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Remarks on the Existence Theory for Multiple
Solutions of a Singular Perturbation Problem

by

Seymour V. Parter

I, INTRODUCTION

Consider the singular perturbation problem

1. L [yl =ey"+y' =alxy), 0<x<1
]'Z) y'(O) ‘aY(O) :A/ a>‘01

1.3) v'(1) + b y(1) = B, b > 0.

In [2] D. S. Cohen showed that this problem can have several distinct
"asymptotic solutions" for all sufficiently small & > 0. An asymptotic
solution is a function y(x) which satisfies (1.1), (1.2) but only satisfies
(1.3) to within 0(g).

In [8] H. B. Keller extended Cohen's results by weakening the conditions
on g(x,y) and considering more general boundary conditions
(1.3a) f(u'@)u(1)) =0
in place of (1.3). Moreover, under some additional conditions Keller showed the
existence of exact solutions of (1.1), (1.2), (1.3a) near the asymptotic solutions
discussed by Cohen.

We shall extend these results in several ways. Tirst of all we will further
weaken the conditions on ¢g(x,y). We then discuss the existence of exact solu-

tions near the asymptotic solutions. We are able to discuss some cascs not



treated by Keller. In particular, we discuss certain cases in which there are
asymptotic solutions and there is no exact solution nearby.

While we will restrict ourselves to the original boundary conditions (1.3)
the extension to boundary conditions of the more general form (1.3a) is relatively
easy.

The results of Cohen [2] and Keller [8] are based on the "shooting method".
QOur analysis is based some results on initial value problems and on the theory
of the modified boundary value problem in which the boundary condition (1.3)
is replaced by
1.3Y y(l) = «
where « is a specified real number.

However, let us first reformulate our hypothesis.

H.1) g(x,y) € C'{[0,1] x 9’21}

H.2) lat, )| = M, (x,9) e ([0,1]x al)
Let

H.3) H{a) = g(l,a) + ba - B

have exactly J roots Ay ,a/]A

2. PRELIMINARY RESULTS

In this section we collect some basic facts about quasi-linear boundary
value problems (1.1), (1.2), (1.3')and (1.1), (1.2), (1.3). Many of these
results are well known, if not readily accessable in the literature. Most of
these results are based on the maximum principle (see [1], [4], [5], [9], [10]).

Qur first result is a basic a-priori estimate.
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2
Lemma 2.1 Let &> 0 be fixed. Let o(x) ¢ C[0,1] satisfy

2.1) ]LE[cp]l < M,

2.2) ®'(0) - an(0) = A,

2.3) o(l) = a .

Then

2.4) lo(x) | =< L?“L + M+ | :](l(a/),

2.5) lp'(x)| < M + ]A]+a(%—L+M+ lozl)zKZ(af).

Proof: Let

y(x) =M:»<—<lf_j—l + M+ af)

Then

2.6a) Lg(fp+ y) = Le[cp] + M= 0

2.6b) ©'(0) + v'(0) = a[p(0) + y(0)] = A+ |A| + a(M+|e]) > 0
2.6¢) cp(1)+y(1):a'—l£\i— la] < 0.

a
Applying the maximum principle, we see that ¢(x) + y(x) assumes its maximum
on {0,1}. Suppose this maximum is assumed at x = 0. Then
¢'(0) + y'(0) = O
and, using (2.6b) we see that

max [p(x) + y(x)] = 9(0) + y(0) = 0.

If @(x) + y(x) assumes its maximum at x=1 we apply (2.6¢) to find

max[px) + y(x)] = (1) + y(1) < 0.



Thus, in any case
P(x) = -y(x) < %‘L + M+ e

A similar argument applied to ¢(x) - y(x) completes the proof of (2.4).

We rewrite the basic differential equation as

&£ X
g€ v _ 1 ¢
(e’ o) = e Le[cp].
After one integration we have
X x ==X
}cp'(x)} < [cp'(O)]e € + M f e © ds
£ 0
0
Since
[ (o) | = [a] +a(l§l M+ |a)

we obtain (2.5).

1
Theorem 2.1: Let € > 0 be fixed. For every « € & there exists a solution

Z(x,e,@) of (1.1), (1.2) and (1.3"). Indeed there is a maximal solution

M(x, £,@) and a minimal solution m(x, €,@) in the sense that; if Z(x, &, @) is
any solution then

2.7) m(x, e,a) £ Z(x,g,a) < M(x,&e,a).

Moreover, M(x, g,@) is monotone non decreasing m(x, £, @) is monotone non
increasing in @ and continuous from the right while m'(x,a,«) is continuous

from the left.




Proof: The existence of m(x, €, @) and M(x, £, «) (which may or may not he
equal) follows exactly as in [1], [4], [9],[10]. We now sketch this proof.
Using the basic a-priori estimate (2.4) of lemma 2.1 we may modify g(x,y)
for large y (see [7]) so that g(x,y) may be assumed to satisfy a uniform
Lipschitz condition with constant 6. Let UO(X,E,OZ) and vo(x, £,a) gsatisfy

rLU = ~-M, 0 x<1
g 0

L = M, 0 x<1

EVO

U;)(O) ~aU,(0) = A= V'O(O) ~a v, (0)

U (1) == v(1)

0

.

Let Un(x,e,oz), vn(x,a,a) satisfy

rLU - 060U =g(x,U)-606U 0<x=<1
g n+l n+1 "“n n’ ‘ !
e n+1 dvn-}-l - g(x,vn) - 6Vn’ 0= x=1,
L) - 0)=A=v  (0)-a 0
Up(0 2 U (O =a=v (0 -av 0,

\Un-i-l(]):a:vn+1(l)'

A straight forward argument shows that
Un(x,s,oz) ~ Mix,€,a);
vn(x,s,oz) —7 m(x,&,a).
The monotonicity of M(x, €, @) and m(x, &, @) (in @) follows from the same

argument as the proof of the similiar theorem 2.1 of [9]. As in [9], the one
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sided continuity of M(x, £, @) and m(x, E,é’) follows from the definition of
maximal and minimal solutions.

Finally, the one sided continuity of M'(x, e,@) and m'(x, €, @) follows from
the Green's function representation of L: and the one sided continuity of
M(x,e,«) and m(x,€,@) respectively.

Remark: It is not too difficult to construct examples and see that M(x, v, @)

and mi(x,,o) need not be continuous.

Lemma 2.2: Let ¢(x) € CZ[O,l] satisfy
Lg[q)] = g(x, ), 0s x=< 1

2.8) lo()] = M,

A

]

' (0) - a ¢(0)

fl

Then there is a constant K, = K5(M, M, |A]) depending on M, M, |A|, but

not on €, such that

ks

2.9) [cp"(x)!swg:, 0< x=1

Proof: Let v(x) = ¢'(x). Then
LE v = gX(x,(p) gy(x,cp)cp' .
Applying lemma 2.1 we see that the right hand side of this equation is

bounded by a constant defending only an M, MO’ |1\l . Similarly, |v(()) | ,

|v(1)| is bounded. Thus, we may apply Theorem 2.7 of [5].




Theorem 2.2 Let oz], be a root of

H(e) = 0.
Then all solutions of (1.1), (1.2), (1.3") with
o= @,
]

arv usymptotic solutions of (1.1), (!.2) and (1.3) in the sense of [2].

Proof: We need merely check (1.3). We have

Z'(1 ,E,oz},) + bZ(l,E,aj) = H(afj) + B~ eZ"(! ,e,aj),

hence

iZ'(l,S,wj) + bZ(l,f:,a'j) - B| - K3 .=

Theorem 2.3: Let « be fixed. There exists a unique function W(x,«) which

satisfies

2.10a) W' = g(x,W), 0 < x< 1,
2.10b) W(l,a) = a,

2.10c) (W(x, @) | = K (o).

Moreover, let Z(x,e,2) be any solution of (1.1), (1.2) and (1.3"). Then
2.11) Max { |Z(x,e,@) - W(x,@)|; 0= x< 1} —~ 0 as & - O+.
And, for any © € (0,1)

Max {IZ'(X,E,w) - W'(x, @)

; L<x= 1} -0 as g — 0+
2.12)

Max {]Z“(x,e,a’) -W"x,a)|; v x< L} -0 as € - 0+
Proof: Using lemma 2.1 we may again modify g(x,y) for large |y| so that

g(x,y) satisfies a uniform Lipschitz condition. Hence the solutions of

(2.10a), (2.10b), (2.10c) are unique. The theorem follows along the lines



of the proof of theorem 4.1 of [5] based on lemma 2.1. The functions
{Z(x,€,a)} are equicontinuous and uniformly bounded. Thus a subsequence
c;mverges to a weak solution Wi(x,a) of (2.10a), (2.10b), (2.10c). However,
using a theorem of Friedrichs [6] we see that W{(x,a) is a genuine solution.
The unicity of the limit function allows us to dispense with the subsequence.
Finally, (2.12) is proven by using an argument of Coddington and

Levinson [3] (see [5] also).

Corollary: Suppose g(x,y) € C2 {[O,l] X ® }. Then, for every 1 > 0 and

every MO > 0 there exists an EO > 0 such that 0< g = EO implies

2.13) 121, e,0) - [g,(1,@) + g (1, g1, ]| <7
for all solutions Z(x,e,@) of (1.1), (1.2), (L.3') with

{oz[ < MO

Proof: For each fixed @ the corollary is true without assuming the additional
smoothness of g(x,y). An application of theorem 2.7 of [5] as in lemma 2.2

gives the uniform result under this additional hypothesis.

Remark: It is of interest to observe that the functions Z(x, €, ) exhibit no
"boundary layer" behaviour near x = 0 while the derivatives 2Z'(x, €,«) may

do so.

Our next result is a basic existence theorem which is fundamental to

the shooting method used in [2], [8].




Lemma 2.3: Let H.1 and H.2 hold. For every value h there exists a unique

solution I(x, e,h) which satisfies

IA
b

1A
—

LEI = g(x,I), 0
2.14) 1(0,e,h) = h
1'(0,e,h) = ah + A,
Moreover 1I(x,¢€,h), I'(x,e,h) are continuous functions of h. Finally
2.15) |1(x,e,h) - h| = |ah + A| + M.
Proof: The estimate (2.15) follows via the argument of lemma 2.1. Once one has
this a-priori estimate we may modify g(x,y) for large |y| and thus assure that
g(x,y) satisfies a uniform Lipschitz condition. The lemma now follows from the
standard Picard iteration procedure (see [8, theorem 2.3]).
Corollary. As h runs over the real axis so does I(1, g, h).
Proof: For every a € Rl let
h= m(0,g,a).
We see that

I(x,e,h) = m(x,&,a).

3. EXISTENCE OF SOLUTIONS

In this section we are concerned with the existence of solutions of (1.1),
(1.2) and (1.3) for small & > 0. Our first result shows that if & > 0 is small

enough and u(x, ) is a solution, then u(l,£) must be near a zero of H(@).
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Lemma 3.1. Suppose [XO’XL] is a finite interval such that

3.1) |[H(@)| 2 Hy > 0, x,< @< x

B
Then there is an 80 > 0 such that 0 g < EO implies that there is no solution
u(x,e) of (L.1), (1.2) and (1.3) such that

u(l,e) =a ¢ [XO'XI]'
Proof: Let £, be so small that (using lemma 2.2) any solution y(x,¢€) of
(1.1), (I.2) and (1.3") with

a e [xo,xl], 0< & < €
satisfies

e, y"(i,e)| - = H

0 rr 2 0’

Then

yv'(l,e) + by(l,g) =B+ H (u(l,x)) - eu”(l,a)

#ZB.

Thus, the lemma is proven.

Theorem 3.1 Let on. be a zero of H(e) = 0 and suppose ”lj is a nodal zero.

That is, there is a t > 0 such that, forall &, 0< & < b

7

3.2) H(e, + D) - Hoj = 1) <0

Then there is an o > 0 such that
0< €= 80
implies that there is at least one solution u(x,¢€) of (1.1), (1.2) and (1.3) which

also satisfies

3.3) aj - b() < u(l,e) = ozj + 0
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Proof: Let Z(x,f—:,oej + bo) and Z(x,s,aj - bo) be solutions of (1.1), (1.2)

and (1.3') with

Then, applying lemma 2.2 we see that: if € is small enough

( i )
] : -— ' - . - B
4 (l,e,aj+ bo)-l-bZ(l,e,a/j+ 60) Bl x [z (l,a,ozj b0)+bZ(1,a,on bo) ]

3-4)< = [H(ozj + 60) - eZ"(l,z—:,aj + 60)]><[H(aej - 60) - eZ”(l,s,aj - 60)]
9 < 0.
Let
h1 = m(O,e,ozj - 60)
h2 = I\/I(O,E,ozj + 60).

Then h1 < hz. Moreover, as h runs over the interval [hl’hZ]' I(1,€,h) covers

(at least) the interval [ozj -5 czj + 60]. The inverse image

OI

J= [h; I(le,h) € (aj - 60, az}. + 60)]
is an open set, and hence a countable union of intervals. The continuous function
I'(1,€,h) + bI(1,e,h) - B
must change sign in one of these intervals.
Remark: This proof is essentially due to Keller [8]. He uses another method to show
that the interval [ozj - 60, a/j + 60] is covered by I(1,e,h). His proof seems to
depend on the additional conditions g(x,v) = 0, a = 0, A= 0.
Remark: As € — 0 and 60 — 0 theorem 2.3 shows that
0 < h2~hl~> 0 as F>0~+O.
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Theorem 3.2 Suppose a]. is a zero of H{(a) = 0 and there is a 60 > 0 such

that
3.5) H(a/ji 8) > 0, 0 b = 60
and
3.6) gX(l,aj) + gy(l,aj)g(l,aj) > 0.

Then, there exists an 80 > 0 such that, for every €, 0< €= € there is at
least one solution u(x,eg) of (1.1), (1.2) and (1.3) which also satisfies
3.7a a, < u(l,g) s a,+ 0
) ;= ull,e) s e+ B
and at least one solution u(x,e) of (1.1), (1.2), (1.3) which also satisfies
3.7b a, - 0,< u(l,e) < «,
) ; =B = ull,e) =
Proof: The proof is based on the same argument as in theorem 3.1. We merely
observe that if £ > 0 is small enough
Z (l,s,a], - 60) + bZ(l,e,ozj - 60) - B> 0,
Z'(l,E,O{j) + bZ'(l,E,Q'J.) -B=- 8Z"(]-I‘E‘:lc“",j) < Ol
Z (l,E,Q/j + E)O) + bZ (l,s,ozj +b0) - B> 0.

In a completely analogous way we obtain the next result.

Theorem 3.3 Supfaose ozj is a zero of H(«) = 0 and there is a 50 > 0 such

that
3.8) H(aji o) < 0, 0< © = bo

and

3.9) gX(l,aj) + gy(l.aj)g(l,aj) < 0.




13

Then there is an EO > 0 such that, for every €, 0< g < 50 there is at least
one solution u(x,eg) of (1.1), (1.2), (1.3) which also satisfies
3.10a @, < u(l,g) s a + 0O
) s ulle) s o+ b
and at least one solution u(x,eg) of (1.1), (1.2), (1.3) which also satisfies

3.10Db) afj—bos u(l,a)safj.

Of equal interest are nonexistence theorems.

Theorem 3.4 Suppose afj is a zero of H(@¢) = 0 and there is a ZJO > 0 such

that
3.11) H(@ + b) 20, 0< b s b
2 1
Suppose glx,y) e C” {[0,1] % = } and
3.12 1,@,) + I,a) - 1, o, 0
) g, ( J) 9,1, - gl J) <
Then, there exists an £ and a 61 gsuch that, for all Z(x,&,«) with
0< €= €0 and o ¢ [a‘}, - bl,a’j + Dl]
3.13) 21, 8,0) + bZ(l,s,2) > B
Proof: Applying the corollary to theorcm 2.3 there exists an o i’»l such that
£Z"(1,e,@) < 0O
forall e, 0< e = g, andall «¢ [a/]. - ol,a'j + i;)l]. Thus
3.14) Z'(1,e, ) + bZ(l,e,e¢) = B+ H(a) - eZ2"(1,7,a) > B.

and the theorem is proven.
In the same way we obtain a non cxistence theorem when the inequalitics

(3.11) and (3.12) are reversed.,
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4. ITERATIVE METHODS

The shooting methods of [2], [8] can be used to obtain iterative methods
in which the successive itcrates are solutions of certain initial value problems.
In this section we discuss iterative methods in which the successive iterates
are solutions of certain boundary value problems.
lemma 4.1 Let 6 > 0 be a constant. Suppose o¢(x) € CZ[O,I] and

LE[cp] - 65¢p = 0, 0« x < 1
4.1) ' (0) - ap(0) = O,
ch’(l) + bo(l) = O.
Then
4.2) p(x) = 0.
Proof: Applying the maximum principle we see that ¢(x) cannot possess an
interior positive maximum. Suppose ¢(x) assumes its maximum at X = 0.

Then

A

'(0) = 0=> (0) < 0.
On the other hand, if ¢(x) assumes its maximum at x = 1, we have
o'(l) =2 1 == o(l) = 0.

In either case

max ¢p(x) = 0.
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Lemma 4.2. Suppose g(x,y) satisfies a uniform Lipséhitz condition with
constant 6. Let V(x) satisfy

LE[V] > gx,V), 0< xs1
4. 3) V'(0) - a V(0) = A,

V(1) + b V(1) = B,

Let U(x) satisfy
4., 4a) Vix) = U(x), 0= x=< 1
and
LE[U] < g(x,U), 0= x~1
4.4Db) U'(0) - a U(0) < A,
U'(1) + b U(1) = B.
Let V1 be the unique solution of the linear boundary value problem

(LE--(S)Vl =g(t,V) -6V, 0= x<1

4.5) v'l (0) - a Vv, (0) = A,
V'l(l.) +bV1(l) = B.
Then
4.,6) LEV] > q(x,vl), 0< x - 1
and
4.7) Vx) < VI(X) < Ux), 0= x< 1

Proof: Let

p(x) = V(x) - VI(X)'
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Then we may apply lemma 4.1 to obtain

4.8) Vix) = V. (x), 0sx<s1

1
And

LoV =g, v+ [gt,V) - g(t, V)] - 6(V-V)).

Since 6 is a Lipschitz constant for g(x,y) and (4.8) holds we obtain (4.6).

Finally, if

we have
LE[cp] -6 = g(t,V) - 6V-g(x,U)+ 60U
and using (4.4a) and the definition of 6 we see that we may apply lemma 4.1

together with (4.8) and obtain (4.7).

Theorem 4.1: Suppose 31 < 32 are two values such that

4.9) H(a)) < H(@,)

and 0< € < g, implies that

0
z'(l,e,al) 4 bzu,e,al) < B
4.10)

7'(1,e,a.) + bzu,e,’&z) S B

2

Let 6 be a uniform Lipschitz constant for g(x,y). Let Z(x, s,al) be any solution

of (1.1), (1.2) and (1.3') with a = @ For example, let

1’

4.11) vol¥) = Mlx,£,@), or vo(x) = m(x,e,&).

Let Vn(x) be defined by the linear boundary value problems
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(LV ., -0V ., =9 V) -6V
4.12) < Vigp (00 -2V, (0 =4
L b -
Vn+1 (1) + vn+1(1) B

.

Then the functions {Vn(x))OO

n=1 increase to a function Z(x,e,«) which satisfies

(1.1), (1.2), (1.3) and

4,13) @ < a<a

1 2
Proof: Let
Ux) = M(x,s,az).

Applying lemma 4.2 we see that

4.14) V(x)sV (x) = Ux), 0sx=s1

Remark: Glancing back at theorems 3.2, 3.3 we see that "every other" solution
of (1.1), (1.2), (1.3) can be obtained via these iterative methods
Remark: If g{x,y) does not satisfy a uniform Lipschitz condition we may modify
g(x,y) for y out of the region of interest, i.e. we modify g(x,y) for

y £ m(x, 8,;'1)
and

M(x,a,az) < vy.
Remark: Clearly one may find an approximant to 2(x, e,/&l) by the use of theorem
2.1. This approximant will be a perfectly good lst guess in the iteration described

by (4.12).
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Remark: Using another first iterate (see theorem 2.1) we can construct a de-
creasing sequence which would also provide a solution Z(x, e,al) of (1.1), (1.2),
(4.13) Moreover, Z(x,€,Q) and Z(x, E,afl) would be minimal and maximal

solution of (1.1), (1.2), (1.3) which also satisfy 4.13).
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