The University of Wisconsin
Computer Sciences Depariment
1210 West Dayton Street
Madison, Wisconsin 53706

COMPLEXITY CLASSES OF PARTIAL
RECURSIVE FUNCTIONS

by

Edward L. Robertson

Computer Sciences Technical Report #123

May 1971

>

COMPLEXITY CLASSES OF PARTIAL RECURSIVE FUNCTIONS
by

Edward L. Robertson

ABSTRACT

This paper studies possible extensions of the concept of complexity class
of recursive functions to partial recursive functions. Many of the well-known
results for total complexity classes are shown to have corresponding, though not
exactly identical, statements for partial classes. In particular, with two important
exceptions, all results on the presentation and decision problems of membership
for the two most reasonable definitions of partial classes are the same as for
total classes. The exceptions concern presentations of the complements and
maximum difficulty for decision problems of the more restricted form of partial
classes.

The last section of this paper shows that it is not possible to have an
"Intersection Theorem", corresponding to the Union Theorem of McCreight and
Mevyer, either for complexity classes or complexity index sets,

A preliminary version of this paper was presented at the Third Annual ACM

Symposium on Theory of Computing, Shaker Heights, Ohio (May 1971).

1. PRELIMINARY DEFINITIONS

The following definitions and notations, many of which are in common
usage, are established for this paper.
N the natural numbers {0,1,2,...}
W(x) 4 the computation of the partial function ¥ on input x halts or is
defined, read "Y¥(x) converges"
P(x) ¢ the computation of ¥(x) is not defined, " 1" is read "diverges"

o the ith partial recursive function in a Godel indexing

{9}, 9t N— N

w; the domain of ¢, = (xlcpi(x) 4}
P the partial recursive (pt.r.) functions = {q)i Ii € N}
R the total recursive (rec) functions = {cpi IWi = N}
P~ partial recursive functions with infinite domain
AC the complement of A (with respectto N or® as appropriate)
Qv for??g:_p,ﬂ%’:{i]cpies’}
o0

The "quantifier" 3 is as an abbreviation such that

1

Gx)[Pe] = (W) 0[x = v & P(x)],

o0
where P is a predicate with one free variable. The usage of "31" is similar

to that of "3!" which occurs commonly in mathematical writing. In writing,

where the variable quantified over is unspecified or understood, we use "i.o.

o0
(infinitely often) instead of "3". Thatis, "P i.o. " will be taken as synonymous

(2] o
with "(3x)[P(x)]". Similarly, "¥" or "a.e." (almost everywhere) is an abbrevia-

tion such that

Fa[Pe)] = @) R)[x > v => Pl
If A is a predicate over functions, we use "for sufficiently large f € & , A(f)"
for "(3g € R)(¥f e R)[f= ga.e. => A(f)]". Similarly, "for arbitrarily large
f e @&, AMf)" means "(Vger)Aenr)|f 2 ga.e. & A(H]".

We will reserve the word "class" for subsets of # , using "set" to refer
to subsets of N, in an attempt to clarify whether functions or a specific algorithm
for functions are being considered.

We assume familiarily with the concepts of Turing reducability and 1-1
reducability [13], which will be denoted "ST" and "< l" respectively
(e.g. A sT B is A is Turing reducible to B). Also Zn and IIn denote the
levels of the Kleene hierarchy [13]. Certain standard sets are used as reference

points within the Kleene hierarchy. These sets, along with their known positions

in the hierarchy, are

K= {i:ieW]] Zl-complete
Total = (i lWi = N} IL, -complete
Finite = (i|W, finite} %, -complete

It

Equal = {<i,j>icpi ®. } H2~complete

)

Bounded N & (32)(Vx)[cpi(x) < z]} H3m 23

1
i

{ilw,

I}

Cofinite {1|WIC is finite} % ,-complete

3

where B is Zn (or Hn)—comglete if Be Zn (resp. I[n) and, for all

C e Zn (resp. Hn), C Sl B.

Definition:

<@,0> will denote an abstract measure of computational complexity [2],

where ¢ = {9} isa Godel enumeration of # and ¢ = {@i] satisfies
1) cpi(XH iff @i(xH
2) the predicate "<I>i(x) = y" is recursive in i, x, and y.
Unless otherwise stated, we assume a fixed enumeration for ¢ and write @
instead of <o, d>.
Definition

The recursive relation between measures ® and o% is the function

r(z) = max {@’f(x)]@i(x)sz} +
i,x=sz

max (&, (x) l@f(x) <z}
i, x=<z

This function has the important properties [2] that

o} (x) = r(max {i,%,0,(x)}) and

@i(x) < r(max{i,x,@*(x)})
for all i and x.
In order to simplify notation, we make the following assumption, which will
hold for the rest of this paper. Any results in this paper will hold without this

assumption making conceptually simple but notationally messy modifications.

Input Representation Assumption:

for any i,y there is an X, such that x = X, implies @i(x) = y.

A slightly strong condition, requiring the existence of a non-decreasing and
unbounded recursive f such that @i(x) > f(x) for all i and =x, is the natural
condition that some resource is required simply to represent or to read the input.
If we are considering as a measure the amount of tape used by a Turing machine,
and those machines represents their input as "tallies", then f = Ax[x]. If the
representation is binary, f = Ax [logz(x)]. One immediate example of the
simplification provided by this assumption involves the recursive relation or
between © and ©%. The above result may be simply stated, that for all i,

%
® = reo o, a.e.
i i

2. COMPLEXITY CALSSES OF TOTAL FUNCTIONS

Almost all of the investigation of abstract complexity measures to date
has been concerned only with total functions, and even with certain subclasses
of these functions. Important concepts in the development of these investigations

have been the ¢-complexity index set of t

(0 .
It=[1]cpi e & & o st a.e.}

and the &-complexity class of t ,

o _ Y
R, = {cpill e 1.},

defined for any measure ¢ and total function t . In order to have a notation in the

integers for a class of functions ¢ < g, we say B c N is a presentation of

% if

€ = {cpili e Bj}.
The value of presentations as notations for complexity classes is indicated by
the following results.

Theorem 2.1 [3]. For any complexity measure ¢ there exists bq) € ® such that,

if t €& R satisfies t = b(b a.e., then there is an r.e. set Wi such that

is then said to be recursively presentable).

W’i is a presentation of Rff (Rff

Theorem 2.2 [7]1. For any complexity measure ¢ and any t &€ &R , there exists

i € N such that W? is a presentation of Rf .

Theorem 2.3 [7]. Forany ® and t € 2, @ —R;I) is recursively presentable.

3. EXTENSIONS OF COMPLEXITY CLASSES TO PARTIAL FUNCTIONS

There has to date been very little study of classes of partial functions.
The original motivation for the construction of various hierarchies of computable
functions (the "sub-recursive hierarchies") was a problem specifically oriented

to total functions.

In Rice [10,11] and Dekker and Myhill [6], the first thorough investigations
of questions about algorithms and functions, classification was done for all func-
tions, not only total ones. Thus there is precedent for considering complexity
classes and sets of all partial recursive functions.

The first difficulty is, simply: what is a partial complexity class? There
are many ways in which partial classes can reflect the properties of total classes,
or the properties of partial functions. For this reason two alternative definitions
of partial classes are introduced and considered.

Definition: For any measure ¢ and function 7T, the set of

9, T~computable algorithms is

U]

I_= {(i|Dom (1) ¢ W, & o 57T a.e.}.

This is the obvious analogue for some partial function T of the set of
®,t-computable algorithms for a total t. Observe that the notation is consistent,
as If, t total, is the same class according to either definition. The predicate,

Au)v)[t(x)1 => o, (x) = max(u, T (x))]
1] I3 @ 1"
expresses "i g IT .

Recall that the Input Representation Assumption (p. 5) is in effect, allowing

the simple predicate above.

Definition: For any measure ¢ and any function T , the partial ¢-complexity

class of T is

o , o .
PY = (oylie 17)
An alternative defintion which will be considered as

PP- e 2 & @Dl oe 1) &

@Rl s => Y(x) = 0,(a]l).

Once again, for total t , it is true that Pf = Rf and even Pf = Rf.
o . . . up® . o,
Pt was defined as a straight translation of Rt = {(I)i |1. £ It} -~by far the
most natural way to correspond classes of fuctions to sets of algorithms.
The definition of Pi is motivated by considering T to specify types of
problems, and conditions on the solution of problems. The domain of interest
in the solution of these problems is just the domain of T; and all those values
for which T diverges are "don't care" conditions.
It is very easy to see that there are measures with the anomalous condi-
. ol ® 0] ~®
tions that IT = Ip' for some 7T and p , but PT # Pp . Say, for example, that
no algorithm except k has &-complexity equal to zero at any point, but
o, = Ax[0]. Let T = 0 and p(2-x) =0, p(2x+l)*. Then Ii = Iz = {k}, but
obviously Pi contains infinitely more functions than Pi .

One further complication which arises with partial functions is the cardi-

nality of the domain. In particular if Dom(t) is finite, then

I, =QP = QP = {i|Dom(t) = W,]}.
In this case the decision problem is known to be equivalent to K. Thus all
further consideration will be only of 7 ¢ :zvoo, ~ partial functions with infinite
domain.

Before continuing, we mention several obvious containment results which

%
will be helpful. For any measures o, & ;any ¥, £ € P:

~ 5
*1: P, = P
1 14

s2: U= £ ae. = 0 =P & PO =B

v g v g

sk
1f r is the recursive relation between ® and ©® , recall the input
representation assumption has the consequence that

* 5%
O, < Tod, a.e. and 0o, =< r.®, a.e.
i i i i

%
Thus, if any @is Y a.e., then @i < ro@i < r.¥ a.e. Hence

*

0] 0]

®3: P, <« P
'1// —

~0
and P, < P .
I'o?l/ 'W - I'a?p

The assumption may be avoided if one wishes to replace "racbi " by
"Ax(r(max(h(x),x))]" or some similar horror. Then *3 holds if ¥ (x) =z x. For

all x.

Let L (= <o,L>)be the "s’talrldarol”T tape measure, which does satisfy

the above assumption.

Specifically, the number of squares read or written or by a Turing machine
(Davis' model [5]) in the course of its compution.

10
The following results show that these two alternative versions of partial
complexity classes agree for certain natural bounding functions.

Proposition 3.1 For any function ¥ which can be computed using ¥ tape,

AL L
Py = Py

Proof: The proof depends heavily on the properties of the tape measure, particularly
that many computations can be performed "in parallel” without using any extra
tape.

N

Assume £, i such that £ € P\? , that is there exists j e II\Z, such that

(¥x) [¥(x) 1 => £(x) = % (x)]
The following sketches the computation of Py v which can be seen to satisfy

k € Ig and P = E. .These conditions imply £ ¢ P@, as required.

To compute cpk(x):

Compute in parallel Y¥(x), cpj (x), and £(x), choosing appropriate
algorithms and keeping track of the amount of tape used by each: In
particular pick a computation of ¥ using exactly ¥ tape,

1) If £(x) converges using the least amount of tape, output £(x).

2y If q)j (x) converges using the least tape, continue computing until
either (a) ¥(x)¢ or (b) £&x)! . If (a) occurs first, output cpi(X);
otherwise output £(x).

3) The case that Y¥(x) converges in (strictly) least amount of tape can only

happen finitely often. In this case compute and output £ (x). l

11
The reader may easily implement on a Turing machine the computation
described above in such a way that the desired properties are apparent.

Corollary 3.2 For any i,

Proof: Obvious, since Li may easily be computed using Li tape, also *1.

Theorem 3.3: For any measure ¢ there is an s € R satisiving, for any i,

p? < p°® and P2 < p?
0. = ‘oo, 6. & ‘soo,
1 1 1 1

Proof:
Let r be the recursive relation between & and L, and let R be the
tape-complexity of some algorithm for r. The property of Davis' model [5]

that Li(x) > cpi(x) for all i and x is used to simplify the following argument.

Then the following containments hold for any i,

~p AT, AT, L
Po, S Procpic—: PRoLiE PRoLiE PRarocbiE PraR‘oracDi'

The first and last of these containments hold using *3 above, the second using
*2 and the properties of the model mentioned in 3.2, the fourthusing #*2 alone,
and the third follows from 3.1, since R.IL; may be computed using only that much
tape if R is choosen to be increasing. Similarly,

P<I> o

ey .
o, - PI’-Roro(I).
1 1

12

Hence, the required function is
s =ToRor. B
In light of the previous results, one might hope that a measure could be
constructed with sufficiently strong properties so that the two definitions of
partial class coincide. The following results show that this is not pos sible,
indicating limits to which conditions can be imposed on measures.
Definition for any function ¥, let

x if Px)d
a (X)) =

4

+ otherwise

Theorem 3.4 There exist arbitrarily large functions V¥ satisfying

~L L
P £ P
a/w Y

Proof: Let f be any arbitrarily large function, f(x) = x. By the usual

diagonalization method ([2], Thm. 1) construct a 0-1 valued function g € ® such

that
L
g £ Rf .
Define
1 if gx) =1
Ex) =
+ if gx) =0
and

P(x) = £(x) - E(x) .

13

Claim ¢ is as required, since £ ¢ ﬁi but £ ;éPL Since Y¥(x) = x,

v
ax[1] e PL; and £ =1 on Dom(y). Hence £ e P ,
(%y

Assume € € PL, then there is an iel

" PP = E. Define

L
14
0 if Lj(X) < Li(x)

Py () = ' |
1 if Li(X) sLj(x).

Then it is easy to see that ¢ = gJr . but, using the "parallel computability"

property of L[3,7], k may be taken so that L f a.e. Hence

L
K S
I

g :cpk € Rf,

a contradiction. §

Corollary 3.5, For any &, any recursive g, there exists arbitrarily large

partial recursive € such that

o
PC¢P

)
gaol

Proof: Let r be the recursive relation between & and L. Pick any recursive
f, f(x) 2 %, to construct £ = f a.e.

By the previous theorem, construct ¥ > r.gs.rof a.e. such that

n

Using the above definition, this holds only a.e., but a finite control can be
attached to Py to make the equality hold without affecting the amount of tape
used.

14

and let £ =rof,« Now assume the desired property does not hold, that is

"

Then, using %3, it follows that

PLC:P
o =

L

foa

c Py c®
v v

c P c ,
gel = "regll — "y

contradicting Theorem 3.4. [

The use of presentations as notations is as applicable to either definition of
partial class as it is to total classes. With one important exception, the results
for presentations carry over exactly from total classes to either definition of
partial class. The results for classes Pi will be presented next, first extending
a result of Borodin's [3] by making use of explicit knowledge about when functions
are undefined. The results 3.6 - 3.8 were presented in [7] and are included
here only for completeness.

]
Proposition 3.6. For any measure <¢,®> thereisa b € @ such that, for

all ve @2

[v=0a.c.]=> @ilo,=¥ & o, = b? a.e.]

Theorem 3.7. For any measure ¢ and all sufficiently large cpj(cpj > b(I> a.e.),

® .
Pcp is recursively presentable.

15

Proof: First some notation

il

Al ,u,x) = (Wy < x)[o5(y) = x=> 0(y) < maX(U,CPj(Y))]

B(i,j,u,x) = ®i(X) < max (u, CDJ.(X), q)j(X))-

Observe that A is a decidable predicate, since the consequent of the
implication need be checked only if <I>J.(y) < x holds, in which case it is
decidable.

Define f such that

cpi(X) if A(i,j,u,x) & B(i,j,u,x)

P o o (X) =
f(llJ ’]) 0 otherwise

Specifically, (Pf(i i u)(X) is computed first by checking A , which always
halts, then by checking B. 1If cpj(x) is defined, the truth or falsity of B will
eventually be ascertained. If q)j (x) is undefined, then cpi(x) I eventually
results in an answer to B. The only problem arises if cpj (x)* and cpi(x) +; but
then unless A is false, . ..(x) is undefined. But ¢_. . . (x)? does not

Cpf(l,J,J)() Pf(llJ,J)()

disqualify (pf(i) from Pcp , since we have assumed cpj(x)1‘.
1 I j

We claim {f(i,j,u)|i,u € N} is a presentation of Pz . |
j

That there exist exceptional cases of ® and t such that Rf is not

recursively presentable [7,8] obviously carry over to Pf (and Pf).

16

Theorem 3.8 For any measure & and any P there exists a presentation V of

P:; such that VC is recursively enumerable
k

Proof: Forie N, let B, be a recursive set of indices for P such that i #j
implies Bi n Bj = g and UiBi is recursive.

We will subsequently show how to effectively enumerate a set E such
that Bi—-E%ﬂ iff o, =

a.e. and Wi oW Clearly this implies

P k*

Ui Bi - E is a presentation of Pz . Since Ui Bi is recursive and E isr.e.,
k
(u,B, - E)C = (U.B.)C UE isr.e.
i7i 17

Say Bi= {bg, bi, ...} and define
E= (b |@x,y) [o,(x) = v & 8,(x) = ¢ (x)+ (n=x)])

E is clearly r.e. Assume in € Bi - E, then either for all x either cpk(x) + or
<I>i (x) = q)k(x) + (j = x). Thus Wi = Wk and @i s ¢ a.e. On the other hand,

assume Wi o W, and o, = ¢ a.e. The second of these conditions implies

k

that there isa u satisfying:
x> u & q)k(x)al => <I>i(X) < CPk(X)-

For this u, the first condition then implies v = max{@i(x) |x e Wk & x < u}

exists and, forj =u + v,

() [()t v 0 (x) = @ x)+ (= x)]

Hence b]. € B, -E. §
i i

17

Theorem 3.9 For any measure ¢ and sufficiently large P (cpk > b a.e.),

PCP is recursively presentable.
k

The proof is conceptually similar to that of 3.7, making use of Theorem 3. 3.

...} be recursive presenta-

In particular let {ao, a,, ...} and (eo, e

1’ 1

tions of P(I) and Pi o respectively, such that (by a well-known technique

P k

of Blum [2]),

Define a predicate similar to A above
B'(i,j,k,x) = (Wy = x) [0, (v) = x => g,ly) = CPJ-(Y)]

Observe that A' is total if Wi D Wk and Wj o} Wk’ Now define

e.(x) if A'(i,j.k,X) & <I>J.(X) > o, (%)

(Pf(i,j)(x) = CPJ-(X) if A'(i,j,k,X)&d)j(X) s 9 (x)

0 if -A'(i,i,k,x)

Consider the case that P, € Pz and cpj € Pf;

such that &, > ¢, and
K 1ok

k
X € Wk => (pi(x) = q)j (x). Then (Pf(i,j) will equal P exactly on Wk (the first

line of the definition) and will equal cpj elsewhere (the second line). Thus the

reader may easily show

18

{f(ai, ej)i, j € N}

is a presentation of P(D - B
P
k
Theorem 3.10 For any measure © and Py e there is a presentation Y of ,};@
Pk
(O ,
such that Y is recursively enumerable.
The proof is similar to that of 3.8, defining
n .
E= (b, | (¥j = n)(3x,y) [0 = v &
(@60 2 9)+ (n2x) v (o) & () # 0]}
~ O
Theorem 3.11: For any measure ¢ andany T € @ ; £ - PT is recursively

presentable

Proof: The following is a sketch of a stage in the operation of a device which

~ [o4]
enumerates a presentation of # - Pi . Say T = cpj. Assume again T € £ .,
Stage n.

1) If (¥x < n)[cbj(x) > n], go to stage n + 1.
2) Enumerate functions diverging at some value where cpj converges. This

requires listing the domain of cpj, which is done in stages corresponding
to the stages of the larger device.

3) Enumerate the index of an algorithm which is equal to Py if indeed

ey

P, € » - PZI; . and which is almost everywhere undefined otherwisec.
J

19

In particular, note that, for a fixed n such that Wn o W]., the following

predicate P(x) =

Ay = 2 [0,n) > x v o (N >x v o) # o] v
(Vk < x)
LEw >0 @V[x<ysw & o ()= w & (0, (N> 05y) v @ ()7 o (v)]

is true for all x only if there is no k € Iz such that ¢ = 9, on Wj' Thus
j

atstage n an index for

¢, x) if P(x)
Y(x) =

4+ otherwise (since P(x) is undefined if not true)
is enumerated. J§

4, Decision Problems for Partial Classes

An interesting approach to the study of total complexity classes was that
taken by F. Lewis [8], who investigated the structure of an individual complexity
class via a classical tool for studying complexity of another sort - the Kleene
hierarchy. The following results show how the results for total classes carry

over, or fail to carry over, to partial classes.

Theorem 4.1. For any measure & and Py

QP(D isa II, N %, set.
Py 3 3

20

Proof: The predicate

@0)lo, () => 0,0 4] &

(Elj)[J'GIf;k & (VX‘)[cpk(XH = 9;(x) = cp].(X)]]

P, € Pq) ". Noting that "@,(x)4" is 3 and "o, (x) = ¢,(x)"
i Pp i 1 i j

clearly expresses.

may be rewritten as "cpi(xH & cpj x)i = q)i(x) = cpj (%) "T, the predicate is
clearly a conjunction of 112 and }32, and hence 23 N II3. I

Under certain conditions a similar extension may be made for classes

[s¢]
Theorem 4.2: Forany measure & and T¢ @ . If

1. Pi # g and 2. 2 —Pi has a 113 n 23 presentation,

then Qpi =, Equal.

>8]

Proof: lLet T&e 2 satisfying 1 and 2. First show QPi ST Equal.

We describe a machine with an "oracle" for Equal which performs two
processes in parallel, the first of which will halt if cpi £ Pi (but which by

itself does not converge if ®; € Pi), the second determines b, € Pi .

, . o .
To determine if cpi £ PT, enumerate eO, el, ... a presentation of

P —Pi and ask the oracle if <i,e0> e Equal, <i,el> e Equal,... . By

TThis is sufficient, since if i and j do indeed satisfy the rest of the expression,
then (pi(x)¢ and cpj(xu .

21

assumption such an enumeration is possible, since any H3 n 23 set can

be enumerated with Equal as an oracle.

P, € _PT is determined in a similar manner, with the enumeration always

possible since Pi is II,-presentable (3.7).

1
Now to show Equal ST QP? . It was assumed that QPi is non-empty, so

say p € Pi. Define f so that

plx) if 9y = 0 [(0(y) = x v o(y) = x) =>
cPf(i,j)(X) = (0, (v) ¢ & cpj(YH & o,(y) = cpj(y))]
4 otherwise

It is easy to see that

\ ®
<i,ji> & Equal <==> Pei gy = P &> f(iL)) QP
Thus, if f is made 1-1, Equal < QP . §

Theorem 4.3: There exists a measure o™ such that, for arbitrarily large

Te @ ,
S
..)
Cofinite < P
B | T

Proof: Let & be any measure, with 7V an effective procedure as described in

the Honesty Theorem [9] such that, for all i, x, vy

l 1] " : :

) (DW’ (i)(x) < y" is decidable

2) I(I> = I? and hence Pq) = P(D .
% MY (1) ® v (1)

22

The following construction has the desired effect if o converges on an

(1)
infinite set of even x . A similar construction must be done for the odds.
For each i, let ei be the index of a function computed, for input x, in
the following manner [after 2, Thm. 7].
If x is odd, output O.

If x is even, compute (P“/ (x) until (and if) it halts. Let k be the

(1)

least integer such that <I>k(x) <o (x), but for no even x' < x is it the case

v (1)
that

@7 (i)(x') < x & cbk(x‘) < CPV (i)(X) &

k is checked off at x' by stage X .

This k 1is now said to be "checked off at x by stage CPY (i)(x). *oIf
¢ (x) = 0, output L. If @ (x) # 0 or no such k exists, output O .

For each Py () ? is a 0-1 valued function with a domain of
‘e

Dom (U {odds} satisfying

)
(i)

) [oy(@0) = o ;@] = @ [o,@0) > @y ;@0 v

e
Now define e;_ such that
o i(x) if x even
€
0] i(x) = 2itl if x odd & x £ Dk
“x
4 if x odd & x€e D, .,

k

23

where Dk

i+l

is the kth et in an effective listing of all finite sets. The use of

2 assures that modifications associated with one i do not interfere with

other modifications. Finally, [e]1< li,k e N} should be recursive.

Similarly, define [olk} which will handle the cases where 2N

converges 1i.o.

(i)

for odd x by interchanging even and odd, in the above

definition. Define a new measure by
(0 (x) if n£ {e]i(} u (o]i(}
@*(X) i ﬂ cpy(i)(x) if (n= ei & X exlfen) v {n= o]i(& x’odd)
n 0 if x;éDk&((n=e]l<& xocjld)v(n:olk & x even))
MT if xEDk & ((nze}i< & x odd)v(nzo]i(& x even))

]

decidable, and since cp,y (i) is honest.

Now pick some arbitrarily large o, (0 © ®»

on even input and define
(%) if x even
4 if x odd.

Then define h so that

ES
Cofinite < QPQ)
—_— 1 T

via h. This is accomplished by h satisfying

® is a measure since membership in Dk and in {elk} U {011(} is

Assume ., converges i.o.
Py () 9

24

if
@Y(i)(x) if x even
¢, . (%) = Zi+1 if x odd & o/([x/2])4
h(j) j
4 otherwise

Observe that, if ¢, agrees with o ; on all even inputs then, by
e
%*
. e _ - ;
construction, ¢, € PT iff Py = @y for some k . But q)h(j) =0, iff

€k €x

ok
h(j) € QP?; <=> j e Cofinite J

Corollary 4.4 For ¢ and T as in 4.3, ® —Pi is not recursively

presentable.
Proof: By 4.2, if # - Pi were recursively presentable, then, using 4.3 also

Cofinite = QP <, Equal,
which is a contradiction to known fact. J
The above theorem (4.3) states that QPi may be Zg—complete for some

measures and functions. It is an open question whether such functions exist for

all measures. It is easy to see, however, that this is worst case.

Proposition 4.5. For any measure & and cpk e @,

QP(D is Z..

Py 3

25

Proof: The reader may easily see that the following predicate is 7. and expresses

3

¢
Pyo€ Pt
Tk

NT s o
@lie 1 & o, = ¢,]. §
q)k 1 j

A stronger lower bound on the hierarchy classification of partial class is
the following suggested by and including Lewis' [8] result for total classes.

o ®
Theorem 4.6: If Te& ®» and PT is finitely invalriannt,Jr then

Bound = QP(D.
—] T

Proof: Let W], be an infinite recursive subset of Dom (T), which may be found
from T Dby a standard construction. By 3.7 there exists f e # which presents
Pi. Now define g such that

cpf(k)(X) if x £ Wj or o, (v) & {¢;(0), ..., ¢ (y-1)]

gy =

,q)f(k) (x)+1 otherwise

where y = lw]. n{0,...,x-1}| and k = \Qpi(O),...CPi(\/—l)}l, which is obviously
undefined if P, diverges at some input less than y, causing cpg(i)(x) to diverge.
Now claim: Bound = QPi via g , which follows from
o, € Bound <> o, total & @z)(¥y)ly>z=> o;(y) & (9;(0), .. .9;(2)}]

. -~ .)

TA class of functions ¢ < ® is finitely invariantif ¥ ¢ ® and £ =Y a.e. and

Dom(f) = Dom(%) together imply €€ € .

26

Finally, we show a result concerning decision problems not for functions

but for algorithms.

(o]
Theorem 4.7: For any measure & thereisa g € & such that, forallte ® ,

T=z g a.e. => Finite Sl QI?; .

Proof: Unlike bq) (of 3.8), it is not possible to specify g by some simple
criteria. Instead, g must majorize (in certain cases where convergence is
guaranteed) functions which reduce Finite to Ii for all possible T

First, introduce the notation

Qi,k,x) =

(Iy,w =< x)[@i(y) =w & (Vz)[max(w,y)< z < x=> ch(z) > x]].

This predicate says "in a limited search, P, has been found to converge at some

point after Py - "

Assume P € #° and examine the implications of this for Q . In

particular, say @i(yo) = W By assumption ¢ converges above max (yo,wo),
say zo is the least such value for which this occurs. Then Q(i,k,zo) holds.
On the other hand, for x > max (zo,cbk(zo)), Q(i,k,x) can hold only if cpi(y) 1

for some y > Yy and not because cpi(yo)i. Hence
i 9 e P & o9& P => (§°x)[q>k(x)¢ & Q(i,k,x)]
. 9 & 2 & o £ 2 = 0Gx)Fx>x)[-Q k)]

Now define f € # so that o enumerates (increasing) indices of

f(e)

functions such that

27
x if Q@,k,x) & cPCpe(i,k)(X) < max(cpk(x),(bk(x))

P c (%) =
wf(e)(l,k) <

0 otherwise
N

Pick eO a fixed-point of f. Since P enumerates indices, it is evidently
o

fotal and, letting h = cpe , the above may be rewritten as
o)

F

4 if QU,k,x) & @ (x) < max(@k(x),cpk(x))

h(i, k)

P) T ﬂ

0 otherwise

L

The function Ai[h(i, k)] will ultimately be shown to provide the reduction for
appropriate cpk = T,
Observe that

iii. QG k,x) = cPh(i k)(XH
iv. QU,k,x) & q)k(x)¢ => cPh(i k)(x)¢ & (Dh(i k)(x) > rpk(x)

iii is immediate and iv must hold to avoid the contradiction that (Dh(i k)(X) is
both bounded and undefined. Together i and iii imply

v, g 27 o e 27 = Exle s &o 6> @)]

vi. Qi k,x) v q)k(XH = coh(i k)(XH

28
From the latter if follows that

vii. ¢ € 2 = (Vi)[wh(i,k) o) Wk]

Finally, define

g(x) = max(0, (o ®) i,k = x & ~ QU k,x)}).

h{i, k)
By iii, g is total. From ii and the definition of g ,
(o0} o0
viii. P & P &cpl,é P => cph(i k)f g a.e,.
[e.0]
If v = cpke P and T=2 g a.e., v and viii imply
0] ..
(Ph(l k.) € IT <—“"=> Wj. flnlte,

which is exactly what is required for Ai[h(i,k)] to reduce
Finite < 017 . |
As was noted above, Ii is ZZ for any T & 3000, and thus under the
above conditions it actually holds that

1] T

o}
that is that IT is 2. -complete.

2
Although an original intent of this investigation was to suggest a definition
for partial complexity class, there seems to be no absolute justification for
\ 0] 0]
choosing one of PT or PT over the other. Further study in this area is obviously

desirable. It would be especially interesting to discover whether or not Theorem 4.3

can be generalized to all measures.

29

5. INFINITE INTERSECTIONS OF TOTAL COMPLEXITY CLASSES

In this section we return to complexity classes bounded by total functions
to answer negatively two important questions. McCreight and Meyer [9] showed
that the family of complexity classes defined by total recursive functions was
closed under the infinite union of "upward nested" sequences of complexity
classes. It was then natural to ask whether the same result held for "downward
nested" sequences under infinite intersections. This question was originally

suggested to the author by L. Bass (personal communication).

Definition: A sequence of functions {fi] is anr.e. sequence of total functions

if Xi,,x[fi(x)] is recursive. Such a sequence is said to be increasing (decreasing)

if fi(x) < fi+l(x) (fi(X) b= fi+l(x)) forall i, x € N.

Theorem 5.1. (Union Theorem) [9]. For any measure & and any r.e. increasing

sequence of total functions {fi}, there is a g ¢ ®# such that

U ch = I(D
g

ieN i

0]

£ and to weaker conditions

This result extends immediately to classes R
on the sequences {fi}. On the other hand,

Theorem 5.2.T For L = the tape measure, there is an r.e. decreasing sequence

of functions {gi} such that, forno h & & is it true that

N IL =IL

ieN 9

A similar result has been independently discovered by M. S. Paterson.

30

Proof: Let g be a function such that g(x) > x and which is computable in g(x)
squares. Define a recursive set of indices [ej} such that

q)e':—:O
J

and the computation of P, (x) operates as follows.
J

1) Simulate the computation of cpJ.(O), cpj(l), ... on x squares to find the

least z such that

z
2 (Lj(Y) +1) > x.
y=0

2) Calculate g(x) (by the method using g(x) squares of course), and move

so that exactly g(x) + (x=2) on squares are used by the entire computation,
then halt with output O.

Obviously P is total and is the identically zero function. Now consider
j

the relationship between the computations of Py and cp]. . In particular, observe
j

that, if cpj(z) 4+ and this is the least z for which cpj diverges, then for all x,

z
2 (Lj(y) +1)> x, and z is the least value for which this is true for arbitrarily
y=0

large =x. Thus Le (x) = g(x) + x>z for almost all x. In general,
J

ijf => Le x)z g(x) +x+2z a.e.
i

31

On the other hand, if cp]. is total, then for every z there is an x_. such

0
that
z
X, = 3 (Lj(y) + 1).
y=0
Thus X = X, => Le (%) £ gx) + x=* 2z,
j
Now define gi(x) = g(x) + x = i and it follows immediately from the above
that
. L
9, total &> (Vi)[L =g, a.e.] &> o9 & M I
j e, 1 e, , g.
] j ieN i

Now assume the existance of h € ® such that

o= NI
ieN 4
Then j e Total <=> e € Iﬁ . Since we may easily make M‘[ej] a 1-1

function, this implies
L
Total sl Ih

L
But this is a contradiction, since Total and I

j, are respectively IIZ- and

%, -complete [7,8]. I

This extends either by a direct proof or from Theorem 5.2 using the

i

recursive relation between measures , to

TThe author is indebted to A. Borodin for observing this method of proof was
applicable.

32

Theorem 5.3. For any measure & , andany te&e & , there is an r.e. decreasing

sequence of functions {gi} such that, forall i ,
>
gi =zt a.e.,

and such that there is no he & satisfying

Ii - N 1°
ieN 9

Proof: Let ;= t and let cpj be the recursive relation between L and ¢, define

1

T (x) max (q>].L (%), <I>i(><) /X)

and

1

R(x) max (<Pj (X),<I>j (x)).
Using Rn to denote the n~fold composition of R, define

g;(x) = R(XLi) o T(x).

These functions gi may be seen to be as required, arguing largely as before in
the measure L, but shifting to ¢ for the final steps.
First observe that >\x,z[gz(x)] is computable by a Turing machine using

exactly that amount of tape. Hence we may redefine 2) in the computation of

Pe

i
2') use exactly gz(x) steps and output zero.

Then it follows as before that, if z is the least number such that cpj(z) 1,

Le = kx[gz(x)] a.e.

33

2 total => (Vi)[Le < g, a.e.l.
j

Using notation freely, we may carry the above facts over to the measure
® obtaining: if z is the least number such that cpj(z) t+ (using R“l gz for

XaZel

rx[R > T]),

and

P total <> (Vi)[@ej < g a.e.]

The existance of an h yeilds the same contradiction as before. I

Unlike the case with the Union Theorem, there can be no general implica-
, . NP , . 0] o .
tions concerning infinite intersections from It to Rt or vise versa. Hence the
following theorem must be proved independently of the previous theorem. This
important result is due to L. Bass [1].

Theorem 5.4. For any measure & there is an r.e. decreasing sequence of total

function [qi} such that, forno t & & ,
N rRY = r%.
ieN % t
Proof: The following sketch depends upon Blum's proof ([2], 327-330), freely
substituting unary functions for Blum's binary ones as permitted by the input

representation assumption. A complete proof along similar lines can be found

in[1].

34

Let P be as in Lemma 3 (all such references are to [2]) and define
q; = (XX)[CPZ (x -1)].

To see that the sequence {qi} is as required, assume

o

A r? = R},

ieN 9
for some t € =K.

Since the f of Lemma 1 belongs to each R;D , fe Rf and hence there
i

is @ j such that cpj = f and cDJ. <t a.e. Then there exists an index k for f

satisfying

for the "speed-up" rj and, by Lemma 2, an i such that

Rfngz__R@@_Rzp_R@.
j redy k 4
Yet by assumption
Rt c ch
9
and hence
0] ®

35

Since Blum's result holds for any r € ® , pick r to be the compression
function ([2], Thm 8) for the measured set {cbi} . Then the compression theorem

requires

roa, 3 Ro
a contradiction. [

The previous result may also be shown using an arguement like that in 5.3,
in which the existence of such a t contradicts well-known properties of the Kleene
heirarchy. Although Theorems 5.2, 5.3, and 5.4 prohibit the existence of

recursive functions with certain properties, functions higher in the Kleene heirarchy

always exist with these properties [12].

10.

11.

36

REFERENCES

Bass, Leonard, Hierarchies Based on Computational Complexity and
Irregularities of Class Determining Measured Sets, Thesis, Purdue
University (aug. 1970).

Blum, Mauel, "Machine independent theory of the complexity of recursive
functions, " JACM 14 (April 1967), 322-336.

Borodin, Allan B., "Computational complexity and the existance of
complexity gaps," Proc. ACM Symp on Theory of Computing (May
1969), 67-78.

Constable, Robert L., "Extending and refining heirarchies of computable
functions, " Computer Sciences Tech. Rept. #25, Univ. of Wisconsin
(June 1968).

Davis, Martin, Computability and Unsolvability, McGraw-Hill (1958)
New York

Dekker, J. C. E., and Myhill, J., "Some theorems on classes of
recursively enumerable sets," Trans. AMS 89 (1958), 25-59.

Landweber, L. H., and Robertson, E. L., "Recursive properties of
abstract complexity classes" (prelim. version), Proc. 2nd ACM Symp.
on Theory of Computing (May 1970), 31-36 to appear JACM.

Lewis, Forbes D., "Unsolvabity considerations in computational com-
plexity, " Proc. 2nd ACM Symp. on Theory of Computing (May 1970), 22-30.

McCreight, E. M., and Meyer, A. R., "Classes of computable functions
defined by bounds on computation, " Proc. ACM Symp. on Theory of
Computing (May 1969), 79-88.

Rice, H. G., "Classes of recursively enumerable sets and their decision
problems, " Trans. AMS 74 (1953), 358-366.

————— , "On completely recursively enumerable classes and their key arrays,
JSL 21, 3 (1956), 304-308.

12,

13.

37

Robertson, Edward, Properties of Complexity Classes and Sets in
Abstract Computational Complexity, Thesis, Univ. of Wisc. (Aug 1970).

Rogers, Hartley, Theory of Recursive Functions and Effective Computability,
McGraw-Hill (1970), New York.

