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ERRATA

In the expression for B ‘in the middle of page 18, the term "\[(1 - &/u + s]"
should read "A[(1 - &)/ + s]".

The same error occurs in the expression for WSQ(k‘)’ equation (26), page

22. The term "2s(l - /4" should be "2s(l - 8)/u".

In the first equation on page 23, the term “"2s(A - 8)/u" should be
"2s(l - 8)/u".

Equation (28), page 23, should be

2
lim W (k) = Ak (i+s+ﬂ—s‘-—)

gue Q@ 17w

Equation (42), page 31, should be

‘ 2
lim W (k) =~ (—1- +s+—‘£§~)

g+ o0






INTRODUCTION

In recent years there has been considerable interest in various scheduling
algorithms for time=-shared computing systems. The literature contains many dis-
cussions of such algorithms, particularly the round-robin [3-6] and multiple level
[4,6] schemes. However, for the most part, these efforts have neglected the "swap
time" or overhead incurred when the processor switches its attention from one
program to another. When the load on the system is light and the processor is idle
much of the time, the effects of overhead are not too significant. However, when
the system is heavily loaded, this overhead becomes important from the point of
view of increasing the waiting time of programs in the system. The purpose of this
paper is to examine two particular scheduling algorithms under the assumption of
non-zero swap time,

The first model is the conventional round-robin discipline in which a program
entering the system joins a queue and waits for its turn to be served by the single
central processor, Time is allocated in relatively small quanta and, if the program
does not complete its service requirement during its allocated quantum, it is placed
at the end of the queue to await its next turn. This will be called the single-gquantum
(SQ) model. This model has been studied by Rasch [3], with results which differ
somewhat from ours. The discrepancy and the reasons for it will be discussed in a
later section.

The second model is a modification of the round-robin discipline which is
due to Coffman [1]. As pointed out above, when the system is heavily loaded, as
when the arrival rate of programs is high, the overhead inherent in the round-robin

system causes increasingly serious degradation of performance from the standpoint



of the length of time programs must wait in the queue. To alleviate this problem, it

is desirable to reduce the amount of time the system spends in swapping during periods
of high arrival rates. In the Coffman model, if there is a new arrival during a quantum
service and the program in service does not finish its processing requirement during
the quantum, it is given an additional quantum. Arrivals during swaps have no effect
on quantum allocation. Thus, a program operates until it completes its processing

or runs for a complete quantum during which there are no new arrivals. Obviously,
during periods of high arrival rates, this algorithm has the desired effect of reducing
the system's swapping activities. Conversely, during periods of low arrivalrate the
model is quite similar to the conventional round-robin. This algorithm will be referred

to as the multiple-quantum (MQ) model.

PRELIMINARY RESULTS

At this point we establish some quantities to be used in the later analysis.
For both models we assume a Poisson input process, with the interarrival time dis-

tributed according to

Then the mean interarrival time is 1/ seconds, and the mean arrival rate is A

programs per second.




We assume an exponential distribution of service requirements given by

"‘[»L’t
_J1l-e t=20
B(t) = {O =0 (2)

Thus the mean service requirement (exclusive of swap time) is 1/ seconds.
We are dealing with a continuous time model in which a program departs
from the system as soon as its service requirement is satisfied. Then the amount

of time actually used during a quantum: q, is distributed according to

0 t <0
Fy= ( 1-e "t 0<t<q (3)
1 t>q

The first two moments of F(t) are easily found:

E(t) = f P wWr(n) = (1-e P hm (4)
t=0
By = 2[1 - e " T (ug + ] (5)

We define a "loading factor," p = AE(1), where 1 is the total service
requirement (including swap time) of a program. This is just the ratio of the mean
service requirement and the mean interarrival time. Clearly for p 2 1 the system
will saturate. That is, the queue length and waiting time will become arbitrarily
large.

The probability that a program will not complete its processing during a
quantum is given by

o0

f dB(t) where B(t) is given by (2)
t=q (6)

-Hq
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I

= e



For the MQ system we also wish to know the probability of an arrival during a
quantum q . This is 'ust the probability that the interarrival time is less than g
and is given by

q
v o= f dA(t) where A(t) is given by (1)
=0

- (7
_ - M

Now, if a program has a processing requirement of t seconds, it will
require k quanta, where k - 1 < t/q < k. Finally, we assume that the swap time
is a constant, s seconds, and that the overhead is incurred when the program enters
the processor, i.e. at the beginning of each quantum service.

We will discuss two parameters as measures of system efficiency. The
first is W(k), the mean waiting time in queue as a function of number of quanta
required. W(k) does not include the program's processing time or swap time, so
that all programs requiring k quanta have the same waiting time. Thus, W) can
be viewed as mean waiting time as a function of processing requirement. Second,
we will present a mean system delay cost as discussed by Rasch [3]. According to
Rasch, the delay cost of a user with service requirement t and waiting time w is
given by we—at. Note that the factor e“at is effectively a priority which can be
adjusted by appropriate choice of the parameter a. In particular, for a > 0, the cost
of delaying a short program for a time w is greater than the cost of delaying a long
program for the same length of time. The converse is true for a <0, while for a = 0,
all program time requirements are treated equally. As we shall see, the expected

-at . . .
value of we , i.e. the mean system cost, gives us a means of adjusting system
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parameters (in particular the quantum size) so as to optimize system performance.
By this we mean that the most important programs, defined by the choice of a,
will receive preferential treatment without undue degradation of service for the
other programs. Following Rasch, we define the mean system cost by

C = E(we oY

Cat (8)
E Ei(we ik)J

Since w and t are conditionally independent, given k,

C=E Eﬁ:(wlk)-a(e“atlk)]

Note that this is only true if k 1is given. Now E(w{k) = W(k), and

i}

[ee)

B = [ e o a
0

where
_u't
t
T R Kol sq <k
e (1 -e )
f(t, k) = (9)
0 otherwise
Thus,
C= % wk) e MDY g “q)f e % £, k) at
k=1 0
kq
m - 1 dt
-5 WIK) f pe (HFa) (10)
k=1 (k-1)q

- [1 _ e’(LH'a)CI] s W(k) o~ (H+a) (k - )a
h+a k=1

This completes the preliminary results.



SINGLE-QUANTUM MODEL

For the single-quantum model we have

THEOREM 1. Let W{(k) be the mean waiting time in queue for a program requiring

k gquanta of processing. Then

‘)\_ - . k"‘l _ k“].
W‘SQ(k) =3 [sa + 2s(1 - B)/1 + B(tZ)J -1-——1‘-%% + pﬁQ—l-—‘p———

1-p
(11)
; 1—49? {kQ +[m /A = Q/(L - B - ﬁk>}
where
B=10b6+p(l -5),
g = quantum size,
s = swap time,

Q=g+ s, and

m, = E(m) = mean queue length in equilibrium,

The proof is given in Appendix A.

Corollary 1. The mean system delay cost is given by

" A(1-5¢) 2 28 , _ o
s W+ a {2(1-6)(1—;3@ [S +9, -0+ B )]

pm -

+ ————

. 1-pe T PRETT 0 - Be)

where

c = (Bt a)a

MULTIPLE-QUANTUM MODEL

For the multiple-quantum model we have

THEQOREM 2. The mean waiting time in queue in the MQ system for a program

requiring k gquanta of processing time is
6




MQ 0 1 -«

- [m'l +oa <ml+ ; _IQ>J [v + a1 —~V)]k.1

1 -[y+a(l ~7)1k
(1 -a)(1 -7

1 -«

p(l"C) .
W, k) =z + "'{m]+m1+'

+ (k- 1)Y - (13)

I

where z, = mean time to complete the service in progress at arrival,

s
1

probability that a program will not complete in a pass

ml = E(m) = mean queue length in equilibrium,

m'1 = mean number of programs behind the tagged unit at its first entry
into the processor, due to the program in service at arrival, and

Y = probability of an arrival during a quantum g (7).

The proof is given in appendix B.

Corollary 2. the mean system delay cost for the MQ system is given by

ml'e(l -Y) + ml(l -Ye) + Vez(l-V)/(l—e)

R -
Cuo™ T+ § Zot Pl £) l-el +ad-7] e
where
c - e—(u + a)q

Discussion of Results

We will compare the SQ and MQ models in three areas: mean number of swaps
per program, mean waiting time, and mean system delay cost.

Considering mean number of swaps per program, we have



S = kdB(t) where B(t) is given by (2)
SQ
t=0
= 1/(1 - d) where § is given by (6)
- o0 k
SMQ: f Z npn(k)dB(t) where pn(k) is given by (29), appendix A
t=0 n=1
= (1 -78)/(1 - 8) where v is given by (7)

These results correspond to those obtained by Coffman [1]. Note that the MQ
system does indeed reduce the number of swaps per program, as intended.

A comparison of mean waiting time (averaged over all programs) as a function
of arrival rate is given in figure 1. Note that for light loads (A < 0.6), the two
models agree very closely. But as the load increases, they begin to differ

markedly. At A = 0.8, we have E[WMQ(k)] ~ 0.8 E[WSQ(k)]. More significantly,

1

the single-quantum system saturates (p = 1) at A = 0.887, while the multiple-

1}

quantum system does not reach saturation until A = 0.954. Obviously, the MQ
system gives substantial improvement in efficiency under near-saturation condi-

tions, although it should be pointed out that it does so at the expense of the
advantages of a time-sharing system.

We next consider the behavior of W(k) as a function of arrival rate for various
values of k. Figure 2 gives a comparison of the SQ and MQ models, showing
W(k) for k = 1 and k = 3. The other parameters are g = 0.5 seconds, s = 0.05

-1
seconds, and = 1.0 sec (the average program makes two passes). Note that




for programs shorter than average the single-quantum model gives better service
at low arrival rates, but that, as expected, at high arrival rates (i.e. high
system load) the MQ model is superior. For longer-than-average programs the
MQ system is better no matter what the arrival rate.

Figures 3, 4, and 5 show the variation of system delay cost as a function
of quantum size for various values of the system parameters. Notice that, for
zero overhead, the optimum quantum size in terms of delay cost would be zero,
i.e. the processor-shared model investigated by Coffman and Kleinrock [4]. But
for non-zero swap time there is a value qmin such that, for g < qmin the system
saturates. Depending on the particular parameters, it is usually possible to
choose an optimum value for g so as to minimize the mean system cost in the
sense of providing the best service for the "high-priority" users. This group is
essentially defined by the choice of the cost weighting factor, a. As can be

is quite dependent on the value of a. Note

seen in figure 4, the choice of
n in figu o} qopt

also that, in figure 4, the curve for a = 0 is just the mean waiting time averaged
over all programs.

The single-quantum system with overhead has been discussed by Rasch [3],
and figure 6 gives a comparison between his results and ours. Here we plot mean
waiting time versus number of quanta for g = 0.5 seconds, s = 0 and 0.05 seconds,
L=1.0 sec:~1 ,and A = 0,8 sec-1 . As shown the models do not agree, the dif-
ferences being more pronounced for long programs than for short ones, and for
non-zero swap time than for zero swap time. Notice also that for s = 0 and k = 1

the two models give identical results, while this is not true for s # 0 and k = 1.



This discrepancy can be atiributed to a slight difference between the two models,
namely that Rasch places the swap at the end of the quantum, while our model
puts it at the beginning. As Rasch points out, for g = = (i.e. a batch-processing
system) his model gives E(t) = 1/u rather than 1/iL + s as this paper gives.

In particular, this means that there is no overhead involved in going from one
program to the next if the outgoing program has completed processing.

But this is not the only difference between the two models, as shown by
the fact that they do not agree even for s = 0 if a program requires more than one
quantum. Thus, there is a more serious discrepancy in the models. Rasch
assumes that if we exclude the tagged unit, the queue has its equilibrium length
at all times. That is, the tagged unit's waiting time on each pass is just the
processing time for one mean queue length. But this is only true for the first
pass. For subsequent passes we must take into account arrivals during the pro-
cessing of the tagged unit, thus increasing the length of the queue and the
tagged unit's waiting time. In effect, the arrival of the tagged unit perturbs the
system and it requires some time to return to equilibrium.

Finally, it should be pointed out that the models presented here have been
extensively tested by comparing them with computer simulations. These consisted
of simulating the execution of 50,000 programs per case, with arrival rates varying
from 0.1 sec~1 t0 0.8 sec—l, for both zero and non-zero swap time. For arrival
rates greater than 0.8 sec"]‘ the rounding errors in the simulator become appreciable.
Arrival times and service requirements were obtained by means of a random number

generator using a Tausworthe generator to fill a 64-member array and a linear
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congruential (mod 22'3) generator to index the array. In almost all the cases tested,

differences between the models and the simulations have been less than 5 percent,

APPENDIX A. Proof of Theorem 1.

Using the method of Coffman and Kleinrock [4], we consider a "tagged unit"
requiring k gquanta of service which arrives with the system in equilibrium. In
considering its waiting time in queue, we break the time up into two parts, T1

and TZ' A program contributes to T. if it was being swapped or processed when

1
the tagged unit arrived, or if it arrives during swapping or processing of a program

contributing to T1 . A program contributes to T_ if it was waiting in queue at arrival

2
of the tagged unit, or if it arrives during swapping or processing of a program con-
tributing to TZe

W(k) = E (T) + E (T,) (15)

k"2

We first consider TZ' Let v, be the tagged unit's waiting time in queue
on its ith pass (excluding waiting time due to the program possibly operating at
arrival). Then we have

1

k k
Ek(TZ) = E .Z v, = -Z E(yi).
i=1 i=

Now if m; is the expected number of programs ahead of the tagged unit when
it joins the end of the queue prior to its ith pass, we have
E(y,) = m[E(t) + s]

where E(t) is given by (4). Then

= 2 m [E@M) + 5]

17



Since 6 is the probability that a program, having operated for a quantum, will

need more service, evidently

m, = Bmi__l + XE(yi_l) + A Q

where Om, is the mean number of programs returning from the preceding pass

i~1

and XE(yi_l) and AQ represent arrivals during processing of the queue and the

tagged unit, respectively, on the preceding pass. Thus,

Il

m,

; mi_l[a + AE@®) +2as]+2Q

ﬁmi-—l + AQ

where

& + A[E®) + s]

-
1

1l

5+ x[(1 - 8/ + s]

We proceed by induction to obtain

m, =
1

. i-1
ﬁl—]‘m + )\Q _]_'__._._-[3—.__-

1 1-p
Thus

k an
_ A Q i-1 __2Q
Ek(TZ) = [E(t) + s] ii:l Ll =B + B (ml - ) ]

_EM ts . 2AQ k
Si— [ku‘}'(ml*l—ﬂ) (1—{3>]

(16)

We now require an expression for m,; . We have assumed that the system is

in equilibrium at the arrival of the tagged unit, so m, = E(m), the mean queue

length in equilibrium. From Saaty [2], p. 183,
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where T =t+Js,j~-1<

o0

f (t + J'S)ZdB(t)
t=0

AE(T)

i

©
1

(o0}

Xf TdB(t)
=0

Integrating, we obtain

1

TZ) = (z/uZ ) [1 +us———+——}‘—L-§6£— + U 36~Q——~ ] (18)
(1 - 5)

and

= (WW)[1 + us/(1 - 9)] (19)

Now let m; be the number of programs behind the tagged unit on its ith pass
due to the program in service upon arrival. The tagged unit will have to wait through
the processing of these programs on its next pass (since they are behind the tagged

, .th
unit on the i ~ pass). Then
k-1

+ = mi [E(r) + s]

Ek(Tl) =z .
i=1

0

where zO is the time required to finish the quantum service in progress at arrival.

Note that the sum goes only to k - 1,
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For Z we must consider the probabilities, 7TS and 7Tq, of arriving during

a swap and during a quantum, respectively. We have

= 7 (’“ N
2y = Mg lS + E(t)] +7qu

where _é and C_I are the expected time remaining in the swap and quantum,

respectively, and E(t) is given by (5). Now ’ITq = %3 and

L
2
- E@Y
1280
50
2 2
- x E@) _ AE()
Tq9 = L 2E(M)  2(1-9) (20)

Now we observe that T is just the "arrival rate" of swaps times the length
of a swap: m, = )\S s, But >\S is the arrival rate of programs at the end of the

queue, either from outside or after not completing during a quantum of pro-

cessing.
A =X+ oA
S S
=2/(1-9)
and
IS (21)

Finally, since the swap time, s, is a constant, the expected time remaining at

arrival of the tagged unit is s/2. Then

2
__As 1 -0 AE( )
z —= [5/24- m } +2(1_6)

- ___ﬂx______)* ‘:sz + 2s(l - B)/L + E(tz)]
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Returning to mi we observe that

m! = miwl [6 + AE(t) + As]

t

Pm;_y
Again proceeding by induction, we obtain

m'=§f "m!

:
i
Now m'1 is simply the probability, M , that the unit in service at arrival will need
more service, plus any arrivals during z - Letting o be the probability of arriving
during a "non-terminal” quantum, we have
n = TF86 + 0
g is the arrival rate of nonterminal quanta times the expected length of a non-

terminal quantum., Then

0= Xséq
_Még
=T (23)
and
_ Asbd rg B
nF1-5 f1-0
_ AQb (24)
1 -0
Thus,
m} :n+k,zo
S O — [s% + 2s(1 - B)/b + E(t%)]

1= 6 © 2(1 - 9

21



and

kel j.)
z + 5 p m'[E() + s]
o) -1 1

tri
=]
fa—
fl

=z + (N + Az )————9——‘[1-6)/M+s]

1
N

k-1 k-1
[} + p(l - a)l*il%*g—:} +-%? (1 - 6)l ;_?

Substituting for zo and 1 we obtain
E,(T)) = 5(1—5——— (5% + 25(1 - B)/k + E(t))] [1 + p(1 - 6)——~P—~—~]
k-1
+ pdQ ———‘E——‘l =B (25)

Finally, we substitute (16) and (25) into (15) and, noting that B = 6 + p(l1 - B) and

ME() + s)/(1 - B) = p/(1 - p), we obtain

k-1 k-1
Vvscﬁk)::(k/Z) {%2 + Zs(l-b/u.+ﬁEﬁ2) 1-pF p6C}l—:Ji—**
1 -8 1-p
m
o , 1 _Q LK
T KQ+ 5 " T- B G ﬁ)] (26)

This completes the proof of Theorem 1.
It is interesting to consider the limiting behavior of this model as 9 - 0
(and therefore s necessarily approaches zero). This is the processor—shared
model of Coffman and Kleinrock. We require that g and s approach zero in
such a way that (g+s)/q approaches one and kg approaches t, where t is

the program's service requirement, From Coffman and Kleinrock [4], page 570,

we have
lim 8% = lim [p + (1 - ool , 6=t
q— 0 a— 0
. C"lxt(l‘ P)
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Now, considering the first term in the expression for WSQ(k‘) , eq (26), noting that
1-p= (1=-p)1=23), and using the approximation 1 - 6~ Uq for 0<g<< 1, it
is easy to show that
A -2 2.1 - ng“l
lim = [s” + 2s( - 8)/u + E(t )]—T_ =0
q— 0 P

Again approximating 1 = & by lq, the following limits can be obtained:

2
lim -i'_?‘—g = LLL and lim m1 = —19—_—‘“
g 0 a0 P
_ o ht(l-p)
Hence  lim W (k) _ed 1e_ i —E——l_ . -
1~ 11 ~ut(1-p)
t .
= 1-p (27)

As expected, this result is identical with that obtained by Cdaffman and Kleinrock
as the limit of the round-robin model without overhead.

Another interesting limit is

: P ,
lim WSQ(k‘) “1-p (LL + 8) (28)
q—+®
which is the waiting time for a batch-processing system, as one would expect.

Noting that, as g approaches «, k approaches one, the limit is easy to obtain

and the details are left to the reader.
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APPENDIX B. Proof of Theorem 2.

An obvious difference between the single- and multiple-quantum models is
that in the SQ system a program requiring k quanta makes exactly k passes,
while in the MQ system such a program may make n passes where 1l = n < k.
From Coffman [1], we have

pn(k) = probability that a k-quantum program will make n passes

k-1
g Y-y (29)
n-1
where Y 1is given by (7).

We define wn(k) to be the mean waiting time in queue for a k-quantum

program which makes exactly n passes. Then
k

(k)= 2 p_ (k) w_ (k) (30
n=1

WMQ
We now wish to find an expression for wn(k) . We again break up the waiting
time into T1 and TZ’ as in the proof of theorem 1. And

wn(k) = Ek’n(Tl) + Ek,n(TZ) - (31)

We again consider T2 first. We have

n

By nT) = f___lE(yi)

th ,
where yi is again the waiting time on the i pass due to programs in the queue at
. .th
arrival of the tagged unit. If mi is the expected number in the queue on the i
pass (ahead of the tagged unit) and if Tl is the mean processing time per program

per pass, then
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E(yi) = mi(Tl + 8)

and

n .
= 32
Ek,n(Tz) 1§1 mi('r1 + s) (32)

Now define ¢ to be the probability that a program, having just finished

a pass, will require more service. Assume that the tagged unit received kn -1
'

guanta on the (i~--1)sjc pass — implying that there were k - 1 arrivals during

n,i-1

that processing. Finally, xmi__l('r1 + g) programs will have arrived during processing
st
of programs ahead of the tagged unit on the (i-1)  pass. Then we have

m; = Cmi—-l + Kmi_l('rl + 8) + E[kn,i-l - 1]

Following Coffman, we take k‘n i = k/n for all i. Then, letting @ = [ + )(T1 + 8)

m, = em,_, +k/n -1

Proceeding by induction

i_..l 1 -— ari_l
- . - e —_ 33
mi a m1 + (k/n 1 1 - (33)

Again we assume that the system is in equilibrium at arrival of the tagged

unit, so that

szgTZ)
2(1 - p)

m, = E(m) =

where here T = t + js
|

E(t2) :f s (t+js)’p, (1)dB(Y), i-1<
t=0 j=1 ]

t‘Si
q

- - - - 5. 2
_ (Z/LLZ) 1+ s 1 -7vb N }.LZS gl - ¥)+s(1 -¥05)(1 2y 6+ 8/ (34)
1 -0 Q- 5
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where © and 7Y are given by (6) and (7), respectively. Also,

1 - -
p = AE(T) = (A/1) [1 + s _Yg—]

Now, for £ , Coffman gives £ =&6(1-7Y)/(1-70). For T, we observe that

the probability that a program will take j quanta on a single pass, without com-

j=1

pleting its service requirement, is given by ¥ (1 - V)BJ. The probability of

j-1 -

j-1 .
taking j quanta, completing on the jth is given by 7Y & (1 - b). Thus

{vj”laju -+ V)T - [(j Sher El(t)]}
1

where El(t) is the mean time taken by a program to which g seconds have been

T =
1

™M 8

j

allocated, assuming the program completes during the g seconds (t < q).

T T ba(l -7v) = j(V0) +q(l -9 = (G-1)Yo
j=1 j=1
(e o] .__1
+ (1=-0BE (1) 2 (¥ 5))
i=1
obg + (1 - B)El(t)
*\q"
,ZrQ tdF!t[ . - . -
El(t) = a where the integrals go to g~ since it is assumed
f dF(t)
o that t < q
_ (1 -9/ -5g
1 -0
Therefore,
=L _1=0
1 B 1-70
=L1T (1 =20 (36)
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Substituting (33) into (32), we obtain

n . i-1
B k(TR =z [afl lm1 +(k/n - )2 — 1 _aa ] (T, +5)
i=1

T, +s

:—-:-l—-—-—-—- [k_.n.*_ ml—kln_l (]'-—Cyn)J (37)

l -« - a

We now turn our attention to Tl , the waiting time due to a program in service
at arrival of the tagged unit. Consider first the expected time, zo, to completion
of the service in progress. There are three possibilities. With probability 'rrs
the tagged unit may arrive during a swap. With probability ﬂ'q it may arrive during
a quantum. With probability 7TCq this "arrival" quantum may be a complete one,
i.e. one in which the program in service does not finish its processing requirement.
In the latter case, since we hypothesize the arrival of the tagged unit, the program
in service will get an additional quantum, and, using the memoryless property once

again, will operate for 7. seconds after the completion of the current quantum.

1
Then

z = s - +T g T
40 7Ts [s + Tl] qq cq 1
where s and E{ are the expected time remaining in the swap and quantum,

respectively.
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From (20) we have

- ae(h)
T Z201-8)
and
T :O:_Z»__éﬂ from (23).
cq 1-5

- 8
gince the swap time is constant s = E As in the single-quantum case

Ty = Xss. But here we have

XS:X+C‘)\S
=x/(1 =€)
Then
2
__AS8 8 AE(ED) A9 (38)
ZO—l—-C (2+Tl)+2.(1—5) +1_5 Tl

Now if 1 is the probability that the program in service at arrival will
return for more service after its current pass, then the number of programs behind the
tagged unit on its first pass (and therefore ahead of it on its second pass) due to this
program is

mfl =7 + Xzo

In considering 7, note that the probability of arriving during either a swap or a
non-terminal guantum is just TrS + o. In either case, due to the memoryless
property, the probability that the program will not complete is { . Then

n o= L(r  + o)

Since these programs are all behind the tagged unit, they will receive at mostn - 1

passes, SO
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Ekn,(Tl) =z, + m! (T, + s)
i=1
But
"= am' - Ql—lm'
my i-1 1
Thus,
_ n-1
Ek,n(Tl) = zO + ml('r1 + s) 1=
and, noting that Tl +s=p(l =%
wn(k) = Ek,n(Tl) + Ek,n(TZ)
n-1 ’
- ' - 1 ~-a P(l"@
Sz tmp = O T AT [ ko

k/n -1 n
+<m1-— 1_a> (.l—a():] (39)
Multiplying eq. (39) by pn(k), eq (29), substituting into eq (30) and carrying

out the summation gives

W (k) - +_9_!l.:_£l{ e, Ll

MQ %0 1-aq 1-a
- [ml' + (m +'1_"'—)][7+OL (1 —'y)]
1 - [yra1-yT
+(k = 1)y - (1-0) (1) } . (40)

which establishes Theorem 2.
Again it is interesting to consider the processor-shared limit of the MQ
model, We expect to obtain the same result as for the SQ model since the

probability of an arrival during a quantum approaches zero, as does the additional
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processing time allocated as the result of such an arrival, Again we require
that 9 and s approach zero in such a way that (4 + s)/q approaches one and kq

approaches t, the service time requirement. We observe that

lim ['y+oa(l--'y)]k lim «
q— 0 g—0

H

lim [p+(1-ptl

q—0
Since lim ¢ = lim %%—%
q—0 q—0
= lim &
q—0

we can again use the result of Coffman and Kleinrock

k k - -
lim oF = lim pF = e HH17P)
q—0 q—~ 0
Furthermore, noting that 1 = a = (1 - p)(1 - ) and using the approximation

1 -C=~1-08=pg, 0<qg<<1, itis easy to show that

2
lim zO:O, lim ml' =p and lim m, = ig:g
g-—+0 g—0 g—0
-\
Also  lim (k-1l)y= lim (k-1)1-e "%
q—0 q—0
= lim (k = 1)\q
q—0
= AL
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Then

2
. 1 pl =8) p 1
l. W S
dm Yme™ Ty T PH1icp T1-4a
2
_ P 1. k-1
[p+a(1_p l—(x)]a
k
l1-a
+ AL -
(1-0) (1)

> [

2
I __=ut(1-p) L =pt(l-p)
1-p {P[I e ] +1__p 1-e ]

L ta=p)  _ ut-p)
+ At

- a T T 1=
1 P Y -1t(1-p)
= At - -
Al=-p _ ¥ [l—p (I=-p)(1=£) (1~V) It-e ]}
pt
= 1-p (41)

This result is identical with that for the SQ model.

Finally, it is easy to show that

K =—2— & 1) (42)

lim W "T-p b

q -

MQ

As we would expect, this is the result for a batch-processing system.
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