Computer Sciences Department The University of Wisconsin 1210 West Dayton Street Madison, Wisconsin 53706

REMARKS ON SINGULAR PERTURBATION OF CERTAIN NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

by

Seymour V. Parter

Technical Report #126

May 1971

Sponsored by the Office of Naval Research under Contract No.: N00014-67-A-0128-0004.

REMARKS ON SINGULAR PERTURBATION OF CERTAIN NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

by

Seymour V. Parter*

1. INTRODUCTION

Consider the nonlinear two-point boundary value problem

(1.1)
$$\varepsilon u'' + f(x, u(x), u'(x))u' = 0, \qquad 0 \le x \le 1$$

$$(1.2) u'(0) - au(0) = A \ge 0, (a > 0),$$

$$(1.3)$$
 $u'(1) + bu(1) = B > 0,$ $(b > 0).$

Let $\epsilon > 0$ and assume

H-1: f(x,u,u') is continuous in the region

$$R \equiv \{(x,u,u') \mid 0 \le x \le 1, 0 \le u \le B/b, 0 \le u' \le a + \frac{aB}{b}\}$$

H-2:
$$f(x,u,u') \ge \beta > 0$$
 for all $(x,u,u') \in R$.

Recently D. S. Cohen [2] used the "shooting method" to study this problem under somewhat more restrictive hypothesis.

^{*}Supported by the Office of Naval Research under Contract No.: N00014-67-A-0128-0004.

Our approach is based on a-priori estimates and the Schauder fixed point theorem. The physical motivations for this problem as well as other interesting background facts are discussed in [2].

2. RESULTS

For $\epsilon > 0$ let H-1' and H-2' be the hypotheses H-1 and H-2 with R replaced by R', where

(2.1)
$$R' \equiv \{(x,u,u') \mid 0 \le x \le 1, -A/a \le u \le B/b, 0 \le u' \le A + \frac{aB}{b} \}.$$

Let W be the set of all functions $v(x) \in C^1[0,1]$ which satisfy

$$(2.2)$$
 $v'(0) - av(0) = A$, $v'(1) + bv(1) = B$,

$$(2.3)$$
 $(x,v(x), v'(x)) \in R' \quad \forall x \in [0,1].$

Let $\epsilon > 0$ be fixed, let $v(x) \in W$ and let $u(x) \in C^2[0,1]$ be the unique solution of the <u>linear</u> boundary value problem

(2.4)
$$\varepsilon u'' + f(x, v(x), v'(x))u' = 0, \quad 0 \le x \le 1$$

(2.5)
$$u'(0) - au(0) = A, u'(1) + bu(1) = B.$$

<u>Lemma 1</u> Assume that H-1' and H-2' hold. Then $u(x) \in W$.

<u>Proof:</u> Since $u(x) \not\equiv$ constant the maximum principle [3] tells us that |u'(x)| > 0 for $0 \le x \le 1$. Suppose

$$u'(x) < 0, 0 \le x \le 1.$$

Then

$$(2.6)$$
 $u(0) > u(1).$

On the other hand

$$u(1) = \frac{B - u'(1)}{b} > 0$$
,

$$u(0) = \frac{u'(0) - A}{a} < 0$$

which contradicts (2.6). Thus

(2.7)
$$u'(x) > 0, 0 \le x \le 1.$$

Hence

$$-A/a \le -\frac{A}{a} + \frac{u'(0)}{a} = u(0) < u(1) = \frac{B}{b} - \frac{u'(1)}{b} \le B/b$$

and

(2.8)
$$- A/a \le u(x) \le B/b$$
.

Finally, since

$$u'' = -\frac{1}{\epsilon} f(x, v(x), v'(x)) u'(x) \le 0$$

u'(x) assumes its maximum at x = 0. Thus

$$0 \le u'(x) \le u'(0) = A + a u(0) \le A + \frac{aB}{b}$$
,

which completes the proof.

Let T denote the mapping described above, i.e.

$$(2.9) T: W \to W$$

and

$$(2.10) T(v) = u.$$

<u>Lemma 2</u> T is continuous in the $C^{1}[0,1]$ topology.

<u>Proof:</u> Let $v_1(x)$, $v_2(x) \in W$ and let

(2.11)
$$T(v_1) = u_1, T(v_2) = u_2, w = T(v_1) - T(v_2).$$

Then W(x) satisfies the equation

$$\begin{cases} \varepsilon w'' + f(x, v_1, v_1') w' = [f(x, v_2, v_2') - f(x, v_1, v_1')]u_2'(x) & 0 \le x \le 1 \\ w'(0) - a w(0) = 0, & w'(1) + b w(1) = 0. \end{cases}$$

The lemma now follows from standard estimates. That is, as $v_2 \rightarrow v_1$ and $v_2' \rightarrow v_1'$ w and $w' \rightarrow 0$.

We now remind the reader of the well-known Schauder fixed-point theorem (see [1, p. 97]).

Theorem (Schauder): If T is a continuous mapping of a closed convex set W in a Banach space X into a compact set $W_0 \subset W$, then T has a fixed point in W_0 .

Theorem 1 For every $\varepsilon > 0$ there exists (at least one) a solution $u(x, \varepsilon)$ of (1.1), (1.2), (1.3) and that solution $u(x, \varepsilon) \in W$.

<u>Proof</u>: For fixed $\epsilon > 0$ let

$$K = \frac{1}{\varepsilon} (A + \frac{aB}{b}) \max \{ |f(x,u,u')|; (x,u,u') \in R' \}.$$

Let X be the Banach space C'[0,1] and let W be the W defined above. Let W_0 be the set of all $w(x) \in W$ for which

$$|w''| \leq K_{\bullet}$$

Then, using the Ascoli-Arzela lemma (see [1]) we see that W_0 is a compact subset of the closed convex set $W \subset X$. Thus we may apply the Schauder fixed point theorem and the theorem follows.

Lemma 3 There is a sequence $\epsilon_n \to 0+$ and a constant \bar{u} such that

(2.13)
$$\max_{0 \le x \le 1} |u(x, \varepsilon_n) - \overline{u}| \to 0 as \varepsilon_n \to 0^+.$$

<u>Proof:</u> The solutions $u(x,\epsilon)$ are uniformly bounded and equicontinuous. Hence there is a sequence $\epsilon_n \to 0+$ and a function U(x) such that

However, we claim $U(x) \equiv const.$ Consider the function

$$\phi(x, \varepsilon_n) = e^{\frac{\beta x}{\varepsilon_n}} [u(x, \varepsilon_n) - u(1, \varepsilon_n)].$$

Then $\phi(x, \epsilon_n)$ satisfies the equations

$$\left\{ \begin{array}{l} \epsilon \varphi'' + [f-2\beta] \varphi - \frac{1}{\epsilon} [f\beta - \beta^2] \varphi = 0 \\ \\ \varphi(1, \epsilon_n) = 0, \qquad \left| \varphi(0, \epsilon_n) \right| \leq 2B/b. \end{array} \right.$$

Applying H.1' we see that

$$|\phi(x, \varepsilon_n)| \le 2B/b$$

which implies that

$$|u(x, \varepsilon_n) - u(1, \varepsilon_n)| \le \frac{2B}{b} e^{-\frac{\beta x}{\varepsilon_n}}$$
.

Thus, for all $x \in (0,1)$

(2.16)
$$u(x, \varepsilon_n) \to \lim u(1, \varepsilon_n) \text{ as } \varepsilon_n \to 0^+.$$

But because of the uniform convergence in (2.14) we see that

$$U(x) \equiv U(1)$$
,

and the lemma is proven.

Lemma 4 Under the hypothesis above,

$$Lim \ u(x, \varepsilon_n) = \overline{u} = B/b.$$

Proof: Let $x \in (0,1)$. Then

$$\frac{u(x, \varepsilon_n) - u(1, \varepsilon_n)}{x - 1} = u'(1, \varepsilon) + \frac{1}{2} u''(\xi, \varepsilon_n)(x - 1).$$

Since $u''(\xi, \epsilon_n)(x-1) > 0$, we have

$$\frac{u(x, \varepsilon_n) - u(1, \varepsilon_n)}{x - 1} \ge u'(1, \varepsilon_n) \ge 0.$$

Then, using Lemma 3, we have

$$0 \ge \lim \sup u'(1, \epsilon_n) \ge \lim \inf u'(1, \epsilon_n) \ge 0$$
,

and

$$u'(1, \epsilon_n) \rightarrow 0.$$

But the

$$u(1, \varepsilon_n) = \frac{B - u'(1, \varepsilon_n)}{b} \rightarrow B/b.$$

Theorem 2 Let $\{u(x, \epsilon)\}$ be solutions of (1.1), (1.2), (1.3) which lie in W. Then

(2.17)
$$u(1, \varepsilon) \rightarrow B/b \text{ as } \varepsilon \rightarrow 0+,$$

and

(2.18)
$$\text{Max } \left| u(x, \varepsilon) - B/b \right| \to 0 \text{ as } \varepsilon \to 0^+ \\ 0 \le x \le 1$$

Proof: Suppose (2.17) is false. Then there is a sequence $\epsilon_n \to 0^+ \text{ such that }$

(2.19)
$$u(1, \varepsilon_n) \rightarrow c_0 \neq B/b.$$

However, we may extract a subsequence $\epsilon_{\rm n'}$ which converges as in Lemma 3. Then applying Lemma 4

$$u(1, \epsilon_n) \rightarrow B/b$$

which contradicts (2.19). Thus (2.17) is established. Then the argument of Lemma 3 using the comparison function $\phi(x,\epsilon)$ leads to the conclusion that

$$u(x, \varepsilon) \rightarrow B/b$$
 $\forall x \in (0,1].$

But, an equicontinuous and bounded family which converges on a dense set converges uniformly.

Remark: We cannot expect that $u'(x, \varepsilon)$ will converge to 0 uniformly on the entire interval [0,1]. Indeed

$$u'(0, \varepsilon) = A + au(0, \varepsilon) \rightarrow A + \frac{aB}{b}$$
.

However, we easily obtain the following result.

Theorem 3. Let $\delta > 0$. Then

$$\text{Max } \{ \left| \, u^{\, \prime}(x \,, \epsilon) \, \right| \,, \qquad \delta \leq x \leq 1 \} \, \rightarrow \, 0 \ \text{as} \ \epsilon \rightarrow \, 0 \,.$$

Proof: Observe that

$$u'' < 0$$
, $u' > 0$.

Hence, if $\delta \leq x \leq l$, then

$$|u'(x, \varepsilon)| \leq u'(\delta, \varepsilon).$$

Thus it suffices to prove that

$$(2.20) u'(\delta, \varepsilon) \rightarrow 0.$$

But we now proceed as in the proof of Lemma 4. Let $y \in (0, \delta)$. Then

$$\frac{u(y, \varepsilon) - u(\delta, \varepsilon)}{y - \delta} \ge u'(\delta, \varepsilon) \ge 0$$

and we see that (2.20) holds.

Finally, let us return to our original problem. Suppose we do not have (H.1') but only H.1. Let

$$\widetilde{f}(x,u,u') = \begin{cases} f(x,u,u') & (x,u,u') \in R \\ \\ f(x,0,u') & (x,u,u') \in R' \text{ but } u \leq 0. \end{cases}$$

Let us replace f(x,u,u') by $\widetilde{f}(x,u,u')$. Then the solution $\widetilde{u}(x,\epsilon)$ obtained in Theorem 1 are solutions of the original problem if $\widetilde{u}(0,\epsilon) \geq 0$. However since $\widetilde{u}(0,\epsilon) \to B/b > 0$ we have: under the hypothesis H.l and H.2 there is an $\epsilon_0 > 0$ such that there exists a solution of (1.1), (1.2), (1.3) for all $\epsilon \in (0,\epsilon_0)$.

REFERENCES

- [1] L. Bers: "Topology", Lecture Notes, Courant Institute of Mathematical Sciences, 1956-1957.
- [2] D. S. Cohen: <u>Singular Perturbation of Nonlinear Two-Point</u>

 <u>Boundary Value Problems</u>. To appear.
- [3] M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations", Prentice-Hall, Englewood Cliffs, N. J. 1967.