Computer Sciences Department The University of Wisconsin 1210 West Dayton Street Madison, Wisconsin 53706

THE LU-FACTORIZATION OF TOTALLY POSITIVE MATRICES

by

Colin W. Cryer*

Technical Report #131

December 1971

Sponsored by the Office of Naval Research under Contract No.: N00014-67-A-0128-0004.

1. INTRODUCTION

Let $A=(a_{ij})$ be an $n\times n$ real matrix. The minor of A formed from rows $\alpha_1<\alpha_2<\dots<\alpha_p$ and columns $\beta_1<\beta_2<\dots<\beta_p$ will be denoted by

$$A \begin{pmatrix} \alpha_1, \dots, \alpha_p \\ \beta_1, \dots, \beta_p \end{pmatrix} \qquad (1.1)$$

Following Karlin [6, p. 46 and p. 87] we say: (i) that A is

TP (totally positive) if all the minors of A are non-negative;

(ii) that A is NTP if A is non-singular and TP; (iii) that A

is STP (strictly totally positive) if all the minors of A are strictly

positive; (iv) that A is oscillatory if A is TP and A^m is STP

for some positive integer m.

Following Gantmacher and Krein [4, p. 86] we say: (i) that A is \overline{ZR} (zeichenregulär) if all the signed minors of A, namely

$$(-1)^{k=1} \begin{pmatrix} \alpha_k + \beta_k \end{pmatrix} \quad A \begin{pmatrix} \alpha_1, \dots, \alpha_p \\ \beta_1, \dots, \beta_p \end{pmatrix} ,$$

regulär) if A is non-singular and ZR; (iii) that A is <u>SZR</u>

(streng zeichenregulär) if all the signed minors of A are strictly positive. It should be noted that the English equivalent of

"zeichenregulär", namely "signregular", is used in a slightly different sense by Karlin [6, p. 47].

If A is a lower triangular (upper triangular) matrix, the minors $(1.1) \ \text{for which} \ \beta_k \leq \alpha_k \ (\beta_k \geq \alpha_k) \ \text{for} \ 1 \leq k \leq p \ \text{will be called the } \\ \underline{\text{non-trivial minors}} \ \text{of A.} \ The remaining minors of A, the } \underline{\text{trivial}} \\ \underline{\text{minors}}, \ \text{are obviously equal to zero, We say that A is } \underline{\Delta TP}, \\ \underline{\Delta NTP}, \ \underline{\Delta STP}, \ \underline{\Delta - \text{oscillatory}}, \ \underline{\Delta ZR}, \ \underline{\Delta NZR}, \ \text{or } \underline{\Delta SZR}, \ \text{if A is a triangular } \\ \underline{\text{matrix}} \ \text{and the appropriate inequalities are satisfied by the non-trivial } \\ \underline{\text{minors of A.}}$

We will say that A has an $\underline{LU\text{-factorization}}$ ($\underline{UL\text{-factorization}}$) if A = LU (A = UL) where L is a lower triangular matrix and U is an upper triangular matrix.

The motivation behind the present work came from the study of finite difference methods for boundary value problems for ordinary differential equations. For example (Henrici [5, p. 347]) the boundary value problem

$$\ddot{x}(t) = f(t), 0 \le t \le 1,$$

$$x(0) = x(1) = 0, (1.2)$$

leads to finite difference equations of the form

$$JX = B (1.3)$$

where X and B are n-vectors and J is an $n \times n$ tri-diagonal NZR matrix. The numerical solution of (1.3) is usually carried out by computing the LÜ-factorization of J (Henrici [5, p. 352]). Theorem 1.1 is a generalization of results obtained by the author while studying (1.3) (Cryer [1]).

The main result of the present paper is the following theorem which is proved in section 5:

Theorem 1.1

Let P denote one of the following properties: NTP, STP, oscillatory, NZR, SZR. Then A has property P iff A has an LU-factorization such that L and U have property ΔP . Also, A has property P iff A has a UL-factorization such that L and U have property ΔP .

PRELIMINARIES

To simplify the notation we will use multi-subscripts (Marcus and Minc [8, p. 9]). If $1 \le p \le n$ then $Q^{(p,n)}$ will denote the set of strictly increasing sequences $\alpha = \{\alpha_1, \dots, \alpha_p\}$ of p integers chosen from 1,...,n. If $\alpha \in Q^{(p,n)}$ we set $\ell(\alpha) = p$, $|\alpha| = p-1$ we set $\ell(\alpha) = p$, $|\alpha| = p-1$ and $\ell(\alpha) = \sum\limits_{k=1}^{p} (\alpha_{k+1} - \alpha_k - 1) = \alpha_p - \alpha_1 - (p-1)$. The elements of $Q^{(p,n)}$ are partially ordered as follows: if α , $\beta \in Q^{(p,n)}$ then $\alpha \le \beta$ if $\alpha_k \le \beta_k$ for $1 \le k \le p$. The infinum of the lattice $Q^{(p,n)}$ is denoted by $\alpha^{(p)} = \{1,2,\dots,p\}$.

Using multi-subscripts the minor (1.1) will be written as $A(\alpha;\beta)$. Thus, if A is a lower triangular (upper triangular) matrix, the non-trivial minors $A(\alpha;\beta)$ are those for which $\alpha \geq \beta$ ($\alpha \leq \beta$). In particular, if A has an LU-factorization the Binet-Cauchy expansion (Marcus and Minc [8, p. 14]) takes the form

$$A(\alpha;\beta) = \sum_{\substack{\gamma \in Q(p,n) \\ \gamma \leq \alpha,\beta}} L(\alpha;\gamma) U(\gamma;\beta). \tag{2.1}$$

The following important theorems (or variants thereof) are proved by Gantmacher and Krein [4; p. 299, p. 115, and p. 308] and Karlin [6; p. 85, p. 93, and p. 88].

Theorem 2.1

A is STP iff $A(\alpha;\beta) > 0$ for all α , $\beta \in Q^{(p,n)}$, $1 \le p \le n$,

such that $d(\alpha) = d(\beta) = 0$.

Theorem 2.2

Let A be TP. Then A is oscillatory iff (i) A is non-singular (ii) $a_{i,i+1}>0$ and $a_{i+1,i}>0$ for $1\leq i\leq n-1$.

Theorem 2.3

Let A be a TP matrix. Then A can be approximated arbitrarily closely by STP matrices.

3. ASTP MATRICES

In the present section we discuss the equivalent of Theorem 2.1 for triangular matrices.

Restating the results of Karlin [6, p. 85] we immediately obtain the equivalent of Theorem 2.1:

Theorem 3.1

Let A be a lower triangular (upper triangular) matrix. Then A is \triangle STP iff $A(\alpha;\sigma^{(p)})>0$ ($A(\sigma^{(p)};\alpha)>0$) for all $\alpha\in Q^{(p,n)}$, $1\leq p\leq n$, such that $d(\alpha)=0$.

Theorem 2.1 cannot be generalized to TP matrices as is shown by the matrix

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

which is non-singular and all of whose minors are non-negative except for the minors

$$A \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = A \begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix} = -1.$$

as is shown by the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

which is non-singular and for which the minors mentioned in Theorem 3.1 are non-negative, but for which

$$A \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} = A \begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix} = -1.$$

However, one might try to strengthen the hypotheses so as to exclude the above counterexample. In this way we arrive at

Conjecture 3.1

Let A be a non-singular lower triangular (upper triangular) matrix. Then A is $\triangle TP$ iff $A(\alpha;\sigma^{(p)}) \geq 0$ $(A(\sigma^{(p)};\alpha) \geq 0)$ for all $\alpha \in Q^{(p,n)}$, $1 \leq p \leq n$.

We have tried hard, without success, to prove this conjecture, and incline to the view that the conjecture is false. However, the conjecture appears to be true if $n \le 5$, so that the construction of a counterexample is non-trivial.

4. △ -OSCILLATORY MATRICES

The equivalent of Theorem 2.2 for triangular matrices is

Theorem 4.1

Let $A=(a_{ij})$ be a $\triangle TP$ lower triangular (upper triangular) matrix. Then A is \triangle -oscillatory iff (i) A is non-singular and (ii) $a_{i+1,i}>0$ ($a_{i,i+1}>0$) for $1\leq i\leq n-1$.

<u>Proof:</u> The proof of Theorem 4.1, which is lengthy, is a straightforward modification of the proof of Theorem 2.2 given by Gantmacher and Krein [4, p. 114].

We need the following two lemmas (Gantmacher and Krein [4, p. 108 and p. 114], Karlin [6, p. 89])

Lemma 4.1

Let A be an NTP matrix. Let $\alpha = \{s, s+1, \dots, t\} \in Q^{(p,n)}$. Then $A(\alpha; \alpha) > 0$.

Lemma 4.2

Let A be a TP m \times n rectangular matrix (that is, all the minors of A are non-negative). Let $\alpha \in Q^{(p,m)}$, $\beta \in Q^{(p,n)}$ be such that $A(\alpha;\beta)=0$ but

$$A \begin{pmatrix} \alpha_1 & \cdots & \alpha_{p-1} \\ \beta_1 & \cdots & \beta_{p-1} \end{pmatrix} \neq 0 \quad \text{and} \quad A \begin{pmatrix} \alpha_2 & \cdots & \alpha_p \\ \beta_2 & \cdots & \beta_p \end{pmatrix} \neq 0.$$

Then A has rank p-1.

Next we establish

Lemma 4.3

Let $A=(a_{ij})$ be Δ -oscillatory. Let $1\leq s\leq t\leq n$ and $B=(a_{ij})$, $s\leq i$, $j\leq t$. Then B is Δ -oscillatory.

<u>Proof:</u> Only the case when A is a lower triangular matrix will be considered. Furthermore, it suffices to consider the cases s=2, t=n and s=1, t=n-1, since the more general result can be obtained by induction.

We denote by $\hat{\mathbb{Q}}^{(p,n)}$ the set of strictly increasing sequences $\hat{\alpha} = \{\hat{\alpha}_1, \dots, \hat{\alpha}_{p-1}\}$ of p-1 numbers from the set $s, s+1, \dots, t$. Given $\hat{\alpha} \in \hat{\mathbb{Q}}^{(p,n)}$ we construct $\alpha \in \mathbb{Q}^{(p,n)}$ by setting $\alpha = \{1, \hat{\alpha}_1, \dots, \hat{\alpha}_{p-1}\}$ if s=2, t=n and setting $\alpha = \{\hat{\alpha}_1, \dots, \hat{\alpha}_{p-1}, n\}$ if s=1, t=n-1; we say that α and $\hat{\alpha}$ correspond.

Since A is \triangle -oscillatory there is an integer m such that A^m is \triangle STP. It suffices to show that B^m is \triangle STP.

Let $\hat{\alpha}$, $\hat{\beta} \in \hat{\mathbb{Q}}^{(p,n)}$ with $\hat{\alpha} \geq \hat{\beta}$. Let $\alpha, \beta \in \mathbb{Q}^{(p,n)}$ correspond to $\hat{\alpha}$ and $\hat{\beta}$. Then $\alpha \geq \beta$ so that, using the Binet-Cauchy expansion, $A^m(\alpha,\beta) = \sum_{s=0}^{m-1} A(\alpha^{(s)};\alpha^{(s+1)}) > 0$, the sum being taken over all $\alpha^{(s)} \in \mathbb{Q}^{(p,n)}$ such that

$$\alpha = \alpha^{(0)} \ge \alpha^{(1)} \ge \cdots \ge \alpha^{(m)} = \beta \tag{4.1}$$

Since each term in the sum is non-negative, at least one term is positive. Thus, for some choice of $\alpha^{(s)}$ satisfying (4.1) we have

$$A(\alpha^{(s)}; \alpha^{(s+1)}) > 0, \qquad 0 \le s \le m - 1.$$
 (4.2)

It follows from (4.1) that to each $\alpha^{(s)}$ there corresponds an $\hat{\alpha}^{(s)}$. Using (4.2) and Lemma 4.1 we see that

$$A(\hat{\alpha}^{(s)}; \hat{\alpha}^{(s+1)}) > 0, \quad 0 \le s \le m - 1.$$

Hence

$$B^{m}(\hat{\alpha}; \hat{\beta}) \geq \prod_{s=0}^{m-1} A(\hat{\alpha}^{(s)}; \hat{\alpha}^{(s+1)}) > 0 ,$$

. and the lemma is proved.

Before stating the next result we introduce some notation. If $\alpha \in \mathbb{Q}^{(p,n)}$ we set

$$\begin{split} N(\alpha) &= \{\beta \in Q^{(p,n)}; & \alpha_k - 1 \leq \beta_k \leq \alpha_k \quad \text{for } 1 \leq k \leq p \\ & \text{and} & \alpha_k \leq \beta_{k+1} \quad \text{for } 1 \leq k \leq p-1 \}. \end{split}$$

Lemma 4.4

 c_{t}

If A is a lower triangular NTP matrix and $a_{i+l\,,\,i}>0 \ \text{for} \ l\leq i\leq n-1, \ \text{then} \ A(\alpha;\beta)>0 \ \text{if} \ \beta\in N(\alpha).$

<u>Proof:</u> The proof proceeds by induction upon the length, $\ell(\alpha)$, of

If $\ell(\alpha)=1$ and $\beta\in N(\alpha)$ then $A(\alpha;\beta)=a_{ii}$ or $A(\alpha;\beta)=a_{i+1,i}$ so that the lemma is true.

Now assume that the lemma is true if $1 \le \ell(\alpha) . To prove the lemma if <math>\ell(\alpha) = p$, assume the contrary. Then there exists $\alpha = \{\alpha_1, \dots, \alpha_p\} \in Q^{(p,n)}$ and $\beta = \{\beta_1, \dots, \beta_p\} \in N(\alpha)$ such that $A(\alpha; \beta) = 0$ but

A
$$\begin{pmatrix} \alpha_1 & \cdots & \alpha_{p-1} \\ \beta_1 & \cdots & \beta_{p-1} \end{pmatrix} \not\equiv 0$$
 and A $\begin{pmatrix} \alpha_2 & \cdots & \alpha_p \\ \beta_2 & \cdots & \beta_p \end{pmatrix} \not\equiv 0$.

Let $B=(a_{ij}), \ \alpha_1\leq i\leq \alpha_p; \ \beta_1\leq j\leq \beta_p.$ Applying Lemma 4.2 we conclude that B has rank p-1. Now let $C=(a_{ij}), \ s\leq i, j\leq t,$ where $s=\alpha_1$ and $t=\alpha_1+p-1$. Since $\beta\in N(\alpha), \ \beta_p\geq \alpha_{p-1}+1\geq \alpha_1+p-1=t$ and $\beta_1\leq \alpha_1=s$ so that C is a minor of order p of B. But B has rank p-1 so det(C)=0. On the other hand, $det(C)=A(\gamma;\gamma)$ where $\gamma=\{s,s+1,\ldots,t\}\in Q^{(p,n)}, \ so$ that, by Lemma 4.1, det(C)>0. We have thus arrived at a contradiction, from which we conclude that the lemma is indeed true if $\ell(\alpha)=p$. The proof of the lemma is therefore complete.

We now turn to the proof of Theorem 4.1.

First, assume that A is \triangle -oscillatory. To establish condition (i) it suffices to observe that A^m is \triangle STP. To establish condition (ii) we note from Lemma 4.3 that the submatrix

$$\begin{pmatrix} a_{ii} & 0 \\ a_{i+1,i} & a_{i+1,i+1} \end{pmatrix}$$

is \triangle -oscillatory; this implies that $a_{i+1,i} > 0$.

It remains to prove that conditions (i) and (ii) of Theorem 4.1 imply that A is \triangle -oscillatory. We do so by proving that B = Aⁿ⁻¹ is \triangle STP.

Let $\alpha, \beta \in Q^{(p,n)}$, $\alpha \ge \beta$. Define $\alpha^{(s)} = \{\alpha_1^{(s)}, \dots, \alpha_p^{(s)}\}$ for $0 \le s \le n-1$ as follows:

$$\alpha_k^{(s)} = \max \{\beta_k, \alpha_k - \max[0, s+l-k]\}.$$

It is easily verified that $\alpha^{(s)} \in Q^{(p,n)}$ and that $\alpha^{(s+1)} \in N(\alpha^{(s)})$.

Clearly, $\alpha^{(0)} = \alpha$. Since $\beta_k \ge k$ and $\alpha_k \le n$, $\alpha_k^{(n-1)} = \max\{\beta_k, \alpha_k - n + k\} = \beta_k$, so that $\alpha^{(n-1)} = \beta$. Now,

$$B(\alpha;\beta) \geq \prod_{s=0}^{n-2} A(\alpha^{(s)}; \alpha^{(s+1)}).$$

But, by Lemma 4.4, each of the terms in the above product is strictly positive. Therefore, $B(\alpha;\beta)>0$ and the proof of the theorem is complete.

5. THE LU-FACTORIZATION OF NON-SINGULAR MATRICES

First we recall the basic result on LU-factorization (Gantmacher [3, p. 35]):

Lemma 5.1

Let $A(\sigma^{(p)};\sigma^{(p)}) \not = 0$ for $1 \le p \le n$. Then A has a unique LU-factorization such that L has a unit diagonal. The matrices $L = (\ell_{ij})$ and $U = (u_{ij})$ are defined as follows:

$$A(\sigma^{(p)};\sigma^{(p)})\ell_{ip} = A \begin{pmatrix} 1 & 2 \cdots p-1 i \\ 1 & 2 \cdots p-1 p \end{pmatrix}$$

for $1 \le p \le n$ and $p \le i \le n$,

$$A(\sigma^{(p-1)};\sigma^{(p-1)})u_{pj} = A\begin{pmatrix} 1 & 2 & \cdots & p-1 & p \\ & & & & \\ 1 & 2 & \cdots & p-1 & j \end{pmatrix}$$
,

 $\text{for } l \leq p \leq n \quad \text{and} \quad p \leq j \leq n \text{,}$

where, by convention, $A(\sigma^{(0)}; \sigma^{(0)}) = 1$.

Next we prove a special case of Theorem 1.1:

Theorem 5.1

Let A be STP. Then A has an LU-factorization such that L and U are $\Delta \text{STP}_{\bullet}$

<u>Proof:</u> Since A is STP, A is non-singular. Consequently $A(\sigma^{(p)}; \sigma^{(p)}) > 0 \text{ for } 1 \leq p \leq n \text{ (Karlin [6, p. 89]) so that, by Lemma 5.1, A has an LU-factorization such that L has a unit diagonal.}$

Since L has unit diagonal, $L(\sigma^{(p)};\sigma^{(p)})=1$ for $1\leq p\leq n$. Applying the Binet-Cauchy expansion (2.1) we find that if $\alpha\in Q^{(p,n)}$ then

$$A(\sigma^{(p)};\alpha) = \sum_{\gamma \leq \alpha, \sigma} L(\sigma^{(p)};\gamma) U(\gamma;\alpha),$$

$$= L(\sigma^{(p)};\sigma^{(p)}) U(\sigma^{(p)};\alpha),$$

from which it follows that $U(\sigma^{(p)};\alpha)>0$. Similar arguments show that $L(\alpha;\sigma^{(p)})>0$. Using Theorem 3.1 we see that L and U are $\triangle STP$, and the proof of the theorem is complete.

Next we obtain the equivalent of Theorem 2.3 for $\triangle NTP$ matrices.

Theorem 5.2

Let A be a $\triangle NTP$ matrix. Then A can be approximated arbitrarily closely by $\triangle STP$ matrices.

<u>Proof:</u> We only consider the case when A is lower-triangular. Let $F_s = (\exp{[-s(i-j)^2]})$, $1 \le i$, $j \le n$, where s > 0. It is known (Karlin [6, p. 88]) that F_s is STP and that $F_s \to I$ (the identity matrix) as $s \to 0$. From Theorem 5.1 it follows that $F_s = L_s \cup U_s$ where L_s and U_s are \triangle STP. The elements of L_s and U_s are of

form $M_s/F_s(\sigma^{(p)};\sigma^{(p)})$ where M_s is a minor of F_s (see Lemma 5.1). Since $F_s(\sigma^{(p)};\sigma^{(p)}) \to 1$ as $s \to 0$, it follows that $L_s \to I$ and $U_s \to I$ as $s \to 0$.

Set $A_s = L_s A$. Then A_s is a lower triangular matrix and $A_s \to A$ as $s \to 0$. Using the Binet-Cauchy formula it follows that if $\alpha, \beta \in Q^{(p,n)}$ and $\alpha \ge \beta$ then

$$A_{s}(\alpha;\beta) = \sum_{\gamma \leq \alpha,\beta} L_{s}(\alpha;\gamma) A(\gamma;\beta)$$

$$\geq L_{s}(\alpha;\beta) A(\beta;\beta)$$

$$> 0,$$

since (Karlin [6, p. 89]), $A(\beta;\beta)>0$. Hence A_s is ΔSTP and the proof of the theorem is complete.

Theorem 5.3

Let A be an NTP matrix. Then A has a LU-factorization such that L and U are $\triangle NTP$ matrices.

<u>Proof:</u> According to Theorem 2.3 there exists a sequence of STP matrices A_s which converge to A as $s \to 0$. According to Theorem 5.1, A_s has an LU-factorization, $A_s = L_s U_s$, where L_s and U_s are Δ STP.

The elements of L_s and U_s are of the form $M_s/A_s(\sigma^{(p)};\sigma^{(p)})$ where M_s is a minor of A_s (see Lemma 5.1). Since

 $A_s(\sigma^{(p)};\sigma^{(p)}) \rightarrow A(\sigma^{(p)};\sigma^{(p)}) > 0$, it follows that $L_s \rightarrow L$ and $U_s \rightarrow U$ where L and U are $\triangle TP$ matrices. Clearly, A = LU and L and U are nonsingular, so that the proof is complete.

Before proceeding to the proof of Theorem 1.1 we introduce some notation.

We denote by $\ \Lambda$ the $n\times n$ matrix

and set $A^{\Lambda} = \Lambda A \Lambda$; that is, A^{Λ} is the matrix obtained from A by inverting the order of the rows and columns of A. Then we have

Lemma 5.2

(i) Λ^2 = I; (ii) if A is non-singular, $(A^{\Lambda})^{-1} = (A^{-1})^{\Lambda}$; (iii) if A is lower triangular (upper triangular) then A^{Λ} is upper triangular (lower triangular); (iv) $(A^{\Lambda})^{\Lambda} = A$; (v) if A is NTP, STP, oscillatory, NZR, SZR, Δ NTP, Δ STP, Δ -oscillatory, Δ NZR, or Δ SZR then so is A^{Λ} .

We can now prove Theorem 1.1. We consider each case separately.

If A is STP then, by Theorem 5.1, A = LU where L and U are \triangle STP. On the other hand, suppose that A = LU where L and U are \triangle STP. Then, if α , $\beta \in Q^{(p,n)}$,

$$A(\alpha;\beta) = \sum_{\gamma \leq \alpha, \beta} L(\alpha;\gamma) U(\gamma;\beta) > 0$$

so that A is STP.

If A is NTP, then by Theorem 5.3 A = LU where L and U are \triangle NTP. On the other hand, suppose that A = LU where L and U are \triangle NTP. Then A is non-singular, and, since the product of TP matrices is a TP matrix (Gantmacher and Krein [4, p. 86]) A is NTP.

If A is oscillatory, then A is NTP so that, by the preceding arguments, A = LU where L and U are \triangle NTP. Let L = (ℓ_{ij}) . Then, by Lemma 5.1,

$$\ell_{p+1,p} = A(\alpha^{(p)}; \sigma^{(p)})/A(\sigma^{(p)}; \sigma^{(p)})$$

where $\alpha^{(p)} = \{1,2,\ldots,p-1,p+1\}$. Since A is oscillatory and $A(\alpha^{(p)};\sigma^{(p)})$ is a "quasi-principal minor", $A(\alpha^{(p)};\sigma^{(p)})>0$ (Gantmacher and Krein [4,p.115]), so that $\ell_{p+1,p}>0$. From Theorem 4.1 we conclude that L is Δ -oscillatory. Similar arguments show that U is Δ -oscillatory. On the other hand, suppose that A = LU where L and U are Δ -oscillatory. Then L and U

are $\triangle \text{NTP}$ and so A is NTP. Let $L = (\ell_{ij})$ and $U = (u_{ij})$. From Theorem 4.1 it follows that $\ell_{i+1,i} > 0$ and $u_{i,i+1} > 0$. Hence $a_{i+1,i} \ge \ell_{i+1,i} \ u_{ii} > 0$ and $a_{i,i+1} \ge \ell_{ii} \ u_{i,i+1} > 0$. From Theorem 2.2 we conclude that A is $\triangle \text{-oscillatory}$.

With the aid of the Λ -transformation we use the above results to show that A is NTP, STP, or oscillatory iff A = UL where U and L are Δ NTP, Δ STP, or Δ -oscillatory, respectively. For example, if A is NTP then, by Lemma 5.2, so is A^{Λ} . Hence A^{Λ} = LU where L and U are Δ NTP. Thus $A = (A^{\Lambda})^{\Lambda} = L^{\Lambda}U^{\Lambda}$ where L^{Λ} is an upper triangular Δ NTP matrix and U^{Λ} is a lower triangular Δ NTP matrix.

Finally, the validity of Theorem 1.1 for NZR and SZR matrices follows from the observation (Gantmacher and Krein [4, p. 87]) that A is NZR, SZR, \triangle NZR, or \triangle SZR iff A⁻¹ is NTP, STP, \triangle NTP, or \triangle STP, respectively.

We conclude this section with two remarks on LU-factorization.

First, it seems to the author that the representation of a TP matrix as an LU product makes most of the "determinantal" properties of a TP matrix quite obvious. For example, an important property of TP matrices is the inequality

$$A(\sigma^{(n)}; \sigma^{(n)}) \leq A(\sigma^{(p)}; \sigma^{(p)}) A(\alpha^{(p)}; \alpha^{(p)})$$

where $\alpha^{(p)} = \sigma^{(n)} - \sigma^{(p)}$. Using the LU-factorization of A we obtain the following trivial proof:

$$A(\sigma^{(n)}; \sigma^{(n)})$$
= $L(\sigma^{(n)}; \sigma^{(n)}) U(\sigma^{(n)}; \sigma^{(n)}),$

= $L(\sigma^{(p)}; \sigma^{(p)}) L(\alpha^{(p)}; \alpha^{(p)}) U(\sigma^{(p)}; \sigma^{(p)}) U(\alpha^{(p)}; \alpha^{(p)}),$

= $A(\sigma^{(p)}; \sigma^{(p)}) L(\alpha^{(p)}; \alpha^{(p)}) U(\alpha^{(p)}; \alpha^{(p)}),$
 $\leq A(\sigma^{(p)}; \sigma^{(p)}) \sum_{\gamma \leq \alpha} L(\alpha^{(p)}; \gamma) U(\gamma; \alpha^{(p)}),$

= $A(\sigma^{(p)}; \sigma^{(p)}) A(\alpha^{(p)}; \alpha^{(p)}).$

The following result due to Karlin [6, p. 89] can be proved in the same way.

Theorem 5.4

Let A be a NTP matrix. Then all the principal minors of A are strictly positive.

Second, it seems to the author that the LU-factorization will lead to more efficient algorithms for determining whether or not a matrix A with given numerical coefficients is an STP matrix. Using Theorem 2.1 requires that $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6 \text{ minors be evaluated in and checked for sign.} On the other hand, the LU-factorization of A requires only <math>n^3/3$ multiplications and additions (Fox [2 , p. 175]) and using Theorem 3.1 to check whether L and U are ASTP requires that only 2 = n(n+1) minors be evaluated and checked for sign. n = n(n+1) minors be evaluated and checked for sign.

6. SINGULAR TP MATRICES

Theorem 6.1

Let A be TP. Then A has an LU-factorization.

<u>Proof:</u> The theorem is trivially true if n=1. It therefore suffices to show that there exist matrices L_1 and U_1 such that,

$$A = L_1 \begin{pmatrix} 1 & 0 \\ 0 & A_1 \end{pmatrix} U_1 \tag{6.1}$$

where A_1 is a TP $(n-1) \times (n-1)$ matrix.

Set

$$A = \begin{pmatrix} a_{11} & r \\ & & \\ C & \widetilde{A} \end{pmatrix}$$

where $r = (a_{12}, \dots, a_{1n})$ and $c = (a_{21}, \dots, a_{n1})^T$ and \widetilde{A} is the $(n-1) \times (n-1)$ submatrix of A obtained by deleting the first column and first row of A. Two cases must be considered depending on whether a_{11} is equal to zero or greater than zero.

First let $a_{11} = 0$. Since

$$A\begin{pmatrix} 1 & i \\ 1 & j \end{pmatrix} = -a_{i1} a_{1j} \ge 0, \text{ for } 2 \le i, j \le n,$$

it follows that either c = 0 or r = 0. If c = 0 set $L_1 = I_n$ and

$$U_{1} = \begin{pmatrix} 0 & r \\ 0 & I_{n-1} \end{pmatrix} ;$$

if r = 0 set $U_l = I_n$ and

$$L_{1} = \begin{pmatrix} 0 & 0 \\ c & I_{n-1} \end{pmatrix} ;$$

and in either case set $A_1 = \widetilde{A}_{\bullet}$. Then A_1 is TP and (6.1) holds Next consider the case when $a_{11} \neq 0$. We apply one step of the usual LU-factorization process. That is, we set

$$\mathbf{L}_{1} = \begin{pmatrix} 1 & 0 \\ & & \\ \mathbf{c/a_{11}} & \mathbf{I_{n-1}} \end{pmatrix} , \qquad \mathbf{U}_{1} = \begin{pmatrix} \mathbf{a_{11}} & \mathbf{r} \\ 0 & & \mathbf{I_{n-1}} \end{pmatrix} ,$$

and $A_l = \widetilde{A} - cr/a_{ll}$. To see that A_l is a TP matrix, we note (Gantmacher [3, p. 26]) that $A_l = B/a_{ll}$ where B is the $(n-1)\times(n-1)$ matrix with elements

$$b_{ij} = A \begin{pmatrix} 1 & i+1 \\ \\ 1 & j+1 \end{pmatrix} , \quad 1 \leq i, \quad j \leq n-1.$$

Now let $\alpha, \beta \in Q^{(p,n-1)}$. Let $\alpha \in Q^{(p+1,n)}$ be defined by

$$\widetilde{\alpha}_{\mathbf{k}} = \begin{cases} 1, & \text{if } \mathbf{k} = 1 \\ \alpha_{\mathbf{k}} + 1, & \text{if } 1 < \mathbf{k} \le \mathbf{p} + 1, \end{cases}$$

and let $\widetilde{\beta} \in Q^{(p+1,n)}$ be defined similarly. From Sylvester's identity (Gantmacher and Krein [4, p. 15]), or from first principles, it follows that

$$B(\alpha; \beta) = (a_{11})^{p-1} A(\alpha; \widetilde{\beta}) \geq 0$$
,

so that B, and hence A_1 , is TP. The proof is thus complete.

We conclude this section with some remarks and conjectures concerning singular TP matrices.

First we draw the reader's attention to the work of Koteljanskii [7] which may be of use in the study of such matrices.

Next we note that Conjecture 3.1 is not true if A is allowed to be singular as is shown by the matrix

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

Finally, corresponding to Theorems 5.2 and 5.3 we have

Conjecture 6.1:

Let A be a $\triangle TP$ matrix. Then A can be approximated arbitrarily closely by $\triangle STP$ matrices.

Conjecture 6.2:

Let A be a TP matrix. Then A has an LU-factorization such that L and U are ΔTP matrices.

Regarding Conjecture 6.2 it should be pointed that the matrices L and U constructed in Theorem 6.1 are not necessarily ΔTP matrices. For example, if

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

then Theorem 6.1 leads to the factorization

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \bullet \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

however, since for singular matrices the LU-factorization is not unique. Indeed, the above matrix A possesses several other LU-factorizations including

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \bullet \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad \bullet \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

for both of which L and U are ΔTP matrices.

References

- [1] Cryer, C. W.: The numerical solution of boundary value problems for second order functional differential equations by finite differences. Technical Report No. 127, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, June 1971.
- [2] Fox, L.: An Introduction to Numerical Linear Algebra. New York: Oxford University Press, 1965.
- [3] Gantmacher, F. R.: <u>The Theory of Matrices, vol. 1</u>. New York: Chelsea, 1959.
- [4] Gantmacher, F. R. and M. G. Krein: Oszillationsmatrizen, Oszillationskerne, und Kleine Schwingungen Mechanischer

 Systeme. Berlin: Akademie, 1960.
- [5] Henrici, P.: <u>Discrete Variable Methods in Ordinary Differential Equations.</u> New York: Wiley, 1962.
- [6] Karlin, S.: <u>Total Positivity</u>. Stanford: Stanford University Press, 1968.
- [7] Koteljanskii, D. M.: The theory of non-negative and oscillating matrices. In <u>American Mathematical Society Translations</u>, series 2 vol. 27. Providence: American Mathematical Society, 1963.
- [8] Marcus, M. and H. Minc: <u>A Survey of Matrix Theory and Inequalities</u>. Boston: Allyn and Bacon, 1964.