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1, INTRODUCTION

Consider the nonlinear two-point boundary value problem

(1.1) eu" + f(x,u(x), u'(x))u' =0, 0<x< 1
(1.2) u'(0) = au(0) = A> 0, (a>0),
(1.3) u'(l) + bu(l) = B> 0, (b > 0).

Let €>0 and assume
H-1: f(x,u,u') is continuous in the region

R= {(x,u,u")] 0<x<1, 0<u<B/b, Ogu'ga+"g‘

H-2: f(x,u,u'y> B>0 for all (x,u,u') € R.

Recently D. S. Cohen [2 ] used the "shooting method" to

study this problem under somewhat more restrictive hypothesis.
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Our approach is based on a-priori estimates and the Schauder fixed
point theorem. The physical motivations for this problem as well
as other interesting background facts are discussed in [21].

2. RESULTS

For £> 0 let H-1'and H-2'be the hypotheses H-1 and H-2

with R replaced by R', where

(20 1) R' = {(x,u,u')[ OS_XS_ l, —A/aS_u_<__B/b, OS_U.'SA +§EB' }o

Let W be the set of all functions v(x) e Cl[O, 1] which satisfy
(20 2) v'(0) -~ av(0) = A, v'(1) + bv(l) = B,
(2.3) (x,v(x), vi(x)) e R" Vxe[0,1]

Let > 0 be fixed, let v(x) e W and let u(x) e CZ[O, 1] be the

unigue solution of the linear boundary value problem

(2. 4) eu" + f(x,v(x), v'(x)u'= 0, 0<x<1

(2.5) u'(0) - au(0) = 4, u'(1) + bu(l) = B,

Iemma 1 Assume that H-1' and H-2' hold. Then u(x) e W.

Proof: Since u(x) $ constant the maximum principle [3] tells

us that |u'(x)| >0 for 0<x< 1. Suppose




Then

(2.6) u(0) > u(l).

On the other hand

which contradicts (2.6). Thus

(2.77) u'(x) > 0, 0<x< 1.
Hence

-Aa< -— 4+ 9-'-;91 = u(0) < u(l)
and
(2.8) - A/a < u(x) < B/b.

Finally, since
1 l 1 t
u" = - - f(x,v(x), vi(x))u'(x) < 0

u'(x) assumes its maximum at x = 0, Thus



which completes the proof.

Let T denote the mapping described above, i.e.

(20 9) T: W-—+ W
and
(2.10) T(Vv) = u .

Lemma 2 T is continuous in the Cl[O, 1] topology.

Proof: Let vl(x), vz(x) e W and let
(2.11) T(vl) = ul, I’(VZ) = uZ' W = 'I(Vl) - T(Vz).
Then w(x) satisfies the equation
ew" + f(x,vl,vl)w = [f(x,vz,vz) - f(x,vl,vl)]uz(x) 0<x<1

(2. 12)
w'(0) - aw(0) = 0, w'(l) + bw(l) = 0.

The lemma now follows from standard estimates. That is, as vz-—> vl

and v}:—-»vi w and w'— 0,

We now remind the reader of the well-known Schauder fixed~

point theorem (see [1, p. 97]).

Theorem (Schauder): If T is a continuous mapping of a closed con~-

vex set W in a Banach space X into a compact set W_ < W, then

0

T has a fixed point in W()'



Theorem 1 Forevery €3> 0 there exists (at least one) a solu-

tion u(x,€) of (1.1), (1.2), (1.3) and that solution u(x,e8) e W,
Proof: Forfixed >0 let
K:l&‘ (A +§—B') max {|f(x,u,u')|i(x,u,u") e R'].

Let X be the Banach space C'[0,1]and let W be the W defined

above. Let WO be the set of all w(x) ¢ W for which

|w"| < K.
Then, using the Ascoli-Arzela lemma (see [1]) we see that W0 is a com-
pact subset of the closed convex set W < X. Thus we may apply the

Schauder fixed point theorem and the theorem follows,

Lemma 3 There is a sequence En-+ 0+ and a constant u such
that

(2.13) Max ]u(.x,en) - G] — 0 as e~ 0+,
0<x<1

Proof: The solutions u(x,€) are uniformly bounded and equicontinuous.

Hence there is a sequence €n~+ 0+ and a function U(x) such that

(20 14) Max |u(x, €)= U(x)| =0 as e — o+,
O<x<1

However, we claim U(x) = const, Consider the function

Bx
€
<1>(x,€n) =e 1 [U(x,En) - U(l,f‘—n)]-



Then ¢(x, en) satisfies the equations

e" + [£- 2816 - T [1B - 8°] ¢ = 0
(2,15)

$(1, En) =0, [¢(0,En){ < 2B/b.
Applying H.1l' we see that

|®(x,€ )| < 2B/b

which implies that

_Bx
2B _ En
lux, e ) -uld, € )| < e .
Thus, forall x € (0,1)
i € 3 +
(2.16) u(x,En) - lim u(l, n) as 0> o+,

But because of the uniform convergence in (2.14) we see that

Ux) = U@d),

and the lemma is proven,
Lemma 4 Under the hypothesis above,

Lim u(x,z—:n) - u = B/b.




Proof: Let x e (0,1), Then

u(x, € ) - u(l, e )

— = u'(l,¢) +-1£ u"(g,En)(x—l).

Since u"(€, En) (x-1) > 0, we have

u(x,En) - u(l, En)

> u'(l,€) >0,
X -1 n

Then, using Lemma 3, we have

0 > lim sup u'(l,En) > lim inf u'(l,En) >0
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and

u'(l,€ ) — 0.

But the

u(l, € ) =
n b

- B/bo

Theorem2 Let {u(x,€)} be solutions of (1.1), (1.2), (1.3) which

lie in W, Then

(2.17) u(l,€&) — B/b as € — 0+,

and

(2.18) Max |u(x,€) - B/b|] — 0 as e —0+
0<x<l

Proof: Suppose (2,17) is false. Then there is a sequence

En -+ 0+ such that



(2.19) u(l ,En) — C

0 # B/b.

However, we may extract a subsequence &, which converges as

in Lemma 3. Then applying Lemma 4

u(l, e ) — B/b

which contradicts (2.19). Thus (2.17) is established, Then the argument
of Lemma 3 using the comparison function ¢(x,€&) leads to the con-

clusion that
u(x, &) = B/b Vx € (0,1].

But, an equicontinuous and bounded family which converges on a

dense set converges uniformly.

Remark: We cannot expect that u'(x,€) will converge to 0 uni-

formly on the entire interval [0,1]. Indeed

u'(0,€) =A +au(0,g)—A +§BB‘ .
However, we easily obtain the following result.
Theorem 3. Let 06> 0. Then
Max {|u'(x,€)|, 0<x<1}—=0 as €—~0,

Proof: Observe that

u' < o0, u' > 0,




Hence, if 6<x<1, then
|u'(x,€)| < u'(9,¢),

Thus it suffices to prove that
(2.20) u'(é,e) — 0.
But we now proceed as in the proof of Lemma 4. Let y € (0,68). Then

u(y,€) —u(d,¢€)
y = 0

> u'(d,e) > 0

and we see that (2.20) holds.
Finally, let us return to our original problem. Suppose we do
not have (H.1') but only H.l. Let

f(x,u,u’) (x,u,u') e R
;(x,u,u') =
f(x,0,u") (x,u,u') e R" but u<o0,

~

Let us replace f(x,u,u') by f(x,u,u'). Then the solution T.f(x,s)
obtained in Theorem 1 are solutions of the original problem if

H(O, €) > 0., However since rﬁ’((), e)—B/b > 0 we have: under the
hypothesis H.l and H.2 there is an 80 > 0 such that there exists
a solution of (1.1), (1.2), (1.3) forall e€¢ (O,EO).
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