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ABSTRACT

Constrained minimization problems are formulated from a
quasilinear parabolic boundary value problem (probably with non-
linear boundary conditions), making use of the latters (conditional)
inverse-positive property. Approximate solutions and three error
bounds can be obtained by solving these minimization problems by
linear programming and discretization techniques. Numerical re-

sults are obtained using splines as basis functions.
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1, Introduction

Let S (Figure 1) be a simply-connected open domain in the

xt-plane bounded by a closed interval BO on t=0, an open

interval BT on t=T, and two curves Ti defined by the continuous

functions x = X’i(t)’ 0<t<T, i

ox !

i=1,2.
t
A
’r
S
Tl TZ
> X
B0
Figure 1
Let RZ:SUBT and R:RZUTlUTZUBO'
Consider two linear operators
2
- 9 -9 _ 9
Ll: v and L2 = 5t a(x,t) 52 + b(x,t)

where a and b are continuous on R

>0 ‘a‘; is an outward non=
tangential directional derivative and LZ

is a uniform parabolic
operator,



In this paper, we apply the linear programming method to
determine approximate solutions and error bounds for the first and

third boundary value problems (BVP) of the quasilinear parabolic

equations
Lz[u] + gz(x,t,u) = rz(x,t) in RZ (1.1)
" t — E) ’.
Q(gj) Ll[u] +9,(x,tu) r,(x,t) in R (1.2)
u = ro(x,t) in RO (1.3)

where gj, j = 1,2, may be nonlinear in x,t and u; rj is bounded

in Rj’ j=0,1,2; and RO and R1 are defined as follows:

i) For first BVP: RO :TlUBO UTZ’ R1 is empty.

ii)  For third BVP: R =B

0 0 R1 =T, U T2 (other combinations

1

are also possible).

In Section 2, we present some definitions and preliminary re-
sults. In Section 3, three error bounds are derived for any given
approximate solution to the problem Q(gj) , making use of the con-
ditionally inverse-positive property of Lj and the local Lipschitz
condition of gj , j=1,2. The first error bound depends on the maxi-
mum of the absolute defects of the operator equations. The second

error bound is a positively weighted sum of these defects. The




third error bound is a conditional improvement of the second one.
In Section 4, by means of these error bound formulas, theoretical
constrained minimization problems (CMP) are formulated, by means
of which we can determine approximate solutions and error bounds
for Q(gj). Section 5 contains some discussions on our approaches.
In Section 6, computational schemes making use of linear programming
(LP) are suggested to solve these CMP. ©Section 7 presents some
numerical results,

Rosen [1966], at a different approach, seems to be the first one
who applied LP to solve the first BVP of nonlinear parabolic equations.
By similar approach as this paper, Rosen [1970a] and Cheung [1971]

solved BVP of nonlinear elliptic equations.



2, Preliminary

Def, 1

Def, 2

Def. 3

Def, 4

let f be a function defined on a set X < EZ. Set
“f”xz inf | f(x,t)]
(x,t)eX

If there is no ambiguity, the subscript X may be omitted.

viR) = c®(R®) n cl(ﬁl) N cz'l(RZ), where R, is the

closure of R1 and Cz'l(RZ) denotes the class of func-
tions u(x,t) whose second order derivative with respect

to x and first order derivative with respect to t are

continuous in Rz.,

gj(u) = gj(x,t,u); ng(u) = =i\

For j=1,2, suppose ng exists and is bounded., For a

fixed v e V(R) and a constant £> 0, define
p, = p,(€,v,x,t) = min {gi(m)| |n - v] <€} for each
] J n ]
(x,t) € Rj,

and

gj(u) v+E > u> v-£ in Rj

§.) = §j<x,t,u) = gj(v+€)+(u—v—-{:§)gjf(v+§) u > v+E  in R},

kgj(v—Q)--(v--»é;--t.l)g:;Jf('v'--i‘;;) v-£> U in R,

(2.1)




The following lemma is obvious:

Lemma 1

Let pj and @j be defined in Def. 4. Then é\j is differentiable

with respect to u, and, for a fixed (x,t) ¢ Rj and arbitrary u e V(R),

we have
§J'(11) B TATAV N PV, (DR T=12 (2.2)
ou

or equivalently

G0t v)) = §i(x,t,v)) 2 (6, v, %, D)(v) =V

A 1 2

—

where vl > vz, vl,v2 e V(R),.

In particular,

gj(x,t,v ) - gj(x,t,v ) > pj(é;,v,x,t)(vl-v

1 2 2

where v, > v lvi—-vl < €, vieV(R), i=1,2.

1 2’

Def, 5 (2.4) is called a one-sided local Lipschitz condition.

Def. 6 The problem Q(g,) is said to be inverse-positive if, for

]
every v v2 € V(-}i), we have

1!

L.[v.]+g.(x,t,v,) > L, [v ]+g.(x,t,v,) in R, j=1,2
jLvy 1oy 2 L[V, [+g; ) :

) 2
=>
v, > V in R Vl?_vz >
1 — 2 0

) (X-lt) Q‘R]-l .jzllz' (203)

) (Xlt)ele j=1,2 (2.4)

RQ



Notation We say: [(Lj +gj’Rj)’ j=1,2; (I,RO)] is inverse-positive,

where I is an identity operator.

An important feature of an inverse~positive problem is that it
can have at most one solution. However, the nonlinear problem
Q(gj) is not always inverse-positive. Let us first consider the linear
case with gj (x,t,u) = ukj(x,t), The following lemma is a direct con-

sequence of Theorem 4 of Protter and Weinberger [1967, p. 172].
lemma 2

The problem Q(ukj) is inverse-positive if kl > 0 in Rl and

From this lemma we shall derive some other results. First we

relax the restriction on kz.

Corollary 3

i

Suppose that 2

9y t ox (or ). The problem O(ukj)

0x

is inverse-positive if kl >0 in Rl and k2 is bounded below in

RZ.

Proof, Suppose that u ¢ V(ﬁ) satisfies

u>0 in R Lj[u]+kju2_0 in Rj,j:l,z (2.5)

Ol

At
et v=ue , where M\ 1is a constant. Then




At
Lz[v] + (k2+Mv = e (Lz[u] + kzu) >0 in R,
L [v] + k,v —ekt(L[u]+ku)>0 R
1 1Y 1 17 = Y
} v o= e)»fc u>0 in RO

Since kZ is bounded below, A may be chosen so large that
kZ +A >0 in RZ' By lemma 2, we have v > 0 on R. Hence

u>0 on R. |

In particular, the parabolic first BVP (Rl is empty) is inverse-
positive regardless of the sign of kz. This is an important difference
from the elliptic first BVP which requires kz to be nonnegative.

Next, we omit both the requirements kl >0 in Rl and k2 >0

in R2 and consider the following conditionally inverse-positive

property.

Lemma 4

Suppose there exists a positive | & V(R) such that

(L, +k )[w]>0 in R

2 2
(2.6)

(L +k1)[u]>0 in R

1

Then, Q(ukj) is inverse-positive,



Proof, Let u satisfy (2.5). By the transformation v = u/iL,

we get
(‘
oV 82v ov 1
Y - oV sk X sk - > .
ot 38X2+b 5 +k2V N (L2+k2)[u]_~0 in R,
g ov % 1 ,
9y = >
™ + klv N (Ll +k1)[u]__ 0 in Rl
u
== >0 in R
L ViuE o
S 2a ai I sk 1 0 i . b4
= ol ’ k = — > d k =
where b b L ox 17 1 (av + klu) 0 in Rl an 5

1 (LZ + kz)[u]_>_ 0 in R,. By Lemma 2, we have v>0 on R.
u

Hence u> 0 on R, |

For kl > 0 and kz > 0, the function | =1 satisfies (2.6).

This reduces to Lemma 2 again,




3., Derivation of FError Bounds

in this section, three error bounds Py p2 and p3 are derived

for any given approximate solution making use of the local Lipschitz

condition (2.4) and the conditionally inverse-positive property of

Lemma 4.

Py depends on the maximum of the absolute defects of the

operation equations,

Theorem 5 (Error bound pl)

For the problem Q(gj) , the following assumptions are made:

1)

2)

4)

Forany ue V(ﬁ), gjf(u) exists and is bounded on -lij
(the closure of Rj)’ j=1,2.
Let <'jj be defined in Def., 4 and Q(éj) have a solution

in V(R).
Ve V(—R) is an approximate solution to Q(gj). XO is
a scalar such that

A _>~|L‘[v]+g,(v)—r,l in R,j=1,2
) ] J ] (3. 1)

in R

A Zlv—rol . 0

For pj(é;,v,x,t) as defined in Def, 4, there exists a

solution 1 ¢ V(ﬁ) to
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(L, +p,(6,v,x,t))u]>1 in R,j=1,2
b ) (3.2)
W >0 in Rl U R2
L >1 on RO (3.3)
L £ > X on R (3.4)

Then, there exists exactly one solution u e V(R) of Q(gj) such

that

lulx,t) - vix, 0] < p (x,t) =X H(x,1) on R (3.5)
Proof, We first prove that

[(Lj +<_3]:,Rj), j=1,2; (I,R,)] is inverse-positive. (3.6)

In fact, by (2.2) and (3.2), there exists a positive 1 € V(-F-{) such

that

(L, + épm] > (L + p].)[u]zl in R, j= 1,2, (3.77)

Hence (3.6) follows from Lemma 4 with kj replaced by ’g‘Jf.

Now, let u be a solution of Q(@j). For j=1,2, let

3.(v) = §.(u) = g!
gJ) gJ() qJ

Since éj(v) = gj(v), it follows from (3.1) and (3.7) that

(vj)(v - u) where \7]_ = ejv + (1 - Gj)u, 0 < ej < 1.

(Lj +gj(vj))[V+pl"U] = (Lj+gj)[V]—(L]. +gj) [ul+ (Lj +gj(vj))[pl]

L +§" (v, >-A_+A.=0 in R,
( J gj( J))[u]__ ot 2o ;

(3.8)

=(L.+g)[v]=1r, + A
(JgJ)[] j 0
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On the boundary segment RO, (3.1) and (3.3) imply
-0 = -u > - > i .
vip,Tu v+x0u u > v+XO Iy 2 0 in R (3.9)

Hence, by (3.6), (3.8) and (3.9) we get
vip, >u on R.
Similarly, we have
v--pl <u on R.
Next, by (3.4)

|v-uf <p < & (3.10)

But then (2.1) implies that u is also a solution of Q(gj).

Lastly, suppose that Q(gj) has two solutions ul and uz e V(R),

both satisfying (3.10). For j =1,2, set gj(vj)(ul—uz) = gj(ul) - gj(uz),
where \—/, =8,u + {1~ (—3_)& , 0< 8, <1, Then, i\—/, - vl < &,
j il i2 j i
§1(v,) = gi(v) in R,j=1,2,
} ) 3] ]
and
(L.+g )[ul—uz] = (Lj+gj)[ul] - (Lj+g.)[uz] =0 in Rj’ i=1,2
(3.11)
ul—u2 = 0 in RO
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The following theorem, which gives the second error bound

Py can be proved in a similar manner.

Theorem 6 (Error bound pz)

For the problem Q(gj), the following assumptions are made:

1) Forany ue V(ﬁ), ng(u) exists and is bounded on }'ij {(the
closure of Rj)' j=1,2.
2) Let é‘}j be defined in Def. 4 and Q(é\j) have a solution in

V(R).

3) ve V(}—R) is an approximate solution to Q(gj). Xj, i=20,1,2,

are scalars such that

A, > L Iv]+ g, (v) -, in R,,ji=1,2
J""‘][] g]() J| J

in R

Moz [V gl 0

4y For pj(g,v,x,t) as defined in Def. 4, let i—)j = Ej(g,v) satisiy

5,<p, ,v,x,t X, e R, and X, - A 15,>0.
RS ) (b e R ;TP 2

5) Let there exist a solution pn € V(R) to

w >0 on R (3.12)
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then, there exists exactly one solution u ¢ V(R) of O(gj) such

that

2
|u(x,t) - v(x,t)j< p,(x,t) =y +u(x,t) = (A, =Xr.D,)

on R, (3.13)

Remark (Error bound p3)

In addition to pZ, it can be shown by similar proof as Theorem

6 that

. A _ n
Py = XO + (A xop) wix,t) (3.14)

is also an error bound, where X = max (xl,xz), f): min (El,f)z). If
E)j <0, j=1,2, then o - Xoﬁ) _<_>j(>\j - Xof)j) and hence Py <P,
However, this is not necessarily true if some 51, are positive.

The basic idea of Theorem 5 and Theorem 6 is as follows: In
case [(Lj + gj‘,Rj), j=1,2; (I,RO)] is not inverse-positive in the
whole domain of u, we want to find a set Z = {u|v-p<ugv+p,
(x,v¥) € —R} in which it has this property (i.e. locally inverse-positive)
and hence Q(gj) has at most one solution in 7. This is done by first
taking an approximate solution v as the ‘center' of Z. If p is deter-
mined in Theorem 5 or Theorem 6, it can be a possible 'radius' of 2.
The constrained minimization problem formulated in the next section

is devised for finding the 'smallest possible' n such that Z may

"trap' a solution of Q(gj).
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4, Constrained Minimization Problems

In this section, we formulate from the error bound formulas
(3.5) and (3.13) of the last section two constrained minimization prob-
lems. In solving them by some numerical techniques and linear prog-
ramming method, we can obtain approximate solutions and the cor-

responding error bounds for the problem Q(gj).

Notations

. , k ,
For a given function v, define

k
g,(v)= gj(x,t,v );
k
9g,.(x,t,v )
S D

kK ok L Vo
qj = gj(V ) = ™ : and
k k k k

G = v g ~g(v)+r, .

] q] gJ( ) ]

Constrained minimization problem one (CMP1)

Suppose Q(gj) satisfy the assumptions 1) amd 2) of Theorem

50
. . . 0 = k = . 1
Step 1 Starting with suitable v~ e V(R), let v € V(R) and 6 € E
solve
k-1 . k-1
&. > (L, + -G >-6.in R, j=1,2
0 2 Iy +9 ) [v] j 279 in Ry
min 60 (4. 1)
v,0q 60 > ‘v—r0_>_- 60 in RO

k: 1,2,..,..
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Step 2 For any approximate solution v obtained in Step 1, let

>\‘O = max {||v - rOHRO' lle[v]+gj(v)_rjl|Rj' j=1,2) (4.2)

k
Starting with a suitable éo, compute the sequences (£ }OO

k=1
and {u,k}(;_l by the following iterative process:
. - /\"k 1
Let u,k e V(R) and {1 e E° solve
. k-1 . v
[ Lo+ Py v ]2 n Ry, j=1,2 ‘\
min ¢ {1 | n>1 in R ! (4.3)
A 0
el ~ -
1 @>u >0 on R
~K
set ¢ =n 0 (4. 4)
Theorem 7
In the above iterative process, if at the kth cycle we have
k k-1 .
¢7 < ¢ 7, then the error bound (3.5) holds with
_ k
pl(x,t) = KOu, {(x,t) (4, 5)
Proof:

Clearly, we have only to show that (3.2) and (3.4) hold for

£ = &k and u = uk(x,t).

Since {I' > > 0 and, for fixed v, pj is a monotonic non-

decreasing function of §£, it follows from (4.3) and (4. 4) that

f
+
O
o
~
<
b
=
ot
v

- X .
(L] + p](gk llle‘lt))[u' ]Zl in R]l ,]:llz

k
g:kuzxou(x,t)onR i
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Constrained minimization problem two (CMP2)

Suppose Q(gj) satisfy the Assumptions 1) and 2) of Theorem 6.

0 A0
Given suitable initial approximation v0 and constants €, (i

-0
and pj , j=1,2, the kth cycle of the following iterative process
starts with known Sl , é(-l , ﬁk_l and L—);{'”l :

Step 1 Let vk(x,t) € V(ﬁ) and é}? € El, j=0,1,2, solve

2 2
k- -k-1 k-1
min (1 - @ : % op; Vo, +U E’,.éj
vV 5] J:l J J:]_
6. > (Lj + q}fwl)[v] - G]f—lz— 6., in Ry, j=1,2
j j j j (4.6)
6O_>_v-r02-<50 in RO
Step 2 For j = 1,2, evaluate
k k k k k
Mo = I =xgllg o 2y = ILyle 1+ 9000 - rj“Rj (4.7)
k k-1 k _ , k, k-1
po(x,t) = p(E ,v ,x,t)=min (gim)| [n-v |<E& 7]
J ] n j
for fixed (x,t) (4. 8)
and
min U PF Sk h, 9K a a0
—k (x,t)eR, "] i""0 0
D = J (4. 9)
j . _
inf p?(x,t) if xlg =0
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Step 3 Let the scalar ﬁk' and the function uAk ¢ V(R) solve

~

(L + P, u]>1 i R, J=L2 |

_ (4.10)
>u >0 on R J

L

A
90

>

.\».J“_,._.\‘

Theorem 8

k-1

14

t
In the above iterative process, if at the k h cycle we have {?,k < £

then the error bound (3.13) holds with

rlx,t) = x}S + u,k(x,t) 5 (x]],<~>\}g 5}.(€k,vk)> (4.11)
where 5 (E,v) = inf pP.(E,v,x,t)
AR (x,t)eR]. jror e

Proof: Clearly we have only to show that (3.12) holds with ¢£= Eﬁk, v o= vk

k
and g = W .

Since C;,kzu,kzo, and, for fixed vk and (x,t), P,

j and p}, are

both monotone non-increasing functions of £, it follows from (4.10) that
kml’,vk,x,t))[u,k]zl in Rj’ j=1,2.

k - -1 k k k k k -
A BTN 2 g HuS et 00 =g By

(L + o6,V T 2 (L 4 e

‘ k 2k k

({;J(,vk)) on R i



5.
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Discussion

(1)

Numerical results show that CMP2 gives more accurate
approximate solutions than CMP1.,

The error bound P (4.5) and p2 (4.11) are monotonic
decreasing functions of each of the quantities >\j .
j=0,1,2, and u(x,t). Hence we may say that each
approximate solution is obtained by minimizing its error
bound in certain sense. Again, it can be shown both
theoretically (see Cheung [1970]) and numerically (see
section 7) that Py is a better error bound than Py
Suppose, instead of the local Lipschitz condition (2. 4),
gj satisfies a global Lipschitz condition, 1i.e. there
exists a bounded function kj’ independent of u, such

that

>V

g (Vl)—g.(v ) > (v -vz)kj in Rj, for all v 5

1 1
v, € V(R) (5.1)
Theorem 5, Theorem 6 and the constrained minimization
problems still hold, with pj = kj' However, a local
Lipschitz condition has at least two advantages (for
detail, see Cheung [1970]):
i) A global Lipschitz condition may not exist;

whereas a local Lipschitz condition can always




ii)

19

be constructed, provided g}f exists and is
bounded.
A local Lipschitz condition gives a 'better

error bound than a global one.
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6. Computational Schemes

This section presents some computational schemes of solving
the constrained minimization problems of Section 4. Let {q)i(x,t));n_l

< V(R) by a set of suitably chosen functions. Assume the func-

tion ¢ and the approximate solution V to be of the form

m

B, ¢ (x,t) and vi{aix,t)= = a; <t>i(X,t)-

L(Bix,t) = i % o
1=

Mg

i=1

Let Dj and D;k be two discretizations of the region Rj'

where D;: has finer grid size than D], (Figure 2)

grid size of D;'k Figure 2
4 J

grid size of Dj

Computational Schemes One (CS81)

Step 1 Starting with suitable vo ¢ V(R), let a};, i=1,2,000,M

and 6]8 solve

5 > % L+ "l')[¢]-Gk"l>—(5
e e A T TS S B
in D.,j=1,2
min { 6, - RS L (6.1)
CLI(S — —
i’ 0 60_?_121 a; ¢i rO__ 60 in D0

k=1,2,3,000



21

For any approximate solution v = J OL}; q>i obtained in

Step 2
Step 1, let

‘ j = 112'}°

Ay = max [”v—rOH Dg, ]Lj[v] + gj(v)~erD;k

(The superscript k 1is omitted from v and XO).

Step 3 Let g, j=0,1,2, be suitably chosen small positive
quantities. With a suitable initial &O, let (gk} and

(B];}?io be determined by the following iterative process:

Let B];, i=0,l,...,m, solve

m
( % B.(L.+p,(s§k l,v,x,t))[¢.]_>_l+e,, in D, j:l,ﬂ
, 1] J 1 ] J
i=1
. by Bi ¢iZEO in DlUDZ
min BO
B. .
i ZBi¢i_>_-_1+g.O in DO
in T J
- BO ZZBi <§>i in D

°

U DZ

where D = DO U D1
py B}; ¢i(x,t) and E)k‘ = xoﬁk, where

max

Let ka =
(x,t)eD*

D:DOUDlUDzo

Computational Scheme Two (CS2)
0

0
Given suitable initial approximation v~ and constants ¢, fL

and 5], , the kth cycle of the following iterative process starts with

(6.2)
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-1 =k-l k-1

-1
known Ek ,ﬁk . P and v C(x,t)

Step 1 Let a};, i=1,...m, and 6};,

k...
Za.l
i

<1>i(x,t):

j=0,1,2, solve

IR R 1 2
min (1 -ﬁk ! Y p? l)c‘:»o +ﬁk : b éj
ai,f)j j=1 j=1
5.> T alL, + _)[]-Gk-l>—°>inD j = 1,2
j= 24 Qﬁl . q 431 j -z Gy jl )} =1,
60 > = Qg 4)1 ~ T __—60 in D0
Step 2 For j = 1,2, evaluate
k k k k k
2o = I = rollpre 2= LT+ 05t =yl

-

k k
pj (x,1) = pj(é‘i ,V ,X,t) =~ min

{g;m) |n - Vk] < gkgl} for fixed (x,t)

7
and
. min k k. k , k
Ek i} J min {(X,t)€D;: p] (X,t), )\J/)\O} if >\O 7-/ 0
J Kk ,
]\ min pj (x,1) if )\}8 =0
(X,‘C)EDJT"
Step 3 Choose suitable small positive constants gj, j=0,1,2.
ﬁ};, i=0,1,...,m, solve
m k
5 B.(L+p, (x,tH[e.]>14+ ¢ in D, j=1,2
min {A =1 b)) ! ) ]
0 .
Ay & =
A 1;1 Bﬂ’ii €9 on D= DOUDIUDZ

Let

(6.4)
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n mo 2 -
Let u.k = max > B, ¢)k and ék = )\.k + ﬁk s (7\1?- xk ],<), where
% \ ik N 0 ] 0 ]
D i=1 j=1
D" = DO U Dl U D2 .

" 0 0 -0 , )
Choice of initial values for the parameters £, 0, pj and approximation v

, 0
Theorems 7 and 8 imply that the initial ¢ should overestimate the error

0
of the initial approximation v . Usually if é;o is large enough we should

0 1
have € > £ and hence an error bound is obtained at a single cycle. How-

ever difficulty may arise that if z-;o is too large, (6.2) or (6.4) may have no

feasible solution,
N A0 -0 , 0
Without better values, we may set u =1, p). =0,j=1,2 and v (x,t)

0 (orl).

Choice of the parameters g],, i=0,1,2

In (6.2) and (6.4), the positive quantities 3 are added to the right
sides. If the density of discretization is fine enough and the differential
operators satisfy some Lipschitz conditions, it can be shown (for detail,
see Cheung [1970]) that a solution u =2 B,l qyi of the discretized problem
(6.2) (or (6.4)) also satisfies the inequalities (4.3) (or (4.10)) over the

whole region. Therefore, the error bound is valid over R.

Criterion for terminating theiterative process

k k-1
The iterative process may stop whenever £ < E . However, in

practice, this is usually satisfied at the first cycle. To obtain better

accuracy, we may use the following criterion:
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k, k-l k_ k-l
Ita, v -G “DZ

k k k k
Let &, = |[L,[v and A = [|[L[vi]+g,(v) -

For a preassigned quantity e (convergence tolerance of Newton's

N

t
method), the iterative process is stopped at the k h cycle if

% - o
A - °N° :

2
. k k o ) . . .
Since A 2 and 62 are quantities obtained during the iterative process,

only little additional computation is required.

Linear programming formulation

It is easy to show that (6.1), (6.2), (6.3) and (6.4) are linear programs
of the form (for detail, see Rosen [1970]):
min {d"ﬂ"A'ﬂZ" c} (6.6)

T

' denotes the transpose.

where d, m and c are vectors and A is a matrix.
With w = -m, (6.6) is equivalent to the dual problem of a standard linear
program (see Dantzig [1963]):
max (d'w | A'w < c} (6.7)
w
Instead of solving (6.7) directly, most available computer linear pro-

gramming code (e.g. SIMPLX (1 969]) are devised so as to solve its primal

problem

min {c'z | Az = d, z> 0]} (6. 8)
z

2 2l

2
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(6.6) and (6,8) have fhe following relations which are well known
in the duality theory of linear programming:

(i) If (6.8) has an optimal solution z™ with optimal base B*,
then 7* = ~w™ = - (B¥) "z¥ is an optimal solution to (6.6). In some com=-
puter linear programming codes, m* is one of the output data. Hence, we
can directly obtain an optimal solution to (6. 6) by solving (6. 8).

(ii) If (6.8) has an infinite (negative) solution, (6.6) has no feasible
solution. This fact can be used to test the inverse~positive property of the

given problem Q(g]. Ve

Sizes of the linear programs

et m

i

total number of basis functions {¢.}f“ ;
17i=1

n

i

total number of grid points over D = DO U Dl U Dz; and

ngy= number of grid points over DO'

The following table shows the dimensions of the different linear programs:

Table 1
linear program dimension of A
(6.1) (m + 1) x 2n
(6.3) (m + 3) X 2n
(6.,2) or (6.4) (m +1) x (3n - nO)
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7. Numerical Results

Example 1 (first BVP on a Trapezoid)

2
C 9
g—%—(ZH)M—% +g(u) =r O<x<t+.5,0<t§.5——-RO
ox 2
u = X +COsX 0<x<.5, t=0 )
2
u = cost x =0, 0<t< .5 RO
2 2
u = X +cos (x+t) x=t+.5 0<t<.5

where g(u) = exp (. l{u-cos (x+t&))) and r = -2t sin (x+ta) - (24t) (2-cos

(x+t2)) + exp (.lx?‘)°

Figure 3

D*
0
) 2 2
Exact solution u=x +cos (x+t")
Algorithm Since g'(u) is bounded below, Example 1 is inverse-positive,

We determine approximate solutions and error bounds by CsSl and CS2. (See

Section 6).

0 =0
Both algorithms are started with VOE 0, £ =1, (‘LO =1 and p = 0.

|| R, is approximately by where DJ?“ are meshes described in
)

Dj
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Figure 3. The termination criterion (6.5) is applied with EN = ,0002.

Discretization method The linear programs included in CS! and CS2 are

solved with €y = € ° . 0001, Dg and Drl1 are the same as DO and D;:

but with their grid sizes doubled.

(3+4,3+2)

Function space SZ

(bicubic B-spline with 5 knots in the x-

direction and 3 knots in the t-direction. See Appendix.)

Computer and LP code CDC 3600, SIMPIX [1969].

Time 6 minutes 57 seconds.

Numerical results After 2 iterations the termination criterion is satisfied and

the following results are obtained (omitting superscripts):

cs S 2

X | .025593 .000088

)‘l | .020331

? .079323

max. value of 1.040319 .0LL913

max. error 5.49 E-3 at (.1,.0) -1.09 E-h at (.25,.15)
max. error bound 2.66 E-2 at (.30,.0) 1.00 E-3 at (.35,.0)
min. error bound 2.56 E-=2 on t = 0 8.98 E-S on x = 0

Table 2
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Table 2 shows that CS2 gives a much smaller error function u than
CSl, This is the main reason why the error bound Py obtained by CS2
is much better than the error bound Py obtained by C8S1 (by a factor of
10“1' > on the average). The error in the approximate solution obtained by

CS2 is also much better than that obtained by CS1 (by a factor of 10_2 on

the average (Table 3).)
Figure 4 and Figure 5 show respectively the errors of the approximate
solutions vy and v, along 5 lines parallel to the x-axis, Table 4 contains

the coefficients of v1 and vz. Within each lattice, the upper entry is for

vy while the lower for Ve Each entry is the coefficient of the product of

functions on the top row and leftmost column,
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Avoroximate Solutior v, Errors (u—v), and Error Bounds p

s | cs 2

X t vl u-v pl' v2 u—-v2 92

.05| .00l .99577 | 5.48 E~3 |2.59 E-2 | 1.0012k | 1.40 E-5 3.16 E-b
.10].00| .99952 | 5.48 E-3 |2.61 E-2|/1.00499 | 1.05 E-5 |5.12 Bl
.350.00[1.05706 | 4.81 E-3|2.66 ¥-21.06188 |-5.43 E-6 |1.00 E-3
45].00[1.09878 | L4.16 E-3 |2.65 E-2 || 1.10295 |~h.93 E-~T [9.08 E-h
.10].0501.00132 | 3.43 E-3|2.59 B-2 || 1.00472 | 2.77 E~5 | 3.83 E-k
.30|.05/1.04201 | 2.59 E-3|2.62 E-2 | 1.04460 |-6.15 E-7 |6.h1 E-4
5! .osll1.10048 | 1.38 E-3 |2.61 E-2 | 1.10184 | 1.96 E-5 |5.18 E-b
251 .15/[1.02742 | -1.82 E-3 | 2.61 E-2 || 1.02571 |-1.09 E-b |5.55 E-U
.00| .2011.0026L | =3.44 E-3 |2.56 E-2 || .99922 |-1.7T E-5 |8.89 E-5
25| .20l1.02Lk32 | -3.57 B~3 | 2.62 E-2 || 1.02083 | -8.95 E-5 €.54 B-k4
.55!.20ll1.13810 | -4.66 B-3 |2.62 E-2 || 1.13350 |-5.56 E-5 | 6.36 E-l
.70!.20]1.23391 | ~5.hk E-3 |2.57 E-2 || 1.2285h | ~7.31 E-5 |1.80 E-lb
25! .2¢/1.01870 | -4.63 E-3 | 2.63 E-2 || 1.01412 |-5.02 E-5 | 7.5k E-4
.50!.25/11.10058 | -k.66 E~3 |2.65 E-2 || 1.09594 |-1.kk E-5 8.86 E-L
.751.25/ 1.25L81 | -4.63 E-3 |2.59 E-2 |/ 1.25020 |-1.77 E-5 | 3.79 E-L
.00l .4o| .99013 | -2.91 E-3 |2.56 E-2 || .98725 |-1.77 E~5|8.98 E-S
.351.40]l 99735 | -2.10 E-3 |2.65 E-2 || .9952k |-3.69 E-6 9.26 E-U
.70l.k0l1.14160 | 8.39 E-L |2.63 E-2 || 1.1k2k2 | 1.98 E-5 7.04 E-L
.90|.40f1.29543 | 3.44 E-3 |2.56 E-2 || 1.29885 | 1.77 E-5 | 8.98 E-5
.150 .45 .96105 | -3.39 E-5 |2.61 E-2 | .96100 | 1.38 E-5|5.66 E-
,00l.b5 .96348 | s5.44 E-3 |2.56 E-2 || .96893 |-1.77 E-5{8.98 E-5
.30(.45|l .93932 | 3.20 E-3 |2.65 E-2 | .94257 |-4.10 E-5 | 8.60 E-k
.65].45]1.04036 | 3.75 E-3 |2.65 E-2 | 1.04416 |-L.88 E-5| 8.72 E-h
.95|.45]/1.30989 | 5.4 E-3 [2.60 E~2 ||1.31534 |-1.77 E~5 | 8.98 E-}

*grid points
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Table &

Coefficients of v, and Vo (multiplied by |0D)

B(Lx+1) | B(kx) [B(hx-1) | B(hx-2) | B8(4x=3) | B(hx=h) | B(kx=5)
8 (hts1) 2.8455 | 2.7370| 2.7889 | 3.0084 | 3.bh225| L.0828
2.871h | 2.7585| 2.8130 | 3.0u48 3.4806 | L4.1875 0
_ 2.7971 | 2.7213| 2.8253 | 3.1138| 3.5000 | L.3093| h4.9201
g(Lkt) 2.8173 | 2.7456]| 2.8472 | 3.1257 | 3.5970 | L.2870| 5.1306
2.8971 | 2.7777] 2.8340 | 3.0715| 3.5075 | L.165h4 5.151h
B(ht-1) 2.8689 | 2.7532| 2.8107| 3.0470| 3.481k | L.1koo | 5.0900
2.9481 | 2.7087| 2.670 2.7493 1 3.0719 | 3.6377 | L.h269
B(ht-2) 2.948L | 2.7070| 2.6310| 2.7508 | 3.0868 | 3.6715 | 4.5129
b ..
2.67TT4 | 2.2746| 2.0692 | 2.0343 | 2.2755 | 2.8223 | 3.9031
8(Lt-3) 2.8738 | 2.4085] 2.1405 | 2.0925 | 2.3009 | 2.8035 | 3.Th37
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Example 2 (third BVP on a rectangular domain)

2
0 9 u
(X+1)8t > +g2(u):r2 0 < x< .45, O<t_<__.8-——R2
X
‘ S ) = x = 0 0<t<.8—R
ax At T = = 1
u=2cosx 0<x< .45, t=20
2 RO
U=2cos (,45+t7) x= .45, 0<t<.8
where gl:-.Oltu3, gZ:—.,lt sin u, r = 2 sin tz- .,,08’cZ c:os31:z and

r2 = 2 cos (x+t2) - 4(x4+1)t sin (x+t2') - .1t sin (2 cos (x+tz)).

2
Exact solution u = 2 cos (x+t")

Algorithm Since gi(u) = --.03'£uZ may vanish somewhere in Rl’ inverse-

positivity is not guaranteed. We apply CS2 to obtain an approximate solution

and an error bound Pye

CS2 is applied with v0 =1, &0: .5, 'CLO:L and 5?:52:0, ““R

is approximated by where D;:: are meshes described in Figure 6, The

¥
]

termination criterion (6.5) is applied with EN = ,0002, Besides the error

bound Py we also calculate the error bound P4 (3.14).
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Figure 6 Figure T
.075
.02
025 . 2R
>‘05\ L } 1
n
* % * D B D
R, R, >RO 1 < 12 0
- I 1
4 _) KC. L | PR
N "
* .
n
Ro Po

Discretization method The linear programs included in CS2 are solved with

50 = El = EZ = .000l, The meshes D?’ are described in Figure 7.

(3+3,2+4)

Function space Sl (product of elementary cubic spline in x and

quadratic spline in t, with 4 knots in the x~direction and 5 knots in the

t-direction. See Appendix).

Computer and LP code CDC 3600, RS MSUB (Clasen [1961].

Time 7 minutes 49 seconds,

Numerical results After 3 cycles, the termination criterion is satisfied and

the following results are obtained (omitting superscripts):

>
|

=2,11 E-2, '}\.1 = 4,04 E-2, )\Z = 3,16 E-2; €= 4,32 E-2;

p, = -.1, ;—)Z = -,08; max. value of error function o = 5.69 E~1,

Each entry in Table 5 is the coefficient of a basis function which is the

product of the corresponding functions on the top row and the left~most column.
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Table 5

Coefficients of Approximate Solution

1 x *2 (X)E (XnIS)E (x~.3)3
1 1.99857 | 0.0007L4 | -1.00116 | 0.01102 0.08195 | -0.01331 |
%, -0.03019 o.ooghd 0.15975 | -0.33221 | 0.61872 | 0.49820
(t)f 0.09610 | -2.05745 | ~0.42922 2.08791 | -3.L2521 | ~1.00641
(t_,g)f wo.66og6 0.12379 | 0.58758 | -3.33028 | 6.36580 0.17891
(t—.h)z -0.96210 | 0.23835| 0.61809 2.70660 | -4.69479 | 2.31576
(t,_g)g ~1.04285 | 0.77683 | 1.23289 L—2.38896 2.93268 | -3.L42271
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Table &
Aporoximate Solution v, FError (u-v) and
Error Bounds p2 and 03_
X t v u-v 92 93

¥ .00 |.00 1.998573 ~1.43 E-3 2.96 E-2 1.76 BE-2
¥ .20 | .00 1.958772 ~1.36 E-3 1.65 E-2 1.02 E-2
# .30 | .00 1.909264 ~-1.41 E-3 1.07 E-2 6.95 E-3
¥ . Ls |.00 1.7993k2 -1.55 E-3 2.12 E-2 2.11 E-3
o# .00 |.10 1.996514 -3.39 E-3 L.00 E-2 2.34 E-2
X .30 | .10 1.902116 ~2.55 E-3 1.59 E-2 9.83 E-3
.25 | .20 1.915299 -1.19 E-3 2.22 E-2 1.34 E-2
.bo | .20 1.80957k 7.03 E-5 T.46 E-3 5.11 E-3
.00 | .35 1.98L4922 -9.08 E-5 4.29 E-2 2.50 E-2
.15 35 1.926220 1.83 E-5 3.10 E-2 1.83 E-2
.30 | 35 1.824817 6.84 E-L 1.7h E-2 1.07 E-2
s .35 1.682757 1.66 E-3 2.19 E-3 2.15 E-3
.25 | .bs 1.800130 1.k2 E-3 2.21 B-2 1.32 E-2
s s 1.590241 1.10 E-3 2.13 E-3 2.12 E-3
¥ .38 .50 1.621948 2.18 E-5 9.95 E-3 6.51 E-3
% .45 | .50 1.529429 -2.56 E-l 2.12 E-3 2.11 B-3
.20 | .60 1.693365 -1.15 E-3 2.67 E-2 1.59 E-2

43| .60 1.413037 ~1.74 E-3 47T E-3 3.60 E-
.08 .75 1.60k364 -2.81 BE-3 3.74 E-2 2.19 E-2
.20 | -75 1.443795 -2.43 E-3 2.68 E-2 1.59 E-2
Lo -T5 1.141855 -1.09 E-3 7.41 E-3 5.08 E-3
% .00/ .80 1.602582 -1.61 E-=3 h.32 BE-2 2.52 L2
.33 -80 1.138715 -1.19 E-k 1.50 E-2 9.35 1-3
# 45| .80 0.926523 1.55 E-3 2.11 E-3 2.11 E-3

#¥grid points, o max. error, + maxX. error bounds.
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Figure 8

Comvarison of the Error Bound Curves p. and p
<

Along the Line t = .k

3..
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Monovariate splines

In the following we present two convenient ways of forming a basis
m+n o . . ,
for the space B of spline functions of degree m with n +1 knots in

terms of the basic splines defined by

m
X if x>0

0 if x< 0.

1) Elementary splines

let x ,X

,...,X_ be a set of knots over [x
01 n

O’Xn]" An arbitrary spline

of degree m is given by

i 24 , -2 . X,
i . i ; Cm+i i+

This space is of dimension m + n.

2) B-splines

Define the following function

k
e gtk 2k om oy
Bax) = (-1 (j+k)(J X), ms= 2k - L.

It looks like Figure A,1 and has the
Figure A.1 k =2

following properties:

(x) >0 for =k <x<k

By (%) =0 for |x| >k




