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ABSTRACT
This paper describes computational algorithms for solving unconstrained

and constrained optimization problems.

I. INTRODUCTION

Optimization problems occur in engineering, physical and social sciences.
Frequent occurrence of such problems and the advent of fast large scale com-
puters has produced, beginning in 1948 [1], a mathematical optimization
discipline which has been concerned with the theory and computational
algorithms associated with these problems. This paper is an attempt at the
description of some of the more important algorithms for solving nonlinear
optimization problems. We say nonlinear, because the optimization problem
that is completely linear (that is linear objective and constraints) leads to
the now-classical simplex algorithm for solving linear programming problems
{2, 3].

The theory of mathematical optimization (also referred to as mathematical
programming and nonlinear programming) is well established and available in a
number of books [4-8]. The algorithms [9-12] of mathematical optimization
however are not as well established yet, although there is great activity in the
field now. One difficulty is, that unlike the linear programming case, there
does not seem to be one algorithm or even a class of algorithms that is

universally efficient on nonlinear optimization problems. There have been



attempts at unification of the algorithmic theory [13~14] but these attempts are
in their infancy yet and do not for example give criteria for selecting algorithms
nor do they give estimates of how fast these algorithms will converge. Also
the few comparative computational studies of algorithms are rather limited in
scope and have generally tested small problems [15-16]. Roughly speaking
however, it can be stated that general nonlinear optimization problems with a
few hundred variables and constraints can, by judicious choice of algorithm,
be solved today [17].

This paper describes three types of algorithms: one dimensional
optimization (two algorithms), unconstrained optimization (three algorithms),

and constrained optimization (four algorithms).

II. ONE DIMENSIONAL OPTIMIZATION

We begin by considering the problem
minimize f(x)
(1)
subjectto a = x= b
where f is a real function of the real variable x, and a, b are given bounds
on X. We consider this problem first because it is one of the simplest
optimization problems and because many of the methods for solving more

complex problems require the solution of this problem. We shall describe two

algorithms for solving the above problem, the first of which requires the




evaluation of the function itself only, and in the second its derivative only.

(In other methods derivatives of various order may have to be computed.)

(i) Golden Section and Fibonacci Search [18-20]

The basic idea behind these two methods is to economize the number
of function evaluations and trap the minimum in successively smaller nested
intervals [ai’bi]' This is done by evaluating f at two interior points
ﬁi (left i) and r, (right i) of the current interval [ai’bi] and keeping either

[ai,ri] or [ﬂi,bi] as our new smaller interval [ai+1 , bi+1]' The key to both

methods is that the remaining interior point 2i or r, in [a bi+l] is used

i+l

as one of the two interior points of [a bi+1] to further reduce it as we

i+l
did for [ai’bi]' More precisely we have:

g fond preass . j -lb' i . I x :
Algorithm Let ay = a, bO b. Having al N determine aH_1 b1+1 as follows

(1) Let Ei = bi - 'L'i (bi - ai)
r, =a, +7T, (b, -a,)
i i i i i

where for

~

(a) Golden section: T, =T = «/5-1)/2 = 0.618

-i-1
(b) Fibonacci search: 'ri = ?n—l“** , i=0,1,...,n-3,
n-i
Tn__z = IZE or 1-2-&:’ where n 2 2 is a prescribed number of

allowable function evaluations, € is any small positive number



4
less than 1 and PJ. are the Fibonacci numbers:

F.=F =1,F, =2,F,=3,F =5, ... F, :Fj+Pj-

j+l 1

(2) 1f £(£;) > f(r;) take @, , =L, b, =D

< = =
If f(ﬂi) s f(ri) take a1 =3y bi+l r,

Assumptions f is unimodal on [a,b], that is

(1) min f(x) = f(x) for some x ¢ [a,b]
x e[a,b]

(2) For £, rin [a,bland £<r
f(£) > f(r) implies x ¢ [£,b]
£(8) < f(r) implies x e [a,r]
f(4) = f(r) implies x e [£,r]
where the symbol € reads "is in".

Convergence Theorem After n 2 2 function evaluations the minimum solution

X € [an_l 'bn-l] where

n-1
bn—l - an—-l = (0.618) (b-a),
for golden section, and

1 l+¢
bn-—l - an_1 = ’L‘OTI .. 'Tn—z {(b-a) = Fn (b-a) or Fn (b-a),

for Fibonacci search. As n approaches o, ay approaches the solution

x from below and bn approaches x from above.




Remarks For a fixed number n of allowable function evaluations, Fibonacci
search has the property of maximizing interval reduction. However golden
section is somewhat simpler to implement, since it does not require a knowledge

of n in advance. Hence in general golden section is preferred. Thus for

~

1

n = 11 function evaluations b10 - alO .008 (b-a) for golden section and

1

b 10~ 144

a (b-a) = .007 (b=-a) for Fibonacci search, that is the interval

10

reduction is less than 1% in both cases.

Convergence Rate If we take bi~ai as the error in the ith step of the

iteration, an estimate of the rate of convergence is given by the relation

between b,-a, and b, ~a, .. We have then
i 1 i-1 i-1

(b, ~a.) =7 - ai—l)’ for golden section,

i i i-1
Pn—l
b, —a,) = (b, -a, .), for Fibonacci search,
i i F_ . i-1 i-1
n-i+l
Fn—l
where —= approaches T as n,i approach o , Because of the above
n-i+l
linear relations between (bi—l - ai—l) and (bi - ai) we say that golden

section has a linear convergence rate and that Fibonacci search has an

asymptotic linear convergence rate. If either the coefficient multiplying

(b - ai—l) above approached zero asymptotically, or if b - a < 1 and the

i-1

exponent of (bi—- - a

1 i-—l) were bigger than one then we would have a
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superlinear convergence rate which, in general, is preferrable to a linear

convergence rate. We say "in general” because it may take many more
function evaluations per step of the superlinear algorithm than it does in the
linear algorithm in which case the faster rate per step should be reevaluated
in terms of a rate per function evaluation. The next algorithm we give has

indeed such a superlinear rate per function evaluation.

(ii) Secant Method [21-23]

The basic idea behind this method (also called sometimes regula falsi)
is to use a discrete version of Newton's method to find a zero of the derivative
f'(x) of f(x) in [a,b] if it exists. Newton's method itself consists of
linearizing f'(x) around a current point and making the zero of the linearized
function as the next point of the iteration. We have then the following.

Algorithm Start with distinct x . ,x compute

0 in [a,b]. Having Koo X _

1 1

X, as follows

i+1
. f(xi)
i+l i f (Xi) - f (Xi~l)
Xl h Xi—l

Assumptions

f'll
(1) 'é*f,’,i,l(% =M forall 7,8

in some interval [a',b'] containing [a,b].




(2) M}?{-XO!<1 and M SE—xl[ < 1,
where % is a zero of f' in [a',b'], thatis f'(¥) = 0.

Convergence Theorem The sequence {Xi} converges to x such that

f'(%) = 0. Ifin addition f''(§) > 0 on [a',b'] then x =b if %X > b,

x=% if asx=sDb, and x=a if X< a, where f(x) = min f(x).
xela,b]

We observe here that even though certain conditions are assumed
about second and third derivatives f'' and {''', they are not used in the
algorithm, but only f'.

Convergence Rate For i 2 2 we have

F F

i-1 MtXO - 3\{1 i-2

Mlxi—xl = Mle‘X|

where Fi is the ith Fibonacci number defined earlier. If we let &€ be the

maximum of M ]xl -%| and M [xo - %|, then a bound on the error at the

F, . +F, F, 1:'i-H. F,
1 s , , . i-1 "i-2 i £ i-1
ith iteration is given by ¢ = g~ , We have then F = £
£ 1
724(1. 618) "
which, in the limit, approaches € as 1 approaches infinity.

We say then that the secant method has an asymptotic convergence rate of
order 1. 618 per step or per function evaluation, since one function evaluation
is made per step. This compares with order \/E" = 1.414 per function

evaluation for Newton's method .



We turn our attention now to unconstrained optimization problems in

n-variables.

III. UNCONSTRAINED OPTIMIZATION

We consider in this section a very important class of optimization
problems, the class of problems of minimizing a real valued function of n
real variables with no constraints. The problem is then

minimize f(x)

n
x e R

(2)

where R" is the n-dimensional real Euclidean space which is the collection
of all possible n-dimensional vectors, and f is real valued function defined
on Rn. Problem (2) can be written as

minimize f(x!,x2%,...,x0)

1 42 .. ,xD are the n-components of x.

where x
Superficially this problem again may look very simple. Unfortunately
it is far from being so. In fact for the general problem we cannot get a

solution. All we can get is some point x which satisfies some necessary

optimality condition such as




If in addition we assume that f is convex, that is it is valley-like or

more precisely, for any two vectors X and X,
f((l—)x)xl + >\,X,2) = (l-k.)f(xl) + Kf(xz) for 0= A= 1,

then x is indeed the solution. In most practical problems convexity is
nonexistent or impossible to check. The best strategy then is to start the
algorithm at different starting points and take the lowest of the terminal
points of each start. This strategy is an advisable strategy for any optimiza-
tion algorithm, constrained or unconstrained, for which the assumptions
guaranteeing the minimum either do not hold or hard to check.

We divide the algorithms to be described for solving (2) into three
categories depending on their rate of convergence. The linearly convergent
algorithms, are extremely simple to implement, but are slow to converge.

The quadratically convergent algorithms converge very rapidly per iteration,

but each iteration is slow, and so the overall performance is not too good
unless the number of variables is small, say less than ten. The super-
linearly convergent algorithms are somewhere between the other two types of
algorithms as far as complexity and convergence rate per step, however in
overall performance they are vastly superior and thus they should be used in

most cases.
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(iii) Linear Convergence: Gradient Methods [23-27]

The basic idea here is to move along a direction p which makes a
reasonably acute angle with the direction of steepest descent, the direction
of the negative gradient -VI. Two crucial things have to be monitored in
order to insure convergence: the "acuteness" of the angle between p and
-Vi, and the step size along p. More precisely we have the following.

Gradient Algorithm  Start with any x

Having X, determine Xi+l as follows

0
(1) (Direction choice) Choose any direction vector P, such that
2
- > < > >
vip, 2w [1v]1% and lp |l = B Vgl where B 21 Z 0.
Note: For two vectors a and b, ab denotes the scalar product

which is the sum of the products of their components. The norm

lla|l is defined as (aa)%.

(2) (Step size choice) Determine Xi+l = xi + ki pi according to
either of the following two rules:
(a) Xi is the first nonegative root of Vf(xi + >\,ipi) p, = 0, (or

equivalently )\'i 20 and f(xi + xipi) is the first local

i
zv>0

minimum of f(xi + ‘}\pi), A Z 0) provided that EL P
i

for some positive v.




11

A

A
(b) >\i is the largest of the numbers (A, S a .} satisfying

>\i 2
fx,) = £+ 0p) B 55 I VEG ]

where )\, ¢ are arbitrary but fixed positive numbers (» is

an initial step size) and % + e = OMi = G{Bi = of where

g, are arbitrary but fixed positive numbers (typically o=1,

g = 10-6).

Remark If p; = -Vfi then we can set ﬁi = LLi =g =p=1, € = 10"6 and
satisfy all of the above requirements. We have then the classical Cauchy
method [28] of steepest descent for (a) and Armijo's algorithm [27] for (b).

Of course the above algorithm is more general than either.

Convergence Theorem If ||Vi(y) - Vi(x)|| £ M| y-x| for some M >0, and

all y,x, then each accumulation point x of the sequence [xi] generated
by the above algorithm is stationary, that is Vf(;:) = 0, Ifin addition f is
convex, then % is the minimum solution of (2).

The assumption ||Vi(y) - VE(x)| £ M| y-x|| is a Lipschitz continuity

requirement on Vf and will be used repeadedly here. If the n X n Hessian

2
o f )
matrix V f of the second partial derivatives ———E“—-*‘)XJ ,k.i=L,...,n, exists,

is symmetric and is bounded above in norm, thenthe Lipschitz constant M can be

taken equal to the bound on this norm.
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We give now a convergence rate for the special of the above algorithm
when pi = - Vf(xi).

Convergence Rate Let f have a stationary point x, that is Vf(;{) =0, let

2
|VE(y) - Vi) | = M |y-x[|, M > 0, let (Vi(y) - Vi) (y-x) & m|y-x|",
m > 0, and let

2m
= - < == .
X, X, Xin(xi), 0< €l = 7\1 > €5 52> 0

i+1
M

A

Then {xi} converges to x , and its rate of convergence is linear and is given by
1

- 2 2 -
lx, . -x|| = @+ (M) - 2 m) “Xi - x| .

i+l
If f is convex and fwice continuously differentiable, M can be taken

2
as an upper bound on the largest eigenvalue of V £ and m can be taken as

2
a lower bound on the smallest eigenvalue of V f. We can easily check that

2

if we pick >\i = - then we get the fastest convergence rate which is given by
M

This immediately verifies the following computationally observed fact: If 'Il\r‘l/i

is close to 1, the contours of constant { are nearly circular and we obtain
m
fast convergence. If -IT/I is close to 0, the contours of constant { are narrow

ellipses and this causes slow convergence. To overcome such possible slow

convergence we turn to the next class of unconstrained optimization.
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(iv) Quadratic Convergence: Newton Methods [23,29]

The basic idea here can be interpreted in either of two equivalent ways:
(a) Expand f in a Taylor series around the current point, keeping terms up
to quadratic ones. Minimize this quadratic expansion to obtain the next
point. (b) Linearize Vf around the current point. The zero of this linearization
is the next point.

We shall see that the "error" gets squared at each iteration. This
implies fast convergence per iteration if the error is less than one to start
with. Hence we cannot be too far off in our starting point if the error is to be
less than one. (This statement however does not apply to the damped Newton
algorithm below.) Also, each step is rather costly since we have to invert
an n X n matrix.

Newton Algorithm  Start with Xy Having X, compute Xi+l as follows

2 - -
Xi+1 =% - (V f(xi)) ! Vf(xi) where ( ) ldeno’ces the matrix inverse.

Assumptions

(@) There exists an x such that Vi(x) = 0
2 2
(by [[V7fly) -V f(x)] £ R|y-x||, for some R> 0 and all y,x

-1
I

) | (\72f(x)) < 'lrﬁ for some m > 0 and all x

- x| < ‘_Z_rp_l where x

CUNNES R 0

0 is the initial point

where in (b) the norm of an nXn matrix A is defined as

|A] = max ||Ax| subject to ||x]|| = 1.
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IA

2 2
(e) mHyH‘2 s yV f(x)y £ M| y||” for some M and all x,y, then the
sequence {Xi} generated by the damped Newton algorithm converges to the

unique solution x of (2) at the quadratic rate

starting with any XO'

We remark that the damped Newton method uses the same direction as that
as of the Newton method except that we minimize f along that direction. This
is done in step (2) above. We also note that assumption (e) makes f strictly

convex, and hence the minimum x is unique.

(v) Superlinear Linear Convergence: Variable Metric
and Conjugate Directions [9-14,16,23-24,30-37]

The methods to be described in this section are among the most powerful
methods for unconstrained optimization and were developed mostly in the last
decade. The common idea to both variable metric and conjugate directions is
that near the minimum the second-order terms of the Taylor series expansion
dominate and hence, in order to have a rapidly convergent method for a
general function, the method must be very fast when applied to a quadratic
function. Both types of methods in fact will minimize a positive definite

gradratic function in n (n is the dimensionality of the space) or less steps.
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The variable metric achieves this by picking directions pi, to minimize f
along, which are close in a certain sense to the Newton direction

- (sz(xi))-l Vf(xi). In fact for a quadratic function the variable metric direction
at the nth step becomes the Newton direction and leads to the minimum of the
quadratic function at that step. The conjugate directions methods on the

other hand pick directions which satisfy the relation P, sz(xi)pi_1 = 0 where
sz is the nxn Hessian matrix. For a positive-definite quadratic function,
the n first such directions are linearly independent, and by sequentially
searching along these directions, the minimum of the quadratic function is

arrived at the nth step.

Variable Metric Algorithm (Davidon-Fletcher-Powell) Start with any x

0°
Let HO =1, the n X n identity matrix. Having X and Hi determine

Xi+l and Hi+l as follows

(1) Let p, = —Hivf(xi). Compute Xi :Xi+>\ipi where 7\1 is the

+1

first nonnegative root of Vf(xi + xipi)pi = 0, or equivalently
)\i Zz 0 and f(xi + xipi) is the first local minimum of

=
f(x, + Ap;), A E 0.

=

Z, 2z, (H.y ) (H.y,)
(2) H,  =H +—= -
i+l i zy, yiHiyi

where z; = x, . - X, ¥, = Vf(xi+l) - \7f(xi) and z;z, is the
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nxn matrix formed by postmultiplying the column vector zi by

the row vector Z and similarly for (Hiyi)(Hiyi)'.

Quadratic Case Convergence (Fletcher-Powell) If f(x) = *lé-x Cx + ax and C

is positive definite, then the variable metric algorithms converges in n or
less steps to the minimum.

General Case Convergence (Powell) If f is twice continuously differentiable

and

2 2
mlly|” = yVTix)y
for some m > 0 and all x,y,then the sequence {xi] generated by the variable

metric method converges to §, the unigque solution of (2). If in addition

11\72f(y) —sz(x) | £ R|y-x|| for sum R> 0 andall x,y

then

A

% ., - x| g Hxi—-xH, lim & —~0,

i+l ,
1 - C0
that is {xi} converges superlinearly to Xx.

Conjugate Directions Algorithm  Start with any x_, and set Py =~ \/f(xO).

0

Having Xi’pi determine x, as follows

itl’ Piyt
(1) x. . =x 4+ Xp, where ), is the first nonnegative root of
i+l i il i
= i b i g
\7f(xi + Kipi)pi 0 or equivalently >\’i Z 0 and .f(xi + Xipi) is the

first ideal minimum of f(xi + >\.pi) , A2 0.
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(2) Py = - VEG )+ ey, P, where
2
Ve, )
Qi+l: ST (Fletecher-Reevesg)
17£6e) |
or
(Vi(x, ) - VE(x))(VE(x,,.))
a = il 1 L (polyak-Polak-Ribitre)
i+l 2
19 |

Assumption [|V(y) - VE(x)|| £ M [y-x| for some M > 0 and all y,x.

1 "
xcx+ ax and C is positive

Quadratic Case Convergence If f(x) =5

definite, then the conjugate direction algorithm converges in n or less steps

to the minimum.

General Case Convergence (a) Let the set {xl f(x) = f(xo)} be bounded,

then at least one accumulation point x of the sequence {xi} generated by
the Fletcher-Reeves conjugate directions algorithm is stationary, that is

Vf(;c) = 0. (b) Let f be twice continuously differentiable, then each accumula-
tion point x of the sequence {xi} generated by the Polyak—-Polak-—Ribiére

conjugate directions algorithm is stationary, that is Vi(x) = 0.

Convergence Rate (McCormick~Ritter) (b) Let the set {x]f(x) = f(xo)} be

bounded and let

m HY“Z = YVZf(X)y = MHyHZ for some m > 0 and all y,x,
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then the Polyak—Polak-Ribiére conjugate directions algorithm is n-step

superlinearly convergent, that is,

liA

= - x| & HXi"X“, lim g, = 0.

i+n ,
1~ 0

Remark It has been computationally observed that by resetting the conjugate

direction P, to -Vf(xi) every n steps improves the algorithm considerably.

IV. CONSTRAINED OPTIMIZATION

The problem here is to find x such that

(3) f(x) = min f(x), x eX
x € X

where X 1is some given set in Rn. Quite often
X = {xlgj(x) £0,j=1,...,k} = {x|g(x) £ 0}

where gi are given functions, and g = (gl PR .gk). The set X is called

the feasible region, the function f{ is called the objective function and the

functions g, are called the constraint functions or simply the constraints.
If the constraints are linear the problem is considerably easier to solve than
if they were nonlinear. If both the objective function and the constraints

are linear, then we have a linear programming problem, the solution of which
can be obtained by the standard or revised simplex algorithm [2,3]. We
shall not discuss the simplex algorithm here but will use it as a subroutine

in some of the algorithms given below.
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It is not easy to classify the algorithms for constrained optimization
as we did for the unconstrained case mainly because there are very few
convergence rates available for constrained algorithms. In the absence of
such rates one must rely on computational experience. Unfortunately there
are very few comparative studies of constrained algorithms, the only extensive
one being that of Coleville [15], which is somewhat dated, since it came to
a standstill in June 1968, In the absence of conclusive theoretical or
computational evidence to the superiority of some specific algorithm over
others we shall give four different types of algorithms below which can be
used on a wide variety of constrained problems. Algorithm (vi) is recommended
for nonlinear programs of moderate size (m + n = 100). Algorithm (vii) is
recommended nonlinear programs of iarger size (m + n Z 100). Algorithm (viii)
is recommended for nonlinear programs with linear constraints. Algorithm

(ix) is recommended for problems with a large number of convex constraints.

(vi) Penalty Function Algorithms [11,13]

The basic idea here is to reduce the constrained problem to a sequence
of "unconstrained" problems the solutions of which converge to the solution of
the original problem. This is done by lumping the constraints with the
objective function in such a fashion that minimizing the lumped function penalizes
any violation of the constraints. We shall discuss two types of penalty

functions: interior and exterior ones depending on whether or not the solution
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of the "unconstrained" problem is interior to or exterior to the original

feasible region.

Interior Parametric Penalty Algorithm For any decreasing sequence of real

positive numbers {ri} converging to zero find the solutions Xi of the
"unconstrained” problems

minimize Pi(x)

subject to g(x) < 0

where Pi(x) is defined below.
Remark The penalty function Pi(x) is constructed such that the above

problem has a solution X, satisfying g(xi) < 0. Thus X, in essence is in

the interior of the feasibile region X = {xlg(x) = 0} and hence any of the

algorithms of unconstrained optimization can be used to solve this problem

starting with an initial guess of X,y the solution from the previous step.

Assumptions

(1) There exists some x such that g(x) < 0, that is the set
XO = (x]g(x) < 0} is not empty.

(2) infimum f(x) = infimum > - «
xeX xeX

(3) f is lower semicontinuous
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Interior Parametric Penalty Function Pi(x) = p(i(x)) + ri B(x), where p is a

function of one variable and B a function of n variables, satisfying the
following conditions:
(1) Pl.(x) = 4+ o on the boundary of X

(2) 1If {xi} converges to x in X, then lim Q(Xi) Z a(x) > -«

(3) p(i(y)) > plf(x)) for f(y) > f(x).

Examples of Interior Parametric Penalty Functions

k
Pi(x) = f(x) -ry .Z
j=1

1
9; (x)

k
Pi(x) = f(x) - r, jill log (~gj (%))

Convergence Theorem Each accumulation point x in X of the sequence

{xi} generated by an interior parametric penalty algorithm solves the original
problem (3).
In order to be able to handle cases where there is no x such that
g(x) < 0, which is the case if we have an equality constraint h(x) = 0 that
is replaced by two inequalities h(x) = 0 and -h{(x) £ 0, we discuss next

the following exterior penalty function algorithm.
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Exterior Parametric Penalty Algorithm  For any increasing sequence of real

positive numbers {ri} diverging to + « find the solutions X, of the uncon-
strained problems

minimize Pi(x)

n
xeR

where Pi(x) is defined below.

Assumptions f is continuous and the minimum of f(x) on X exists.

Exterior Parametric Penalty Function Pi(x) = p(f(x)) + I, B(x) where p is a
function of one variable and B is a function of n variables satisfying the
following conditions:
(1) B is continuous oan and B(x) = 0 for x €X, else B(x) > 0.
(2) p 1is continuous and increasing, that is p(f(y)) > p(f(x)) for
fly) > £{x).

Examples of Exterior Parametric Penalty Functions

k

PG = 00 1, 3 (9,00 + |96 )
j=1 '
k 2

Pi(x) = f(x) + Iy ji [gj (X)]+

0 if g, (x)=s 0

where [gj(x)]_F = < )

gj(X) if gj(X)> 0
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Convergence Theorem Each accumulation point x of the sequence {xi'}
generated by an exterior parametric penalty algorithm solves the original

problem (3).

(vii) Feasible Directions Algorithms [38-39]

The basic idea in feasible direction methods is to find a direction which
simultaneously decreases the objective function and at the same time remain
feasible and then to minimize f along this direction. Unfortunately this kind
of procedure without certain precautions may converge to a nonoptimal point.
For example consider the problem of minimizing x, subject to x2 + y2 = 1.
The solution is (}2,37) = (-1,0). If we start at (1, 0) and choose feasible
directions by joining the current point to the halfpoint of the arc of the circle
x2 + y2 = 1 joining the current point and (0,1) we will converge to (0,1) which
is not optimal. To avoid such difficulties there are two procedures. One

procedure uses the device of s-active constraints [38] that is at each current

point X, of the iteration not only the active constraints gj (Xi) = 0 are
considered, but also the e-active constraints also, that is -€ = gj(x) =0

for some £ > 0. The other device [39] is to consider all the constraints.

e-Active Constraints Feasible Directions [38] Start with any Xy in X and

any e, = g > 0. Having X determine Xi+1 as follows:
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(1) Find a feasible direction P, from the solution (Bi,pi) of the linear
program

minimize {5]Vf(xi)p < 5, ng(xi)p =6 jel(e)-espse)
O,p

where e is an n-vector of ones,

Je) = (- g

1

A
Q
=

=

IA
(]
et

and

if ©, < =~-g,

e
B i-1 i-1
& = <1

'Z—Ei__l if 6, ?, -€,

(2) Compute x,

= )y i
i+ xi+ ipi in X such that

f(x, + X,p.) = minimum f(x, + Ap,)
i ivi i i
xi+kpieX

All-Constraints Feasible Directions [39] Start with any X in X. Having

x, determine x, as follows:
i i+l

(1) Find a feasible direction P, from the solution (bi,pi) of the linear

program
minimize (0|Vi(x)p = b, 9,(x;) + Vg, (x)p = 0
0,p |

where e is an n-vector of ones.
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(2) Compute Xi+l = Xi + Xipi in X such that
f(Xi + kipi) =  minimum f(xi + Api) . \
X, + >\pi e X

Assumptions f and g are continuously differentiable.

Convergence Theorem Each accumulation point x of the sequence {xij
generated by either of the above feasible directions algorithm is stationary,
that is there exist no feasible direction p at x satisfying.
VEx)p < 0, Vg, ()P < 0, je (jlg,(x) = 0]

If in addition f and g are convex and there exist some % such that
g(?c) < 0, then x solves the original problem.,

We remark that in each iteration of the feasible direction algorithm a linear
program has to be solved. This can be done by using any one of the available

efficient codes for solving linear programs.

(viii) Gradient Projection Algorithms [26,40-43]

The basic idea in these methods is to try to move as close as possible
to the direction of steepest descent -V but still remain feasible. This is
done by projecting a steepest descent step X, - Vf(xi) on the feasible region
X, that is find the closest point in X to X, - \7f(xi).

The original and widely used gradient projection method was invented by

Rosen [40] and with second order modification by Goldfarb [42] has become one
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of the fastest algorithms for linearly constrained problems [43]. This algorithm
is a little complex to describe in a short survey as this, so we shall describe
the closely related and more recent Levitin-Polyak gradient projection algorithm
[26]. Although the Levitin-Polyak algorithm is somewhat more difficult to
implement (it requires for the general case the solution of a quadratic program
at each iteration) it can give explicit simple iterations for equality constraints
alone or bound inequalities alone. Also Rosen's gradient projection algorithm

can be derived from the Levitin-Polyak algorithm.

Levitin—-Polyak Gradient Projection Start with any x

0 in X. Having Xi

determine x. . as follows
i+l

(1) Find the projection yi of X - Vf(xi) on X, that is solve the
quadratic programming problem

minimize ||y - (x, - Vf(x,)) ”Z
i i
yeX

and call its solution Yi'

(2) Let p, = yi - Xi. Then x,

i+l = xi + Xipi where Xi is determined by

either of the following two methods:

(@) f(x., + A.p.) = minimum f(x, + Ap.)
i ivi 0=A=1 i i

A
(L) Ai is the largest of the numbers [ ,}:,i\—, —

satisfying
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‘ A 2
fx)) - £0¢; + Ap) 2 )0y

where A > 0 is an arbitrary but fixed positive number,

Assumptions

(1) X is convex and closed(A sufficient condition for this is that g is
convex and continuous)

(2) |vity) - Vi) || = M|y - x|, for some M > 0 and all y,x.

Convergence Theorem Each accumulationpoint x of the sequence [xi} generated by

the gradient projection algorithm satisfies the necessary optimality condition

- ~ .2
minimum ||y - (x - v Vi(x))||” = 0 for some v > 0.
vy € X

If in addition f is convex, then x is a solution of the original problem (3).

We note that the bulk of the work of this algorithm has in solving the
quadratic program of step (1). We note that if the constraints are linear then
this quadratic program can be solved in a finite number of iterations by using
any of the algorithms described in [44-45]. For some special cases, the solution
of this quadratic program can be written in one step. We give two such special
cases below.

Special Case: Equality Constraints: If the feasible region is

X = {x|Ax = b} where A is kxn matrix of rank k then the solution Y of

the quadratic program of step (1) is given by
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1 ol -
v, = zi—A (AA") (Azi b)

where z, =% - Vf(xi), and the prime denotes the transpose.

Special Case: Bounded Variableg If the feasible region is X = (xla = x=bj,

where a and b are given n-vectors then the solution yi of the quadratic

program of step (1) is given as follows

(yi)j = (x, - Vf(xi))j if alc< (x, - Vf(xi))j < bl
CALERE i (x, - Vf(xi))j < o
(yi)j = pJ if bls (x, - Vf(xi))j

wherethe j superscript denotes the jth component of the vector.

(ix) Cutting Plane Algorithms Without Nesting [46-50]

The basic idea of cutting plane algorithms is to replace the given
optimization problem on the set X by optimization problems on a sequences
{Xi} of sets containing X and more simple than X itself. In the original
cutting plane methos [46-47] each Xi was contained in Xi— and was

1

obtained from Xi— by cutting part of Xi— with a cutting plane. (This in

1 1

essence is the Remez first algorithm of Chebyshev approximation [50].) In
the more recent algorithms [48-49] the nesting requirement, that is Xi is

in Xi-—l’ which can cause difficulties such as large number of consiraints and
linear dependence of the constraints, has been eliminated. (This newer type

of algorithm is the Remez second algorithm for Chebyshev approximation [50].)
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Cutting Plane Algorithm Start with EO points tl’tz fee e 'tg in R". At

0

iterati i we ha 2, int t.,...,t, . We determine x, and /
ion 1 ve i points tl' 21 Ei t xl 41

n
points in R as follows:

(1) Compute X, by solving the linearized problem

minimize f(x)
X

subject to g (t;) + Vg

Nx - 1) = i =
r(t) () =t) = 0, §=1,2,....4

r(tj)

where g, (tj) = maximum {gl(tj),gz(t.), e ’gk(tj)}

(t,) j

]

and if there is more than one gr(t.)' take any one.
J
(2) The Ei“ points .consist of the Ei points, less all those tj for
which the dual variable of constraint j were zero in step (1), plus
<

X the solution of step (1). (It can be shown that "’m =n+l.)

Assumptions

() f is continuous and convex
(2) g is convex and has continuous first partial derivatives
(3) Foreach i and any ﬂi points the solution X, of step (1) exists,

is unique and is contained in some fixed bounded set.
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Convergence Theorem Each accumulation point x of the sequence {xi),

and there exists at least one such accumulation point, solves the original
problem (3).

Remarks In order to make the problem of step (l) a linear programming

problem the original programming problem can be replaced by the equivalent

problem in the n + 1 wvariables x,(:

minimize ¢
x,C
subject to f(x) - € = 0
g(x) = 0.

The uniqueness in assumption (3) above is the most restrictive assumption which

seems to be necessary in cutting plane algorithms without nesting.
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