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1, INTRODUCTION

Let A= (aij) be an n Xn real matrix. The minor of A formed

fromrows a.< 0_ < see < and columns B, < B < esee < B will
1 2 p 1 2 p

be denoted by

a noo,cy
1/ p

A . (l.1)

R
"‘1""'Bp

Following Karlin [6, p. 46 and p. 87] we say: (i) that A is

P (totally positive) if all the minors of A are non-negative;

(ii) that A is NTP if A is non-singular and TP; (iii) that A

is STP (strictly totally positive) if all the minors of A are strictly

positive; (iv) that A is oscillatory if A is TP and Am is STP
for some positive integer m,
Following Gantmacher and Krein [4, p. 6] we say: (i) that

A is ZR (zeichenregqular) if all the signed minors of A, namely
P
kil(ak +ﬁk) all...l(’yp
(_ 1) B A ’

ﬁl,--.,ﬁp

are non-negative; (ii) that A is NZR (nichtsingular und zeichen-

regular) if A is non-singular and ZR; (iii) that A is SZR

(streng zeichenregular) if all the signed minors of A are strictly

positive, It should be noted that the English equivalent of



"zeichenregulir", namely "signregular", is used in a slightly differ-
ent sense by Karlin [6, p. 47].
If A is a lower triangular (upper triangular) matrix, the minors

(1.1) for which B <a (Rk > (xk) for 1< k < p will be called the

k k

non~-trivial minors of A. The remaining minors of A, the trivial

minors, are obviously equal to zero, We say that A is ATP,

ANTP, ASTP, A-oscillatory, AZR, ANZR, or ASZR, if A is a triangular

matrix and the appropriate inequalities are satisfied by the non-trivial
minors of A,

We will say that A has an LU-factorization (UL-factorization)

if A=1U (A=TUL) where L is a lower triangular matrix and U
is an upper triangular matrix. -

The motivation behind the present work came from the study of
finite difference methods for boundary value problems for ordinary
differential equations. For example (Henrici [5, p. 347]) the boun~-

dary value problem

(1.2)

leads to finite difference cquations of the form

X = B (1.3)



where X and B are n-vectorsand J isan nX n tri~diagonal NZR
matrix. The numerical solution of (1.3) is usually carried out by
computing the LU-factorization of ] (Henrici [5, p. 352]). Theorem
1.1 is a generalization of results obtained by the author while study=
ing (1.3) (Cryer[1l]).

The main result of the present paper is the following theorem

which is proved in section 5:

Theorem 1.1

Let P denote one of the following properties: NTP, STP,
oscillatory, NZR, SZR. Then A has property P iff A has an LU-
factorization such that L and U have property AP. Also, A has
property P iff A has a UL-factorization such that L and U have

property AP.



2. PRELIMINARIES

To simplify the notation we will use multi-subscripts (Marcus

(p,n)

and Minc [8, p. 9]). If 1< p<n then Q will denote the set

of strictly increasing sequences «a = {al,.,. ,ap} of p integers
(p,n)
chosen from 1,...,n. If a € Q we set 4(a) =p, |a] =
p-1

p
kgl Qs and d(a) = k%l (ak+1 L 1) = ap -y (p - 1. The ele-

ments of Q(p,n) are partially ordered as follows: if a, B ¢ Q(p,n)

then a< B if Oy < Bk for 1<k < p. The infinum of the lattice
Q(p,n) is denoted by (7<p) = {1,2,00e,P}e

Using multi-subscripts the minor (1.1) will be written as
A(a;BR). Thus, if A is a lower triangular (upper triangular) matrix,
the non-trivial minors A(a;p) are those for which a> 8 (a < #).

In particular, if A has an LU-factorization the Binet-Cauchy ex-

pansion (Marcus and Minc [ 8, p. 14]) takes the form

A(a;R) = 5 L(a;y) U(y:B). (2. 1)

P

’YEQ(p'n)
y<a,B

The following important theorems (or variants thereof) are proved
by Gantmacher and Krein [; p. 299, P. 115, and p. 308] and Karlin

[6; p. 85, p. 93, and p. B8],

Theorem 2. 1

A is STP iff A(wr) >0 forall a, A ¢ o™ < p<n,



such that d(q) = d(B) = 0.

Theorem 2.2

lLet A be TP. Then A is oscillatory iff (i) A is non-singular

(ii) a iJrl>0 and ai+1’i>0 for l<i<n-1,

Theorem 2.3

Let A bea TP matrix. Then A canbe approximated arbitrarily

closely by STP matrices.



3, ASTP MATRICES

In the present section we discuss the equivalent of Theorem 2,1
for triangular matrices.
Restating the results of Karlin [6, p. 85] we immediately obtain

the equivalent of Theorem 2. 1:

Theorem 3, 1

Let A be a lower triangular (upper triangular) matrix. Then A
s astp it A ®y> 0 adPie > 0) forall a e P,
1< p<n, suchthat d(a) = O.

Theorem 2.1 cannot be generalized to TP matrices as is shown

i PR
by the matrix
0 0 1
A = 1 0 0
o 1 0

which is non-singular and all of whose minors are non~negative ex-

cept for the minors

.arly, Theorem 3.1 cannot be generalized to ATP matrices

as is shown by the matrix



-0 O
o o = O
o = O O
= o o O

which is non-singular and for which the minors mentioned in Theorem

3.1 are non-negative, but for which

However, one might try to strengthen the hypotheses so as to

exclude the above counterexample. In this way we arrive at

Conjecture 3.1

Let A be a non-singular lower triangular (upper triangular)
matrix. Then A is ATP iff A(a;n(p) y> 0 (A(a(p);ot) > 0) for
all a e Q(p,n)’ l<p<n.

We have tried hard, without success, to prove this conjecture,
and incline to the view that the conjecture is false, However, the

conjecture appears to be true if n< 5, so that the construction of

a counterexample is non-trivial.



4, A -OSCILLATORY 'MATRICES

The equivalent of Theorem 2.2 for triangular matrices is

Theorem 4, 1

Let A= (aij) be a ATP lower triangular (upper triangular) matrix.
Then A is A-oscillatory iff (i) A is non-singular and (ii) ai+1 i> 0
[

a, .
( i, i+l

>0) for 1<i<n-1

Proof: The proof of Theorem 4.1, which is lengthy, is a straightfor—
ward modification of the proof of Theorem 2,2 given by Gantmacher and
Krein [4, p. 114].

We need the following two lemmas (Gantmacher and Krein [4, p.

108 and p. 114], Karlin [6, p. 89])

Lemma 4.1

Let A be an NTP matrix. Let a = (s,5+l,e0e,t} eQ(p'n)

.

Then A(x;a) > 0.

Lemma 4,2

let A bea TP m x n rectangular matrix (that is, all the minors

of A are non-negative). lLet a € Q(p,m), Be Q(p,n) be such that
A{a;B) = 0 but
O, oo (Y a see ()
p-1
A X0 and A X 0.
Bl o9 @ Bp_l Bz * 0 5p

Then A hasrank p-1.



Next we establish

Lemma 4.3

let A = (a,,) be A-oscillatory, Let 1< s<t<n and B = (@450

ij
s<i, j<t. Then B is A-oscillatory.

Proof: Only the case when A is a lower triangular matrix will be
considered. Furthermore, it suffices to consider the cases s = 2,
t=n and s=1, t=n-1, since the more general result can be ob-

tained by induction.

2(p,n)

We denocte by Q the set of strictly increasing sequences

- ~

a = (al""’ap-l] of p -1 numbers from the set s, s +1,...,t.

p,n)

Given & € Q(p,n) we constriict a e Q( by setting a = [1,&1,.... '

&p-l} if s=2, t=n and setting a = {&1,...,d.p_l,n} if s=1,
t=n-1; we say that o and & correspond.

Since A is A-oscillatory there is an integer m such that A™

is ASTP., It suffices to show that Bm is ASTP.

)

let &, B € Q(p'n) with &> B. Let a,B ¢ Q(P/n correspond

to a and é Then o > B so that, using the Binet-Cauchy expan-
m-1

sion, Am(a , B) = s I A(a(s);a(s+l)) > 0, the sum being taken
s=0

over all a(s) ¢ Qip,n) such that

a:a(o)za(l)>---_>_a(m)=5 (4. 1)
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Since each term in the sum is non-negative, at least one term is

(s)

positive. Thus, for some choice of « satisfying (4. 1) we have

A(<1(S);a(s+1) ) > 0, 0<s<m~-1, (4. 2)

It follows from (4. 1) that to each a(s) there corresponds an &(S).

Using (4.2) and Lemma 4. 1 we see that

~(s), ~(s+l)

Al 1 o ) > 0, 0<s<m-l.
Hence
m=-1
By > 1 aG® Rty s o,
s=0

and the lemma is proved.,
Before stating the next result we introduce some notation. If

e Q(p,n) we set

Ny = (pe® ™ o -1<p

k =@

for 1<k <p

k k

and for l<k<p-1}

e Py

ILemma 4.4
1f A is a lower triangular NTP matrix and

a; > 0 for l<i<n-1, then A(af)>0 il R ¢ N(o).

Proof: The proof proceeds by induction upon the length, (), of



11

f = t M = M -
1 (@) =1 and B ¢ N(a) then A(a:B) aii or A(x;8) ai+l,i’
so that the lemma is true.

Now assume that the lemma is true if 1< {(a) <p<n. To
prove the lemma if {(a) = p, assume the contrary. Then there
exists a = (O ,eee,0_ )€ Q(p,n) and P = (B,e..,f ) ¢ N(@

. ll [ p -ll‘ LA p =
such that A(m;B) = 0 but

(1, oo O A, oo, O

p-l X0 and A
Bl..' Bp.—l Ba, .O.’P)

¥ 0.

P
t = <i<a ¢ <j< . i 4,
let B (aij) , ocl <i< xp, (31 <j< Bp Applying Lemma 2 we

conclude that B has rank p - 1. Now let C = (aij), s<i,j<t,

where s = &2 and t = a4y +p-1. Since f e N(v), szdp—l +1>
a +p-1l=1t and Bl_<_of,1 - s so that C is a minor of order p of
B, But B hasrank p -1 €7 det(C) = 0. On the other hand, det(C) =

(p,n), so that, by Lemma 4.1,

A(y;y) where v = (s,s4],00.,t) ¢ Q
det (C) > 0. We have thus arrlived at a contradiction, from which we
conclude that the lemma is indeed true if t(a) = p. The proof of the
lemma is therefore complete.

We now turn to the proof of Theorem 4. 1.

First, assume that A is A-oscillatory. To establish condition

(i) it suffices to observe that Am is ASTP. To establish condition

(ii) we note from Lemma 4,3 that the submatrix
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a,, 0
ii
a, \ a, .
i+l,1i i+l,i+l
is A-oscillatory; this implies that a, . > 0.
i+l,i

It remains to prove that conditions (i) and (ii) of Theorem 4,1

imply that A is A-oscillatory. We do so by proving that B = An'-1

is ASTP.

(p,n)

Let a,B ¢ Q , a>fB. Define a(s) =

,.oc,(Y(S)} fOl’
p

0< s<n-1 asfollows:

cz(ks) = max {Bk, oy = max [0, s+1-k]].

(s)

(s+) N,

It is easily verified that a(s) € Q(p,n) and that «

(n-1)
Tk

Clearly, q(o) = 0. 9Since 6k >k and Oy <n,

max [Bk, a - n +k} = Bk , so that a(n—l) =R, Now,

Bz > 1 A o)

But, by Lemma 4.4, each of the terms in the above product is strictly
positive. Therefore, B(a;f) >0 and the proof of the theorem is

complete.
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5. THE LU-FACTORIZATION OF NON-SINGULAR MATRICES

First we recall the basic result on LU-factorization (Gantmacher

[3, p. 35]):

Lemma 5.1

Let A(ﬁ(p);g(p)) x 0 for 1< p<n. Then A has a unique LU=
factorization such that L has a unit diagonal. The matrices L =
(£,.) and U = (uij) are defined as follows:

1)
1 20 p—li)

1 2 e p—lp

for 1< p<n and p<i<n,

_ _ 1 2 eee p=1p
IR VR ( ) '
2 1 2 eee p-1]

for 1< p<n and p<j<n,
(0), (0) _ y,

where, by convention, A(c  ic

Next we prove a special case of Theorem 1., 1t

Theorem 5.1

lLet A be STP., Then A has an LU-factorization such that

L and U are ASTP.
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Proof: Since A is STP, A is non-singular. Consequently
(p), (p) .
Alg 357y > 0 for 1< p<n (Karlin [6, p. 89]) so that, by Lemma

5,1, A has an LU-factorization such that I, has a unit diagonal.

Since L has unit diagonal, L(m(p)m(p)) =1 for 1< p<n.
Applying the Binet-Cauchy expansion (2, 1) we find that if « € Q(p,n)
then

Aoy = 3 ) Lo Py Ui,
’YSO'IO-
_ L(U(p)lg(p)) .U(O(p)’a) ’
from which it follows that U(G(p);a) > 0. Similar arguments show that
L((}.;ﬁ(p)) > 0, Using Theorem 3.1 we see that L and U are ASTP,

and the proof of the theorem is complete.

Next we obtain the equivalent of Theorem 2.3 for ANTP matrices.

Theorem 5,2

Let A be a ANTP matrix., Then A can be approximated arbi-

trarily closely by ASTP matrices.

Proof: We only consider the case when A is lower-triangular. Let
2
F_ = (exp [=s{i=})

5 1), 1<i, j<n, where s> 0. It is known

(Karlin [6, p. 88]) that FS is STP and that I—‘S—+I (the identity
s

matrix) as s— 0. From Theorem 5, 1 it follows that FS = LS U

where LS and US are ASTP. The elements of LS and US are of
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form MS/FS(m(p);g(p)) where Ms is a minor of FS (see Lemma 5. 1).
: (p), (P .
Since FS(G .5 7'y=+1 as s—0, itfollows that LS—>I and
US—*I as s-— 0.
Set AS = LSA. Then As is a lower triangular matrix and AS—*A
(p,n)

as s— 0. Using the Binet-Cauchy formula it follows that if a,B € Q

and o> B then

As(a:f}) = Ry Ls(”’ v) A(y:if3)

sinc.  (Karlin [6, p. 89]), A(B;PR) > 0. Hence As is ASTP and the

proof of the theorem is complete.

Theorem 5,3

Let A be an NTP matrix. Then A has a LU-factorization such

that L and U are ANTP matrices.

Proof: According to Theorem 2.3 there exists a sequence of STP
matrices AS which converge to A as g — 0, According to Theorem
5,1, A_ hasan LU~-factorization, A_=L_U_, where L and U
S S s S s S
are ASTP.
(p), (P)

The elements of LS and Us are of the form MS/AS(G el )

where Ms is a minor of AS (see Lemma 5. 1), Since
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As(c(p);o(p))—»A(c(p);ﬁ(p)) > 0, it follows that LS—-»L and US—-r U
where I and U are ATP matrices. Clearly, A =1U and L and
U are nonsingular, so that the proof is complete.

Before proceeding to the proof of Theorem 1.1 we introduce some

notation,

We denote by A the nxn matrix

O

and set AA = AAA; that is, AA is the matrix obtained from A by

inverting the order of the rows and columns of A, Then we have

Lemma 5.2
() A% =1L (i) if A is non-singular, aM7 o ety )

A is lower triangular (upper triangular) then 1—\A is upper triangular
(lower triangular); (iv) (A‘A’)A = A; (v) if A is NTP, STP, oscillatory,
NZR, SZR, ANTP, ASTP, A-oscillatory, ANZR, or ASZR then so is A

We can now prove Theorem 1. 1l. We consider each case separately.



L7

If A is STP then, by Theorem 5.1, A= LU where L and U
are ASTP. On the other hand, suppose that A = LU where L and U

are ASTP. Then, if a,B ¢ Q(p,n)'
A(a;B) = s L(gy) Uyvif) > 0

so that A is STP.
If A is NTP, then by Theorem 5.3 A = LU where L and U
are ANTP. On the other hand, suppose that A = LU where L and
U are ANTP. Then A is non-singular, and, since the product of
TP matrices is a TP matrix (Gantmacher and Krein [4, p. 86]) A
is NTP.
If A is oscillatory, then A is NTP so that, by the preceding
arguments, A = LU where L and U are ANTP, Let L = (Jcij). Then,

by Lemma 5.1,

_ A(m(f>);ﬁ(p>)/A(ﬁ(p)m(p))

&p+l,p

where r_x(p) = {1,2,000,P1, p+l}, Since A is oscillatory and
A(n.(p);n(p)) is a "quasi-principal minor", A(a(p);ﬁ(p)) >0
(Gantmacher and Krein [4, p. 115]), so that X'DH,D > 0, From
Theorem 4.1 we conclude that L is A-oscillatory. Similar argu-

ments show that U is A-oscillatory. On the other hand, suppose

that A = LU where L and U are A-oscillatory. Then L and U
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are ANTP and so A is NTP. Let L= (Je,ij) and U = (uij)' From

Theorem 4, 1 it follows that Jci i> 0 and u, > 0, Hence

+1, i,i+l

ai+1,i > {’i+_1,i Uy > 0 and ai,i+1 > &iiui,i+l > 0, From Theorem 2.2
we conclude that A is A-oscillatory.
With the aid of the A-transformation we use the above results
to show that A is NTP, STP, or oscillatory iff A = UL where U
and L are ANTP, ASTP, or A-oscillatory, respectively. For example,
if A is NTP then, by Lemma 5.2, so is AA. Hence AA = LU where
I, and U are ANTP., Thus A = (AA)A = AUA where LA is an upper
triangular ANTP matrix and UA is a lower triangular ANTP matrix.
Finally, the validity of Theorem 1.1 for NZR and SZR matrices
follows from the observation (Gantmacher and Krein [4, p. 87]) that A is
NZR, SZR, ANZR, or ASZR iff A-l is NTP, STP, ANTP, or ASTP, respectively.
We conclude this section with two remarks on LU-factorization.
First, it seems to the author that the representation of a TP
matrix as an LU product makes most of the "determinantal" properties

of a TP matrix quite obvious., For example, an important property of

TP matrices is the inequality

A(ﬁ(n)m(n)) s‘,\(ﬁ(l@))m(p)) Ao

(p) (n) (p)

where o =0 - «'F’, Using the LU-factorization of A we

obtain the following trivial proof:
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Al " 50 )
_ L((‘(n);g(n)) U(O<n)m(n))'
" e Pl e P 1P (B)y 17 (P), {P), ™),
- A(- (p)m(p)) L(a(p);a(p)) U(O(p); (p))’
N GLUTL R L@®y) Ueral®),
y<at
(p), (P) (p), (p)

The following result due to Karlin [6, p. 89] can be proved in the

same way.

Theorem 5,4

Let A bea NTP matrix, Then all the principal minors of A are
strictly positive,

Second, it seems to the author that the LU-factorization will
lead to more efficient algorithms for determining whether or not a

matrix A with given numerical coefficients is an STP matrix. Using

n

Theorem 2. 1 requires that X i2 = n(n+1)(2n +1)/6 minors be evaluated
i=1

and checked for sign. On the other hand, the LU-factorization of A

requires only n3/3 multiplications and additions (Fox [2 , p. 175])

and using Theorem 3.1 to check whether L and U are ASTP requires

n
thatonly 2 2 i = n(n+l) minors be evaluated and checked for sign.

i=1
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6. SINGUIAR TP MATRICES

Theorem 6. 1

Let A be TP. Then A has an LU-factorization.

Proof: The theorem is trivially true if n = 1. It therefore suffices

to show that there exist matrices Ll and Ul such that,

1 0
A =1 U (6. 1)

1 0 A 1

1
where Al isa TP (n-1) X (n -1) matrix.
Set
21 r
A =
c A

where r = (alz,... ’aln) and c = (621"“ ,anl)T and A is the
(n -1) x (n =1) submatrix of A obtained by deleting the first column
and first row of A, Two cases must be considered depending on

whether a is equal to zero or greater than zero.

11
First let a11 = 0, Since
1 i
A = - .
( | ailaljzo’ for 2<1i, j<n,
1
it follows that either ¢ =0 or r=0, If ¢ =0 set Ll = In and
. 0 r
U = H
1 ( '
0 In—l
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if r=0 set U1=In and

n-l
and in either case set A1 =A, Then ./1\1 is TP and (6.1) holds
Next consider the case when a11 x 0, We apply one step of

the usual LU-factorization process, That is, we set

1 0 a r
L]_ = ( ) . Ul - ( ll ) ,
c/ay I, 0 I

and A, = A - cr/all. To see that Al isa TP matrix, we note

(Gantmacher [3, p. 26]) that Al = B/a11 where B is the
(n - 1) X (n = 1) matrix with elements
1 i+l
b,, = A , l1<i, j<n-1
Y 1+l
Now let a,B ¢ Q(p,n—l). Let a € Q(p+1,n) be defined by

(1 , if k=1

S -
lak+1, if 1<k<p+l,

(p+l,n)

and let ?’»’ e Q be defined similarly. From Sylvester's identity

(Gantmacher and Krein [4, p. 15]), or from first principles, it follows that

Bif) = (a7 AGER) > 0,

\

so that B, and hence Al, is TP. The proof is thus complete.
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We conclude this section with sone remarks and conjectures con-
cerning singular TP matrices,

First we draw the reader's attention to the work of Koteljanskii [7]
which may be of use in the study of such matrices.

Next we note that Conjecture 3.1 is not true if A is allowed to

be singular as is shown by the matrix

- O O O
o O o O
o = O O
o O O O

Finally, corresponding to Theorems 5,2 and 5.3 we have

Conjecture 6,1:

Let A bea ATP matrix, Then A can be approximated arbi-

trarily closelyby ASTP matrices.

Conjecture 6. 2:

Let A bea TP matrix. Then A has an LU-factorization such
that L and U are ATP matrices.

Regarding Conjecture 6.2 it should be pointed that the matrices
L and U constructed in Theorem 6.1 are not necessarily ATP

matrices, For exam ple, if
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0 0 0
A = 1 0 1
1 0 1

0o o 0 1 0 0
A-|1 1 o0 . 0 o0 1
g 1 0 1 0 0 1

{-.,r which L is not TP. This does not disprove Conjecture 6,2,
however, since for singular matrices the LU-factorization is not
unique. Indeed, the above matrix A possesses several other

LU-factorizations including

0 0 O //1 0 1
A= 1|1 0 O . ko 0o 01},
1 0 O 0 0 O
and
0 0 O 1 0 O
A=(1 1 0 . 0o 0 11},
1 1 0 0 0 1

for both of which L and U are ATP matrices.
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