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1. Introduction

In this paper we consider the "backward-difference multistep

method"”

I ™M Q

rl_n v yp'—‘hfp, (L.1)
m=1
for the numerical integration of the scalar ordinary differential
equation y'(x) = f(x,y(x)). Here, g is a positive integer, h is
the stepsize, and V is the backward difference operator. It is
shown by Henrici [12, p. 207] that if y(x) is being approximated at

the points X, = X + ih, then (1.1) is the method which results from

0

, X and then

interpolatin x) at the points x_, X s e e
p g yx) p o’ ¥p-1 D

evaluating the derivative of the interpolating polynomial at the

oint x .
P p
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With (1.1) we associate the polynomial

Q

i = = e -n", (1.2)

and say that (1.1) satisfies the root condition if (i) the zeros of p

lie inside or on the unit circle in the complex ¢-plane and (ii) p
has only simple zeros on the unit circle. It is well-known (Henrici
[12, p. 287]) that (1.1) is stable in the sense of Dahlquist if and only
if (1.1) satisfies the root condition.

It is the purpose of the present paper to establish
Theorem 1.1
The backward-difference multistep method (1.1) satisfies the root
condition iff 1 = g < 6,

Theorem 1.1 has been believed for a long time. Mitchell
and Craggs [15] computed the roots of p(f;q) numerically using
Graeffe's root-squaring method: for 1 < g <6 they found that p
had one rootat £ =1 and g - 1 roots inside the unit circle; for
q = 7 they found that p had arootat £ =1 and, approximately,
at £ =+ i; while for ¢ = 8 they asserted that p had at least two
roots lying outside the unit circle. Henrici [12, p. 220] conjectured
that Theorem 1.1 held. Elsewhere, Henrici [12, p. 207] was less
explicit, and this seems to have given rise to the belief that

Theorem 1.1 had been proved (see, for example, Gear [11, p. 192]).




The method (1.1) has been little used because of its undesirable
stability properties. Recently, however, (1.1) has assumed new
importance since Gear [11] has shown that (1.1) is "stiffly stable"
for 1 < g < 6. See also Curtiss and Hirschfelder [8], Dill [9],

Moretti [16], and van der Houwen [19].

2. Preliminaries
Let
14
o(ziq) = (1 - 2)7 p(T2)/22, (2.1)
so that )
1 1 . .d=-m m=-1
p(z;q) = =2 n (1 £ 2z) (22) : (2.2)
m=1
q-1 L
= 3 ai(q)zq 1= cay. (2.3)
i=0

The mapping £ = (1 + z)/(1-2z) maps the unit disk in the
¢ -plane into the left half plane in the z-plane. Noting that
p(£;q) has a simple zero at ¢ = 1, we obtain
Lemma 2.1
The method (1.1) satisfies the root condition iff (i) the roots of
p(z;q) have non-positive real part and (ii) the imaginary roots of

p(z;q) are simple.



To analyse the roots of p(z;q) we apply the Routh-Hurwitz
theorem (Obreschkoff [18, p. 108], Marden [14, p. 180], to obtain
Lemma 2.2
Let ao(q) > 0. Then the zeros of p(z;q) have strictly negative real
parts iff Dk(q) >0 for 1 sk =q ~1. Here, Dk(q) is the determinant

of order k,

a,(q) ao(CI) 0 0 0 0
a3(q) aZ(Q) al(q) aO(CI) 0 0

D@ = | agl@) a,(a) az(q) a,(@) a; (@) ay(@) ... (2.4)
aZk—l(q) aZk—Z(q)' . . ak(CI)

where ai(q) =0 if i =z q.

The following lemma is an easy consequence of Lemmas 2.1
and 2.2:
Lemma 2.3
If Dg(Q) < 0 forsome £, 1< £ < q-1, then (1.1) does not
satisfy the root condition.

Proof: Forreal e set

q-1 .
~ -1-i
p.(2:q) = p(z + €:iq) = ai(€7CI)Zq , Say.
i=0




Let Dﬂ(e;CI) be the determinant of the form (2.4) corresponding to
p(2i9).

Clearly, ao(O;q) = ao(q) > 0, while, by assumption,
DE(O;q) = Dz(q) < 0. Hence, by continuity, there exists 0> 0
such that a,(e;q) > 0 and D,(e;q) < 0 if le| = 6. Applying
Lemma 2.2 to P, (z:q), it follows that at least one zero of
pe(z;q) has non-negative real part if [e] < 0. Since the zeros of
p(z:q) are the translates by € of the zeros of pe(z;q), p(z:9)
must have at least one root with strictly positive real part. From
Lemma 2.1 we conclude that (1.1) does not satisfy the root condi-
tion.

Lemma 2.3 provides a possible approach to proving Theorem 1.1
but it is by no means obvious that this approach is feasible. (In
this connection see the remarks at the end of this section.) An
early step in the present investigation was, therefore, to compute the signs

of the determinants D, (q) for a range of values of q.

i {
The computations were performed using SAC-1 (system for
Symbolic and Algebraic Calculations, version 1), on the UNIVAC 1108
computer' at the University of Wisconsin. SAC-1 is a list processing

system which, among other features, can manipulate polynomials

with rational coefficients.



In SAC-1, polynomials with rational coefficients are represented
as lists of appropriate size; for example, on the UNIVAC 1108, a
polynomial of degree 100 with coefficients each of which is the ratio
of two onehundred-decimal-digit integers would be represented as a
list occupying approximately 4000 storage locations. SAC-1 is based on
FORTRAN and is essentially machine independent; it has been imple-
mented on several computers other than the UNIVAC 1108. A brief des~-
cription of SAC-1, and further references, are given by Collins [3].

In SAC-1, polynomial manipulations are performed exactly unless
the limits of storage or time are exceeded, in which case an error
message is generated. However, there remains the possibility of
computer errors and programming errors. Consequently, all SAC-1
output which was used in the proof of Theorem 1.1, was checked by
hand.

Since it is computationally inefficient to use the representation
(2.4), the signs of the determinants Dk(q)' were found by computing
the associated Sturm sequences (Marden [14, p. 171 and p. 174]); for
details see the Appendix. It was found that (i) Dk(q) > 0 for
l<ks<qg-1and 1=qz< 6 (ii) D,(7) < 0i (iif) Dy(a) < 0 for
8< g=<11; and (iv) Dz(q) <0 for 12 £ q < 35. These results
suggested that Theorem 1.1 could be proved by (a) showing analytically

that Dz(q)< 0 for q = q, where 9, is some not-too-large constant

0
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and (b) using brute force to treat the cases q < 9y Such a proof is
given in the next section with q, = 36.

The SAC-1 computations yielded not only the signs of the
Dk(q) but also the location of the zeros of the polynomials p(z;q)

with respect to the imaginary axis. These results are given in

Table 2.1.
Number of zeros Number of zeros
whose real part whose real part
is strictly is strictly

aq negative positive g | negative positive
2 1 0 19 14 4
3 2 0 20 13 6
4 3 0 21 14 6
5 4 0 22 15 6
6 5 0 23 16 6
7 4 2 24 17 6
8 5 2 25 18 6
9 6 2 26 17 8
10 7 2 27 18 8
11 8 2 28 19 8
12 9 2 29 20 8
13 10 2 30 21 8
14 9 4 31 22 8
15 10 4 32 21 10
16 11 4 32 22 10
17 12 4 34 23 10
18 13 4 35 24 10

Table 2.1

Location of zeros of p(z;q).



The results of Table 2.1 suggest that p(z;q) always has an even
number of zeros in the right half plane; this is proved in the following

Lemma.

Lemma 2.4
(a) The real zeros of p(f;q) lie in the interval [0, 1].
(b) The zeros of p(f:;q) outside the unit circle occur in conjugate
pairs.
(c) The zeros of p(z;q) in the right half plane occur in conjugate
pairs.
Proof: Let ¢ be real. From (1.2) we see thatif £ > 1 then
o(t:q) > 0 while if £ < 0 then (-1) p(£;q) > 0. Part (a) of the
lemma follows. Parts (b) and (c) are immediate consequences of
Part (a).
To conclude this section we give an example where the use
of SAC-1 indicated that a possible method of proving Theorem 1.1
was infeasible. The mapping z = 1/w maps the left half plane
the z-plane onto the left half plane of the w-plane. Consequently,

Lemmas 2.1 through 2.3 remain valid if p(z;q) is replaced by

~ -1 1 d - -
p(z:q) = z? p(=q)= = L (1 + z)q m M 1, (2.5)
2 1 m
m=
q-1 L
== 5@z say, (2.6)




and Dk(q) is replaced by 15k(q). It can be seen from (2.2), (2.3),
(2.5) and (2.6), that, for small i, ai(q) is much more complicated
than 'éi(q). Therefore, if it were true that ]52(q) < 0 for g= qo,
we would have a much simpler method of proving Theorem 1.1.

Unfortunately, this is far from being the case. For example, com~

putations showed that f)k(z.Z) >0 for 1< k= 13.

3. Proof of Theorem 1.1.

Theorem 1.1 follows from Lemmas 2.1, 2.2, 2.3, 3.12 and
3.13.
We will use the "Eulerian integral of the first kind" namely

(Whittaker and Watson [21, p. 253)),

T () I"gv) f (1-x )u 1 v- 1 (3.1)

B(u,v) = B(v,u) = Tlutv)

or, equivalently (Whittaker and Watson [21, p. 255]),

41
B(u,v) = B(v,u) = %‘ﬁ—[}% = plmu-v f (1-x" " 40" ax. (3.2)
-1

Here, B(u,v) denotes the Beta-function while I' (u) denotes the
Gamma-function. We will also use the functions

1 u \ u v
E(u,v) =f (1-x) (14x) = (1+x) (1-x) dx., (3.3)
0

2X
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1 u v v
F(u,v) = f»(l_x) “H;{Z{ =EL.J R (3.4)
0
and

(o4 U, v \4
Glu,v,a) = f (1ox) L(H;Z = (1= 1 g (3.5)
0

In (3.1) through (3.4) the parameters u and v will always be such
that the integrands are continuous. Finally, we will need the
asymptotic expansion for the Gamma-function, namely (Whittaker and

Watson [21, p. 253)]),

1 < 1 L (x) 1 < e12X , x>0, (3.6)
oL 1
®) 27X om?

or, equivalently,

1 1 1
0s[logf‘(x)]—[(x—z)logx—x+zlog 2m] = Tow * x> 0. (3.7)

Lemma 3.1.
). 0=<i=<sq-1,

where (qi-m) is the binomial coefficient (@ - m)! / (@ - m - 1)1 i!.
Proof: Follows immediately from (2.2) and (2.3).
Lemma 3.2

ai(q) = (f) F(i,g-i), 0<1i=<q~-1,
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Proof: Using the binomial expansion,

(- x)i {1+ x)q_i -1 - X)q"i}

= (1 - x)i (2x +[1 - x])q—i - (1 - x)q-i},

ST CES N VR L

( m

i

I
~
VH.
™M

q-i -i m g-m
= ™ @™ -,
m=1 m

Hence, noting (3.1) and (3.4),

() Fli,q-i)

ol q-1 _ _ a3
)f (1-x) [(14x) — (1 -x) ]dx’

q! (gq-i) ! ) {m-1)! (g-m) ! 2m—l
il (g-1)! ° m! (g-i-m)! q! )

’

m=1

g-i m-1
s
m=1

1

Using Lemma 3.1, the lemma follows.
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Lemma 3.3

u v
) 1-x)" (L4x)" - 1
E(u,v) -j - dax.

Proof: From (3.3),

) -

(143)" (1-%)" o

I

2x

1 u
E(u,v) = f (1-x) " (1+x
0

1 u v 1 u v
:f (1-x) (21;}{) - ldx + f 1 - (H;{) (1-%) dx.
0 0 X
Substituting -y for x in the second integral,
1 u v 0 u v
E(u,v)=f (1-x) (14+x) -1 dx +f (1-v)" (1+y) -1 dy.
0 2x - 2y

The lemma follows.

Lemma 3.4

(8)  E(u,v)

F(u,v) - F(v,u);
(b) F(u,v) = 0;
(c) Fu+w, v-w)< F(u,v), if 0= ws v;

(d) Eu,v) =z 0 if v = u.

Proof: Follows immediately from (3.3) and (3.4)
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Lemma 3.5
Let w be an integer such that 1 € w < v, Then

w
u+v

E(u,v) = E(utw, v=w) + = 2 B(u+k, v+1-k).

k=1

Proof: It follows from Lemma 3.3 that
E(u,v) - E(utw, v-w)

+1

(1-x)" (1+x)" - (1-)"W 140"V

fl 2x

But,

(1-x)" (14%)" = (1-0"Y (140" W

(1= (14" [(14)" - (1-%)"]

1

w

k=1

1]

w

ZX 5 (l_x)u+k"1 (1+X)V—k,
k=1

Hence, applying (3.2),
E(u,v) - E(u+w, v-w)

+1

= 3 f (l-x)u-"k“l (l-l-x)vuk dx,
k=1 -1
v +

= = 2"V Butk, vil-k),
k=1

which proves the lemma.

1-0" 1+ ™V 2% 3 (1-0°" 1"

dx.

-k

4
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Lemma 3.6
Let v+l =ru. Let r= 1 and u= 2. Then
1 r+1 1
log B(u,v+l) =z -u log[(r+1)e]—%‘ logu +3 log = +-£log 6.

Proof: Using (3.1) and (3.7),

log B(u,v+l)

1

log I'(u) + log T (v+1) = log I" (u+v+1),

v

1 1
[(u—‘z")logu—u+"2‘log 2n] +

+[(v+‘é‘) log (v+l)-(v+l)+%'log 2m] -

1
12(u+v+1)’

1
[(u+v+'2")log u+v+l)-(u+v+ l)+él—log27r+

= {{u --21-) log u} + {(ru -‘é‘) log (ru)} -

1

1 1 N
([c+ )u - 5 Tog [(r+ Dul} + 5 log 2m - FHT s

= {ulogu—%logu}%-

+ {mlogu+rulogr—%logu-—i-logr}—

- {(rtl)ulogu+ (r + 1) u log (r+1)-—-12-logu—--§‘log (r+ 1)} +

1

+ ‘l‘lo 2 - T
2 -9 [12(c+1)u] ’

= u [rlogr - (r + 1) log (r+1)]—7§‘logu+

S S
[12(r+1)u] *

1 r+l1 1 .
+ Zlog(r ) +2 log 27
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= - uflog(r+l) + r log (%—1-)] —%- logu +

1 r+l, L L Ty
+ 5 log (F7) + 5 log 6+ 5109 (3)

1
[12(r+1)u] °

Since

it follows that

1
r log (—':—-L) < loge,ifr=1.

Using standard tables, for example Abramowitz and Stegun [1, p. 3],
we find that

1 it 1
> log (3) > > [1.1447 - 1.0987] = .023.

By assumption, r = 1 and u = 2 so that

1 1

1 m
TZwil)y = as < 1023 <3 log (3.

The lemma follows.

Lemma 3.7
et v+ 1=ru with r=2 5 and u=5 or u=6. Then

1
G(u,v,:ll-) 5"2' 2u+v B{u,v+l).

Proof: Using the binomial expansion we have

x)” - (1-x)" _ v, k-1
2x B
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. . ~ A\ _
from which we see that the function [(1+x) - (l-x)v]/Zx is a monotone
increasing function of x for x = 0.
Hence,

G(u, v, a)

) f”‘ (1-x)"[(14x)" - (1-x)"]

dx,
0 2X

v v a
< (14+a) —2(l~a) f (l—x)u dx,
* 0

v
- (l1+e)

T 2a(u+l)

(1+a)v+1 1

2 " a(utl) (L+a)

Taking logs and using Lemma 3.6,

u+v

log[G(u,v,a)/(2 B(u,v+1))]

1A

(v+1) log (1+a) - log[a(u+l)(l+a)] -

- (u+v+1) log 2 - log B(u,v+l),

IA

r u log(l+a) - log[a (u+1)(1+a)]
- (r+1)u log 2 -

1 1 r+l 1
- {fu log{(r+1)e] - > log u + > log ( . ) + > log 6},

< uflog[(r+l)e] - r log[2/(1+a)] - log 2} -

- log [a(u+1)(1+a)] - -é— log (6/u).




17

r
Since ‘(%) = .ng (r+1), if r = 5,

we have

r log (8/5) = log [10(r+1)/6], ifr = 5.

Hence, setting a = L , and remembering that, by assumption,
rz5andu=5 or u=6,

log[G(u, v, 5)/ 2"

B(u,v+1)]
< uflog[(r+1)e] - r log (8/5) - log 2} -

- log [5(u+1)/16],

A

u{log[3(r+1)] - log [10(r+1)/6] - log 2}
- log (30/16),

= u log (18/20) - log (15/8),

IA

5 log (9/10) - log (15/8),
= -[5 log (10/9) + log (15/8)],
< - log 2.

The lemma follows.

Lemma 3.8

If v+1 ra wherer=5 and u=5 or u=6 then

Fu,v) < 2"V B, ven).
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Proof: It follows immediately from (3.4) and (3.5) that
F(u,v) = G(u,v,a) +1,

where

1 u v v
I = f (-x) [(4x) - (=x) 1 40
2x

o

and « is a constant in (0,1) which will be chosen later.
Since (1-x)/2x is a monotone decreasing function of x on

(0,1], it follows, using (3.2), that

u v
ISf (1-x) (1+x) dx,
2%

a
L u~1 v 1-%
= / (1-x%) (1+x) . 5= dx,
o
1-a +1
< S f (1-x) (14+x)
[0

(1-x)""1 (14 Y ax,

A

—

R L’;

1\4
5

l-a u+tv

=S 2 B(u,v+l).
Hence;,
Flu,v) < 1;:‘ 2%V B, vil) + Gu, v, a).

Setting « = -i- and using Lemma 3.7, the lemma follows.
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Lemma 3.9

For 0<i=<qg-4 let

4
Ai(q:ﬁ) = (?) (B B(i+4, g-i-3) + = B(itk, g+l-i-k)},
k=1
-1)!(q=2)!
H(q;p) = ((%_5))'! qu%; [AO(CI:O)A3(CI:0) - Al(q;ﬁ)Az(q;ﬁ)].
Then,

2
H(a:B) = Ty - BT, - 87T,

where
3 2
TO =8qf(q - 6)(a” - 49 + 31g - 20) + 280],
2
T1 = 12q(q - 6) (79 - 53q + 154),
Tz = 24.60. (q-6).
Proof:
A, (@;P)
i ' 5 li#k=1)1 (@-1-K);
+3)! (g-i-4)! +k-1)! (g-i-k)!
_ (?) {5(1 )(;? i-4) s U p ],
. ! k=1 !
o q! it(g-i-4)! B (i+3)!
T i(g-i)! q! ( il
4 , .
+ s (i+k-1)! {(g-i-k)!
kop it (@-i-4)1 3

- (g-i-4)! (8 (i+3)! . ; (i+k-1)1 (g-i-k)!
it

(g-i)! il k=1 il (g-i-4)! b
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Since
4 4k-1)1 (q-i-k)!
z il (q-i-4)!
k=1 ’

= [(@-i-1)(q-i-2)(q-i-3) +
+ (i+1)(g-i-2)(g-i-3)] + (i+1)(i+2) (g-i-3) +
+ (1+1)(i+2)(i+3),

= q(q-i-2)(g-i-3) + (i+1)(i+2)(g-i-3) +
+ (i+1)(i+2)(i+3),

= al(q-i-2)(q-i-3) + (i+1)(1+2)],

we have that

Ai(q;ﬁ)

] %?;'l:—f)v"" (Bi+1)(1+2)(i+3) +

+ q[(g-i-2)(q-i-3) + (i+1)(i+2)] }.

In particular,

a0 = T al@-2)@-3) + 21).

Ay @0) = {0t (al@-5)a-6) + 2013,

A (@f) = (37 (248 + alla-3)(@4) + 61),

,(@P) = ‘g—;%—, (608 + a[(a-4)(q-5) + 12]}.

Since

(g-4)! @-7! _ (d-2)(9-4) . (g-5)1(9-N!

q! (@-3)¢ q (@-1)!1(q-2)!



21

and

(@-5)! . (g=6)! _ (q-6) - (q-5)1(g-7)!
(@-1)!  (q-2)! (@-1)1(q-2)! ’

we have that

H(q;B)
= (9-2)(q-4) q {(q-2)(q-3) + 2} - {(g-5)(q-6) + 20}
- (q-6) (24B + q[(q-3)(q-4) + 6]} .
- {608 + q[(q-4)(g-5) + 12]} ,
=T, - BT, - 8°T,. say.
Here,
T,/a
= (@® - 6q + 8)(@” - 5q + 8)(@” - 11q + 50) -
- (q‘2 - 6q)(q2 - 7q + 18)(q‘2 - 9q + 32),
= 8(q° - 5q + 8)(q° - 11q + 50) +
+ @ - 69) [(@° -5q + 8)(@" - 11q + 50) -
- (q‘2 -7q + 18)(q2 - 9q + 32)].
But,
2

2 2 2
(@ -5g+8)(q -11g+50)~-(q@ -79+18)(a - 9g+ 32)
2 2 2
=8(q -5q+8)+ (0 - 5q+ 8)(q -11g+ 42) -

- (CI2 - 79 + 18)(q’2 - 9q + 32),
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= 8((:1‘2 - 5q + 8) + {(q2 - 8q + 25) + (3qg - 17N].
 [(a® - 8q + 25) - (3q - 17)]
- [(a® - 8q + 25) + (@ - DI - 8q + 25) - (@ - 7],

2 A
= 8(q -5q + 8) + (q —8q+25)2-(3q—17)2

2 2 2
-(q@ -8q+25) +(@@-7",

- 8(a” - 5q + 8) - [4q - 24][2q - 10],
2
= 8(@q -59+ 8) - 8(q-6)(q-5),
2 2
= 8[q -5q+ 8- (g -1lq+ 30)],
= 8[6q - 22].
Hence,
TO/8q

= (q2 - 5q+8)(q2 - 11q + 50) +
2
+ (@ - 6q)(6q - 22).
However,
(@ - 5q + 8)(q° - 11q + 50)
2 2
=(qg -6q +q+8)(q -1lq+ 50),
2 2 2
= (@ -6q)(q -1lqg+50)+(q-6+14)(q - 1llq+ 50),
,_ 3 2 2
= (@ - 6)[(a” - 11q° + 50q) + (@” - 11q + 50)] +
+ 14 [(q@ - 6)(q - 5) + 20],

= (q - 6)[’q3 - 10q2 + 399 + 50 + 14(q - 5)] + 280,

= (q - 6) [q3 - 10q2 + 53q - 20] + 280.
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Hence,
TO/Sq
3 2 2
= (q - 6)[q” - 10q  + 53q - 20 + 6q° - 22q] + 280,
3 2
= (q - 6)[qa” - 49" + 31q - 20] + 280.
Also,

T, / 12q(q - 6)

i

2
2(q° - 9q + 32) + 5(q° - 7q + 18),

2
79 - 53gq + 154.

1

Finally,

T2 =24.60. (q - 6).

Combining the above results, the lemma follows.

Lemma 3.10

If g =z 15 then H{g;2) > 0.

Proof: From Lemma 3.9,

H(q;2)/8(q-6)

[T, - 2T, - 4T,1/8(qa - 6),

3 2
q(q” - 4q + 31q - 20) + 280q/(q - 6) -

1

- 3q(7q° - 53q + 154) - 720,

3
ala® - 25q° + 190q - 482] - 720 + 280q/(q - 6),

ala(q - 13)2 + (q2 + 21q - 482)] - 720 + 280q/(q - 6).
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For g = 14,

q?‘ +21q - 482 = 196 + 294 - 482 = 8, Hence, for q = 15,

H(a:2)/8(q - 6)

v

2 2
q (@ -13) +8q - 720 + 280g/(q - 6),
> 15% . 2% 4+ 8.15 - 720 = 300.

The lemma follows.

LLemma 3.11

(@) a,(q) = 2%

i Ai(q;O), if0< i< 3andqgz= 14;

(B)  aq) = 24 A(a:2), ifi=1,2 and qz 36; .
(c) If g =z 36 then

_,29 (g=5)1(q-7)!
(a-1)1(q-2)!

D,(q) = H(q;2).

Proof: From Lemmas 3.2, 3.4, 3.5, and 3.9,

= () Piq-0),

= () (E(t,q-1) + Fa-1,1)],

= (iq) (E(i+4,q-i-4) + F(q-i,1) +

+ 29

M »

B(i+k, g-i + 1-k) },

k=1

if

= 2%8,(@0) + () [E(i+4,q-i-4) + F(a-1,)].
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If 0<i< 3 and q= 14, then q-i~-4=21i+ 4. Hence, from

Lemma 3.4 (parts (b) and (d)),

E(i+4,gq-i-4)+F(g-i,i)=0

Part (a) of the lemma follows.

Ifl<i=< 2 and q= 36, theni+4=50ré6 and gq~-i -4 > 5(1+4).

Hence, from Lemmas 3.4 and 3.8,

E(i+4,q-1-4)+F(qg-1i, i)
=F(i+4,9g-1i-4)~-F(gq=-i-4,i+4)+F(q-i, i),
<F(i+4,q~1i-4),
<2 B+ 4, q-1-3).

Hence,

a @ = 2% [A (@0 +2 () B+ 4, q-1-3)],
= 2% (@;2),

so that part (b) of the lemma has been proved.

Using parts (a8) and (b) we have,

D, (a)

1]

al(q) az(q) - ao(q) a3(q),

2
=29, (@2) A, (@:2) - B (@:0)A,4(@0)],

_ _,2a(d =511

(@-1)!(q - 2)! H(q:2):

which proves part (c) of the lemma.
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Lemma 3.12

(a) D4(7) <o,

(b) D@ <o, 8<q=11,
(c) D,(@ <0, 12 < q< 36,

@ D,@< 0, q-= 3.

Proof: Using the recurrence relation
g-1
p(z:q) = (z + I)p(z;q - 1) + (22)* " /q,

the polynomials p(z;q) can be easily computed for small values of q. )
It is found that
p(z:7)
= (2416 26 + 3577 25 + 4431 z4 + 392023 +
+ 2240 z2 + 735z + 105)/105,
p(z;8)
= (4096 z7 + 5993 26 + 8008 z5 + 8351 z4 +

+ 616023 + 29752‘2 + 840z + 105)/105,
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p(z;9)

' 6
= (21248 28 + 30267 z7 + 42003z + 4907725 +

2
+ 43533 24 + 27405 23 + 11445z + 2835z +

+ 315)/315,

p(z;10)

= (37376 29 + 51515 28 + 72270 z7 + 9108026 +

2
¥ 92610z° + 709382 + 388502° + 142802° +

+ 3150z + 315)/315,

p(z;11)

= (733696 z10 + 977801 29 + 1361635 28 + 1796850 z7 +

+20205902° + 17990282° + 12076682+ + 5844302° +

+ 191730 zz + 38115z + 3465)/3465,

The determinants Di(q) mentioned in parts (a) and (b) of the

lemma can now be computed.

D,(71/(105)"

3577 2416 0 0
3920 4431 3577 2416
735 2240 3920 4431
0 105 735 2240

Dividing out common factors in the first column and last row,



28

D,(71)/(1 05)*

= (35)(49)

0 3 21

73 2416 0 0
80 4431 3577 2416
15 2240 3920 4431

64

Subtracting 33 times the first column from the second column,

multiplying the second column by 73, subtracting 7 times the

first column from the second column, and expanding by the first row,

D,(7/(105)"

= (35)(49)(73) | 130,183 3577
127,280 3920
219 21

Expanding by the last row,
‘ 4
D4(7)/(105)

= (35)(49)(73) {(219)(6378967) -

2416
4431
64

- (21)(269332393) + (64) (55036800)}

= (35)(49)(73) {-736631280)}

< 0.

D3(8pQ105)3

5993 4096 0
=| 8351 8008 5993
2975 6160 8351
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=(6993) (29957928) - 4096) (51910026),
<(]6.0)(3.0)-(4.0)(5.n]1010,

==-2.4 1010< 0.

3
D, (9)/(315)
30267 21248 0

= 49077 42003 30267

27405 43533 49077

=(30267) (743767920)-(21248) (1579084794),
<[(3.1)(7.5) - (2.1)(15.7)]1012,

= -9.72 10%% < 0.

D3(10»Q315)3
51515 37376 O

= | 91080 72270 51515

70938 92610 91080

=(51515) (1811547450)-(37376) (4641195330),

<[(5.2)(1.9) - (3.7)(4.6)] 10>,
=-7.14 10! < 0.
D3(11p434é5)3
977801 733696 0

= | 1796850 1361635 977801

1799028 2020590 1796850
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=(977801) (470918927160) -
-(733696) (1469578545072)
<[(9.8)(4.8) - (7.3)(14.6)] 10t®

= -59.54 101% < o,

Thus, parts (@) and (b) of the lemma have been proved.

Using the same recurrence relation, the coefficients ai(q)
were computed for 0 < i < 3 and 12 = g £ 35. The results are
given in Table 3.1, a,(q) being the rational number Si(q)/d(q).
These results were first computed using SAC-1 and then
laboriously checked by hand using a desk calculator. Table
3.1 also gives upper bounds for Dz(q)[d(q)]z, which were
obtained by approximating gfi(q) to three decimals, rounding up
3, (@) and a,(a) and rounding down ay(a) and 3,(@). For

example,

D2(12)[d(12)]2

1]

8,(12) 3,(12) - §,(12) &;(12),

(1.72 x 2,34 -1.32 X 3.15)1012,

- .1332 1012.

IA

Since these ﬁpper bounds are all negative, part (c) of the lemma
follows.
Finally, part (d) of the lemma follows from Lemmas 3.10 and

3.11.
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Lemma 3.13

The method (1.1) satisfies the root condition forl < qs 6.

Proof: By direct computation,
p(z:;1) = 1,
p(z;2) =2z + 1,
2
p(z;3) = (10z~ + 9z + 3)/3,
3 ‘ 2
p(z:;4) = (162 + 192" + 12z + 3)/3,
4 3 2
p(z;5) = (128z + 175z~ + 155z + 75z + 15)/15,

p(z;6) = (20825 + 303z4 + 33023 + 23022 + 90z + 15)/15.

By inspection we see that p(z;q) has roots with strictly negative
real part forq = 1,2, and 3.

For g = 4,5, and 6, we could compute the determinants Dk(q).
However, by hand it is easier to use the essentially equivalent
algorithm of Routh. We follow Obreschkoff [18,p. 107] except that
(i) we do not divide by the leading coefficient and (ii) we divide out
common factors (these are indicated in brackets); this simplifies

the computations without affecting the result. We obtain the following

arrays:
g_—i_é_
4 3 (4)
19 3 (1)
1 (45)

1 (3)
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128 155 15 (1)

7 3 0 (25)
701 105 (1)

1 (1368)

1 (105)
q =6
104 165 45 (2)
303 230 15 (1)
149 69 (175)
13363 2235 (1)
1 (589032)
1 (2235)

Since the first columns of the arrays are positive, the polynomials
p(z;q) have roots with strictly negative real part for g = 4,5, and 6.

Appealing to Lemma 2.1, the proof of the lemma is completed.
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Remarks on the proof of Theorem 1.1

The proof of Theorem 1.1 given in the last section is unpleasantly

long, but has resisted efforts by the author to shorten it. Here, we

mention several approaches, which might, in other hands, lead to a

shorter proof:

1.

2.

The bound for G(u,v,i) in Lemma 3.7 could be sharpened,
Values of @ and P other than « =-‘11- and B = 2 could be used.
Duffin [10] gives several algorithms for analysing stability

problems.

Using the expression for ai(q) given in Lemma 3.1, noting that ~

2 = 2m+1 - Zm, and "summing by parts", it can be shown that
- doitl _L
8@ =" e @ ¥y
where
d m g-m q ; q
a, = X 2 (i)=2-2 (k)'
! m=1 k=0

Using Lemma 3.2, Dz(q) can be expressed as double integral,
namely

D, (@)

= -flfl l:q & Le0? - 1-0%0-n’[aen? - 0987
oo 3 (2x)(2y)

i - - X -2 -2
_ @) (& Wl b 10T M- 1asn ™™ - -9 ]J
172 (2x)(2y)
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There is an algorithm due to Schur and Cohn (Marden [14, p. 198))
which enables one to determine how many zeros of a polynomial
B(C) of degree g-1 lie inside the unit circle. More precisely,
a sequence of determinants Ak, 1=ks=qg-1, is computed, and
a necessary condition for all the zeros of p to lie inside the
unit circle is that (—l)k Ak >0 for 1 =k <qg-1. For the
polynomial

p(Lia) = p(ia)/(E-1),

where p({:q) is given by (1.2), we find that

q 2
1.2 1
b=l -2 0
m=]

so that (—l)l Al > 0. This means that the Schur-Cohn approach

does not provide a trivial proof of Theorem 1.1.

Regarding the Schur-Cohn approach we may make the
following observations:

(1) The coefficients of the polynomial p(f;q) of (1.2) are no
less complicated than the coefficients of the polynomial
p(z;q) of (2.1). However, the coefficients of p(£;q) can
be expressed in terms of the psi function

q
Y(g+l) = X
m=1

8 I~

(where 7Y is Euler's constant), whose properties have



(ii)

(iii)

36

been studied (Norlund [17, p. 99], Abramowitz and
Stegun [1, p. 258]).

Duffin [10] has demonstrated a connection between the
Schur-Cohn algorithm and the Routh-Hurwitz algorithm.
At the time of writing this report the author is somewhat
confused about the Schur-Cohn algorithm. From the
descriptions of Marden [14] and Householder [13] it
appears that the Schur-Cohn algorithm provides only
necessary conditions and that awkward special cases
arise when one or more of the determinants Ak are
zero. However, Wilf [22] uses a version of the Schur
method described by Wall [20, p. 298] to obtain

necessary and sufficient conditions for a polynomial to

have all its zeros inside the unit circle.
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APPENDIX

The calculation of the location, with respect to the imaginary

axis, of the zeros of a real polynomial with integer coefficients.

In this appendix we describe an algorithm for determining the
location, with respect to the imaginary axis, of the zeros of a real
polynomial with integer coefficients. Using SAC-1, the algorithm
has been implemented as a subroutine, ROUTH, a listing of which is
given at the end of this appendix; the SAC-1 subroutines used by
ROUTH are described by Collins [3-6] and Collins and Heindel [7].
The results of Tables 2.1 and 3.1, as well as the signs of Dk(q)
for 1 = q < 35, were obtained by using ROUTH.

The input to ROUTH is a polynomial u in canonical SAC-1
form. That is,

n
2 o zﬁk

u(z) = .
k=1 k

(A.1)

where the exponents ﬁk form a decreasing sequence of integers,

By >B, > ... >B 20 (A.2)

n

and the coefficients @ are nonzero integers.

The output from ROUTH is a list SEQ. If u has degree less
than 1, then SEQ is the empty list. Otherwise

SEQ = (s,, s ) (A.3)

1 2,...,Sm+3
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where
sl = number of zeros of u with strictly negative real part,
s, = number of imaginary zeros of u,
S, = number of zeros of u with strictly positive real part,
Sj+3 = number of imaginary zeros of u with multiplicity j,

and m = 0 is the maximum of the multiplicities of the imaginary
zeros of u.
It will be assumed, without loss of generality, that the leading

coefficient of u, @, . is positive. Let i=\/:-l— and let

n
Bl uz/i)= = a 2Pk ik

w(z) =1
k=1 k
Y - - 'y - .
where /k ﬁl (Sk. Let k Zek+ Tk where €1 and T, are
non-negative integers and 1, = 0 or 1, =1. Then

k k

w(z) = wl(z) + iwz(z)

where
n €
wiz)= 3 a 2Pk K,
k=1
Tk=0
n
€
WZ(Z) = Z @ zpk(—l) k
k=1
T, =1
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It suffices to determine the location of the zeros of w with respect
to the real axis. For, as is easily seen, zeros of w (i) on the real
axis (ii) in the upper half plane and (iii) in the lower half plane,
correspond to zeros of u (i) on the imaginary axis (ii) in the right half plane

and (iii) in the left half plane.

Before proceeding further, we recall a useful property of greatest
common divisors. (Birkhoff and Maclane [2, p. 74]). Let I[z] be the
set of polynomials in the variable z with integer coefficients, and
let R[z] be the set of polynomials in the variable z with real
coefficients. If ql, q, € I[z], let ngI[z] {ql,qz} be the greatest
common divisor of q, and q, in I[z]; that is,

(i) if r, ry, T, € 1[z], q, =rr, and qa, = rr,, then there exists

r,€ I[z] such that gch[ ]gql,qz rT,,

(ii) gcd ] {ql,qz} has a non-negative leading coefficient,

I[z
(iii) ngI[z] {0,0}=0

The property referred to above is that if q,.9, € I[z] and T, ry

r, € R[z] are such that q1 = rrl, qZ =rr,, then there exists r € R[z]

2 2°

such that gch[ ]{q =rr,. In other words, if q,. 9, € 1[z]

17923 3

then ngI[z] {ql,qz} is a greatest common divisor of qa, and qa,

when these are regarded as polynomials in R[z].
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We now return to the problem of locating the zeros of w. Let

v = ngI[z] {wl,wz),
p, =W, /v,
P, = wz/v.
Then
W = vp
where

P=p, +ip,i
so that we must locate the zeros of v and p. It will be of importance

that, because P, and P, have no common factors, p has no real

ZEeros.
The zeros of v may be located as follows. Let gj, j=z 1,

and hj’ j = 0, be the polynomials with integer coefficients defined by

hO = v,
hj+1 = gch[z][hj,hj l.iz o
g, =

= h, , = 0
J/hj+1 ]
where hj' denotes the derivative of hj' Let m = 0 be the smallest

integer such that hm is a constant polynomial. Then
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If (Z—Zo)r, r = 2, is a factor of hj, then (z-z'.o)r—1 is a
factor of h],', so that gj has only simple zeros. Furthermore, the
zeros of gj are the zeros of v of multiplicity not less than j.
Let nj denote the number of real zeros of gj . Remembering that

p has no real zeros, we have that

where the s, are elements of the list (A. 3).

Since v is a real polynomial, its non-real zeros occur in
conjugate pairs, so that the number of zeros of v in the upper half
plane is equal to the number of zeros of v in the lower half plane
namely

[deg(v) - 5,12,
where deg(v) denotes the degree of v.

The above computations to locate the zeros of v are easily
carried out using SAC-1, since there are SAC-1 subroutines for computing
the derivative of a polynomial (PDERIV), the gcd of two polynomials
(PGCD), and the number of real roots of a polynomial with simple

roots (NROOTS).
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The zeros of p can be located as follows. Let deg(pl) denote

the degree of p;- - By construction, deg (pz) < deg (pl). Thus, if
deg(p;) = 0 then p has no zeros. If deg(pl) > 0 we can find nonzero

integers fk’ gk, and polynomials with real coefficients P qk such

that

() £ P =9y Pryy T 9% Prya

(i) f g, >0, 1=sk=u

lsk=su,

(iii) deg( ) < deg( ), 1 =k<Hu,

Pry1
= 0.

Pry2

(iv) Plil X 0, P2

Dividing by fk we have
Iy

Pk = Tkt Prar _(?iﬁ Preze

l=sk=sH,

where Ek = qk/fk—l' Let bk and Cy be, respectively, the signs

of the leading coefficients of Py and qk. Let m, and ny be,

respectively, the degrees of Py and qk. Then,
= bk—l/bk’ 2<sks K,

n, =m 2=sks W,

k - m

k-1 k'

Set

and
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where

A, )

I 28

denotes the number of negative terms in the sequence X N

l, LY ‘_L.
Then it follows from a result quoted by Marden [14, p. 172] that

the polynomial p has
[deg(p,) + AV]/2
zeros in the upper half plane and
[deg(p,) - av]/2

zeros in the lower half plane. Recalling the previous results concern-

ing v, the terms 8, and S5 in the list SEQ are given by

1

s; = [deg(v) - s,1/2 + [deg(p,) + aV]/2,

i

s, [degv - SZ]/Z «1—[(deg(pl) - AV} 2.,

The above computations to locate the zeros of p are easily
carried out using SAC-1. There is a SAC-1 subroutine (ISTURM)
which, given P, and Py computes the sequence P p4, ooy p!J«-!-l'
However, ISTURM stores all these polynomials, which could lead to
storage problems if pl is of high degree. Hence, a modification of
ISTURM has been incorporated into ROUTH.

The signs of the determinants Dk‘(q) of (2.4) can be found

once the corresponding quantities ck are known. For, using the

results and notation of Marden [14, p. 175 -~ p. 180] we find that
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1
wn
2]

«Q

3
=
o
~Z

1

sign (bn-k+1 ,n=k+1 bn-—k,n-k)

sign (bk—l bk)

i

sign (bk__l)/sign (bk)

sign (ck).
We give below a listing of the subroutine ROUTH. A program,
MITCHEL, was written which generated the polynomials p(z;q) of (2.1)

using the recurrence relation

q-1
p(z:q) = (z+1)p(z;q-1) + E‘Zlq——-‘

7

and then used ROUTH to locate the zeros of p(z;q). A listing of
MITCHEL is also given.

Tables 2.1 and 3.1 contain the results obtained for 2 < g < 35.
These computations required about 40 minutes on the 1108. It may
be remarked that the time required increased very rapidly with q.

For example, it took less than ten minutes to compute the results

for 2 = g = 25 but about 15 minutes to compute the results for

q = 35.
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PROGRAM MITCHEL

PROGRAM TO GENEZRATE POLYNOMIALS P(Z»Q) CORRESPONDING TO

BACKWARD DIFFERENCE MULTISTEP METHODS OF ORDER Q
*****************************************************
COMMON /TR1/ AVAIL,STAKsRECORD(72)

COMMON /TR2/ SYMLST

COMMON /TR3/ BETA

COMMON /TR4/ PRIME,PEXP

IMPLICIT INTEGER (A-Z)

DIMENSION SPACE(20000)sPA(1000)
*****************************************************
INITIALIZE SAC1

LISTS STORED IN ARRAY SPACE

PA ARRAY USED TO GENERATE PRIME LIST
*****************************************************
IN = 5

ouT = 6

CALL BEGIN(SPACE(20000)

BETA=2#%33

CONS=4000000001

PRIME=GENPR(PA»10005CONS)

CONS=PFA(CONS$0)

CALL ELPOF2(CONSsPEXP»DUM)

CALL ERLA(CONS)

SYMLST=0

LA AR XTI LSS LIS ETEELELEEZ ISR ETLE L L LR L LT T EFR R
QMAX 1S MAXIMUM ORDER -
L2 a2 2SS LT LTTLITLEE LT L L E L LR PL LT L TE TR 2T XL PR EVREE AR
QMAX=35

PRINT 10sQMAX

FORMAT( *1 QMAX= ' , I5)

L2822 222X R ELTLLLLIIT LR LRL E LR RL R L TR LR R FE RS
SET UP BASIC RATIONAL FUNCTIONS

RZO  =+1Z#%%0

RZ1  =+12%%]

RZ1PZO=+1Z**1+1Z%%0

R2Z1 =+27Z%%1

t2 222X 2222 ELTE LTSS SIS ELT SR L L TR S LR SR T XL
ZL=PFA(35,0)

Z=PROSYM(ZL)

CALL ERASE(ZL)

ONE=PFA(1+0)
PZ1=PFA(150)
PZ1=PFL(ONEsPZ1)
PZ1=PFLIZsPZ1)
RZ1=RPOLY (PZ1)
CALL PERASE(PZ1)

RZO=RQ(RZ1sRZ1)
RZ1PZ0O=RSUM(RZ1sRZ0)

R221=RSUM(RZ1sRZ1)

(L E2 222X LTSI TLIELZLEEELIL LR L L L BT RIE TS FEREE LT TR TR LTS
GENERATE POLYNOMIALS USING RECURRENCE RELATION
P(ZsQ)= (Z+1)P(2sQ-1)4( (2Z)%*%(Q-1) )/Q

(22T ST TS LR TR T RL L IE TR T LR T PR R R R ARV S R R A SV ARV S
RZ=0

RZTOQ=BORROW(RZQ)
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RQZ=0
DO 500 Q=1,QMAX

RQZT=RSUM(RQZsRZ0)
CALL RERASE(RQZ)
RQZ=RQZT

RZT1=RPROD(RZsRZ1PZ0)
RZT2=RQ(RZTOQsRQZ)
CALL RERASE(RZ)
RZ=RSUM(RZT1sRZT2)
CALL RERASE(RZT1)
CALL RERASE(RZT2)

RTEMP=RPROD(RZTOQs»R2Z1)
CALL RERASE(RZTOQ)
RZTOQ=RTEMP

PRINT 50:Q

FORMAT('1QsRZ= ' ,15)

CALL RWRITE(OUTsRZ)

PZ=BORROW(FIRST(RZ))

CALL ROUTH(PZSEQ)

I=1

TEMP1=SEQ

IF (TEMP1 +EQe 0O ) GO TO 450

CALL ADV(TEMPZ2,TEMPL) -
PRINT 420sIsTEMP2

FORMAT( v SEQ(' 15 5 )= ¢ 4 [5 )

I=I+1

GO TO 400

CONTINUE

CALL ERASE(SEQ)

CALL PERASE(PZ)

CONTINUE

3 3 3 3 36 3 3% 3 3 36 36 F 363 3 3 I I I T T I I NI AR R RS RS

TIDY uP
*****2*****%**%*************l************************
CALL RERASE(RZ)

CALL RERASE(RZTOQ)

CALL RERASE(RQZ)

CALL RERASE(RZO)

CALL RERASE(RZ1)

CALL RERASE(RZ1PZ20)}

CALL RERASE(R2Z1)

CALL ERASE(PRIME)

CALL ERASE(SYMLST)

LR 222X T TTTLI LT LT EELE LT T YT ERREE IR EEE ST ITIILE
CHECK THAT ALL LISTS HAVE BEEN DELETED

LENGTH OF AVAIL SHOULD EQUAL HALF SIZE OF ARRAY SPACE
33 36 363 3 36 I 336 I 3 I W 36 T 6 I 3 3 I T I T 3 I I I K I 3 606 3 I 36 K 3o % 9
L=LENGTH(AVAIL)

PRINT 1000,L

FORMAT( ' LENGTH OF AVAIL = ' , 110)

STOP

END
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SUBROUTINE ROUTHI{USEQ)

2T KKK R KKK R I KT I H IR KK KT 2% XX
INPUT IS THE POLYNOMIAL U

QUTPUT IS THE LIST SEQ

SEQ=0 IF U HAS DEGREE ZERO

SEQ(1)= NO OF ZEROS OF U WITH STRICTLY NEGATIVE REAL PART
SEQ(2)= NO OF IMAGINARY ZEROS OF U

SEQ{3)= NO OF ZEROS OF U WITH STRICTLY POSITIVE REAL PART
SEQ(I+3) IS THE NO OF IMAGINARY ZEROS WITH MULTIPLICITY I
******************%**********************************
IMPLICIT INTEGER (A-Z)

DIMENSION wi(2)

IN=5

OUT =6
*****************************************************
PRINT MESSAGE ON ENTRY TO SUBROUTINE
*****************************************************
PRINT 10

FORMAT (0 SUBROUTINE ROUTH ¢ )
*****************************************************
TEST WHETHER U HAS DEGREE ZERO
***‘**‘************************************************
[F( PDEG(U)«GTe Q) GO TO 20

SEQ=0

RETURN

CONT INUE
***************************************************.**
T=U IF J HAS POSITIVE LEADING COEFFICIENTs T=-U OTHERWISE
LA RS SR ST R TR R EE R R R EE R R RS SRR ) 3 A K I KW R W W KWW %R
T=PABS{U)
*****************************************************
SET UP W(l) AND wW(2)
*****************‘*********************‘***************
W(l)=0

W(2)=0

NT=PDEG(T)

T1=PRED(T)

T2=PDIF(THT1)

NT2=PDEG(T2)

GAMMA=NT-NT2

EPS=GAMMA /2

TAU=GAMMA-2%EPS

S=(~-1)%*EPS

J=TAU+1

[F(SeEQe(+1)) WT =PSUMIW(J)sT2)

IF(SeEQe(—-1)) WT =PDIF(W(J)sT2)

CALL PERASE(W(J))

W(J)=WT

CALL PERASE(T)

CALL PERASE(T2)

T=T1

IF{TeNE«O) GO TO 100
***************************‘**************************
COMPUTE VePleP2
‘*****************************************************

V=PGCD(W(1)sW(2))






150

[a¥aXe)

200

300

OO0 NN

400

401

+9

Pl =PQRUW(1l)sV)

P2  =PQIW(2)sV)

CALL PERASE(W(1))

CALL PERASE(W(2))

LR T I Y RS R SR R R TR LT RE 2T R TR R R Ry

PRINT VsPl,yP2
*****************************************************
PRINT 150

FORMAT( '0OVsPl 4P2 = ')

CALL PARITE(OUT V)

CALL PWRITE(QUTsP1 )

CALL PWRITE(OQUT P2 )
*****************************************************

LOCATE ZEROS OF V
*****************************************************
NV=PDEG(V)

NI=0

SEQ =0

NOLD=-1

Z=FIRST(V)

H=V

NH=PDEG(H)

IF (NHeEQW0) GO TO 300
HD=PDERIV(H»Z)

HT=PGCD (H»HD)

G =PQ(HsHT)

N=NROOTS(G )

ND=NOLD~N

IF (NOLD«GE+0) SEQ=PFA(ND»SEQ)
NOLD=N

NI=NI+N

CALL PERASE(H)

H=HT

CALL PERASE(HD)

CALL PERASE(G )

GO TO 200

CALL PERASE(H)

IF (NOLD+GE+0O) SEQ=PFA(NOLDsSEQ)
SEQ=INVI(SEQ)

NP=(NV-NI)/2

NN=NP

LE A s 2 2SR SRR LT L L L L E R R R R R R R I B R R AR VIR T SV IRVAE 'S
LOCATE ZEROS OF P

LR RS S22 E LI L LT LR R TR E R T TR TR R R R R R R R R S R RS
COMPUTE AND PRINT STURM SEQUENCE
(22222222 R YRS L

PRINT 400

FORMAT( 'O STURM SEQUENCE ')

CALL PWRITE(OUT»P1)

NP1=PDEG(P1)

IF ( NP1.EQeO ) GO TO 500

DELV=0

B1=PSIGN(P1)

M1=PDEG(P1)

B2=PSIGN(P2)

M2=PDEG(P2)
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CALL PWRITE(QUTP2)
N=M1-M2
C=B1/B2
E =Cx(-1)%*x%N
IF( C oLTe0 ) DELV=DELV+1
IF ( E oLToO } DELV=DELV—1
B1=B2
M1l=M2
DUM=PSREM(P1,sP2)

IF ( DUMeEQs0) GO TO 404
CALL PERASE(P1)

P1=pP2

DUM1=PCONT (DUM)
P2=PSQ(DUMsDUM1)

CALL PERASE(DUM)

CALL ERLA(DUMI1)

IF( (B2eEQe-1) oANDe (B2%##NeEQe1))GO TO 401
DUM=pP?2

P2=PNEG(P2)

CALL PERASE(DUM)

GO TO 401

404 CONTINUE
NP=NP+(NP1+DELV)/2
NN=NN+(NP1-DELV)/2

500 CONTINUE
CALL PERASE(P1)

CALL PERASE(P2) i

C LR R R R S Rl s T R R e e
C STORE ANSWERS IN SEQ
C LR R R I TR R s S Y Y T T T Y

SEQ=PFA(NP,sSEQ)
SEQ=PFA(NI»SEQ)
SEQ=PFA(NN>sSEQ!
RETURN

END
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