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ABSTRACT

Given the unit square (0,0) (0,1), (1,0), (1,1) the problem is
to find coordinates for a set of N points such that a quantity called
the discrepancy is minimized. The discrepancy is defined as the
maximum value of |v/N—xy| over the square, where v/N is the
fraction of the point set that lies to the left and below (x,y). Precise
descriptions of all possible point sets resulting in the minimum dis-
crepancy are presented for 1 < N < 6. The minimum discrepancies
are 5-1)/2, (ﬁ-l)/z, (3ﬁ—5)/6 for N =1,2,3, respectively,
and 1/N for 4 < N < 6. A total of 112 optimal distributions (of
which 65 are distinct up to reflection about the diagonal y = x) are
generated for 4 < N < 6 in about 25 seconds using a FORTRAN program
and a UNIVAC 1108 computer. It is shown experimentally that the

minimum discrepancy exceeds 1/N for N = 7 and 8.






I. INTRODUCTORY REMARKS

The notion of equidistributed sequences of numbers, viewed as
points that are in some sense well placed in the k-dimensional unit
hypercube, is of particular interest in the Monte Carlo Method for
constructing so-called quasirandom sequences. Suchsequences can
be efficiently used as the nodes of an approximate quadrature formula
for multidimensional integration. For detailed background information
the reader is referred to the partial list of references, especially
[9], pp. 36-47 which contains a recent summary of much of the work
in this general area.

The subject treated here is one of very limited scope.* Rather
than considering larger questions involving an arbitrary number of
dimensions, many points, and any of several meaningful measures
of imperfection of equidistribution, only two dimensions (the smallest
non-trivial number), a few points, and the "extreme" discrepancy
measure are examined. In contrast to the primarily asymptotic in-
vestigations in the literature concerning bounds on discrepancies and
the construction of good sequences, here the questions are restricted
to finding the best possible discrepancies and all associated point

distributions.

*
This work began as a term project for a course in Monte Carlo
Methods under Professor J. H. Halton at the University of Wisconsin.



II. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Let PN be a set of N points, labeled with the index set

{i} and with coordinates pi = (xi,yi), 0< Xi’yi <1, 1=1i=N,
inside the unit square S, where (x,y) € Siff 0= x,y = 1. The

number of points of P_. in the rectangle 0= €< x,0=1< vy

N
%

defined by the point p =(x,y) € S is denoted by v (PN, p). Let

p+ = (x,y)+ ={x+ 0, y+ €), where & and € are arbitrarily small

but positive, such that

(1) V(P p) = VP, B') = WPy, P)

equals the number of points of PN with X = x and/or yi =y,

Definition 1. A v- plateau is the maximal set of points {p}
such that every associated rectangle includes the same subset of

v points of P__, where 0 < v < N.

N
The discrepancy of a given set PN is defined as
V(P /P)
_sup { N7
) D) = 8 |y X |-

The objectives are the specification of sets {PN} such that

D(PN) is a minimum and the determination of

%
Because of this definition and for consistency and convenience,
the points of PN are arbitrarily not allowed to lie on the boundary
of S.




inf

N Py €5 D(P )

(3) D

for small values of N.

Proposition 1. ,D(PN) > 1/N if there are two points of P

N

such that X, = Xj and y; 2 yj, 1=1i,j=<N.

Proof: For such a pair i,j in P A v (PN,(xj,yi)) > 2, so D(PN)

Nl

is no less than that with p = (x}. ’Yi) and

, +
V(PN’(Xj’yi)) + V(PN, (xj,yi) )

(4) XYy T 2N ‘

i.e., with the choice of (4), using (1) and (2) it follows that

V(PN,p) . i} AV(PN,(xj.yi)) 1
N iV 2N 2N |

D(PN) >

Note that for any other choice of xj ¥y the lower bound on D(PN)
is increased.
- - . 1
The question of the existence of sets {PN} with DN < N
naturally arises. From Prop. 1 and (3), for DN <1/Nand N > 1,
it is necessary that X, > xj and v > yj for some labeling of

every pair of points in P Obviously, D1 < 1. Thus, for

N

DN < 1/N the relative positions of the points of PN must be as

depicted in Figure. 1.



Fig. 1. Plateau Configuration Required for DN < 1/N.
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l-plateau

@
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Definition 2. For convenience, points of PN are lexico-
graphically ordered in accordance with their abscissas:

xls sxis... SXNwith Xi= xj and Yi< yj implying i <j.

A given ordering for P.. is completely specified by the ordering

N
of the y coordinates of {pi} denoted by the N-tuple

.n__,1 = nk < N, i.e., windicates that

SRR SRY

Proposition 2. DN <1/Nonly if N < 4.




Proof: Referring to Fig. 1 and (2), DN < 1/N implies that
]v(PN,p)/N—xyl < 1/N for every point p on any of the N+l
v-plateaus. Since V(PN,p) is constant on a given plateau, only
the extreme values of the product xy on the plateau are of interest.
The following definition is convenient.

Definition 3. The southwest (SW) corner of each v-plateau is
any arbitrarily small region where v = v (PN,p+), and p = (X,y) is
the (unique) limit point not in the set [p+] on that plateau, i.e.,

v(P..,p) < v. A northeast (NE) corner of each v-plateau is any (not

N
necessarily unique) point p = (x,y), where v =V (PN,p) and neither
x nor y can be increased without increasing v or leaving S.
Continuing the proof, for the (i - 1) - plateau, 1 = i < N, the largest
value of xy can occur only at one of the two NE corners (xi, 1)

or (1 ’Yi)' This imposes the conditions

i-1 1
(%) BRI S

For the i-plateau inf xy = Xiyi occurs at the SW corner, so the

condition

i 1

is obtained. Conditions (5ab) and pi € S imply that

2

A

i-1
(6a) '1'1’\1—< x¥; < 3
N



i-1 i
(6b) N < Xi’yi<N .

Note that (5) and (6) hold with <'s if D, = 1/N. From (6a) it is

N
seen that DN <1/Nonlyif i-1< iZ/N, 1<i=< N, i.e., onlyif

2
the minimum value N(1 - N/4) of the parabola i - Ni + N is positive.
This occurs only for N < 4. I

The possibility of D__ = 1/N still exists for N = 4.

N

Definition 4. An optimal distribution is a complete specifica-
tion of the coordinates of PN for which DN = D(PN) and the ordering
m of Def. 2 is fixed.

The optimal distributions and the corresponding values of DN
for N = 1, 2 and 3 are computed in the Appendix. The results are
summarized in Table 1 and sketched in Fig. 2. Point 1 is fixed for
N = 1‘. and 2, as is point 2 for N = 3, Point 2 for N = 2 and points 1

and 3 for N = 3 can be positioned anywhere in their respective regions.

Proposition 3. D4 =1/4 for m = 1234.

Proof: Using the same technique as that of the Appendix for N = 1, 2
and 3, the “critical index" for m = 1234 is i = 2, whence Xy =Y, = 1/2
and D, = 1/4. ]

The optimal distribution is given in Table 2 and sketched in Fig. 3.
Although point 2 is fixed, the other three points can be positioned

anywhere in their respective regions.




Table 1. D.. and Optimal Distributions for N = 1, 2 and 3.

N
N =1: X1=yl=D1=AZ—5_:—'2_—*1‘ = 0,618
N =2 X, =y D=~\/—3:-_~—-— ~ 0.366
171 2
X540Y, < 3125- = 0,866
X,¥, 2 3 ‘2 2 £ 0.634
N =3 x .y, = Dy= 56”—-5—~0285
lel = "7":“2 2 0.049
X, =¥, =Dy
x3,Y3 < “ﬂjzl‘l“z 0.951
x3y3 = ll—:éé\'[é-" = 0.715

Fig. 2. Optimal-Distribution Configurations for N =1, 2 and 3.

me=l mo=12 m=123




Table 2. D, and Optimal Distribution for m = 1234.

4
0< X 0¥ S D4= 1/4

Xy =Y, = 1/2

Xy, Y3 S 3/4; XY, 2 1/2

RV, 2 3/4.

Fig. 3. Optimal-Distribution Configuration form = 1234.




Observation 1. In an optimal distribution with D(PN) =1/N,

there may be two, but no more, points of P__ that agree exactly in

N

*
either their x or y coordinates.

Proof: For two such points see Fig. 3 with x3 =X, = 3/4 or
Y3 =V, = 3/4. More than two such points means there is a pair i,j
such that Av (PN,(xj,yi)) > 2 and D(PN) > 1/N (see the proof of
Prop. 1). l

The sequel is concerned with optimal distributions with
DN =1/N for N = 4. Typically, there are many optimal distributions
for a given N. For example, N = 4 yields a total of twenty with
D4 = 1/4 (including the optimal distribution of Prop. 3). Some
characteristics of optimal distributions are explored before describing

an algorithm for generating D.. = 1/N solutions.

N

%
Evidentally, no two points of PN should share the same coordinate,

in general, since this sharing cannot decrease but may increase DN'



III. SOME NECESSARY CONDITIONS FOR DN =1/N

Observation 2. For N = 4, DN = 1/N only if for every pair

i,j in PN such that X < Xj and yi = yj, (a) iji = (A + 1)/N,

where A is the number of points {k} in P with Xy < xj and

N
Yy < Y, and (b) no pﬂ(z%i,j) can satisfy (Xg = X and y, < Yi) or

(Xﬂ, < Xj and Yy = yi).

Proof: This follows from the proof of Prop. 1, where Av (PN, (Xj’yi))
. _ +y =
must be only two. With v(PN, (Xj'yi)) = A and V(PN, (Xj’yi) )

A + 2 in (4), one obtains iji = (A + 1)/N as a necessary condition. !

Lemma 1. For N = 4, if PN contains a subset of four

points such that P, s pj /Py Py satisfy

Xi< Yk<

Xy < xp; Y < Yy then D, = 1/N only if

X, = vy, < N
j Y

(& + 1)C = (B + 1) (D+ 1), where
A= V(P (X ,v)), B = V(PN,(Xk,Yj)) -A -1,
D = V(PN’(Xﬁ’yi)) -A-1,and C = V(PN'(Xﬂ'yj)) -A-B-D-2

(see Fig. 4).

10




Fig. 4. Configuration of Points in Lem. 1 and Th. 1.

w
Q

©
O,
®

Proof: From Fig. 4 and Obs. 2(b), DN > 1/N if any of X, = Xy

Xy =X, Vi = Yy y, = yj hold. The number of points of PN in the

rectangle 0 < £ < Xy 0 << ¥, is A; B(D) is the number of points

{r}in P

N with 'Xr<xk and yi<yr<yj (Xk<xr<xﬂ and

Y, < yi); C is the number with Xy < X, < X, and vy < Y, < yj. By

Obs. 2(a),
A+l
(7a) Y STN
_A+B+2
(7b) xkyj = N

11



___A+D+2

(7¢) Xp¥y N

_A+B+C+D+3
(7d) xﬂyj = N .
The two ratios (7a)/(7b) and (7¢)/(7d), for example, must be equal

or the necessary conditions (7) cannot all hold, i.e.,

Y, A+1 A+ D+ 2

1
%—A+B+2""A+B+C+D+3

is necessary. Crossmultiplying and simplifying vields

(8) A+1)C=B+1)D+1). |

Theorem 1. Under the conditions of Lem. 1, D.. = 1/N is

N
impossible unless A=B=D=0 and C=1.

Proof: From Lem. 1, (8) must hold for all subsets of four points of
PN with the relative positions of Fig. 4 for the points i,j,k, 2.
Clearly, C = 0 can be eliminated from consideration since the
right-hand side of (8) is at least one. Suppose C= 1 and B =z1.
Then there exists the six-point configuration of Fig. 4. From Obs.
2(b), it is necessary that X, < XYy < Y < Y. or y, <yg < Y
xk<xr<xz, andyi<yr<yj. If yi<ys<yr, thena C =0
situation exists for the four points i,s,k, £. (ps replaces pj in

Lem. 1). If yr < Y < yj , then a C = 0 situation exists for the four

points s,j,r, 2 (pS replaces P, and P, replaces Py in Lem. 1).

12




Consequently, C = 1 implies that B = 0 for D, = 1/N; by symmetry,

N
D = 0 is also necessary. Hence, (8) is reduced to (A + 1)C =1
which implies that A = 0 and C = 1 are required. |

Observation 3. For N > 4, D, = 1/N is impossible if for

N
two points j,j+1, 1 sj <N, of PN with yj < yj+1 , there exists no

point k of PN satisfying e1’cherxk < Xj and y'j < Yy or xj+1 Sxk

and Yy < yj+1 (see Fig. 5).

Proof: This follows directly from the proof of Prop. 2 and Def. 2.

If A= (P ), the i of (6a) is replaced by A+ 1 to yield

N‘Pj+1

D..=1/Nonly if A/N < x

2 .
N leYH_1 < ((A+1)/N)”. This just amounts

to a horizontal shift of the parabola in the proof of Prop. 2, so the
minimum value is the same, and a non-empty range for Xj+lyj+1 is

impossible for N > 4. |

Fig. 5. An Impossible Point Configuration for DN =1/Nif N > 4.

ANNAN
AN \\ N
*m\ \ \ \\\
No points \\\\

\\\ ~ oo N
O \
(78N

of P in this

\

unshaded region

13



Lemma 2. For N =4, if P__ contains a subset of three points

N

such that pi,pj Py satisfy X < xj < X and i <y, < Yy where only

J

the first of the two <'s in either condition may be replaced by =<,

. A+B+ 1DNA+D+1)
h = =
then DN 1/N only if ijj BA+B:CtDF 2N where

= = - = - d
A V(PNI(leyj))l B V(PN'(X]lyi)) A, D V(PNI(XkIYJ)) A, an

C = V(PN,(xk,yi)) -A-B-D-1 (See Fig. 6).

Proof: The < restriction follows from Obs. 2(b). Referring to

Fig. 6, the number of points of P__ in the rectangle 0 < € < xj,

N
0=n< yj is A; B(D) is the number of points {r} in PN with
X < Xj and yj < Y, < yi(yr < yj and x]. < X, < xk); C is the number

W:lth xj<xr<xk and yj<yr<yi. By Obs. 2 (a),

_A+B+1
(9a) iji = N
‘ _A+D+1
(9¢) Xy___1'-\—¥-B-i-C+D+2
ki N

Multiplying (9a) and (9b) and dividing by (9c) yields

(A +B+1)(A+D+1)
(10) XY= A +B+C+ D+ 2N

14




Fig. 6. Configuration of Points in Lem. 2 and Th. 2.

®©

Theorem 2. Under the conditions of Lem. 2, D = 1/N is

N
impossible unless either Xy, = (A + 1)2/(A +C + 2)N whenB =D =0,
or ijj = (A2 + 3A + 2)/(A + 4)N when C = B+ D =1, with the point

r of B(D) satisfying X < x]. and yj < Y. < ys(yr < yj and

Xj < X, < XS) .

Proof: From Lem. 2, (10) must hold for all subsets of three points

of P.. with the relative positions of Fig. 6 for the points i,j,k.

N

Suppose C = 1, i.e., s is the only point of P satisfying

N
xj < X < Xk and yj < yS < v Then either B = D = 0, in which

15



case x;y, = (A + 1)2/(A + 3)N, or B+ D=1 with P satisfying the
stated conditions, in which case Xj yj = (A2 + 3A +2)/(A + 4)N; every
other possibility with C = 1 leads to DN > 1/N. For example, with
B=1, if Y, equals yj or y.. then Obs. 2(b) does not hold; if

Y < Y, < Y then a C = 0 situation (forbidden by Th. 1) exists for

the four points r,i,s,k; if there are two points r1 )Ty in PN satisfying
x ,x <x and v.<y_ < y_  <y_,thena C = 0 situation exists
1 2 ) S T T

for the four points rl,rz,j,k; if Y, = yr , then Obs. 2(b) does not
1 2

hold. Similarly, for D = 1 by symmetry. Now supposing C #1, in
the same fashion it is readily seen that either Obs. 2(b) does not hold
or a C # 1 situation (forbidden by Th. 1) exists for all possibilities
but B =D = 0. |
Th. 2 is now refined via Lem. 3 and Lem. 4. See Cor. 1 and
Cor. 2.
Lemma 3. In Th. 2, any points Syree18gieeS of P

C N

satisfying xj < st < X, and yj < Ysﬂ < Yy (1= £ < C) must also

satisfy x < ... <x, <...<x and v < ...<y <...<y
s, Sy g s, S S5

except when C > 2, in which case either the x or the y coordinates

of SC-—Z and SC-—l may be interchanged in the ordering (see Fig. 7).

Proof: By Obs. 2(b) no two points of [sz} may agree in either their

x or y coordinates, while x]. <xS and yj < ys are also
1 1

16




Fig. 7. Possible Point Configurations for C > 2 in Lem. 3 Showing

the Three Allowable Positions of SC._1 .

0

() ()
,-'A)

necessary conditions. If C = 2, then s, must be located

above and to the right of s.; any other arrangement would lead to a

1;
C = 0 situation (forbidden by Th. 1) involving 1,sl,sz,k. If C =3,

then s, canassume exactly three locations relative to s, and

s, not forbidden by Th. 1:
xSl < xsz< xS3 and ys1 < ysz< ys3
st< xSl < xs3 and ys’1< ysz< YS3
xSl <st< xs3 and ysz< y51< YSB—

17



Similarly, for C > 3, it is easy to see that the x or y coordinates

of SC_Z and SC-—l may be interchanged but no other exceptions to
the stated ordering are permissible for DN = 1/N. Thus, SC—l has
three distinct relative locations for C > 2 (see Fig. 7). I

Lemma 4. C < 3in Th. 2 and Lem. 3; if C =2, then A must

be zero and Sl' s. must satisfy Xs < Xs and yS < ys ; if C =3,

2 1 2 1 2

then s, s,, s, must satisfy x < x_ < x and v <y <Ky
1 2 3 sl 32 53 52 s1 s3

(see Fig. 8).

Proof; See Appendix.
Fig. 8. Only Possible Point Configurations for C =2 2 in Th. 2, Lem. 3

and Lem. 4.

O O

(D
Y
@

18




Corollary 1. Under the conditions of Lem. 2, DN = 1/N is

impossible unless

(@)’
A+l . _ R T oA
AtC+2)N’ if €C=0,1,3; B=D=0;
A2+3A+2
ijj=<m,1f C=B+D-=1;
L if C=2;A=B=D=0
41\]. !’ ’
.
Proof: This follows directly from Th. 2 and Lem. 4. i

It is emphasized that all these cases may not necessarily occur for
DN = 1/N.

Fig. 9. Illustrating the Two NE Corners at the Boundary and SW

Corner at pi for Any Point i of PN.

NE

N\
%
g

) NE

] Rvv)
r
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Theorem 3. For N = 4 and no two points of P sharing the

N

same coordinate, DN = 1/N is impossible unless for each point

N
(@) A+B=i—1<x<_1___A+B+l.
N N ~ 7N N !
A+D_k-1 k _A+D+1 % .
(b) N - N syisN— N . 1 sk <N;
A A+1
© N ERGITyo

where A = V(PN,pi), B = V(PN,(xi,l)) - A, and D = V(PN,(IIYi)) - A

(see Fig. 9). If points i,j of PN share the same x(y) coordinate

1]

(see Obs. 1), then X, x; = (A+B+ 1)/N (yi = yj = (A+ D+ 1)/N),

and if j < i, then X.¥; A+ 1)/N.

Proof: Suppose no two points of P.. share the same x or y

N
coordinate. Referring to Fig. 9, V(PN,pi) = A, while in the SW
corner (see Def, 3), v(PN, p:) =A+ 1. For DN = 1/N, (2) implies
that (A - 1)/N < XY, < A+ 1)/N and A/N < Xy, < (A + 2)/N, at
P, and p:, respectively; (c) follows from these constraints. The
NE corner (Xi'l) yvields v(PN, (Xi' 1)) = A + B, while

v(PN, (xi +0,1))=A+ B+ 1, where b is arbitrarily small but

positive. Again, for D, = 1/N, (2) implies that

N

%
k is the number of points in PN with y coordinates =< yi; see
Def. 2.

20




(A+B-1)/N = xis (A+B+1)/N and (A + B)/N < xi:s (A+ B+ 2)/N
at (xi,l) and (xi + 0, 1), respectively; (a) follows. Similarly, (b)
follows from the constraints imposed at (1 ,yi + ¢) and the NE corner

(l,yi). Now suppose PN contains two points i,j such that

X, = X, or yj =y, 1f x»j =X, then the constraint at (xi + 5, 1)

j i

becomes (A + B+ 1)/N < X, < (A+ B+ 3)/N, so X =%, = (A+ B+ 1)/N

is required with the constraint at %;he NE corner (Xi’ 1); similarly for

yj =y at (1, Yi)‘ In either instance, if j < i, with Def. 2, the
constraint at p: in the SW corner becomes (A + 1)/N < XY, < (A + 3)/N
which, along with the previous P, constraint, yields X’iyi = (A + 1)/N. l

Corollary 2. Under the conditions of Lem. 2, D, = 1/N is

N

impossible unless

[ a+1)?
A+ CrzN - H C=01@A=0,1), 3(A=0;B=D=0;
2
x5 = < A i c=BaD=LA=0,1,2
l 0
AN , if C=2;A=B=D=0.

.

Proof: Cor. 1 suggests that under certain conditions

ijj (A + 1)2/(A + C + 2)N, while Th. 3 (¢) implies that

A/N

IA

xjyj < (A+ 1)/N i.e., the question of compatibility of these

constraints arises;

21



2
? A+ ? A+ 1
< <

A +
(11) N- B+C+2)N ° N

The right-hand < yields A+ 1 ;<> A+ C + 2, which always holds. The
left-hand < yields Az + AC + 2A ;') Az + 2A + 1; this holds iff AC < 1.
Similarly, the other formula involving A in Cor. 1 leads to A < 2.

Cor. 1 is modified accordingly. |

@

Hence, the remark following Cor. 1 is justified.

22




IV. DN> 1I/N IF N=2 7?

Lemma 5. ForN = 7, DN > 1/N, if PN contains a subset
of four points specified in Lem. 1.
Proof: Assume that DN = 1/N is possible. If such a subset occurs,
then it must appear in the lower left-hand region of S withA=B=D=0
and C =1, as shown in Fig. 10, by Th. 1. Using the same point
labels as those of Fig. 4., i = 1(2), j =2(1), k=3 and r = 4 results
from Def. 2. There can be no point t of PN with X, s X, and
YZ(I) < y, or a situation (forbidden by Th. 1) exists.* The label
4 z 5, however, since x, <Xt< X, and y2(1) < y, can occur.

From Cor. 2

2
2+ 9 .
(12a) X¥4 T 2 + 2)N 4N’
Th. 3 (ab) implies that
2+1+1 4,
(12b) x4,y4s N =N’
Thus,
9 2 16
(12¢) T 5 X

must hold for DN = 1/N; but (12c) holds only for N < 7, so it remains

to investigate only N = 7. By Obs. 2 (3),

(13a)

%
By symmetry, there can be no point t of PN with X, < X, and

' < Yy these forbidden regions are indicated by X's in Fig. 10.

23



Th. 3(ab) implies that

IRIES

)
(13Db) xzs7, y4s

4 5
(13c) Xy =i =

Y2(1) ©
where the condition on Y2(1) follows by observing that £ =6 or

7 is necessary to satisfy (13ab), while if g = 6, point 7 of PN

cannot satisfy Yy < Yo < y2(l) ora C = 0 situation (forbidden by

Th. 1) occurs. Unfortunately, (13c) is insufficient to satisfy (13a),
since 20/7 < 3. Consequently, DN = 1/N for N = 7 only if the
subset of Lem. 1 does not appear in PN' Otherwise, DN > 1/N

by Prop. 2. !

Fig. 10. Only Possible Point Configuration with the Hypotheses of

Lem. 5.

—><

@

@

B
A=01}| D=0
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Lemma 6. For N = 7, DN > 1/N, if PN contains a subset
of three points specified in Lem. 2, unless B=C = D = 0 and

N< (A+3)A+2)/B+1)=A+4+2/(A+1).

Proof: See Appendix. |
Note that N = 7 implies that A = 3, and that the minimum value
of A increases by one with an increase in N of one.

Conjecture. DN > 1/N, for N = 7.
This is based in part on some experimental results that are discus-
sed in the sequel. Lems. 5 and 6 are nearly enough to prove the
conjecture. If it is shown for the exceptional case of Lem. 6, then
the conjecture follows with a modicum of additional effort to eliminate

the remaining cases not covered by Lems. 5 and 6.

25



V. AN ALGORITHM FOR GENERATING DN = 1/N SOLUTIONS
Prop. 4 and Obs. 4 are useful for the systematic generation of
ordered N-point sets and the elimination of one of every symmetric

pair of orderings in the N! possible permutations.

Proposition 4. The pth permutation ’ITP =n.. .nN of the

y coordinates of P (see Def. 2) in a list of N! possible orderings

N
for N points can be uniquely specified by

N-1 NI

(14) P=P(N)+ <7 [P -1], 3= N,
i=2 :

where P(j), 2 < j < N, is the place (numbering from left to right) of

element j in 7rP with all elements > j removed.

Proof: This follows from a standard inductive definition of permutation
generation:
Definition 5. Given a permutation 7 = R NI of

1,...,N-1, the next N permutations in the list are:

N n1 . . nN__1
n, N TN-1
n1 ... N nN__1
n1 . nN_1 N
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Continuing the proof, the ith

permutation of the N indicated above
is that with N in the ith place. This accounts for P(N) in (14).
Now select any one, say Moo of these permutations and delete N

to get m again. This permutation has a weight of N 1in (14), since it
generates N permutations of length N. The other factor of (14) for
j=N-1is P(N - 1) -1 because N - 1 in the P(N - 1)™ place of

7 implies that N[P(N - 1) - 1] permutations of length N appear
earlier in the list than those generated by w. Then delete N-1

from 7 to obtain a permutation w' of length N - 2; 7' receives a
weight of N(N - 1) since it generates N(N - 1) permutations of length
N, etc. I

As clarification the permutations for 1 < N <4 are listed in Table 3;

(14) is easily checked for low-order permutations.
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Table 3. List of Permutations for 1 < N < 4.

1 <N=< 3 N=4
P T P 'TTP P TFP P (S
1] 1 14321 ] 9la213]|17/4132
12 213421 |10/ 2413} 18{1 432
s 303241 |11]2 143 ] 19|1 342
al 3214 |12} 21 34| 20[1 32 4

11321 504231 {13/ 4312 | 214123
212 31 6l 2 431 |14/ 3412 | 22{1423
31213 712341 |15/ 31 42| 23]12 4 3
41312 gl2 314 |16]31 24| 24{1 2 3 4
511 3 2
6|1 2 3

Observation 4. Given an ordering ’ITP = nl .. .nN for PN

(see Def. 2), there is a unique inverse permutation

-1
15 =q _ = P(1).--P(i)- - - P(N),
(15) T 0 (1) -P(i) (N)
where P(i) is the place of i in ﬂ"P; 7TQ corresponds to a reflection
of PN about the diagonal y = x in S; if Q =P, then Tp is its own

inverse, and P._ is said to be symmetric with respect to y = X.

N

Proof: This is perhaps best seen by an example: I

-1
Example 1. 7T32 = 25341; ir32 = ’ITgl = 51342,

Given m = 25341, P = 32 is calculated using (14):
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25341 2341 231 21

+ %2 4+ 20xl "+ 60x0 = 32. Then 7r;lz is found using

(15) and Q = 91 is calculated using (14):

5&342 1342 132 12
1 + 5x2 +20x1 4+ 60X1 = 91; (15) can be justified by

examining Fig. 11.

Fig. 11. P5 of Example 1 and Its Reflection About y = x;

O for m, [ for nL

(D >

A sufficient conditionfor D(P..) = 1/N is now established.

N
Obs. 5 serves as the basis of the algorithm offered in V, although
Th. 1, Lems. 2,5,6, Prop. 4 and Obs. 4 are also used to facilitate

the computation.
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Observation 5. For N = 4, D(P..) = 1/N if P __ satisfies

N

N
Obs. 2(a) and Th. 3(abc).

Proof: As mentioned in the proof of Prop. 2, given any PN’ D(PN)
depends only on the values of A = \V(PN,p)/N - xy| in the SW
corner and at the NE corner(s) of each of the v-plateaus (see
Def. 3). It is shown that if the constraints of Obs. 2(a) and

Th. 3(abc) are satisfied, then A < 1/N at all the SW and NE
corners. Whence, D(PN) = 1/N by (3) and Prop. 2. There are
several types of SW and NE corners to consider. The trivial SW

corner at (0,0) and NE corner at (1,1) are of no consequence, since
A = 0 at these points regardless of PN'* Every pair of points
specified in Obs. 2(a) defines one SW and one NE corner at xjyi;

A= 1/N by construction at these corners if Obs. 2(a) is satisfied.
The x(y) coordinate of each point of PN defines a NE corner at

the y = 1(x = 1) boundary of S (see Fig. 9); A = 1/N at these corners
if Th. 3(ab) holds. The coordinates of point 1 = i = N of PN
define one SW corner (but no NE corner) at xiyi; A < 1/N at these
corners provided Th. 3(c) holds. [Note that no two points of PN
share the same coordinate, by hypothesis of Th. 3(abc).] This

covers all possible SW and NE corners for any given PN. I

%
Recall that the points of P_. must lie on the interior of S, by

N
definition.
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Most of the foregoing theoretical development for N = 4 is
incorporated in a few~hundred statement FORTRAN program. The
algorithm is described informally below in eight basic steps that
include several explanatory remarks. Using the program the author
claims to have found all optimal distributions (see Def. 4) for
N =4, 5and 6 (DN = 1/N), and also to have shown that DN > 1/N
for N = 7 and 8. The latter result is deduced from the lack of output
when running the program with N = 7 and 8. Apparently, this is

experimental evidence in support of the conjecture that D__ > 1/N

N
for Nz 7.

The UNIVAC 1108 total run times and the number of optimal
distributions obtained with DN = 1/N are summarized in Table 4.

The optimal distributions are all listed with accompanying sketches

in VI.

Table 4. Some Data On the Computed Results.

N N CPU Time(sec.) Number of Optimal Distributions
Symmetric Total

4 24 7.591 8 20

5 120 9.055 6 52

6 720 9.339 4 40

7 5040 13.262 0 0

8] 40,320 85.388 0 0
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Algorithm Description

]-.

Initialization. Select 4 < N =<8. (An N larger than 8 was not
tested.) Choose a tolerance (TOL) for safety in making decisions

10—3 was used.) Calculate N'!

il

involving inequalities. (TOL

and the weights N!/i!, 2 <i

1A

N - 1, of Prop. 4 for use in
coding the Pth permutation 'rrP with the formula of (14). Set
P = 1. (All N! possible permutations are considered, at least
briefly.)

, th . .
Consider the P permutation 7m_ =n....n . of the ordinates

P 1 N

(see Def. 2) of the N points. Call a subroutine for obtaining

7m_ from P. Form the inverse permutation using

P Q™ "p
(15) (see Obs. 4) and calculate Q using (14). If Q < P,
increment P and repeat step 2 if P < N! (In this case the
reflection L) about y = x of T has already been considered.
1f Q = P, then 7TQ = 'rrP and PN is symmetric.)

Test for the 4-point pattern of Th. 1. If such a pattern appears
at all in PN’ it must occur in the lower left-hand corner of the
unit square. (No more than one such 4-point pattern may
occur.) If N = 7, this 4-point pattern may not occur (see
Lem. 5). Increment P and go to step 2 if P < N! and these

rules are violated. (Step 3 quickly eliminates many permutations

from further consideration.)
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Establish the upper and lower bounds of Th. 3(abc). (Without
loss of generality, it can be assumed that initially, no two

points of P__ share the same x or y coordinate.) Test the

N
consistency of Th. 3(ab) and Th. 3 (c), e.g., increment P
and go to step 2 if P < N! and the product of the upper bounds
of (ab) plus TOL is strictly less than the lower bound of (c).
Compute the equalities of Obs. 2 (a) and test their consistency
with the bounds of Th. 3 (ab). If an equality .xjyi is strictly
outside the maximum possible range afforded by Th. 3 (ab)

with TOL used to slightly widen the range, then go to step 2
after resetting any equalities a;nd incrementing P, if P < N!
(The equalities can be stored in the above (below) diagonal
portion of an NXN matrix, for example.)

Compute the equalities of Lem. 2 and (10) and test their con-
sistency with the bounds of Th. 3 (c). If an equality falls
outside the permissible range of Th. 3 (c), even with TOL,

then increment P, reset equalities and go to step 2, if P = N!
If N = 7, test for the 3-point patterns of Lem. 6. If such a
pattern is found, then increment P, and if P < N! reset (to
zero, say) all equalities and go to step 2, unless the pattern

is an exception satisfying the inequality in A and N of Lem.

6.
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Consider each new (most recent) upper bound xj(max) on an

Xj that is involved in an equality xjyi = E of Obs. 2 (a). If
E/xj (max) - TOL > yi(min), the old lower bound to Y then
yi(min) is replaced by the ratio E/xj (max) and this new lower
bound is flagged, unless yi(max), the old upper bound to V.

is exceeded in which case the equality E cannot (of can no
longer) be supported, so P is then incremented, and if

P = N! all equalities are reset and a return is made to step 2.
A similar procedure is followed for e\}ery xjyj equality of

Lem. 2. And analogous tests are performed for the most recent
upper bounds on the yi‘s and the new lower bounds on the
xj's and yi's. In the same way, using Th. 3(c) search for
new bounds on the coordinates of those points of PN that are
not involved in an Xj yj equality of Lem. 2. (The first time step
7 is executed for a given P, every variable involved in an
equality has "new" bounds,by definition. These bounds are
implicit in the equality and the size of S.) If there are any
néwly—flagged bounds as yet not considered for their effect on
other bounds, then repeat step 7. (The E's and the bounds

are always rational numbers because N is finite. Conse-

quently, the iterative process of step 7 eventually terminates.)
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Termination. Output the optimal distribution of n_ (see

P

Def. 4) consisting of the equalities {xjyi = E} and
{x},y}, = E} and the various ranges L= Xj’yi < U} and

{L =xy, £U} that must hold. (D

= 1/N for any set P
37 N / Y

N
satisfying these constraints.) If P < N!, increment P,

reset all equalities and go to step 2. Otherwise, halt.
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VI. ALL OPTIMAL DISTRIBUTIONS FORN = 4,5, AND 6 (DN = 1/N)

On subsequent pages there are a total of 14, 29 and 22 blocks
of data and accompanying sketches of optimal distributions for
N = 4,5 and 6, respectively. The author believes that this tabulation
is correct and complete .* As an illustration of how to read the table,
consider the "fleshing-out" of the first block of data for N = 4:

= ?
iji ? /4

P=3 m,= 3241 Q=9 w.=4213 i=1 i=1,2 i=1,2,3

P Q
=1 ?=2,1 ?=3,%%
0<x s 1/4 0<xy s1/4 3/4s y < 4/4
1/4 < X, < 1/3 X,¥, = 1/8 3/8= y, = 2/4
2/4 < Xy < 2/3 0 < X3¥q < 1/4 0< y; s 1/4
3/4 < X, < 4/4 2/4 < XV, S 3/4 2/4 < Y4 = 3/4 .

Note that Q and w,. are absent for symmetric distributions (see

Q
Obs. 4), and that only the numerator of fractions expressible with

N as the denominator is listed. Asterisks are used to indicate the
absence of an iji equality constraint (see Obs. 2(a)). The occur-

rence of a fixed fraction rather than an interval of real numbers is

indicated by centering the fraction between appropriate columns,

*The information in the table is derived with the algorithm described
in V. Every distribution obtained by hand methods, including all
the 4-point permutations and several others, agrees with the com-
puted result.
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as with the "1/8" in the first block of data. The sketch beside each
block of data depicts (approximately to scale) the ranges (regions,

arcs or points) in S of the N points for The distribution for

p*
"ITQ is obtained by reflection about the line y = x (see Obs. 4). For

convenience, this line and the hyperbolic arcs corresponding to the

non-zero lower bounds to ijj are faintly drawn in the sketch.
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APPENDIX

Calculation of optimal distributions for N =1, 2 and 3.

From (2), (3), (5) and (6) one deduces that DN is attained
by solving the equalities

(A1) x, - =L

iT N YiT

i-1
N

Z =

- X.Y,
1}’1.
where 1 < i < N is chosen so that these expressions are maximum.

Clearly, X, =y, for such an i; this yields:

_ V1 +4(2i -1)/N -1
(A2) % 2
= \/E—gl,ifi-—-N:l,
(‘
32'1,1f1=1
=< and N = 2;
...\_./..—7_.2_.-__1_1 if i=2
_
( )
V71/3 =1 | _
> , if =1
=<3@5'—-L if i=2 g and N = 3.
31:———23/23'1,11:‘1:3
"

W,
Thus, the optimal solution for N = 1

is x, =y, = Dl = (ﬁ— 1)/2.
For N = 2, substituting the results of (A2) into (Al) reveals thati =1

is the "critical index," i.e., (/3 - 1)/2 -0 > (/7 - 1)/2 - 1/2, so
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X =y, = D2 = (/5 - 1)/2. This D2 imposes limits on P,:

X, - 1/2, ¥, = 1/2, 1 - X,¥, < (\/37 - 1)/2, which imply that

Xys¥, < \/;/2 and X,¥, 2 (3 —_\/3')/2. Similarly, for N = 3 the
critical index is i = 2, since (,/7/3 -1)/2 -0,

(v/23/3 - 1)/2 - 2/3 < (/5 - 1)/2 - 1/3. Hence,

x, =y, =D, = (/5 -1)/2and Dy = (3/5 - 5)/6. This D, imposes
limits on P, and Pyt X4 Vi 1/3 - X ¥y Xg = 2/3, ys = 2/3,

1 - X,Y3 < (3ﬁ~ 5)/6 which imply that Xy Yy s D3,

x,v, 2 (1-3/5)/6; x3,y; s (3/5-1)/6, x5y, = (11 - 3./5)/6.

See Table 1 and Fig. 2 for a summary of these results.

Proof of Lemma 4.

Clearly, C = 0 is feasible. Suppose C > 0, and that the first
£ points of C in lexicographical order (see Def. 2) satisfy

y < ...< yS , Wwhere Sl< e < SE’ i.e., the ith

point
51 )

of C in the first £ of the ordering is above and to the right of the
(i- I)St point of C, 1< i < £. There are two cases to consider

for C =1 and one case for C > 1.

Suppose C> 1 (and B = D= 0). Then Th. 2 implies that

2
- A+ £ +1)
(A3a) *sJs, T arcran

while by Th. 3(c) (which is not dependent on Lem. 4),
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A+ S A+ 0+1
y £ ——,

(A3b) N

The question is for what values of C does (A3a) fall in the range of

(A3b)? Since £ =< C,

(A+£+1)2 - (A+1&—1~1)2 < A+ L+2)A+L+1) A+ L+1

Xsﬂys£=(A+C+2)N @B+ L+2)N A+L+2) N =T N
and X ys is strictly less than the larger end of the range.
A

However,

A+ 4 <?X v =gA+/3+1)2

N S, 8, A+ C+2)N
2
?

with simplification yields C = L +Al+],

A+t !

/=1 implies that X ys is not less than the smaller end of the range
)/
iff ¢ =2 and A=0, since C> 1 was assumed. By Lemma 3,

these two points of C must satisfy xj < Xs < xS and
1 2

Yj< ysl< Ysz (see Fig. 8).

Now consider the case C = 1 with B= D= 0. By Th. 2

2
| _@Aa+2)
(h4a) Xslysl (A+3)N

Again, by Th. 3(c), the required range becomes

(A4b)
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it is seen that (A4a) and (A4b) are compatible. If C =1 and
B+ D=1, then Th. 2 and (10) (evaluated with "A" = A + 2,

wpgn - NP = BCY = O) Yleld

2
(A5a) % _(a+3)

y =
5,78, (A + 4)N

while Th. 3(c) implies that

(A5Db)

(A5a) and (A5Db) are also compatible.

Finally, by Lem. 3 the only feasible point configuration for
C > 2 where the ordering assumed at the beginning of this proof
does not hold is that shown in Fig. 8 fo:l C = 3.

Proof of Lemma 6.

Assuming that DN = 1/N is possible, consider the case of

Cor. 2 with B = C = D = 0. Referring to Fig. Al,

2
_a+1)
(Ab6a) ijj A+ 2)N '

by Cor. 2. There can be no point t of PN with Xt < xj and
yi < Y, or X < X, and Yy < Yj by Lem. 5; these forbidden regions
are indicated by X's in Fig. Al. Hence, from Th. 3(ab) and Fig. 9

With llBll = IIDII = 1

(A6b) xj Y. <
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(Abab) imply that

@a+1® ? @+2)?

A+ 2 - N
must hold for DN = 1/N, which occurs only for
A+ 2)>
(Abc) N < 1—————-)—7: )
(A+1)

IfA=1, (A6c) yields N < 6. Thus, only A # 1 is of interest for

B=C=D=0 and N =7 in Lem. 6. By Obs. 2(a) and Th. 3(a)

A+ k.

(A6d) xkyj— N’XkSN’
(A6bbd) imply that 7

?A+1
(A7a) k = At N
must hold for DN = 1/N; by symmetry,

?A+1
(A7b) b= At 2 N,

where (£ - 1)/N < y, < /N by Th. 3(b), and £ is the number of

points in P, with y coordinates =< yi. Now consider under

N
what conditions it is necessary for the existence of two points t
and u of PN satisfying xj < X, < X and ¥y < Yo and X < X,

and yj < Yy < v (see Fig. Al). Both such points must exist if

?
A+l ;
(A7c) A+2N >A+3

holds, for otherwise, (A7ab) could not hold, andk = £ = A + 3 is

54



determined by A and the three points i,j,k alone (see Def., 2). But
the existence of the points t and u implies a configuration of four
points i,t,k,u forbidden by Lem. 5. Since (A7c) holds if N is larger
than (A + 3)(A + 2)/(A + 1), Lem. 6 follows forB=C = D = 0.

It remains to examine the other cases of Cor. 2. Suppose C =1

and A =B =D = 0, This is equivalent to the case just considered with

Fig. Al. Only Possible Point Configuration with the Hypotheses of

Lem. 6,

O,
B=0{3\C=0
A D=0

o X
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= 1; as seen above, this situation is not of interest for N = 7 in
Lem. 6 and can be eliminated. The case with C=A =1 and
B = D = 0 is also equivalent to the first case with A = 2. This
situation can be eliminated because (A7c) holds for N = 7 and A = 2,
The cases of Cor. 2 withA =0, 1, 2andC=B+ D=1 (see Th. 2
for the position of point r) can be eliminated by Lem. 5. Finally,
the cases C =2,3 withA= B = D = 0 are also eliminated by Lem. 5

(see Fig. 8 for the relative positions of the points).
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