials in P(b’dl’dZ"“’dk> were obtalned for the tests by
generating polynomials Ci of degree d;, 1 = 1 < k, each with coefficients
randomly chosen in the closed interval [~b+1,b-1], and forming their
product. (Actually a polynomial generated in this way is not
necessarily in P(b’dl’dZ""’dk)’ since Ci may be reducible. But the
probability of ¢ being reducible is very small and none of factors
generated were found to be reducible by PFACT1). Note that the size
of the coefficients of the products obtained in this way will be
about bX.

For example, Table 1 gives computing times for five

polynomials in P(27,2,3,5); these are polynomials of degree 10 whose
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coefficients are about 221 = 2-106 in size. The times are in seconds
on a Univac 1108 computer.

Column I of each table gives the time required to compute
the content and primitive part of the input polynomial and the square-
free factorization of the primitive part. (All of the polynomials
tested were squarefree). Column II gives the time for steps (1)-(10)
of PFZl, in which the mod p factorizations are computed. Column TIT
gives the time for steps (11)-(15), in which algorithms CPBERL, PFBI1,
and PFCl are applied. (Most of this time was spent in PFH1).

Column IV gives the time for step (16), the application of PFP1.
The last column shows the total time.

The number in parentheses following the time in Column 11
is the number of different primes for which mod p factorizations
were obtained. For reducible polynomials this was, of course, always
equal to the value v = 5 used during all of the tests. Irreducible
polynomials often required fewer than 5 primes, and thus steps (11)-(16)
of PFZ1 were not executed. The variation in the number of primes
used in the irreducible cases accounts for the large variations in

the computing times in these cases.



Computing Times for Polynomials of Degree 10 in P(27,2,3,5)

No. 1 II

1 0.21 1.69 (5)
2 0.19 1.61 (5)
3 0.18 1.44 (5)
4 0.19 1.48 (5)
5 0.18 1.95 (5)

Computing Times for Polynomials of Degree 15 in P(27,3,5,7)

No. I 11

1 0.29 4.65 (5)
2 0.26 4.58 (5)
3 0.27 4.18 (5)

Table 1

I11

5.21

6.65

4.79

8.43

5.55

Table 2

I1I

14.10

19.25

19.40

v

0.406

0.49

0.42

0.71

0.48

Iv

0.87

0.90

1.17

Total
7.57
8.94
6.83

10.81

8.26

Total
19.91
24 .99

23.85
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Table 3

Computing Times for (Irreducible) Polynomials in P(27,1O)

No. I IT ITI JAY Total

1 0.16 1.25 (4) —— — 1.41

2 0.18 1.65 (5) 4.25 0.17 6.24

3 0.16 0.22 (1) ——— ——— 0.38

4 0.19 0.75 (2) — —— 0.94

5 0.18 0.56 (2) ——— —— 0.74
Table 4

7
Computing Times for (Irreducible) Polynomials in P(2 ,15)

No. I II ITI jaY Total
1 0.22 2.80 (&) v m—— 3.02
2 0.23 4.23 (5) 9.65 0.18 14.29
3 0.22 1.06 (2) - —— 1.28
4 0.24 4.30 (5) 9.85 0.12 14.51

5 0.24 2.48 (3) —— e 2.72



Table 5

Computing Times for (Irreducible) Polynomials in P(27,20)

No. I

1 0.30
2 0.28
3 0.31
4 0.32
5 0.32

I1
3.09 (2)
3.56 (3)
6.34 (5)
8.36 (5)

7.87 (5)

I11

20.71

16.28

18.90

Table 6

v

Total

3.39

3.84

27.36

25.19

27.41

Computing Times for (Irreducible) Polynomials in P(220,10)

No. I

1 0.16
2 0.17
3 0.18
4 0.17
5 0.20

II
0.47 (2)
1.66 (5)
1.45 (5)
0.43 (2)

0.59 (2)

ITI

v

Total

0.63

8.04

10.39

0.70

0.79
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Table 7

Computing Times for (Irreducible) Polynomials in P(220,15)
No. 1 I1 I1T v Total
1 0.24 2.48 (3) —-— ——— 2.72
2 0.26 3.12 (5) 18.20 0.22 21.80
3 0.24 1.04 (2) e e o 1.28
4 0.26 0.77 (1) — — ‘ 1.03
5 0.24 1.32 (2) ——— — 1.56

Table 8

Computing Times for (Irreducible) Polynomials in P(220.20)
No. I IT ITI v Total
1 0.53 5.63 (4) —— ——— 6.16
2 0.56 5.95 (4) —— — 6.51
3 0.58 4.53 (4) — e 5.11
4 0.53 2.96 (2) ——— - 3.49

5 0.60 1.32 (1) e o 1.92
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Appendix: FORTRAN PROGRAM LISTINGS

SUBROUTINE GEN(STACKsNNsSSsNOsKsJJ)
INTEGER STACKsSS9SPsR s TSP s XXX
INTEGER FIRSTsPFASTAILSsCINV

C GENFRATION OF SUM INDEX LISTS.

1 IF (STACK .FQe. O0) GO TO 2
CALL DECAP(JsSTACK)
N =0
GO TO 6
C  INITTALIZE.
2 J = LENGTH(NN)
JJ =0
N = NO
NP = CINV(NN)
SP = CINVI(SS)
STACK = PFA(SPsPFA(NPSSTACK))
R =1
25 [F (J «LLEe K) GO TO 3
NP = TAIL(NP)
SP = TAIL(SP)
J = J=1
GO TO 28
C STEPS 3 THROUGH 9 CORRESPOND TO A RECURSIVE PROCEDURE GU(JsNsJJ),
C STEP 2 HAS INITIALIZED TO PERFORM THE PROCEDURE WITH J=K AND JJ=1(),
C
C CHECK IF A SUM INDEX LIST HAS BEEN GENERATED.
3 IF (N «NE. 0) GO TO 4
STACK = PFA(JsSTACK)
RETURN
C  THIS EXIT ALLOWS THE CURRENT VALUE OF JJ TO BE USED
C OUTSIDE THE SUBROUTINE. THE SUBROUTINE MAY BE REENTERED
C TO GENERATE ANOTHER SUM INDEX LISTs PROVIDEZD THAT
C NEITHER STACK NOR JJ IS ALTERED OUTSIDE THE SUBROUTINE .
C
C CHECK IF RECURSION IS NECESSARY,

4 TSP = TAIL(SP)
IF (MEMBER(N~FIRST(NP)sFIRST(TSP))EQe 0O) GO TO 7
C CALL RECURSIVE PROCEDURE G(J=1sN=-NNG)sPREFIX(JsJJ)).

5 STACK = PFA(RSPFA(SPsPFA(NPsSTACK) )
N = N-FIRST(NP)
NP = TAIL(NP)
SP = TSP
R = 2
JJ = PFA(J,JN)
J o= J=-1
GN TO 13
6 CALL DECAP(RsSTACK)

CALL DECAP(SPsSTACK)
CALL DECAP(NPsSTACK)
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J J+1
N N+FIRST{NP)
CALL DECAPI(XXXsJJ)
TSP = TAIL(SP)
C  CHECK IF RECURSION IS NECESSARY.

Hon

7 IF (MEMBER(NsFIRST(TSP)) FQe. 0) GO TO 99
C CALL RECURSIVE PROCEDURE G(J~1sNsJJ)
8 STACK = PFA(RsPFA(SPsPFA(NPySTACK)))
NP = TAIL(NP)
SP = TSP
R =3
Jo=oJ=-1
GO TO 3
9 CALL DECAP(RsSTACK)

CALL DECAP(SP,STACK)
CALL DECAP(NPsSTACK)
J = J + 1
99 GO TO (10+6359)s R
C THE FOLLOWING EXIT IS TAKEN WHEN ALL SUM INDEX LISTS
C  HAVE BEEN GENERATED.
10 CALLL DECAPI(SPsSTACK)
CALL DECAP({NPsSTACK)
CALL ERLA(SP)
CALL ERLA(NP)
RETURN
END

INTEGER FUNCTION IAND(AsB)

INTEGER AsB

INTEGER CoFIRSTsINVsPFASTAILSsT1sT2,T3
C IT IS ASSUMED THAT BETA (THE BASE OF THE SAC-1 INTEGER ARITHe
C  SYSTEM) IS A POWER OF 2.

1 C =20
Tl = A
T2 = B
2 IF (Tl «EQe O «ORs T2 «EQs 0) GO TO 3
T3 = AND(FIRST(T1)sFIRST(T2))
C = PFA(T3,C)
T1 = TAIL(T1)
T2 = TAILI(T2)
GO TO 2
3 IAND = INV(C)
RETURN

FEND



AEA]

—~ N

158

INTEGER FUNCTION ILS(LN)

INTEGER IPRODsPFAsQsRsTsWL
IT IS ASSUMED THAT BETA (THE BASE OF THE SAC-1 INTEGER ARITH.
SYSTEM) IS A POWER OF 2,

wL = 33
WL =2 BASE 2 LOGARITHM OF BETA.
Q = N/wL
R = N=Q*W(
T = PFA(2##R,0)

ILS = TPROD{LST)
CALL ERLACT)

IF (Q oEQe 0) RETURN
ILS = PFA(OSILS)

n = Q-1
GO TO 2
END

INTEGER FUNCTION IOR(A+B8)

INTEGER A,sB

INTEGER BORROWsCsFIRSTsINVIPFAsTAILsT15T2,5T3
IT IS ASSUMED THAT BETA (THE BASE OF THE SAC-1 INTEGFR ARITH.
SYSTFM) IS5 A POWFR OF 72,

c =20
o= A
T2 = B

IF (Tl .EQe 0) GC TO 4
IF (T2 «EQs 0) GO TO 3
T3 = OR(FIRST(T1)sFIRST(T2))
C = PFA{T3,C)

Tl = TAIL(TY)

T2 = TAIL(T2)

GO T0 2

T2 = T1

IOR = INV{C)

CALL SSUCCI(BORROW(T2).C)
RETURN

FND

FUNCTION LAST(L)
INTEGER TsTAILSFIRST

Moo= L

IF (L «EQe 0) GO.TO 4
T = TAIL(M)

IF (T .FQes 0) GO TO 3
M o= T

GO TO 2

LAST = FIRST(M)
RETURN

LAST = M

RETURN

FND




159

INTEGER FUNCTION MEMBER(N,sS)
INTEGER NsS
INTEGER FIRSTsQsRsTsTAILST1 sWL
C IT IS ASSUMED THAT BETA (THE BASE OF THE SAC-1 INTEGER ARITHe

C SYSTEM) IS A POWER OF 2.
WL = 33

C WL = BASE 2 tLOGARITHM OF BETA.

1 IF (N «LT. 0) GO TO 4
T = 5
Q = N/WL
R = N—=Q#*W|

? IF (T «EQe Q) GO TO 4
IF (QeEQe 0) GO TO 3
T = TAIL(T)
0O = Q~1
cnoTO 2

3 Tl = FIRST(T)/2%#R
MFMBER = T1-(T1/2)%2
RETURN

4 MEMBER = 0
RETURN
FND

INTEGER FUNCTION MMOD(MsA)

INTEGER MsA

INTEGER ICOMPsIDIFsIREMsISIGNL s ISUMsRsR1 s TR
1 R = IREM(AsM)

IF (R «FQe 0) GO TO 3

IF (ISIGNL(R) «GTe Q) GO TO 2

R1 = ISUM(RsM)

CALL ERLA(R)

R = R1
2 TR = ISUMI(R,R)

IF (ICOMP(TRsM) oLTe 0) GO TO 25

R1 = IDIF(RsM)

CALL ERLA(R)

R = R1
25 CALL ERLA(TR)
E MMOD = R
RETURN

END
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FUNCTION MPLPR(MsA)
INTEGER AsAAsBsFAsTsBORROWSFIRSTsPFASsPPRODSTAIL
IF {A oNE. 0) GO TO 15
MPLPR = PFA(1,0)
RETURN

B = BORROW(FIRST(A))
AA = TAIL(A)

IF (AA <EQ. 0) GO TO 4
CALL ADVI(FA,AA)

T = PPROD(BsFA)

CALL PERASE(B)

B = MPMOD(M,T)

GO TO 2

MPLPR = B

RFETURN

END

INTEGER FUNCTION MPMOD(MsA)

INTEGER My A

INTEGER AAsBsCsDsEs INVSMMODsPFASPFL sPVRLSTATLsTYPE
B =0

IF (A «EQe. 0) GO TO 4

IF (TYPE(A) oNEe. 0) GO TO 15

R = MMOD(MsA)
GO TO 4

AA = TAIL(A)
CALL ADVI(C,AA)
CALL ADV(F,AA)
D = MMOD(M,C)
TF (D «NEs O} B
IF (AA oNEes 0O )
IF (B «NEo 0} B
MPMOD = B
RETURN

FND

PFA(ESPFL(DsB))
0O TO 2
PFL(PVBL(A)sINV(B))

no




INTEGER FUNCTION MPQREM(MsA,B)
INTEGER MsAsB
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INTEGER BDsBLIBORROWsBRsCosDs INVs IPROD s J sMMOD s MPMOD
INTEGER MRECIPsPDEGsPDIFsPFASPFL sPLDCFsPREDSPSPRODsPVBL s

INTEGER ReRDsRLsRRsTEMPSsTEMP]
R = BORROW(A)

RL = PLDCF(B)

C = MRECIP(M,sBL)

CALL ERLA(BL)

Q =0

RR = PRED(B)
BDh = PDEG(R)
RD = PNDFG(R)
J = RD-BD

IF (J olLTe 0O oORe R EQe 0) GO TO 3
RIL = PLDCF(R)

TEMP = IPROD(C,sRL)

D = MMOD(MsTEMP)

CALL ERLA(TEMP)

TEMP = PSPRODIBRsDsJ)

RR = PREDI(R)

CALL PERASE (R)

TEMP1 = PDIF(RRsTEMP)

R = MPMOD(M,TEMP1)

CALL PERASE(TEMP1)

CALL PF™ASE(TEMP)

CALL PL~<ASE(RR)

CALL ERLA(RL)

N = PFALJSPFLIDSQ))

GO TN P

IF (Q oNEe 0) Q = PFL(PVBL(A)YSINVIQ))
MPQREM = PFL(QsPFL(Rs0))
CALL PERASE(BR)

CALL ERLA(CQC)

RETURN

FND
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SUBROUTINE MPSPEQ(MsAsBsSeTsUsYsZ)
INTEGER MsAsBsSsTslUsYsZ
INTEGER MPMOD sMPQREMsPPROD sPSUMsQs TEMP s TEMP1 s TEMP2 sV s W
W o= MPMOD(M,U)
TEMP = PPROD(TsW)
V = MPMOD(M,TEMP)
CALL PERASE(TEMP)
TEMP = MPQREM(MsVsA)
CALL DECAP(QSsTEMP)
CALL DECAP(ZsTEMP)
CALL PERASE (V)
TEMP = PPRODI(SsW)
TEMP1 PPRODI(IB Q)
TEMP2 PSUM(TEMP s TEMP])
CALL PERASE(TEMP1)
CALL PERASE(TEMP)
CALL PERASE(Q)
Y = MPMOD(MsTEMP2)
CALL PERASE(TEMP2Z2)
CALL PERASE (W)
RETURN
FND

ol

INTEGER FUNCTION MRECIP(MsX)

INTEGER Ms X

INTEGER A1sA25A3sBORROWSFIRSTSIDIFsIPRODsIQRsISIGNL s ISUM
INTEGER PFASQsTAILsTEMPsY1s5Y2sY3

Al = BORROW(M)

A2 = BORROW(X)

IF (ISIGNL(A2) «GTe 0O) GO TO 5

TEMP = ISUM(M,A2)

CALL ERLA(A2)

A2 = TEMP

Yl= 0O

Y2 = PFA(1+0)
GO TO 2

TEMP = TQR({A1,A2)
CALL DECAP(QsTEMP)
CALL DECAP({A3,TEMP)
TEMP = IPROD(Y25Q)
Y3 = IDIF(Y1sTEMP)
CALL ERLA(TEMP)
CALL ERLA(Q)

CALL ERLA(CAL)

Al = A2
A2 = A3
CALL ERLA(Y1)
Y1 = Y2
Y2 = Y3

IF (FIRST(A2) oNEs 1 «ORe TAIL(A2) «NEe 0) GO TO 1
MRECIP = Y2

CALL ERLAC(AL)

CALL ERLA(A2)

CALL ERLA(Y1)

RETURN

END
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INTEGER FUNCTION PFACT1(A)
INTEGER A
INTEGER BORROWsSCsCONT sDsEsF sFFoFIRST I s INEGs INVsISIGNL sJ
INTEGER PCPPsPDEGsPFL sPFZ1sPPsPSQFREsQs TAIL s TEMP
1 TFMP = PCPP(A)
CALL DECAP(CONTssTEMP)
CALL DECAP(PPSsTEMP)
IF (ISIGNL{FIRST(TAIL{A))) «GTe 0) GO TO 15
TEMP = INEGI(CONT)
CALL ERLA(CONT)
CONT = TEMP
15 FF = PFL{CONTs0)
N = PSQFRE(PP)
CALL PERASE (PP)
I =1
2 CALL DECAP(C,Q)
D = PDFG(C)
IF (D «FQe 0) GO TO 28
IF (D «GTe 1) GO TO 24
NO 22 J = 1s1
27 FF = PFLIBORROWI(C)sFF)
GN TO 28
24 Fo= PFZ1(C)
25 CALL DECAP(FsF)
PO 26 J = 151
26 FF = PFL(BORROWI(E)sFF)
CALL PERASE(E)
IF (F oNEo 0) GO TO 25
28 CALL PFRASF((C)
I = I+)
[F (Q oNE. 0) GO TO 2
PFACT1 = INVI(FF)
RETURN
FND
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SUBROUTINE PFB1{(COsMsCslLsB)

INTEGER COsCoRBoVeToFsAVsV1IsV2sAVIsAV2sT1sT2

INTEGER BORROWsPDEGIPNORMF sPTLCF sPFLo+PVBL sPFASPQsPSURBST
= BORROW(CO)

L =0

[F (PDEG(C) «NEe 1) GO TO 3

B = PNORMF (C)

RETURN

V = PTLCF(C)

IF (V «NEs 0O) GO TO 5

J =20

LF = PFLIPVBLI(C)sPFL(PFA(L190)9PFAC(LISPFLIPFA(=UJs0)sPFA(OSO)))))
T = PQ(CsLF)

CALLL PERASE(C)

c =T
L = PFLILFsL)
GO 10 2

F =4

T = PFA(F,0)

AV = TABSL (V)

CALL ERLA(V)

B = IPROD(AV,sT)

CALL ERLA(AV)

CALL ERLA(T)

J =1

IF {J «GTo M) RFETURN

T = PFA(J,0)

V1 = PSUBSTI(T,C)

CALL ERLA(T)

IF (V1 .EQs 0) GO TO 4
T = PFA(~J,0)

V2 = PSUBSTI(TsC)

CALL ERLALIT)

IF (V2 oNFo 0) GO TO 9

J = =J
GO TO &
K1 = (M=J+1) * F

K2 = M+ J

F =K1 /7 K2

ITF (K1 oNF, F#K2) F = F+1
T = PFAC{J+1)%F-0)

AV1 = TABSL (V1)

CALL ERLA(VI)
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AV?2

CALL
T1 =
T2 =
CALL
CALL
CALL
CALL
T =

T1 =
CALL
CALL
CALL
CALL
IF (
CALL
T1 =
T2 =
CALL
T =

CALL
T1 =
CALL
R =

CALL
J =

GO T
END

= TABSL(V2)
ERLA(V2)
ISUMCAV1sAV2)
IPROD(T1,T)
ERLA(CAVL])
ERLA(CAV2)
ERLA(TL)
ERLA(T)

PFA(J*J+1,50)
[QRS{T2,T)
ERLA(T)
ERLA(T2)
DECAP(TsT1)
DECAP(T2,7T1)

T2 «EQe 0) GO TO 95
ERLA(T2)
PFA(150)
ISUM(TsT1)
ERLA(T)

T2
ERLA(CTI)
ISUM(BST)
ERLA(B)

T1
ERLA(CT)

J +1

0 6
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INTEGER FUNCTION PFC1(PsMsCOsG)

INTEGER PsMsCOsG

INTEGER A>ABsBsBBsBORROWsCsCBsCPEGCD s CPMOD s CPQREM s CRECIP sCSPROD
INTEGER FsFIRSTsGSs INVsLCsLCIsMPMODSsMRECIP sPFLsPIP

INTEGER PLDCFsSBsTAILsTBsTEMPsWsWI s XXX

C = BORROW(CO0)

F =0
CB = CPMOD(P,C)

GS = G

IF (TAIL(GS) .EQe 0) GO TO 3
AB = FIRST(GS)

TEMP = CPQREM(PsCBsAB)
CALL DECAP(BBsTEMP)

CALL DFCAP(XXXsTEMP)

IF (FIRST(AR)} .GE. FIRSTI(BB)) GO TO 22
TEMP = CPEGCDI(P>BRsAB)
CALL DECAP(TBSsTEMP)

CALL OECAPI(SBsTEMP)

GO TO 23

TEMP = CPEGCD(PsABsBB)
CALL DECAP(SBSTEMP)

CALL DECAP(TBSsTEMP)

CALL DECAP(WsTEMP)

W1l = CRECIP(PsW)

TEMP = CSPROD(PsSBsWIsO)
CALL ERLA(SB)

SB = TEMP

TEMP = CSPROD(PsTBsWIs0)
CALL ERLAI(TB)

TB = TEMP

CALL PFH1(PsMsCsABsBBsSBsTBsAsB)
F = PFL(ASF)

CALL PERASE(C)

C =8
CALL ERLA(CB)
CB = BB

CALL ERLA(SB)

CALL ERLA(TB)

GS = TAIL(GS)

GO TO 21

LC = PLDCF(C)

LCI = MRECIP(MsLC)
CALL ERLA(LC)

TEMP = PIP(C,LCI)
CALL ERLA(LCI)
CALL PERASE(C)

C = MPMOD(MsTEMP)
CALL PERASE (TEMP)
PFC1 = INV(PFLI(CsF))
CALL ERLA(CB)
RETURN

END
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SUBROUTINF PFH1(PsMsCsABsBB»SBsTBsAsB)

INTEGER PsMsCsABBBsSBsTBsARB

INTEGER ASsBORROWsBS»CPGARNsICsICOMP s IPRODsIQsMUL sONE sPDIFsPFA sPF]
INTEGER PIPsPPRODsPSQsPSUMSPVBLWsQ25s595S5sTsTEMP s TEMP1 s TEMP 2
INTEGER TSsUsVsYsY1sZsZ1sATsBTsSTsTT QT

Q = PFA(P,0)

Q2 = 0

V = PFL(PVBLI(C)»s0)

ONE = PFA(150)

A = CPGARN(ONEsOsPsABsV)
B = CPGARN(ONEsOsPsBBsV)
S = CPGARN(ONE0OsPsSBsV)
T = CPGARN(ONEsQOsPsTBsV)

CALL ERASE(V)

CALL ERLA(ONE)

ONE = PFL{PVBLI(C)sPFLIPFA(150)sPFA(0,0)))
IF (ICOMP(QsM) oLTe 0) GO TO 3
CALL ERLA(Q)

CALL ERLA(Q2)

CALL PERASFE (ONE)

CALL PERASE(S)

CALL PERASE(T)

RETURN

TEMP = PPROD(AsB)

TEFMP1 = PDIF(CsTEMP)

CALL PERASE(TEMP)

U = PSQ(TEMP1,Q)

CALL PERASE(TEMP1)

Q2 = IPRODI(QsQ)
IC = ICOMP(Q2sM)

IF (IC oLEe 0) GO TO 32
QT = 10(MsQ)

AT = MPMOD(QT A

8T = MPMOD(QT,R)

ST = MPMOD(QTsS)

TT = MPMOD(QT,T)

CALL MPSPEQ(QTsAT sBTsSTeTTsUsYs2)
CALL PERASF (AT)

CALL PERASE(BT)

CALL PERASE(ST)

CALL PERASE(TT)

CALL ERLA(QT)

GO TO 34

CALL MPSPEQ(QsAsBsSsTslUsYslZ)
CALL PERASE(U)

TFEFMP = PIP(Z,4Q)

CALL PERASE (2}
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AS = PSUM(AsTEMP)

CALL PERASE(TEMP)

TEMP = PIP(YsQ)

CALL PERASE(Y)

BS = PSUM(BsTEMP)

CALL PERASE(TEMP)

IF (IC «LTe 0) GO TO 5
CALL PERASE (A)

A = AS

CALL PERASE(B)

B = BS

CALL PERASE(Q2)

GO TO 21

TEMP = PPRODIASS)
TEMP1 = PPROD(BSST)
TEMP2= PSUMITFMPTEFMP1)
CALL PERASE{TEMP1)
CALL PERASE{TEMP)

TEMP = PDIF(ONEsSsTEMP2)
MUL = PSQ{TEMP,Q)

CALL PERASE(TEMP2)
CALL PERASE(TEMP)

CALL MPSPEQ(QsA3BsSsTsMUL1sY1s21)
CALL PFRASF (MU1)

TEMP = PIP(Y1sQ)

CALL PERASE(Y1)

5SS = PSUM(SSTEMP)

CALL PERASE(TEMP)

TEMP = PIP(Z1,Q)

CALL PERASE(Z1)

TS = PSUM(TsTEMP)

CALL PERASE(TEMP)

CALL ERLAC(Q)

Q= Q2

CALL PERASE (A)

CALL PERASE(B)

CALL PERASE(S)

CALL PERASE(T)

A = AS
A = BS
S = 5SS
T = TS
GO TO 2

END
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NN 0
TT 0
6GGS = 66
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NN PFA
TT PFL
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NN INV
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FUNCTION PFP1(MsCCOsGGOsDS)
MsCCOsGGOsDS
AsAASAASsBBS sBORROWSCoCCsCCSsDsNFGSFTsFFsFIRST
GGeGGJIIsGGSs I» INVIIPRODSIREMs JJs JUP sK s KK sLENGTH s I AND
MMOD sMPMOD s NNsPDEGsPFASPFI.
PIPsPLDCF sPLPRODSPPPsPQsPSQsPTLCF sPFEMsSELECT 9SS
STACKsSUMSET s TsTAIL s TCCSsTEMPSTEMP 1 s TToTTUJsR sV
ouT
ROW (CCO)
ROW (GGO)

(AASGGS)
(PDEG(AA) sNN)
(PTLCF(AA)»TT)
eNEe O) GO TO 15
(NN

(rT7)

THIGG)

FiCO)
P{CCsC)
TLCF{CCS)

SS = SUMSET(NN)

PDEGSFT =
IF (D oL
FF = PFL
CALL PER
CALL ERL
CALL ERA
CALL ERL
CALL ERL
CALL PER
CALL ERA

ITAND(DSssLAST(5S))
Ee PDEGICCY/2) GO TO 35
(CCHFF)
ASE(GG)
A{NN)
SE(TT)
ACC)
A(TCCS)
ASE (CCS)
SF(SS)

CALL ERLA{(DEGSET)

PFP1 = 1
RETURN

NV FF)

IF (MEMBER(DsDEGSET) +EQe O oORe K «FQe 0) GO TO 7

STACK =
CALL GEN
IF (JJ .

0
(STACK SNN3$SSsDsKsJJ)
EQ. 0) GO TO 7

TTJJ = SELECT(TTsJJ)

TEMP = PFL{BORROWI(C)sTTJJ)
T = MPLPR(MSTEMP)

CALL ERASE(TEMP)

REM = TREM{TCCSsT)

CALL ERLA(T)
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IF (REM FQ. 0) GO TO 6

CALL ERLA(REM)

GO TO 41

GGJJ = SELECT(GGsJJ:

TEMP = PFLAPFL(PVBL(CC) sPFL{BORROWIC) sPFA(O»0))) sGGII)
AAS = MPLPR(MSTEMP)

CALL ERASE(TEMP)

A8S = PQICCSAAS)

TF (RBS GT, 0} GO TO 8

CALL PFRASE (AAS)

GO TO 41
D = D+1
K = R

GO TO 3

AA = PPP({AAS)
CALL PFRASF (AAS)

FF = DFEL(AALFF)

CALL PFRASE(CC)

A = PLDCF(AA)

CC = PSQIBBS-A)

CALL ERLACA)

CALL PFRASE (BBS)

JIP = JJ

KK = 0

DO 96 1 = 1,R

IF (JJP «FQe 0) GO TO 95
I[F (I oNE. FIRST(JJP)) GO TO 95
JIP = TAIL(JJUP)

GO TO 96

KK = PFA(TsKK)
CONTINUE

KK = INV(KK)

V o= LENGTH(JJ!

JV o= LAST (U

CALL ERLA(JJ)

CALL ERLA(STACK)
TEMP = SELECT(GGsKK)
CALL ERASE(GG)

GG = TFMP

TEMP = SELECT(NNsKK)
CALL ERASE(NN)

NN = TEMP

TEMP = SELECT(TTsKK)
CALL ERASE(TT)

TT = TEMP

R = R -V

K = JV - vV

CALL FRLA(KK)

CALL FRLA(C)

CALL ERLA(TCCS)

CALL PERASE(CCS)
CALL ERASE(SS)

CALL ERLA(DEGSET)

GO TO ?

END
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44

61

62

71

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
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FUNCTION PFZ1(CO)

CeCO
BsBORROWss(CBsCBPsCB1sCMODsCMONIC»CONCsCPBERL sCPDDF s CPDRV
CPGCD1sCPMODsDsDBsDFDsDSsFaFDsFDFsFIRSTsF1sGsGPsGSsGI s H
IDIFsINVSIPRODs ISUMsK sKDsKP s LENGTHsMs TAND s TLSsMU s NN s NP
ONE sPsPDEGsPFASPFBNDsPFCLsPFLIPFP1 sPONE sP5 QR

RMINsSP sSPOWERsSPRIME sSS s SUMSET o TATL s TEMP s TEMP ]
CSsFPsAsAP PP

COMMON /TR5/ NUsSPRIME
SP = SPRIME
C = BORROWI(CO)

RMIN =
GS = 0
NP = 1

PDEG(C)Y+1

ONE = PFA(1:0)

TEMP =

ILS{ONESPDEG(C)/2+1)

DS = IDIF({TEMP,ONE)
CALL ERLA(ONE)
CALL ERLA(TEMP)

IF (&SP

«EQs 0) STOP

CALL ADVI(P,SP)

I[F (CMOD(PSFIRST(TAILIC))) LEQs D) GO TO 2
CB = CPMODI(P,C)

CBP = CPDRV(P,(CB)

IF (CBpP

oNEe 0O) GO TO 44

CALL ERLA(CB)

GO TO 2

B = CPGCD1(P,CBsCBP)
DB = FIRST(B)

CALL ERLA(B)

CALL ERLA(CBP)

IF (DB

eNEe 0O) GO TO 42

CB1 = CMONIC(P,,CB)
CALL ERLAC(CB)

G = CPDDF(P,CB1)
CALL ERLA(CBIL)

NN = 0
GP = G

CALL ADVIDFDsGP)
CALL ADVI(DssDFD)

CALL ADVIFDsDFD)
KD = FIRST(FD})/D

PO 62 K

= 1sKD

NN = PFA(DsNN)

IF (GP

«+NE. 0) GO TO 61

R = LENGTH(NN)

IF (R oNEs 1) GO TO 8
CALL ERLA(NN)

F = PFL{BORROW(C) s0)
CALL ERASE(G)

CALL ERASE(GS)
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125

13

132
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134
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GO TO 99

S5 = SUMSET (NN)

TEMP = IAND(DSsLAST(SS))
CALL ERLA(DS)

DS = TFMP

CALL ERASE(SS)

CALL ERLA(NN)

IF (PONE(DS) «FQe 1) GO TO 71
IF (R «GEs RMIN) GO TO 95
RMIN = R

Pg = P

CALL ERASE(GS)

GS = G

GO TO 10

CALL ERASE(G)

NP = NP+1

IF (NP oLFe NU) GO TO 2
P = PS

G = GS

H =0

CALL DFCAP(DFDSG)

CALL DECAP(DsDFD)

CALL DFCAP(FDsDFD)

[F (D «NEs FIRST(FD)) GO TO 122
H = PFLIFDsH)

GO TO 125

FDF = CPBERL(PsFD)

H = CONCIFDF sH)

CALL FRLA(FD)

IF (G «NEs 0) GO TO 12

G = INV(H)

CALL ELPOF2(DSsDsXXX)
CALL PFB1(CsDsCSsF+B)

IF (PDEG(CS) oNEe 1) GO TO 132
F = PFL(CSsF)

CALL ERLA(B)

CALL ERASE(G)

GO TO 99

CALL PERASE(C)

c = S

FP = F

IF (FP .EQ. 0) GO TO 135
CALL ADV(AsFP)

AP = CPMODI(P,A)

H =0

CALL DECAP(GI+G)

IF (ICOMP(GIsAP) oNEs 0) H = PFLI(GIsH)
TF (G «NE, 0) GO TO 134
CALL ERLA(AP)

G = INV(H)

GO TO 133

H

HWou
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14

l42

145
15

16

99

25

4

IF (TAIL(G) oNEe 0) GO TO 14
F = PFLIC,F)

GO TO 131

PP = PFA(P,0)

M = BORROW(PP)

TEMP = IPROD(BsFIRST(TAIL(C)))
Q = ISUM(TEMP,TEMP)

CALL ERLA(TEMP)
IF(ICOMP(MsQ) «GEs Q) GO TO 145
TEMP = IPROD(M,PP)

CALL ERLA(M)

M = TEMP

GO TO 142

CALL ERLA(PP)

F1 = PFCL(PsMs(CsG)

CALL ERASE(G)

F = CONC(PFP1(MsCsF1sDS)sF)
CALL ERLA(M)

CALL ERASE(F1)

PFZ1 = F

CALL ERLA(DS)

CALL PERASE(C)

RETURN

END

INTEGER FUNCTION PTLCF(P)
INTFGER P

INTEGER BORROWsFIRSTsQsRsTAILsTYPE
Q=P

IF (Q «Fu. 0) GO TO 25

IF (TYPE(Q) «EQe 0) GO TO 4

0 = TATL(Q)

R = TAIL(Q)

IF (FIRST(R) +EQs 0) GO TO 3

Q = TAIL(R)

IF (Q oNFs 0) GO TO 2

PTLCF = 0

RETURN

PTLCF = BORROW(FIRST(Q))

RETURN

PTLCF = BORROW(Q)

RFTURN

FAD

o

173
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INTEGER FUNCTION SELECT(ASsI)

INTEGER Al

INTEGER AS’BaBORROW9FIRST’INVaIS9K9N9PFA9PFL97AIL9TYPE
N =1

S
S

o

A A

I I

R =0

IF (AS «EQs O «0ORs IS oEQe 0) GO TO 5
K = FIRST(IS)

IF (N «GEes K) GO TO 4

AS = TATL(AS)

N = N+1
IF (AS «EQes N} GO TO 5
GO TO 3

IF (TYPF({AS) .FQe 1) GO TO 4
B = PFA(FIRST(AS)»B)

GO TO 44

B = PFL(BORROW(FIRST(AS)) yB)
IS = TAIL(IS)

AS = TATL(AS)

N = N+1

GO TO P

SELECT = INV(B)

RETURN

END

INTEGER FUNCTION SUMSETI(N)
INTEGER FIRSTqINV9IL§9IOR,NpopFAspFL9R959T9TAIL
R = PFA(1s0)

S = PFLIRL0)

NP = N

IF (NP «EQs 0) GO TO 3

T = TLS(RSsFIRSTI(NP))

R = IOR(RST)

CALL FERLA(T)

S = PFL(RsS)

NP = TAILI{NP)

GO TO 2

SUMSET = INVI(S)

RETURN

END




