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I. The Harmonic Oscillator

1. Introduction.

No particle in nature exhibits motion which is exactly periodic
or completely free from damping. Nevertheless, in plasma dynamics

[3], [4], for example, the harmonic oscillator equation
. 2
(1.1) mx+w x=0,

any nonzero solution of which is both periodic and undamped, does
approximate sufficiently well various aspects of the dynamical be-
havior under study,

In this self-contained paper, we will show that a prototype
discrete approach to mechanics [1], whose aim is to simplify the
amount and quality of mathematics necessary to solve nonlinear
physical problems by means of computer simulation, is, indeed,

energy conserving and stable when applied to harmonic motion.

2. Discrete Mechanics,

In discrete mechanics the dynamical equations are difference
equations and the solutions of these equations are discrete functions.
In one dimension, a basic form [1] of discrete mechanics can be
summarized as follows,

For At> 0 and tk =kAt, k=0,1,2,..., let particle P of



If v, = v(t

mass m be located at Xk at time tk. K ) is the vel~-

k

ocity of P at t , while a, = a(t,) is the acceleration of P at

k' k k

tk’ then we will assume the relationships
v + v - X
kel " Ve %k 7%
o = 1 k = 0,1 7 © o 0
(2.1) 5 N 2
V. -V
k+1 k _
(2.2) ak_ At , k=0,1,2... o

To relate force and acceleration at each tk’ we assume a discrete

Newton's equation of the general form
(2.3) ma, = F(t

To determine the motion of P from given initial conditions XO and

v, one proceeds recursively, where, for each k, a is determined

0’ Kk

from (2.3), then v

4l is determined from (2.2), and finally x

k+l
is determined from (2.1).

Existence and uniqueness of the solution of an initial value
problem follows directly from the recursive structure described
above. The critical computational problem, invariably, is that of
instability.

Let us show first that the above form of discrete mechanics is

energy conserving when applied to harmonic motion.




3. Energy Conservation.

In order to study energy conservation, it is useful to define

the concept of work as follows, From an initial time tO o a

terminal time tn’ the work W done by a force F is defined by

n-1
(3.1) W o= = (xi+1 - xi)F1 o
i=0
From (2.1) - (2.3), then,
n-1
= - a
We=m 2 (x ) -x) 8y
0
n-l Vist 7Y
- > X -
m (X1+1 i) ( At )
0
n-1 viJrl + vl
= z -
m ) Wy vy
O .
n-1
m 2 2
- T Z ( . - V.)
2 0 i+l i
_m 2 _m 2
2 n 2 0 °

If kinetic energy Ki at time ti is defined as usual by

K,

2
= mv, ,

i
then

(3.2)

=

K -K_ ,
n



which is the classical result that the work W is the difference of

the terminal and initial kinetic energies.

Note that (3.2) is valid independently of the exact form of F
in (2.3). But since the concept of potential energy does depend on
the precise structure of F , in order to proceed we must select a

discrete analogue of (1.1). The analogue we choose is

2 -xk“, T

(3.3) mak+w 5 0, k=0,1,2, ¢oo ,
so that
X +
2 %kl "%
. = =) e
(3. 4) Fk >

Now, consider again (3.1). Then, from (3.4),

oo
A Y]

If the potential energy Vk at tk is defined by
2
. w2
{(3.5) Vk =, xk ,
then




Hence, from (3.2) and (3.6)

Kn+Vn:KO+VO,

which, since n is arbitrary, implies that K +V is invariant of
time, which is indeed the law of conservation of energy.

Note that the discretization
ma. + (DZX =0

k k

of (1.1) would not have led to the above derivation.

4, Stability.

Next, let us write (2.1) = (2.3), (3.3) in the form

Ykt "% 2 "

(4. 1) At w 5

=0

kel T Z T %
(4.2) - - = - 0.

Consider any nonzero solution of this system of the form

(4,3) vk:C-x , xk:;:xk.

Substitution of (4.3) into (4.1) - (4.2) and simplification implies

2
m R TR S - =
M(x l)v+2 AN+ x=0
1 R SN
2(>\,+l)v M(x 1) x=0.



Since the determinant of the above homogeneous system must be

zero, it follows that

the roots of which are

2 - t
(4. 4) N = ' /m 4 1'&)[& o :‘1 .
1 2/m ~ iwAt 2N

But from (4.4), A, and ‘)\Z are distinct, while |x1{ = ‘XZ] =1,

1

from which stability follows.,

5. Remarxk.
Finally, let us make a remark about computation in the field

of plasmas [4]. Here the well known leap~frog formulas

-V

- Vil -1
_ xk+l _ﬁ( k+2 k 2

(5. 1) Y

k+% At % At

are popular (see, €.9., [4]). Unfortunately, because x and v

are never known simultaneously, conservation cannot be established,
and (5. 1) can be applied to (2.3) only when F is independent of v.
Formulas (4., 1) - (4,2) or (4.1) and (see [2]) the higherorder approximation

D O 'S S
kT2 %-17 7 At

can be applied without such restrictions.
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II. A Discrete Theory of Newtonian Gravitation

1. Introduction.

Discrete mechanics is an approach to the mathematical study
of mechanics in which the dynamical equations are difference equations
and in which the solutions of these equations are discrete functions
[2]. Such an approach is not only compatible with contemporary
experimental and theoretical physics [1], but it is in complete har-
mony with modern digital computer capability. Several forms of dis=-
crete mechanics have been developed and applied to nonlinear prob-
lems of physical interest [3], [4], and in each case energy conserva-
tion was valid when the force considered was only gravity.,

In this paper we will explore, in a self-contained fashion, the
discrete approach to physical problems in which the acting force is
gravitation. Because our interest is in planetary motion, the dis-

cussion will be given in two-dimensions.

2o Basic Dynamical Concepts,

For At>0 and tk:kAt, k=0,1,2,... , let particle P

of mass m Dbe located at <Xk’yk) at time tk. If v =

k™ Ve Yy

is the velocity of P at t , while 3 = ( ) is the acceler-

Kk k- %%, x %,y

ation of P at tk’ then we will assume first the simple relationships




+ Vv X

Y

2.1 Ykelx T Ve S T % Yrany Py Yker Yk
* 2 - At ! 2 - At '
k=0,1,2,00e
2.2 A - kel T x| Tkely T kuy
° k,x At " Tk,y At !

To relate force and acceleration at each time tk' we assume a discrete

Newtonian equation

— —
(2.3) Pk = mak .
where
T, F F
(2o 4) K = ( K, x’ k,y) .

The work W done by force _ﬁ on particle P from an initial

time t, toa terminal time t s defined by

(2.5) W= Z

From (2.1) - (2.4), then,
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n-1 n-1
- X = > -
e T T« G TR ™My x
k=0 0
- -X
= m nzl (i}ﬁ;l._.__._}g) (V -y )
- 0 At k+1,x k,x
m n-1
- T Z —
2 0 (vk+1,x * k,x)(ka,x k,x
-1
_m (v -vE )
T2 0 k+1,x k,x
m 2 m 2
= "V -V °
2 n,x 2 X
Similarly,
n;( —y )R, = BRIl 2
M TN kv T 2 Vay T 2 V0,y
k=0
Thus, from (2.5),
(2. 6) wo= Bt vt o Bt 2

2 n,x n,y 2 (VO,X 0,y

If one defines Ki’ the kinetic energy at ti, by
(2. 7) K, = — (v + v, ),
then (2.6) yields,finally, the classical result

(2.8) W = K -K
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It should be observed that if (x (xn,yn), it is not

OIYQ) =
necessary in discrete mechanics that W = 0. Though this ob-

servation holds also for other forms [3], [4] of discrete mechanics,

still, it will have no adverse effects on our development,

3. Planetary Motion., The prototype orbit problem to be considered

can be formulated as follows. Let the sun, whose mass is m, . be
positioned at the origin of the Xy-coordinate system and let a planet
P of mass m be in orbit about the sun. It is assumed that the sun's
motion is neglegible and that the gravitational attractive force on the

planet acts in a line joining the centers of the two bodies and is

given by the discrete law of gravitation

!

(3.1) F )

kK (Fk,x’Fk,y

where G is the Newtonian gravitational constant and

Xy o1+
k+1 %
G.2) T Gmym, T Gmm, (x, %)
° = 2 =
Kex Oy T e e Tk )
ko k+l
2
5.3 o Gmym, Yy 1y Yy
ki e Terr Tt T
(3.4) r‘2 = x2 + 2
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4, Conservation of Enerqgy.

Let us show now that for the model of planetary motion defined
in Section 3, the law of conservation of energy is valid. To do this
will require a suitable definition of potential energy, which is arrived

at as follows,

Consider again formula (2.5) for work, Then (2.5) and (3.2) -

(3.4) imply

w n; [(X , ( Gmlmz(xk+1+xk)) PR ( Gmlmz(yk+1+yk))] |
= +1 - 1 Yk :
oo Lkl *% o f Tty k+ o )
il ex? ik of
n Xk+1 Kk; yk+1 yk
:-—Gmlmz by - T+t
0  k'k+l "k k+l
n=1 rZ —r2
k+1 k
Gmlm2 >

0 e Tkt k)

n-1 [rkJrl—l:}g_

= ~Gm,m s ——
12 0 rk rk+1
n-1
1 1
=z - Gm,mn s [ - ]
1 2 0 e rk+l
-(.—.-mlmz szlmz
- r T ’
0 n

If one defines the potential energy Vk at tk by
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(4. 1) Vk - __;];~2._ ,
k

then

(4o 2) W = --Vn + VO .

Hence, (2.8) and (4, 2) imply

(4.3) Kn +- Vn = KO + VO .

Finally, since n is arbitrary, (4.3) implies that K +V is invariant

with respect to time, which is the law of conservation of energy.

5, Examples,

To illustrate the ease with which the discrete approach can be
handled on a digital computer, consider the normalized orbit problem

[1] in which

(50 1) Gm, =1
and
(5.,2) XO:O.5O, yO:O'OO'VO,x:O"OO' VO,y: 1.63 ,

In the classical continuous formulation, the planet's trajectory is an
ellipse with semi-major axis a = 0,746 and with period T = 4.04

seconds,
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From (2.3), (3.2) = (3.4), the discrete equations of motion
are
I TS U 5 B
ke g oty key e ety

or, equivalently,

(5.3) X

i
<
-

|

kel =% T2 Yral,x T Yk ,x

At
(5.4) Vi1 "% T2 Mg, v T Y%y
(Xk+l+ xk)L\t
(522) Teilx TRk 2 20F 2 2  ay?) sl 4y’ )P
V) WY PRy Kl Yk
At
(560 Vi v Y%y~ T2 25 2 (;Ml;y};) 2L 2 2 I -
: ) 2 2 2 2
(% 4y ) 0 gy ) T L Ay )T gty )7 ]

The solution of (5.3) - (5.4) for each value of k=10,1,2,..., beginning

from initial data (5.2) is found by Newton's method with initial guess

N S0 (0)

= = : - . tvypic
K Ykl = Ykt Vkelx - Vk,x! Vkal,y - Vk,yc DS @ typical

example of the calculations done, the orbit was generated for At = 0,001
up to t350’000 = 350. The total computing time was under 5 minutes
on the UNIVAC 1108, There were 86+ orbits, the 86th of which is

shown in Figure 5.1, For this particular orbit, the period is 7 = 4,05
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and the average of the x intercepts is a = 0,746,

It is most interesting to note that for the relatively large time
step At = 0.1, the formulas (5.3) - (5.6) yielded 85Jr orbits up to
t3500 = 350, a result which improves upon calculations done with
higher order approximations for velocity and acceleration [3], [4].

This improvement is attributed to the validity of conservation for the

discrete formulation of gravitation given by (3.2) = (3.3).
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III. Symmetry in Discrete Mechanics

1. Introduction,

Symmetry, in applied science, means that the physical laws
of that science are invariant with respect to the coordinate system
used. The objective of this paper is to show, in a self-contained
fashion, that various forms of discrete mechanics possess symmetry
under translation, under rotation, and with respect to certain coordinate

frames in uniform motion.

2. Discrete Mechanics.

Discrete mechanics, which is motivated by modern digital
computer capability, is a form of mechanics in which the basic con~-
cepts are defined in terms of differences. The fundamental equations
are difference equations, and the solutions of initial value problems
are discrete functions [2a] = [2h]. In two dimensions, one such
simple form can be summarized as follows. For At > 0, let particle

at time t, = kAt, k=0,1,2,... . The

P of mass m be at (Xk’yk) K

velocity _vl of P at t]< is defined by

—

(2. 1) T UV ) KR 02

where
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V. + V. X - X
, k+l,x k,x _k+l k B
(2.2) > = At i k=0,1,2,...
\ + v % - Y
kK+l,v k,v k+1 k
o = ; = lll s 00 ¢
(2.3) > AL k=0,1,2

while acceleration vgk of P at tk is defined by

-

(204) ak = (aklxlak,y)l k:olllzl""‘ ’
where

Y -

k+1,x k,x
2. b = £ . , k=0,1,2,...
(2.5) ak,x At

v -V
) k+l,y k,¥
° = £ L ’ k‘: ’ &L 000 °
(2.6) ak,y At 0,1,2

An equation of the form

(2.7) F, =m k=0,1,2,... ,

(2. 8) F. =(F

~
1

0,1,2,...

is called a discrete Newton's equation. The determination of the

motion of P from (2.7) when (x ,yo) and v

0 are given is called

0
an initial value problem.
It is interesting to note that, with the appropriate definition of

the concept of work, the classical laws of conservation of energy and

momentum follow readily (see, e.g., 2(c) ).
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3. Symmetry With Respect To Translation,

Let us show first that the discrete formulation (2.1) = (2. 8) is

invariant with respect to translation. To do this requires, essentially,
—
a o

proving that K

—
is, in fact, a vector under the assumption that Fk
is a vector [1].

Consider then the translation

(3. 1) x!=x-a, y'=y-b,

{

where a and b are constants., Assume Fk is a vector, so that

(3.2) oo T Box T,y Tk,

Thus, from (2.7), (2.8), and (3.2),

(303) m a :F

k,x k,x
(3.4) mak,y:Fk,y' .
To complete the proof, one need only show that ak,x = ak,x“ and
ak,y = ak,y"° To do this, we will show only that ak,x = ak,x“’

since an analogous proof holds for the other component.

From (2.2), it follows [2c¢] that

2 - -
(35) vl,x T At [Xl XO} VO,x
k-1
) 2 k j k ,
- :——- . - . - — ; > ‘
(3. 6) vk,x At [xk + (=1) X, + 2 ‘Z (=1) xk_j]Jr( 1) vle k>2
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. . 0 — .—+ N .
where vO,x is the given, x~-component of vo. Since vle is
invariant under translation,

(3.7) Yox = Vo %t
Thus, from (3.1) and (3.5)
(3. 8) v = ta) - +a)]- v
’ 1,x At 1 0 0,x'
_ __.Z_‘; [ N T T
L B
= Vllxu ’
while from (3.1) and (3.6) for k > 2
k..
(3. 9) v - [x! +a'\+(-1)k(x' +a)+ 2 zl (—1)j( ' .+a)]+(—1)kv
g k,x ot kT 0 2 k-
For k odd, (3.9) yields
5 k-1 j
_ = [ - - -
(3.10) vk,prt [xk XO”{MZ ].%1 (=1) Xk"j] VO,X“ Vk,x;' !
while, for k even, (3.9) yields
k-1 k=1 j
2 B J 1 ("1> a]"}'V |

= [x! 2 -1 23 0,x
(3.11) vk,x At[xk~l~x0+ 2a + El( ) Xy s 2
Thus, from (3.7), (3.8), (3.10) and (3.11)

(3.12) v =V o k=0,1,2,000 =

Hence, from (2.4)

k,x*°
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s B Vkil,x kX _ Ykl x' Tk, x! _
k,x ~ At - At T oTk,x !

and the proof is complete,

4.,  Symmetry With Respect To Rotation

Next, let us show that the discrete formulation (2.1) - (2. 8) is

symmetric with respect to the rotation

(4. 1) x'=xXxcos ® +ysinb

i

(4. 2) y' =y cos 6 - x sin 8 ,

where © is the smallest positive angle measured in the counter-
clockwise direction from the X to the X' axes. Assume again

that —ﬁ is a vector. Then, under rotation,

k
(4. 3) Fk,x' :Fk,x COSQ+Fk,y sin 6
(4. 4) Fk,y' :Fk,y cose—Fk,X sin € .
In addition,
(4. 5) vO,x' :VOIX cos 6 +v0,y sin 6
(4, 6) voly,:volycose—-volx sin 6




(4. 7) Vi o T

=V

1,x

and, similarly,

(4. 8) Vy oo

In the same fashion as

(4. 9) v

(4.10) v i

Finally, from (2.

(4.11)

m(

:__Z_£ [(xl cos 6 +yl sin 8) - (x

cos 0 + v

=V

Vsl x!

23

o GOS8 8 +y, sin 0)]

-V cCos 8 - v sin ©

0,x 0,y

1,y sin 6 ,

cCos 6 - v sin 6.

1,y 1,x

above, (3,6) implies

v cos 6 + v
k,x

1

i
<

5), and (4.3) - (4.10), one has

ma =m [

ViHl, x

vk,x ]
At

cos 8 + v

sin 8) —~ (vk,x

s 6
co +vk+l,y

k,y

sin 9)

ma

1

k,x

1
!

Similarly, '

cos 6 + F
X

At

sin ©

CoOs 6 +ma
, k,y

sin 6
Ky in
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(4,12) ma, ,=F

and the proof is complete,

5. Symmetry Under Uniform Motion.

In this section it will be assumed that one coordinate system
moves with a constant velocity relative to the first. For simplicity,

we assume that motion is in the x~-direction only and is defined by

(501) }ck:xk—Ctkl kzolllz'l"ﬂ )
where ¢ is the speed of the X' axis relative to the X axis. If

Vo x is the initial velocity of a particle onthe X axis, then its

initial velocity on the X' axis is

(5.2) v , =V -C .

Hence, from (3.5), (3.6), (5.1) and (5,2),

__,“2; [ — L —
(5. 3) Vl,x = At [(xl +ct1) (xo +ct0)] vle
:“&[x'—x']—v + 2c
At 1 0 0,x
-"'Z“[x’-x']—-(v ) + ¢
At Y1 0 o,x'
= vl,X' +C,

while, for k > 2,
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2 ' T
(5. 4) vk,x Y {(xk + ctk) + (=17 (X! + cto)
k=1 J K
+ 2 El [(-1) (xk_] +ctk_j)]} +(=1) o x
k-1
_ —-;— t - § - _ ] ' _ k
N {xk+< 1) xy +2 j}_'l [(-1) Xy ]]} + (=1) Yo x
k=1
2c NS N
t ot {tk+< Nty 2 B [(-1) tk‘_j]} .
j=1
But,
k-1 , 0 , k even
. k j
(5.5) S Gt S A (GO DR
=1 J At, % odd
Thus, from (5.2) and (5.4), for k even,
5 k=1 j
- i § FERY 1
(5, 6) Y %7 At [xk X 2 ji [(-1) xk__j]} + (VO,X' + <)
= vk,X' +C,
while from (5.2) and (5.4), 'for k odd,
5 k-1 i
g L | - U
(5.7) vk,x,‘[\t [xk XO + 2 JE;I [(-1) xk__jj VO’X+ZC
= vklx' +C )
Finally, under the assumption that F =T .+ one has

k,x k,x
from (5.3), (5.4), (5.6) and (5.7) that
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from which the symmetry follows readily.

6. Remark.

Other forms of discrete mechanics, stated in terms of one
dimensional formulas, can be summarized as follows, where
(6- 1) P = ma

is the discrete Newton's equation:

@ ier TV B T % Gk T Tk T
2 - At 2 N
o) et Tk B 7% o3 1 kel Tk
2 At © 2 % T2 %-1 At
©) a1 T % ki1 T Vk
k At © Tk T At
T e . SRt
k+1 ~ At " Tk+1 T At
X - x v, 1 -V
(e) Vk+1 = ““]S“:}JZ"{"“}S ’ ak = k+?: k A P (Where F
Z At

independent of v, ).
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Using the methods of Sections 3~5, it follows easily that each of the
above forms also possesses the symmetry properties discussed in
these sections, where, special starting procedures, when necessary

([2g], [2h]), define initial acceleration directly from (6. 1).



Lo
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Iv. A Tinite Difference Proof That E = mcZ

In order to reach the reader whose background was minimal,
Taylor and Wheeler [2] developed the theory of special relativity using
differences, whenever possible, rather than derivatives. 1In this
note we will show that the classical formula E = ch can, in fact,
be established entirely without the concept of a derivative., Such
a result is not only of interest in itself, but it also affirms the intrin=-
sic role of finite differences in the development of physical models,
a result already substantiated by the application of high speed com-
puters in solving nonlinear problems of applied science [1].

First, let us summarize in a convenient way the basic concepts
which are necessary for the discussion. Consistently, we will mea-
sure not only length, but also time, in the same unit, meters, as
follows, A meter of time, denoted by 1 meter/c, is the time it takes

for light to travel one meter, Thus,
(1) 1 meter/c = (3.335640)10 " sec.

It will be assumed that at every point in Fuclidean three-space
there is a clock which is synchronized with the clock at the origin.
When one observes an event and records not only its position but also

the time on the clock at that position, one says that an observation
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has been made in space-time, The coordinates of an event are of the
form (x,y,z,t). With regard to the observation of events in space-
time, it will be assumed that the coordinate system is inertial and
that all laws of physics are the same in every inertial reference frame.
Though time will always be measured in meters, it is sometimes
convenient to measure speed conventionally as v meters per second,
or in light-time as B meters per meter. Thus,if tl and t2 are any

two time readings such that

tz - tl = 1 meter/c ,

and if a particle in motion along an X-axis is at Xl at time tl and

at XZ at time t_, then we define B and v at t, by the forward

2 1
differences
X - X
1
(2) B = =
t2 t1
, ) XZ - Xl
(3) Vo= (t,-t,)(3.335640)1079

The units of B are then meters per meter, while the units of v are

meters per second. From (2) and (3) one has

(4) B=v/c.
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Of course, the speed of light B is given by

B'P = 1 meter per meter.,

Note also that if a particle has a constant speed B, then (2) does
yvield this exact value from t1 . tz, x1 and xz.

Next, consider two inertial frames moving relative to each other
in such a way that their X-axes are collineal, Call one the laboratory
frame and call the second, which moves in a positive direction rela=-
tive to the first, the rocket frame. A light flashes and is recorded
in both systems. The problem is to relate the coordinates (x, y, z,1)
in the lab frame to the coordinates (x', y', z', t') in the rocket
frame., Under the simplifying assumptions that the flash occurs on
the X-axes with y =2z =y'=2z'=0, and that the origins of the
two systems are coincident at t = 0, then, if Br is the constant
speed of the rocket frame relative to thelab frame,and if Br < ], the

desired relationships are a special case of the well-known Lorentz

transformation and are given by

-1/2

(S
b
1

(' +8 t'][L - B

(6) t = [Brx‘ +t'][1 - B?]nl/z

With regard to the time of an event, observe that the variable

T, given by
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12,

(7) T = [tz - x2

can be rewritten by means of (3) and (4) as

(8) T o= ()% - (x')z]l/‘ .

Since T is the same in bothcoordinate frames, it is an invariant
, 2 2 , , ,
which, when 1t - x~ > 0, is defined to be the proper time of an event,

In observing two events, say El with x = Xl’ t = tl and EZ with

X = xz, t = tZ’ then

2 ‘ 2.1/2
X X

(9) AT = [(t2 ! , T %) ]

is called the proper time between the two events and is also an in-
variant under transformation (5) = (6).

Finally, let us now turn to the concept of energy. Consider a
particle P of mass m which, for simplicity, is in motion only on
an X-axis of, say, a lab frame., Its position is observed at every
At = (3.335640)107 seconds. Let t, and t, be the times of two

consecutive observations and let Xl and xz be the respective X-

coordinates of P at these times. Then the particle's relativistic energy

E*at time t1 is defined by the forward difference formula

. t. -t
>I: ‘Z 1
10 W C I
( ) E m

b
where the units of E are units of mass. To convert relativistic energy
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E to energy E in conventional units requires ([2], p. 103)

multiplication of E* by cz, so that

(11) E =Fc”.

By means of (4), (9), and (10), one can then rewrite (11) as

2 1 2
E =m Ao c
2 AT
=me /)
2 1
2 2 T X\ 12
:mc/[l- -t ]
2 1
2 2.1/2
:mc/(l—B)/ .
If A< 1, then
g% 3 4
prd "—-B o 0 o
E me (1 + 2 *8‘ + )
2.2
:mcz-{—mﬁz"q"""»*—aao
= mc +Ln_\_/_§_+°“
— Z o
For B small, then,
(12) E ~mc2‘+m§’-

where mvz/z is the kinetic energy of the particle and mc~ is

called its rest energy, because, when v = 0,



(13) E =mc .

Thus, the well known formula (13) has followed directly from differ-
ence formulations (2), (3) and (10) of the basic physical concepts of

velocity and energy.
It should be noted that other relativistic concepts, like momentum,

can be defined, similarly, in terms of forward differences.
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