Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

Layered "Recognition Cone" Networks that
Pre-process, Classify, and Describe

by
Leonard Uhr

Computer Sciences Technical Report #132

December 1971

Revised March, 1972

LAYERED "RECOGNITION CONE" NETWORKS THAT PRE-PROCESS,
CLASSIFY, AND DESCRIBE

by
LEONARD UHR™

Abstract--This paper gives a brief overview of six types of pattern
recognition programs that 1) pre-process, then characterize, 2) pre-
process and characterize together, 3) pre-process and characterize into

a "recognition cone", 4) describe as well as name, 5) compose

interrelated descriptions, and 6) converse.
A computer program (of types 3 through 6) is presented that transforms
and characterizes the input scene through the successive layers of a

recognition cone, and then engages in a stylized conversation, to describe

the scene,

SUMMARY

This paper examines asequence of six types of pattern recognition
systems. It presents and describes one program to illustrate some of the
issues raised and features developed.

The first type (similar to many of today's programs) pre-processes by
applying layers of local averaging and differencing transforms to smooth,
fill in gaps, and heighten contours, curves, and angles. Then it applies a

set of characterizers: each characterizer implies a set of names: and the

¥Mr, Uhr is Professor of Computer Sciences at the University
of Wisconsin, Madison. This work was partially supported by
grants NIMH-12266, NSF GJ-583, and NASA NGR-50-002-160. A
preliminary version of this paper was presented at the IEEE,
UMC, Two Dimensional Digital Signal Processing Conference,
Columbia, Missouri, October 6-8, 1971.

prograrh chooses the single most highly implied name.

The second combines the pre-processing transforms and the characterizers
into a single general type of operation. Transforms build up new transformed
representations of the input, whereas characterizers imply the output name.

The third type erases the distinction between a transform and an implica-
tion. Now all outputs are stored in the next transform layer. As the program
averages and coalesces information its layers shrink, so that the system builds
a cone of layers. When the program reaches the apex - a layer with only one
cell that containg all the information - it chooses the single name with which
it classifies the input.

The fourth type chooses names when it decides that it should decide

among the implications stored in some cell. 1t thus can choose more than
one name, and therefore describe as well as classify the scene.

The fifth examines the interrelations among the set of names chosen, to

try to fit the pieces of the description together into a coherent and appropriate
whole.

Finally, a sixth step can be taken, to converse about the scene,
developing an appropriate description in response to suggestions and queries.
This allows the program to do more computations, and to look again, on

demand.

INTRODUCTION

Layered nets that perform local transformations have been the basis

for a number of pattern recognition programs (see, for example, Rosenblatt,

1962; Rosenfeld, 1970; Levialdi; 1971), But typically these programs first
do a sequence of pre—processing operations, such as averaging to smooth
and differencing to contrast contours and angles; then, as a completely
separate next step, another routine characterizes the output of this serial
sequence of parallel transformations (see Uhr, 1966, Lipkin and Rosenfeld,
1970 for examples).

Qverview of Present Work

This paper presents and describes a computer program that can
intersperse pre-processing transformations and characterizing, and in fact
use the same general mechanism to handle both. This immediately open;; up
attractive, simple and natural, possibilities for describing as well as merely
classifying an input.

The generalized transformer-characterizer described in this paper out-
puts implied names into the next transformation layer along with any trans-
formations that might be specified, but without making any distinctions
between implied names and transformations.

Collapsing the matrix from one layer to the next, so that each layer
contains fewer cells to the extent that information has been abstracted, allows

for simple and natural criteria with which the program can decide when to

decide what is implied at a particular region. This leads to the mechanism

of a "recognition cone," whose base is the input matrix and whose apex is

the single cell that results from successive collapsings from layer to layer.

An overall name can be chosen from the apex.

But now each cell in the whole cone itself defines a sub-cone, whose
base is the region covered by that cell if and when the program decides to
choose among its implied names. The set of chosen names can now form the
basis of a description of the scene's objects and their parts. It can also

allow for an interacting conversation about the scene.

Background
There are, rather roughly, three major stages to the pattern recognition
process:

A. The raw input is "pre-processed, " to reduce various kinds of

noise and make the pattern more regular and more easily recognizable.

B. The input pattern is "classified, " in the sense that it is assigned a
name.

C. More than one name is given to an input - either because a scene
of several objects must be named or the single object should be
"described."

Most research has focussed on classification (Stage B). The typical
pattern recognition program applies a set of "characterizers " (for example,
line, angle, or area detectors) to examine the input. Each characterizer
implies one or more names, with or without weights. The program merges
these implications and then chooses the single most highly implied name.

Pre-processing (stage A) means, roughly, "whatever happens before

the characterizers are applied." For example, gaps may be filled and contours

enhanced so that edge detectors will work. Often the input patterns are
sufficiently similar, and/or a program's characterizers work well enough
so that pre-processing is not needed. Sometimes a characterizer does its
own pre-processing: for example, a line detector can search for the line's
continuation by groping and jumping over gaps, rather than rely upon a
prior gap-filling operation (e.g. Grimsdale et al., 1959).

Very little work has been done on C, description. It is not even
clear what one might mean by the term description, which lumps together
several problems. A description sometimes lists the parts, possibly with
their interrelations; sometimes gives general characteristics; sometimes

points out likenesses.
PATTERN CLASSIFIERS

We will begin by examining two types of systems for classifying inputs
into single pattern names.

1. Different kinds of operations to pre-process, then classify: A

surprising amount of preprocessing can be done by simple local averaging
and differencing operations on each cell of the matrix and its near neighbors.
For example, let's consider a 3 by 3 matrix of a middle cell and its 4 square
and 4 diagonal neighbors. To average, we might sum the values stored in
each of these cells. We might also weight them, e.g.: multiply the middle

cell by 4, the square neighbors by 2 and the diagonal neighbors by 1. To

To difference, we might subtract the value in each cell from the value
in the middle cell, and sum these differences.

To do this, a program must: a) scan each of the cells of the matrix,
b) extract the sub-matrix that surrounds that cell, c¢) compute the average
or difference function, and d) store the results in the cell corresponding to
the middle cell in a new output matrix that is being built. (See Uhr, in
press, for detailed discussions and programs J)

One widely used and rather powerful type of characterizer, one that
is especially compatible with these local transforms, can quite conveniently
be handled by nets of threshold elements, and turns out to give good results in
practical running pattern recognizers (e.g., Andrews, Atrubin and Hu, 1968),
is what I will call an "n-tuple." An n-tuple specifies a) a set of pieces
and the relative positions at which to look for each, D) a threshold or other
criterion for success, c) one or more implied names, each with some weight
(see Bledsoe and Browning, 1958, Uhr and Vossler, 1961, Uhr and Jordan,
1969). For example, an n-tuple might look for one horizontal and two vertical
edges, succeed if any two are found, and therefore imply H, A, and B, with
descending weights.

It is convenient to specify information about an n-tuple in a table, and
have a subroutine interpret, to: a) get each piece and its expected contents,
b) apply it correctly positioned to the input, c) test the threshold criterion

to see if the n-tuple has succeeded and, if it has, d) merge the weight of

each implied name into a list of names found. Finally, after all n-tuples
have been applied, the program e) chooses the single most highly implied
name.

The preceding has really been a fairly detailed and complete descrip-
tion of a program that first pre-processes, and then characterizes and
decides upon a single name. (See Uhr, in press, for programs.) Typically,
it might average, difference, average, difference, and then apply a set of
5 to several 100 n-tuples. (These n-tuples are usually applied to the last
transform layer. But it is very easy to specify Layer as well as Row and
Column of a piece, and apply them to any mixtures of layers.)

2. QOperations that Transform or Characterize: We can use the table

that stores information about an n-tuple characterizer to store information
about a local averaging or differencing transform. For an n-tuple can specify
any set of pieces - including the tightly packed neighborhood of pieces the
transform works with. All we need do is specify the cells involved (for
example, the middle and its 8 neighbors), and where to look for this n-tuple
(everywhere).

Now a transform stores the combined weights of the pieces in the next
layer, whereas a characterizer implies output names which are merged into
the list of names found. There thus remain slight differences between trans-

forms and characterizers. But they can be handled so similarly that the program

needed is virtually half the length of the preceding one, since it (almost)
combines the two halves, 1) pre-processing and 2) characterizing, into a
single process. Such a program differs from the Appendix program chiefly in
that it MERGEs IMPLIEDs into a FOUND list rather than into the next layer

(statement 23).

AN ILLUSTRATIVE PROGRAM

There is space for only one complete, albeit simple,bare-bones
program. The Appendix presents a type 3) recognition cone program
that also 4) develops a simple description as well as choosing a single
most highly implied name, and has the beginnings of abilities to 5)
describe wholes and 6) converse. I will refer to that program when perti-
nent, and try to describe modifications that would change its type.

Memory Tables and User Commands

The program assumes that it has been given a number of Memory tables,
showing it what LAYERS of transforms and CHARacterizerS it should apply.
The user must follow the conventions: Input a scene ROW by ROW, preceded
by a title card that starts 'SCENE ' with each line started by 'S ', the scene
followed by a card that starts 'TRANS'. When the user wants to converse he
must start the line with 'AND ' to get another object, or 'PARTS ' to get the
parts of the object just described.

The following gives an overview of the program.

Program Qverview

1. Memory is initialized (including the characterizers, which are not
shown).

2. The scene (or a command) is input and stored as a matrix.

3. The transform layers are computed, as memory directs, by applying each

operator (which is either a characterizer or a transform) in the sub-
matrix specified, looking at each piece, testing whether the threshold
has been achieved, and merging the implieds into the next layer.

4, The layer is erased after it has been completely transformed, and examin=-
ed for peaks, which imply that a choice should be made among implied names.

5. The program iterates to the next layer, thus adding more layers, until
the cone has completely collapsed into a layer with a single cell,

6. The program outputs the single most highly implied object name, and
starts a conversation with the user, who can ask for additional names,
and for a description of any object.

7. When the program merges a transform's implieds it checks whether it
should choose a name to output. It thus builds up a whole description

list of object names.

Program Description

The following gives a more detailed description of the program.
(Numbers to the left refer to sections in the Overview; numbers to the right

refer to statements in the program in the Appendix.)

1.

10

Statement No.

GO Put the lists of LAYERS, CHARacterizerS, and each

characterizer into memory. M1-MN
DEFINE the MERGE and CHOOSE functions, and SIZE

of each spot. 1-3
INPUT and store the pattern to be transformed. 4-11

Get each SPOT and store it under its Layer (equals 0),

Row and Column. Intensity (specified by '$") is
the SPOT's attribute.

TRANSform. Get each Layer to NOWDO and its STEP-shrink

size from the list of LAYERS and CHARacterizersS. 12-13

Get each n-tuple to DO and the dimensions of its sub- ’
matrix from NOWDO. 14-15
Get the n-tuple's TyPe, THRESHold, DESCRiption, and

IMPLIEDS. 16-18
TyPe A n-tuples average all attributes in all cells specified

in the DESCRiption (which contains relative Row and

Column locations and weights of each piece). 19
TyPe B looks in each location specified for the VALue of the

ATRibute specified and, if this VALue exceeds the

MINimum specified, adds 1 to GOT. If GOT exceeds

the THRESHold, the IMPLIEDS are MERGED into the next

layer.
Tterate through the sub-maftrix. 24-25
ERASE (when the whole layer is done). 26-33

When a name is of lower weight than at the previous
layer, add 1 to 'PEAK' (which will trigger a
characterizer that implies '"#*CHOOSE', which will

choose among names in that cell). 31-33

11

Statement No.

5. ITERate to TRANSform the next layer, 3436
Unless the cone has collapsed, 37
In which case CHOOSE the most highly implied
name TO OUTput. 38-39
6. AND QUTPUT and erase the single most highly implied
name on TOOUT. Go to IN for a conversational
command. (the command 'AND' will return the pro-
gram to this statement, where another name will be
output.) 40-41
PARTS (input as a command) will have the program
OUTPUT all the PARTs of the just-named object that
are actually in the scene. 42-45"
$ allows the programmer to put INFOrmation on a new 46
list, named LINE, to memory. Thus LAYERS and
characterizers can be changed.
7. MERGE combines one list into another, summing weights, 47-52
using the GOT sum of weights of the pieces found when 48
'$' indicates, calling the CHOOSE function when the
implied name is '"*CHQOOSE". 49,52
CHOOSE gets the name with the HIghest sum of WeighTs
(HIWT). 53-56

Illustrations of Transforms and Characterizers

The following gives some simplified examples of the information that
must be tabled in this program's memory.
Layers

A first layer with a STEP-shrink of 2 and made up of an averaging

transform (T+) that looked everywhere in the matrix, followed by a

12

characterizer (C1) that looked only at the submatrix Row 3 to 6, Column 4
to 7, is written:
LAYERS='211RC T+ 346 7C1 /" (other layers follow)
Transforms
Then the averaging transform, T+, is written:
T™+='A0004/-1-11/-102 /" (plus 6 more cells) 1='
Thus a TyPe A is a Transform, with a THRESHold of 0 and no IMPLIEDS.
Statement 17 treats the ATRibute as a weight, and MERGEs into the next
layer. (A transform can also be written using a TyPe B, since a zero
THRESHold will allow it to succeed in all cases. This allows a transform
to imply names also, if desired. But it forces the programmer to write a
transform for each ATRibute name, whereas the TyPe A transform merges
1l attributes (statement 19).)

—r

Characterizers

The following are two over-simplified characterizers:
a) Cil1='B200$410%$4=I5E3"
This says: 'it's a TyPe B with a THRESHold of 2. The center must have an
intensity ($) of at least 4 and the cell directly below it must have an intensity
of at least 4. Only then will GOT achieve the THRESHold, and then the
IMPLIEDS (I with a weight of 5, E with a weight of 3) will be merged into the
next layer.' (One more line of code would handle a loop through intervals,
rather than a threshold. This would allow for tests on the absence of an
attribute.) Such a characterizer should come later than the first layer, and

would usually have more than just two pieces in its DESCRiption.

13

b) C101 ='B20O0MAN1O0OOWOMANIL1O0OBOY1l ...=FAMILY 12"
This would imply a FAMILY if more than 3 pieces of the DESCRiption were
found. (The reader should note that a more sophisticated search is
needed, as done by Uhr and Jordan, 1969, over some wobble of a piece,
rather than into a precisely positioned cell, so that unreasonably long

descriptions would not have to be specified.)

PATTERN AND SCENE DESCRIBERS
The program in the Appendix does the following things (numbers in
the text refer to its statement numbers):

Transform Cones to Classify and Describe

Up to now we have been talking about transforms that output into
next-layer cells corresponding to the middle cells of the layer being trans-
formed, so that the size of the matrices remain the same, as though the
layers form a sheaf of paper sheets. But each layering averages, sifts,
coalesces, abstracts, or in some other way refines and reduces the informa-
tion. It would be natural and plausible to think of a cone of sheets, moving
from the raw input base to the decision-making apex. (This is much like
living sensory systems, whose neural paths converge from eyes and skin to
the cortex of the brain.)

To do this we need merely collapse or shrink the matrix. For example,
when a 3 by 3 sub-matrix of cells is averaged, the program might do this
averaging with every other cell as the center (done by STEP in 14, 19, 23, 31,

33, 35, 36).

14

Now let the program put implied names into the next layer, along
with the transforms (19,23). It must now name the transform (with '$',
in 11) and merge transforms and implied names into the next layer just
as a type 2 system merges implied names into the special list of found
names. Averaging now serves to merge implied names as well as the
intensity. When a judiciously chosen set of layers has averaged, dif-
ferenced, characterized, averaged, characterized, and so on, at the
same time collapsing to a single apex cell, the program can treat that
apex cell as though it were a single found list, choosing and outputting
the most highly weighted name that it contains (37-40).

(The appendix program does more, since it puts a whole description
on TOOUT. A program that was just type 3 would eliminate 49, 53, 40-46,
and QUTPUT CHOOSE in statement 38.)

Cones within Cones to Describe

We are now in a position to have such a system describe, in a very
natural and powerful way. For rather than wait until the entire transform
cone has collapsed into its apex, and then make a single decision, the
program can decide (49) that information has crystallized locally, that a
regional apex has been reached, and therefore CHOOSE an output name
(52) to associate with that region.

There are a number of ways to approach this decision. I will suggest

two specific sources of information.

15

Information about a region collapses into a local apex, where it is
surrounded by information about mere background, or about some other
region. So we can use differencing operations about implied names to
trigger the decider. For this the program must be given characterizers that
imply '"*CHQOSE' (49) when a high difference for one or more names is
found (20-22). Alternately the program can note that the strength with
which one or more names is implied locally starts to go down from layer
to layer (30~33). Thus both differencing over space and peaking (a
type of differencing) over time can be used to trigger a choice of a single
name (53-56) from those stored in the triggered cell. The name is added
to a list of names TO OUTput (52).

Note that this intermediate chosen name is in- the apex of a sub-
cone, and in some sense covers that cone's base, a sub-matrix in the
raw input pattern. But the program can still classify subsequent apexes
that cover this apex, up to the final apex of the grand cone. Thus sub-

cone can overlap, and cones can contain cones.

Interrelated Descriptions

I will merely suggest some of the ways descriptions can be made more
sophisticated.

Deciding to decide is itself a strong push toward appropriate descrip-
tions. Think of the cumbersome description, full of trivial detail (but also

useful information) we could get by having the program choose the single

16

most highly implied name in each cell, and thus output a cone of choices.
Deciding to decide selects key cells of that cone.

But there are a number of ways in which names chosen for these
key cells can be built into a more meaningful description.

Let's consider four types of description: 1) a list of the parts, some-
times with their interrelations; 2) likenesses; 3) general characteristics,
4) interacting compounds. Some examples follow:

"It's an "A", made up of three straight "LINE"s."

"It's an "A", made up of a right-angled straight line forming an -
apex with a left-angled straight line, both connected by a horizontal line."

"It's the word "ART", made up of an "A", followed by an "R" and a
wpnw

"Tt's a "FAMILY", made up of a "MAN", "WOMAN", "GIRL", "GIRL",
"BOY". We can thus describe an object like "A" by parts like "LINE" or
a scene like "FAMILY" by parts like "BOY", or a scene like "ART" by parts
like "A". We can further specify interrelations, e.g."forming an apex with",
or "followed by" And ;/ve can re-name the whole: certain sets of people
are named "FAMILY".

A program of type 4 would decide to choose and output a number of
names, each name describing the neighborhood covered by the sub-cone
from whose apex it was chosen. Let's call this a "raw description, " and

look at some ways to refine it.

17

1) The names could be output in some order. For example the
name chosen from the grand apex could be output first, on the assumption
that it is the highest-~level and most general statement about the scene.
Then names could be output from apex back, so that more and more de-
tailed statements are given. (The Appendix program would do this if it
simply OQUTPUT the TOOUT list, rather than discussing it.)

Names could be output in the opposite order, from detailed to general.

Starting with the grand apex, the names of sub-cones of that cone
could be output; then of sub-cones of each sub-cone; and so on until all
names have been given. This would organize by wholes, parts, and sub~-
parts, rather than by level of detail.

The weights with which names were implied can be used to order the
output (as done in the Appendix program, 40). E.g.the most highly weighted
implied name chosen might be output first, as the most salient. It might
be followed by its sub-cone part names and/or its super-cone names (since
now we start anywhere within the cone), or by the next most highly weighted
name.

Positions could be assigned to each name - either the location of the
apex cell from which it was chosen, or the boundaries of the base region of
that cell. Names might also then be ordered by position, e.g. from top-left

to bottom-right.

18

2) Other names might be output, to indicate possible confusions,
similarities, and contrasts. Names almost chosen would indicate that the
pattern looked like, and might indeed be, those other patterns. Names
not implied, but often confused with this pattern in the past, would also
be of interest.

3) The characterizers that implied the output name might be output,

to describe general characteristics. (A characterizer is used because it
conveys useful information to the program, but it may be gibberish to a
human being. So for this type of description we must use characterizers
that convey meaning to humans as well as their programs; for example we
can designate and use a sub-set, of "public" characterizers.)

Several interesting sub-sets of characteristizers can be used, to
highlight various aspects of the pattern. The program might output a) the
set that implied the chosen name;the sub-sets that implied b) the chosen
name but not its competitors; c) the competitors but not the chosen name;
d) the chosen name and the competitors; and e)the sub-set that would
have implied the chosen name, but did not characterize this pattern.

4) Finally, several names might interact directly, and compound
into a new name. Thus the strokes of the letter interact and combine into
the word: the individual people combine into a family. The Appendix pro-
gram will handle this when given n-tuple characterizers that look for pieces

that are names. Thus "FAMILY" might be implied with a high weight by

19

an n-tuple that looked for the pieces "MAN", "WOMAN", "BOY" and

"GIRL", with a threshold set so that any three pieces would suffice.
The description can reflect this interaction, e.g. by outputting

" "FAMILY" made up of "MAN", "WOMAN", and "GIRL"." This is done

by memory lists that store the PARTs as a Description of the whole (used

by 42-45). These pieces might be names, chosen or unchosen, or

characterizers or qualities.

Interactive Conversational Descriptions

The discussion of descriptions, even though incomplete, should _
make clear how many different kinds we might make. There is no single
proper description. A "complete" description would inundate us, as
would a description that tried to anticipate everything that might be of
interest. Most men's noise can always turn out to be some man's crucial
piece of information. Different descriptions serve different needs and
different purposes; their justness depends upon their audiences, and a
describer cannot describe well unless it knows what its audience wants.

A dynamic conversational description seems the way to handle this
problem. The program can first output what it decides is important (e.g.
the overall choice, or (40) the most highly implied name), and then respond
to queries and suggestions from its human users, outputting successively

more descriptive information on demand.

20

Thus some sub-gsetof the many possible descriptions discussed in the
previous section would be output, piece by piece as appropriate to answer
the human user's successive queries. The Appendix program outputs the
next most highly implied name each time it is asked 'AND ' (40-41).
'PARTS ' will get a list of that object's parts that were found (42-45).

A program must now be able to input user queries on-line, and decide
what is the appropriate response from among all the data about the input
that it has gathered in its recognition cone. It might further use these
queries to trigger new transformations and computations (e.g. in answer to
questions like "how big is the "A"?" or "how many people are there?").

To do this, we ultimately need a full-blown semantic understanding
program to interpret the query, and a problem-solver to figure out how to
get, and then actually get, the answer. But it is quite easy to build in
the ability to respond to some simple queries, such as "What are the
PARTS?", "How does it DIFFER from others?", "What ELSE implied it?",

"Give MOQRE detail."
SUMMARY DISCUSSION

This paper gives a brief overview of six types of pattern recognition
programs that 1) pre-process, then characterize, 2) pre-process and
characterize together, 3) pre-process and characterize into a "recognition
cone", 4) describe as well as name, 5) compose interrelated descriptions,

and 6) converse.

21

A computer program (of types 3 through 6) is presented that trans-
forms and characterizes the input scene through the successive layers
of a recognition cone. It can choose and output names of parts of the
gcene, and thus describe. It uses its n-tuple characterizers to combine
pieces of a description into interrelated wholes. It enters into a conver-
sation (albeit very simple and stylized) about what it has seen.

Only the beginnings of the descriptive and conversational capa-
bilities of this type of program have been presented here. But the tech-
nique of recognition cones that combine pre-processing transformations:
with characterizing appears to be a promising, simple and natural way to
move pattern recognizers from their present task of classifying an input,
by assigning a single name, to describing, discussing and conversing

about a complex scene.

REFERENCES
[1] D. R. Andrews, A. J. Atrubin, and K. Hu The IBM 1975 optical
page reader: Part III: Recognition and logic development.

IBM J. Research and Development, 12, 1968, 364-372.

[2] W. W. Bledsoe, and I. Browning Pattern recognition and reading

by machine. Proc. East. Joint Computer Conf., 16, 1959, 225-232,

[3 R. L. Grimsdale, F. H. Sumner, C. J. Tunis, and T. Kilburn. A
system for the automatic recognition of patterns. Proc. IEE, Part B,

106, 1959, 210-221.

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

22

R. E. Griswold, J. F. Poage, and I. P. Polonsky, The SNOBOL4

Programming Language. Englewood Cliffs: Prentice-Hall, 1968.

D. J. Farber, R. E. Griwold, and I. P. Polonsky. The SNOBOL3

Programming Language, Bell System Technical Journal, 45, 1966,

895-944,

S. Levialdi, Parallel pattern processing. IEEE Trans. Systems,

Man, and Cybernetics, 1, 1971, 292-296.

Bernice Lipkin and A. Rosenfeld, Picture Processing and

Psychopictorics. New York: Academic Press, 1970,

F. Rosenblatt, Principles of Neurodynamics. Washington: Spartan,

1962.

A. Rosenfeld, Connectivity in digital patterns, J. Assoc. Comput.

L. Uhr, Pattern Recognition. New York: Wiley, 1966.

L. Uhr, EASEy, An Encoder for Algorithmic Syntactic English.

Computer Sciences Department Technical Report, University of
Wisconsin, 1972.

1. Uhr, Pattern Recognition, Learning, and Thought. Prentice-Hall,

in press.
L. Uhr and Sara Jordan. The learning of parameters for generating

compound characterizers for pattern recognition. Proc. Joint Conf.

on Artificial Intelligence, Washington, 1969, 361-412,

23

[14] L. Uhr and C. Vossler. A pattern recognition program that
generates, evaluates and adjusts its own operators. Proc.

Western Joint Computer Conf., 1961, 555-569.

[15] V. H. Yngve. COMIT Programmer's Reference Manual, Cambridge,

MIT Press, 1961,

26

The Recognition Cone Program

(RECOGNITION CONE PROGRAM. TRANSFORMS, NAMES, DESCRIBES, STATEMENT
(CONVERSES.) NUMBERS

(FIRST OUTPUTS THE MOST HIGHLY IMPLIED NAME ON TOOUT(NOT
(THE OVERALL NAME))

(THEN DESCRIBES IN RESPONSE TO STYLIZED CONVERSATIONAL QUESTIONS.)

GO SET LAYERS = (the list of transforms and characterizers is given
here, by layer) ML *
SET CHARS = (the list of characterizers to be applied after all
layers) M2
SET Cl = (each characterizer must be given, with a list of
pieces, threshold, implied) M3
(DEFINES FUNCTIONS AND INITIALIZES MEMORY.)
DEFINE: MERGE OF OLD,NEW,WTI, 1
DEFINE: CHOOSE OF THINGS 2
SET SIZE =1 3

(INPUTS THE SCENE. GET AND STORE EACH SPOT UNDER ITS LOCATION.)
IN INPUT THE TYPE, ROW AND INFO TILL ' '

[SUCCEEDTO $TYPE, FAILTO END] 4
SCENE OUTPUT ROW ' SCENE IS BEING INPUT AND TRANSFORMED. " 5
ERASE L AND R [GOTO IN] 6
S SETR=R+ 1 7
ERASE C 8
Sl FROM THE ROW, GET AND CALL THE NEXT SIZE SYMBdLs SPOT.
‘ ERASE, [FAILTO IN] 9
SETC=C +1 10
SET $(L'.'R'.' C) ="'$ "' SPOT ' ' [GOTO 81] 11
TRANS SET TODO = LAYERS CHARS 12
(TRANSFORMS INTO THE NEXT LAYER. 'STEP' GIVES THE SHRINK SIZE.)
T2 FROM TODO GET THE STEP AND NOWDO TILL '/"

ERASE. [FAILTO TRANS] 13

27

(GETS THE CHARACTERIZER TO DO, AND THE BOUNDS FOR DOING IT.)

T5 FROM NOWDO, GET RA, CAA, RMAX, CMAX, AND DO.
: ERASE., [FAILTO ERASE]
Tl SET CA = CAA
(GETS TYPE, DESCRIPTION, THRESHOLD, AND IMPLIEDS.) ;
T4 FROM #$DO, GET THE TYPE, THRESH, DESCR TILL '=' AND
: IMPLIEDS TILL END

ERASE GOT

(GETS RELATIVE LOCATION, ATRIBUTE, AND MINIMUM OF NEXT
(PIECE IN DESCRIPTION.)

T3 FROM THE DESCR, GET THE NEXT DR, DC, ATR, AND
: MIN. ERASE. [SUCCEEDTO $(TYPE l). FAILTO $(TYPE 2)]

(MERGES ALL OBJECTS IN SPECIFIED CELL INTO NEXT LAYER.
(ATR CONTAINS WEIGHT.)

Al MERGE $(L '.' RA+DR '.' CA+DC) INTO
. "$(L+1'." RA/STEP '.' CA/STEP) ' (WTI = ATR) [GOTO T3]

(GETS AND TESTS THE VALUE OF THE ATRIBUTE SPECIFIED.)

Bl FROM $(L''.' RA+DR '.' CA+DC) GET THAT ATR AND
. ITS VAL [FAILTO T3]

IS VAL GREATERTHAN MIN ? YES- SET GOT = GOT + 1 [GOTO T3]

B2 IS GOT LESSTHAN TH? [SUCCEEDTO A2]

MERGE THE IMPLIEDS INTO '$(L+1 '.' RA/STEP
'.'! CA/STEP)' (WTI = 1)

A2 NO- IS CA LESSTHAN $CMAX? YES- SET CA = CA + STEP
. [SUCCEEDTO T4]

IS RA LESSTHAN $RMAX? YES- SET RA = RA + STEP
[SUCCEEDTO Tl. FAILTO T5]

(ERASES EACH LAYER ONCE IT HAS BEEN TRANSFORMED INTO THE NEXT.)

ERASE ERASE RA '

El IS RA LESSTHAN R? YES- SET RA = RA + 1 [FAILTO ITER]
ERASE CA

14
15

16
17

18

19

20
21

22

23

24

25

26
27
28

28

E2 IS CA LESSTHAN C? YES- SET CA = CA + 1 [FAILTO E1]

E3 FROM $(L '.' RA '.' CA) GET THE NEXT NAME AND WTI. ERASE.
- [FAILTO E2)

FROM $(L+1 '.' RA/STEP '.' CA/STEP) GET THAT NAME AND WTTJ.

(DIVIDES WTJ BY 8 FOR A ROUGH NORMALIZATION (SHOULD NORMALIZE
(EACH TRANSFORM.,)

IS WTI GREATERTHAN WT] / 8?7 [FAILTO E3)

MERGE 'PEAK 1 ' INTO '$(L+1'.' RA/STEP '."' CA/STEP)'
(WTI = 1) [GOTO E3]

ITER SETL=L+1
SET R = R/STEP
SET C = C/STEP
(ITERATES UNTIL THE CONE HAS COLLAPSED INTC A ONE-CELL APEX.)
IS R LESSTHAN 1? IS C LESSTHAN 1? [FAILTO T2]
AT START OF TOOUT LIST CHOOSE OF $(L '.' 0'.' 0) AND HIWT
ERASE $(L '.' 0'.' 0)

('AND' GETS MORE, AND FIRST OUTPUTS THE SINGLE MOST HIGHLY
(IMPLIED NAME.)

AND - OUTPUT THE CHOOSE OF TOOUT 'IS MOST HIGHLY'
: 'IMPLIED, ASK MORE,'

FROM TOOUT, GET THAT CHOOSE AND ITS WT. ERASE. [GOTO IN]
(DESCRIBES BY OUTPUTTING THE FOUND PARTS, ERASES THEM FROM TOOUT.)
PARTS FROM $CHOOSE, GET '/D=' AND THE DESCR TILL '/

Pl FROM THE DE3CR, GET A PART AND ITS WT. ERASE, [FAILTO IN]

FROM TOQUT, GET THAT PART AND WT ERASE. [FAILTO Pl]

OUTPUT THE PART [GOTO P1]

(PROGRAMMER CAN USE '$' TO ADD TO AND CHANGE MEMORY.)

$ SET $LINE = THE INFO [GOTO IN]

(MERGES TWO LISTS. '*CHOOSE' TRIGGERS A CHOICE.)

MERGE FROM OLD, GET A NAME AND ITS WT. ERASE. [FAILTO RETURN]

FROM WT, GET '$' AND REPLACE BY GOT

29

30
31

32

33
34
35
36

T 37

38
39

40
41

42
43
44
45

46

47
48

yoe

29

FROM NAME, GET '#*CHOOSE' [SUCCEEDTIO MCH]

FROM $NEW, GET THAT NAME AND ITS SUM. REPLACE BY THE
NAME AND SUM + WT * WTI [SUCCEEDTO MERGE]

ON $NEW, LIST THE NAME AND ITS WT #* WTI [GOTO MERGE]

(CHOOSES THE THING IN THIS CELL WITH THE HIGHEST COMBINED
(WEIGHT. ERASES IT.)

MCH AT START OF TOOUT LIST CHOOSE OF $(L '.* RA '.' CA) AND ITS
. HIWT [GOTO MERGE]

(CHOOSES THE MOST HIGHLY WEIGHTED THING.)
CHOOSE FROM THINGS, GET CHOOSE AND HIWT., ERASE., [FAILTO RETURN]

CH2 FROM THE THINGS, GET A NAME AND ITS ORWT. ERASE.
. [FAILTO RETURN]

IS ORWT GREATERTHAN HIWT? YES- SET CHOOSE = THE NAME
[FAILTO CH2]

YES- SET HIWT = ORWT [GOTO CH2]
END [GOTO GO]

49

50
51

52

54

. 55

56

APPENDIX: EASEvy-l: An English-Like Program Language

Overview of the EASEy-1 Programming Language

The following gives programs in and explanations of an English-
like programming language called EASEy-1 (an Encoder for Algorithmic
Syntactic English that's easy-Version 1). EASEy is modelled after
pattern matching languages like SNOBOL (Farber, Griswold, and
Polonsky, 1966; Griswold, Poage, and Polonsky, 1968) and Comit
(Yngve, 1961). At present it exists in the form of a SNOBOL4 program
that translates an EASEy program into an equivalent SNOBOL4 program
that can then be executed by a SNOBOL4 compiler (Uhr, 1972).

EASEy is designed primarily for easy reading, to be understood
by someone who knows nothing about programming. EASEy programs
are stilted and occasionally awkward. But they should give the reader
at least a general idea of what the system is doing, along with the
opportunity to study the actual code, when desired, until it is under-
stood. Most of the difficulties in reading will result from the logical
structure of the program's processes, rather than the peculiarities of
the program's language--that is, from content and not form.

A concise primer for EASEy follows the program. But the reader

should first try to read the program without the primer.

Here are the essentials: EASEy allows the user to name lists,
and then manipulate them. EASEy defines a list by assigning a string
of objects as the contents of a name (e.g.: SET TODO = LAYERS CHARS).
Objects are got from lists (e.g.: FROM TODO GET...) and added to
lists (e.g.: LIST NAME WEIGHT ON MAYBE).

GOTO a label is indicated at the right of a statement, in brackets.
Comment cards start with '(' and continuation cards start with '4'.

Most other conventions are quite natural, except for the very
confusing construct that means "the contents of the contents of this

name", which can be indicated by $name. E.g.:

Code Meaning Result
SETR=R+1 Add 1 to the contents of R R contains 1

SET $(L'.'R) = R '#0011' Assign '1%0011' as the L.1 contains 1%0011
contents of (L'.'R)

List structures and graphs can now be handled by storing a string of
names, getting a name, and looking at the string it points to, using

the $name construct,

A Primer for EASEy-1, an Encoder for Algorithmic Syntactic English

EASEy-lis a list processing, pattern-matching language that
uses simple English-like formats designed to be easy to read.

An EASEy program is a sequence of statements that construct and
rearrange lists of information, find items on these lists, compute
transformations on these items, rearrange information within and
between lists, and input and output information. Statements are
executed from top to bottom except when GOTO's indicate otherwise.

A GOTO may be conditional on the success or failure of the statement's

search for a pattern, or test for an inequality.

I. A Simple EASEy-l Program A

(PROGRAM A. AN EXAMPLE PATTERN RECOGNIZER, Cl*

(POSITIONED N-TUPLES IMPLY WEIGHTED NAMES. c2

(INITIALIZES CHARACTERIZERS C3

INIT SET CHARI = '0111 2 1000 9 1111 24=B 6 F 9 M1
SET CHAR2 = '001111111 3 0000000 18 =5 E 9 ' M2
SET CHARN = . . . MN

SENSE SET LOOKFOR = 'CHAR!I CHAR2 . . . CHARN ' 1
ERASE MAYBE. 2

IN INPUT THE PATTERN TILL '/' [FAILTO END] 3

(GETS EACH CHARACTERIZER'S DESCRIPTION AND IMPLIEDS . C4

RESPOND FROM LOOKFOR GET THE NEXT CHAR. ERASE. [FAILTO OUT] 4
FROM $CHAR GET THE DESCR TILL '=' AND THE IMPLIEDS

+ TILL THE END. 5

(ALL HUNKS MUST BE FOUND FOR THE CHARACTERIZER TO SUCCEED.) Cc5

Rl FROM THE DESCR, GET A HUNK AND ITS LOCATION. ERASE.

+ [FAILTO IMPLY] 6
AT THE START OF PATTERN, GET AND CALL LOCATION SYMBOLS

+ LEFT, AND GET THAT HUNK. 7

+ [SUCCEEDTO Rl. FAILTO RESPOND]

(MERGES IMPLIED NAMES ONTO MAYBE,

IMPLY FROM THE IMPLIEDS, GET THE NEXT NAME AND ITS WT. ERASE. Cé

+ [FAILTO RESPOND] 8
FROM MAYBE, GET THAT NAME AND ITS SUM. REPLACE BY NAME

+ AND SUM + WT [SUCCEEDTO TEST] 9
ON MAYBE LIST THE NAME AND ITS WT [GOTO IMPLY] 10

(OUTPUTS THE FIRST NAME WHOSE SUM OF WEIGHTS EXCEEDS 30,

(OR THE LAST NAME IMPLIED.) C7

%
A number in the right margin refers to a statement in Program A that illustrates
the construct being discussed. C =Comment, D = Data program inputs, M =
Memory initialization.

TEST IS THE SUM + WT GREATERTHAN 30? [FAILTO IMPLY]

ouT YES- OUTPUT THE PATTERN ' IS A ' NAME [GOTO SENSE]

(THE END CARD, AND 3 PATTERNS TO BE READ IN ON DATA CARDS FOLLOW.)
END [GOTO INIT]

0001111111000010101010101011000/ (first two hunks of CHARI

00011111110000101010101011111/
00000111111100001000000000/

iI.

will succeed, third fails)
(CHARI succeeds)
(CHARZ2 succeeds)

EASEy-1 Constructs

A.

Basic Statement Types for List Manipulation

1.

Lists are initialized and added to:
a. Names can be assigned to strings of objects:
E.g.: SET name = objects
SET C1 = '00111"

SET LOOKFOR=C1 ''C1''C1 "'

assigns '00111' as the contents of Cl, and then

assigns '00111 00111 00111 ' as the contents of
LOOKFOR.

b. Objects can be added to the end of a named list:

ON name SET objects
E.g: ON COUNTRIES SET COUNTRY '=' AREA ','
adds the contents of COUNTRY followed by '=',

the contents of AREA, ',' to the end of COUNTRIES.

=

11
12

C8
13

D1
D2
D3

c. Objects can be added to the start of a named list:

AT START OF name SET objects

AT START OF DESCRIPTORS SET DESCRIPTOR ' ' WT '
d. Objects can be listed under a name

ON name LIST objects

ON IMPLIED LIST NAME WT 10

LIST is much like SET, except that it automatically
puts a delimiter (one space) after each object listed,
except for literal strings (those enclosed in quotes).

e. Objects can be listed at the start of a named list:

AT START OF name LIST objects

AT START OF DESCRIPTORS LIST DESCRIPTOR WT
2. Information is got, erased, and replaced in lists:
a. Objects can be got from a named list:

FROM name GET objects

FROM SENTENCE GET WORD 4,5,6
will assign the name WORD to the first string on

SENTENCE, ending with the space delimiter.

Delimiters: An Aside

EASEy uses one gpace as its internal delimiter. So the user
can specify delimiters, as:
E.g.:

SET LOOKFOR = '3 00111 B3 F 6 /..
Then, FROM LOOKFOR GET POSITION, DESCRIPTION IMPLIED TILL '/*
will assign 3 as the contents of POSITION, 00111 as the contents of
DESCRIPTION, and 'B 3 F 6 ' as the contents of IMPLIED., EASEy
uses the next internal delimiter (one space) to define a variable name
if it is followed by another variable name; otherwise it assumes the
next object (or the end of the string) is the delimiter.

The user must take care that spaces used for other purposes
are not mistakenly found and used as delimiters.

b. Objects can be got and erased by extending the GET
command:

FROM name GET objects ERASE

FROM LOOKFOR GET CHAR ERASE
c. The objects can be replaced by other objects:

FROM name GET objects REPLACE BY objects

FROM LOOKFOR GET CHAR WT REPIACE BY TRANS

An equal sign ('=') can be used instead of 'ERASE' or 'REPLACE BY'.

=2

joo

2

d.

All contents can be erased from named list:

ERASE names

E.g
ERASE R C MAYBE 2
3. Information is input and output:
a. One card of data can be input and names assigned to
its contents:
INPUT objects
E.g .
INPUT TYPE TILL '*' LINE TILL ' ' 3
b. Lists can be printed out:
OUTPUT objects
E.g
OUTPUT LOOKFOR ' = ' $LOOKFOR 12

Types of Objects Used

An object is a string of symbols followed by one or more spaces.

as follows:

Such a string is often a name whose contents are some other string of

objects to which it points. Several different kinds of string are used,

Names: A name is an alphanumeric string that points to (names)

some contents. 1,4

Literals: When a string is in quotes it is a literal ikon that

signifies itself.

E.g.: FROM SENTENCE GET * AND ' 3,

o

means that the thing in quotes-- ' AND ' should be found
in SENTENCE.

Variable names. A string of symbols that comes after GET

ig treated as a name to be assigned some contents. It will
be assigned the string in the named list up to the next space
delimiter, unless it is followed by a specified object or a
literal object, in which case it is assigned the string up to
that object. END (or TILL END) will assign the rest of the
list, till its end, to the variable name.
E.g.: FROM SENTENCE GET MODIFIER NOUN TILL ' IS '
HE##OBJECT TILL END 3,5,9

Specified Objects. THAT string will look for the contents

of the string.

E.g.: SET PHRASE = 'THE TABLE '

O

FROM TEXT GET THAT PHRASE
will see whether 'THE TABLE ' (the contents that has been
assigned to PHRASE) is in TEXT, whereas:

FROM TEXT GET WORD

assigns the name WORD to the first string ending with the

10

space delimiter in TEXT.

5. Indirect and Compound Names. $string will treat the contents

named by that string as a name, and look in the string it
names. Parentheses can be used to compound together a
sequence of several literals and named strings.
E.g.: SETR=1

SET $(‘ROW. R) = '1001100"
will set ROW. 1. to contain 1001100 (since R contains l).

6. Matching from the Start of the List. AT START OF insists that

the match begin at the very start of the list.
E.g.: AT START OF SENTENCE GET 'THE'
looks for 'THE' only at the very start of the SENTENCE.

7. Specifying the Length of a String. CALL length SYMBOLS

string will get a string exactly length symbols long, and
assign the string following the word SYMBOLS as its name.
E.g.: FROM PATTERN GET AND CALL 6 SYMBOLS PIECE
will assign PIECE as the name of the first 6 symbols in

PATTERN.

C. Functions.

1. Arithmetic is handled in the conventional way. Parentheses

are not needed if ordinary precedence of operators is desired. +=add,

jor,

I~

I~

11

- = gubtract, * = multiply, / = divide, %% = exponentiate.
E.g.: SET WEIGHT = WEIGHT + INCREMENT 9,11
2. Tests for inequalities are of the form: IS Objectl

TEST Object2? The tests are a) numeric: GREATERTHAN, LESSTHAN,

or EQUALTO and b) string-matching: SAMEAS.
E.g.: IS SUM GREATERTHAN THRESHOLD? 11
3. The built-in function SIZE OF object will count the symbols

in the object (if it is a literal) or the list named (if the object is a

name).
The function RANDOM OF Number will get a random number

between 1 and the number specified.

4. The user can define his own functions by saying DEFINE:

followed by the function name, OF, and the arguments. When the
function name is then used in a statement, the program goes to the
statement with that name as its label, executes the function, and

exits using RETURN and FAILRETURN in gotos.

D. Flow of Control.

1. A label can be used to name a statement. All labels must
start in column 1. No two statements can have the same label. 1,3
2. Statements are tied together by gotos at the right of the
statement which name labels at the extreme left of the statement to

be gone to. Unconditional gotos are of the form: [GOTO label]. 10=>8

12

Gotos conditional on the success or failure of the statement (either
a pattern match or a test) are specified by [SUCCEEDTO label] and 9=11

[FAILTO label]. Alternately, parentheses, and +TO and =TO can be 11=8
used,

3. A program statement can be continued by starting the next

card with '+' or '.' . 7

4, A comment card must start with a left parenthesis ('(') in

column 1. C
5. A program must end with a card that has END in its first

three columns. 13
6. An EASEy program is a sequence of statements (each card can

contain up to 72 columns; the last 8 columns are reserved for
identification), b) an END card, and c) cards with data (all 80
columns can be used).

E. Flexible Constructs

1. A number of words and punctuation marks are ignoreq, so that

they can be used as fillerby the programmer, to make his statements

easier to read. These include the words (when between two spaces)

A, AND, INTO, IT, ITS, TILL, NEXT, NO, OF, THE, YES, and the

punctuation marks (only when followed by a space) . , :, - and , .
{(Note that the colon and period can be used in command

words. E.g.: either GET: or GET, and ERASE. or ERASE are acceptable.)

13

2. Several spacing variants are allowed: a) One or more spaces
must bound all names and objects, except b) No spaces are needed

around arithmetic operators.

14
I11. Summary of EASEy~] Constructs

A. Basic Statement Types for Manipulation:

1. Build lists:

a. Assign: SET nanme = objects
b. Add: (at end) ON name SET objects
c. Add: (at start) AT START OF name SET objects
d List: (at end) ON name LIST objects
e List: (at start) AT START OF name LIST objects

2. Get, erase, replace:
a. Get: FROM name GET objects
b. Get and erase: FROM name GET objects ERASE
c. Get and replace; FROM name GET objectsl REPLACE BY objects?

d. Erase: ERASE names

3. Input and output:
a. Input: INPUT objects (inputs one data card)
b. Qutput: OQUTPUT objects

B. Types of Object:
1. Names: alphanumeric strings
2. Literals: strings surrounded by quotes
3. Variable names: to be assigned contents up to either: -
a. the nex! delimiter space;
b. if a literal or specified object follows that object;
c. if END er TILL END follows, the end of the list.
Specified objects: THAT name specifies the contents of the name.
Indirect and compound names: $name, $(name literal...)
To match from the start: AT START OF name GET objects
To specify length: FROM name GET AND CALL length SYMBOLS object

o Ut

~
.

C. Functions:

1. Arithmetic: +,-,%,/,%%. E.g.: RESULT=A+B - C % D/E*%F
2. Inequalities: IS numberl INEQ number 27,
(where INEQ is GREATERTHAN, LESSTHAN, EQUALTO)
IS objectl SAMEAS cbject2? (objects must match exactly)
3. Built-in: a) SIZE OF objects (counts symbols): b) RANDOM OF number
4. User defined: DEFINE: name OF arguments

D. Flow of Control:
1. Labels start statements at the left, in column 1.
2. GOTOs at the right in brackets or parentheses name labelled statements to be
branched to:
a. Always: [GOTO label] or [TO label]
b. On success: [SUCCEEDTO label] or [+TO label]
c. On failure: [FAILTO label] or [-TO label]
Continuation cards start '+ ' or ',
Comment cards start '('
END starts the END card that ends the program.
Program structure: a) Program (72 cols); b) END card; c) data (80 cols).

o U W

E. Filler words and variants for flexibility:
1. Filler words that are ignored: 'A ', "AND ', ' INTO ', 'IT ', "ITS ',
'NEXT', 'NO ', 'OF ', 'TILL', "THE', 'YES ', ". . ', ', "« =N
2. One or more spaces must bound names and objects, except arithmetic
operators. '=' can replace 'ERASE' or 'REPLACE BY'.

