Computer Sciences Department
The University of Wisconsin
Madison, Wisconsin 53706

A MINI-COMPUTER SUPPORT SYSTEM
by
E. J. Desautels

Technical Report #116

February, 1971

Introduction

While teaching Computer Sciences 536, Programming Systems and Computer
Organization, the author launched a class project which arouzed the interest of
others besides the participants. In order to document what was done and what

remains to be done, and to whom credit is due, the author has prepared this report.

Acknowledgmen*s

The Digital Equipment Corporation, in the person of Mr. Craig Zamzow, was
generous in allowing us the use of a PDP8/L for a period of two months., Having
access to a real mini-computer contributed greatly to the enthusiasm of the partici-

pants, and the success of their efforis.

The University of Wisconsin Computing Centier assisted in permitting us to
place the PDr8/L in one of their rooms. The quality of the UWCC 1108 software,

in particular the recently released catalogued file facility, greatly eased our task.

The Space Sciences and Meteorology Computing Facility allowed us the use of

their Raytheon 440, which provided us with the required paper tape punch facility.

Mr. Mark Birnbaum, a graduate student in the Computer Sciences Department,
presented the class with a lecture on the PDP8, a sample program, and on-line

debugging toocls. He also made valuable suggestions to the instructor.

Finally, credit should go io those who did the work - the students enrolled in
CS536, Fally, 1970. These individuals (ranked alphabetically, without regard to
the magnitude of their contributions) are: M. L. Athavale, V. Chow, G. Eichler,
V. Erickson, A. Finger, 5. Gilheany, J. Hicks, S. Jacobs, L. Jensen, R. Kenison,
R. Kenyon, R. Xoch, J. Lanuti, C. Madsen, R. Mills, D. Nissen, J. Oakley,

D. Preizler, P. Reid, K. So, S. Stcne, W. Tan and E. Zenk.

The task

Assume that you have access to a large computing facility, such as the
UWCC's 1108 gystem. Then assume that you have (or are contemplating having)
access to @ mini-computer. Several questions then arise:

1. In what manner can the large and the small systems complement each other?
2. What are the practical difficulties in using the large system to develop sofiware

for the small system?

o

3. What are the economics of the tradeoffs, and what pitfalls is one likely to

encounter ?

In considering these and related questions, one comes to the notion of a

"support system".
/;

Definition: ﬁé support system is that set of tools which facilitate or improve

/the ultimate use of a given computer, which involve the use of a larger,

' not necessarily related computer.

3 In the sense cf the above definition, support systems already exist for many
machines, cuch as the CDC peripheral processors (supported by and used with
CDC 6400/5500 and 6600 processors) and the recently announced IBM System 7
which has support systems on the 360 and 1800 and 1130. Locally, one finds that
the UNIVAC 1108 Assembler has characteristics which might facilitate using it as an
assembler for a different machine. However UNIVAC itself anpears not to be using
the facility (i.e., the UNIVAC 9200 and 9300's are supported by themselves, not
by the 1108).

There are other proprietary support systems in use, as in the case of Applied
Data Research {ADR), Princeton, N. J., which supports PDP-8's on a PDP-10. There
exist partial support systems, such as a PDP~-8 simulator on the Michigan Time-~

Sharing System.

Our objective was to produce a@ set of tools consistent with the above defini-

tion, and in keeping with the nature of the course. the one fits in-

very well with the cthers. ,Z—‘s the project developed; the following tools were

: H ¢

developed:

. , PDP-8 simulator
. | A machine operator simulator

. PDP-8 PAL III assembler

1

2

3

4. ASCII and Fieldata code conversion packages
5 Paper tape to Fastrand storage routines

6

Fastrand storage to punched paper tape routines

-3

Tape and core dump interpreter

8. Absolute program de-assembler

W

9. A quick-load facility

10. A BASIC~like compiler
"I‘heéewtbéls w1llbe 'c‘i.eséribed later.

Ground rules

The participants were encouraged to use the most advanced features of the
programming languages they chose to use, as well as advanced features of the
operating system. Thus some of the programs written in Fortran V use features
peculiar to Fortran V such as PARAMETER, DEFINE, END and ERR contingencies,
reread, ENCODE/DICODE and FLD functions. Some of the programs were written

in SNOBOL; a faw were written in 1108 assembler language.

Itemz such as word size, memory size, size of the instruction set and other
characteristics peculiar to the target machine (i.e. the PDP8) were to be treated
as parameters. Thus the system was implemented in @ manner which would faciiitate

adapting it for use with other mini~-computers.

To the extent that the class had no prior experience with mini~computers, it

was not always clear which items could meaningfully be parameters.

In some cases, individuals independzently constructed routines with the same
function and in other cases, small teams worked together on a task. Thus we
actually wound up with two different and successful simulators (plus one which was
not), and several assemblers, whereas the compiler was a team effort involving 2

teams cf 3 people each.

The PDP-8 simulator

The memory and processor ingtructions are implemented, along with the input
and output instructions relating to the Teletype terminal and its low-speed paper
tape reader and punch. Information may also be entered via the simulated console

swiiches,

Instructions relating to interrupts and to other input and output devices are
not impiemented. The implementation framework would make the inclusion of new

1/0 instructions straight-forward,

4

Interrupt handling is not implemented due to fundamental uncertainty relating
to PDP~8 user program design. We could simulate interrupts by using & simulated-
time clock set to interrupt 100 milliseconds worth of memory cycles after an output
instruction - but this is very expensive on the 1108 {i.e. slaving the 1108 to a
teletype}. If we attempt to speed things up by forcing interrupts as if 1/0 were
instantaneous, then we risk interrupting a user program at a time it was never
anticipated becauge the programmer wrote timing-dependent programs. It might
prove a valuable use of the simulator that it detect violations of the standard and

proper use of enabling and disabling rules for interrupt programming.

The simuiator can run in trace mode, providing a printout which is more than
equivalent to the information one gets from hands-on use at the console. It would be
a simple matter to include a breakpoint and snap~-cdump facility beyond that available

with the real machine, because of the availability of 256,000 words of 1108 core.

Input to the simulator may be punched paper tape in RIM, BIN or ASCII format,
or punched card in octal (for RIM and BIN) or BCD {for ASCIi). Output may be
produced on paper tape or punched cards. Use of magnetic tape merely involves
changing a control card. The mechanisms for dealing with paper tape and cards is

deacribed in later sections.

Time tests which have been run indicate that the simulator performs a PDP8/L
ingtruction in approximately 4.1 microseconds (in the no-trace mode). Recall that
PDP8/L instruction times range from 1.6 to 4.25 microseconds , but that input and

output are performed at 10 cps (on the Teletype).

Machine operator simulator

On small machines, console operations play a significant role in application
programs, such as specifying program optionsg, input data, load transfer addresses
and so on. In the 1108 batch operation, it is necessary to simulate the role of the
small machine operator. This is done using a "command language" which descrikes
how the console switches and butions are to be manipulated. Program loading and
initiation begins by consulting the command language stream. Program halts cause

further interpretation of the command language stream.

5
The commands which are needed to simulate the operator have a simple form:

$<command> <octal operand, if pertinent>

The commands are:

$SWR= operand {set console switch register = operand)
$LAD {set the program counter from switches)

$ DEP operand fstore operand according to program counter}
$STRT {push START button)

$SDS operand (combines SWR and DEP)

PDP-8 PAL ITT Assembler

This asgembler accepts source statements prepared in accordance with Digital
Equipment Corp. specifications. It is written in Fortran V for the 1108, and it
accepts PAL III proorams on punched cards or paper tape. Its output can be in
BIN format, or it can be loaded directly into the simulator memory for an assembler-

load~run test.

Timing tests indicate that 60 to 100 statements will assemble in one second of

1108 time,

it would be a reasonably straightforward effort to provide a macro-capability.
In fact in an earlier class project, macro-preprocessors were written and tested, and
these could have been used as a front-end to the PAL III assembler, since they are

essentially machine indepencent,

AGCIT and Fieldata cecde conversion

The PDP-8 users ASCII codes for alphanumeric information. The 1108 uzes
Fieldata codes. Conversion routines were written, subject to some reasonable
compromises. For instance, when ASCII output is to be printed, characters which

have no 1108 equivalent are mappad into the symbol delta.

Paper tape to Fastrand storage

The UWCC 1108 has no on-line paper tape input facility. It has off-line
facilities for transferring paper tape to magnetic tape. Paper tapes in BIN or RIM or
ASCII format are recorded on magnetic tape in binary mode. This magnetic tape is

then read and stored either on Fastrand or punched cards, in a format 16(1X, 04). Thus

6
each frame of paper tap (8 bits) is mapped into a 12 bit representation.

Generation of punched paper tape

The UWCC 1108 has no on-line paper tape punch. Nor does the UWCC have
any off-line paper tape punch facility. It is however possible to generate random
binary information and to record it on magnetic tape or punched cards. These are
then processed by a simple program which drives a paper tape punch attached to a
Raytheon 440,

When demand processing becomes available on the 1108, one can use the
Teletype paper tape reader and punch, but it is likely that the 1108 software will not
accent or produce random binary. Thus it will still be necessary to use other

means to accept or produce BIN tapes, for instance.

Tape and core dump interpreter

A routine has been written which will accept an arbitrary paper tape and
produce three interpretations for each frame:

1) octal

2) mnemonic (as a PDP 8 op~-code)

3y ASCII characters

The same routine can be applied to simulator core content, providing the same

Interpretations.

Absolute program de-assembler

This program is specifically degigned to produce an assembler-like printout,
using the simulatcr core content as input. It could easily be adapted to provide this

output given the paper tape {in BIN format) which created the simulator core content.

Quick-load facility

Assembler output is absolute code punched on paper tape in a reasonably com-
pact manner {BIN format). When such programs are to be tested in the simulator,
they are loaded using the BIN loader. Since the BIN loader runs in the simulator,
loading takes an appreciable amount of time. Having done it once, the quick~load
facility can be used to copy the core image and save it. This core image can sub-

sequently be placed back into simulator core, entirely by-passing the BIN loader.

RASIC~like language compiler

A lancuage very similar to BASIC was specified and a compiler was implemented
for it. The language was given the name PL/1.5 and its specifications are given
in an appendix. In order to divide the effort, an intermediate language called
UNCOL was specified (also in an appendix) and two distinct phases were provided:

1) PL/i.5 translation to UNCOL

2) UNCOL translation to PAL IiI source

The necessary support routines, such as software multiply and divide routines,

were also written.

This aspect of the support system is probably of less interest to non-pariici-
pants, since the PL/1.5 language is not standard, but it was an important part of the

project in terms of understanding all agspects of software.

Conclusions

The project provided experience with and increased awareness of the im-
portance of

1} clearly specified interfaces

2) correct and current documentation

3} media conversion problem

4) code conversion problems

5) mini-computer organization

6) sofiware system organization

It demonstrated that in a period convering two calendar months (interrupted by
the Christmas recess) a group of able students were able to consiruct a viable
system.

it reinforced the instructor's belief that hands-on access to a real computer is
necessary in a systems course. There is no substitute for this experience. Among
the intangible but importani benefits it contributes is the seli-confidence it imparts,

and the high level of motivation it inspires (i.e. real enthusiasm).

The sofiware is now being used in the course C3436 which leads up to C8536,

the course in which the software was developed.

What remains to be done

The author of this report is cobperating with other parties to make the software

more effective in a production sense, and further documentation is in preparation.

1t would be particularly interesting and challenging to either adapt the existing
code, or develup new code, for support systems including a larger class of
peripheral devices, and other mini-computers. No severe difficulty is anticipated

in supporting systems with 8, 12, 16, 24 or 32 bit words.

Appendix 1

RIM, RIN and PIDP 8 bBootsitrap Loader,

channels
8 76 5 4 . 3 2 1 octal interpretation
. 200 leader tape signal
it . 200 leader tape signal
. # 122 \\ .
aopc o 034 : location 2234
o #H# # 077 7 .
. c(2234) is to be 7734
#o# 8 03¢ 4 c39)
. # 1120 , R
aoa oo 034 f location 1234
I N N
. 200 trailer tape signal

RIM (read-in-mode} assumes for each 12 bit word to be loaded into core, that
its 12 bit address will precede it on the tape. Channels 6 to 1 of pairs of frames
are used to represent 12 bit words or addresses. Channels 8 and 7 have a conirol
function as shown above.

BIN (binary tape format) is similar to RIM except that locations (i.e.

addresses) are punched only when essential - when a break in the normal sequence
oCcCcurs.

The following bootsirap loader is used to read in RIM tapes. In particular it
is used to load the BIN loader, which is punched in RIM format.

The following instructions are loaded (by hand) starting at location 7756,

6032, 6031, 5357, 6036, 7106, 7006, 7510, 5357, 7006, 6031, 5367, 6034, 7420,
3776, 3376, 5356,

Exercises
1. De~ascemble the above program, using PAL conventions.

2., Trace the execution of the above program, as applied to the same tape above.
3. Write a mnemonic program which can load RIMtapes.

4, Hand assemble the first ten ingtructions of the preceding program.

5, Discuss two technigues for increasing the redundancy in the load tape formats,
and their suitability for the PDP 8.

190

Appendix 2

PAL IIT (Program Assembly Program) Highlights,

Sample source program:

%200

/%200 sets location counter=200 octal, need not start in col. 1.

MULT, CLA CLL / "CLA CLL" is a combined

operate microinstruction
TAD NUMBER / typical i-address instr

CLL RAL / another com-op-micro

TAD 207 / another reference to NUMBER (because of #*200)
SZA

iMP -2 / . refers to current location counter value

DCA NUMEBER

NUMBER, 7416 / an octal constant (by default)

$

o
°

[a%)

W

n

/ $=END of assembly code

/ introduces cemments, terminaies line scan.
All labels are followed by a comma.

Identifiers as in Fortran, except that names I and Z are reserved for marking
indirection (or lack of it), as in TAD I .37.

All constants are interpretzd as octal, 12 bits, unless they follow a DECIMAL
pseudo-op. Its effect can be cancelled by use of the OCTAL pseudo-op.

Expressions may have the form 8ym op sym, where sym iz a constant or an
identifier (which may be the name of an operation), and op may be a + or - or
a space (for logical or).

Since this is a terminal oriented language, it has a free format, and allows
multiple statements per line, using the semicolon as a separator.

Literals are not supported by PAL, MACRO, PAL's successor, uses the left
paren to introduce a current-page literal, as in TAD {22, and it uses a left-
square bracket for a page-0 literal, as in TAD {-123. ASCI (ANSII) single~
character literals are indicated as in ["H for the letter H. The pseudo-op

EXT introduces text strings, with the first nonblank character following TEXT
is expected to be the string terminator,

PAL uses the equal sign instead of the usual EQU. Thus TAD 207 in the above
example could be written TAD ABC : ABC=207.

11
Lxarcises

1. Study the procedure for using the PAL Il assembler. How many passes does it
require ?

2. Design a PAL III assembler, in Foriran or Snobol, which runs on the 1108, but
produces BIN formatied absolute programs for the PDP 8.

3. Discuss the extensions to 2 above which would provide for relocatable output,
and specify an appropriate relocatable loader.

12
Appendix 3

PL/1.5 CS 5356 v

H

variable name, as in Fortran

()
i

Executable statements

[LET]lv=e

with +-%/

‘ a = v, e, siring
‘READ 7 v1, ..., vn , : .
A e string := ‘any char except quote
.\’INPUTJ*
PRINT al, ..., an n := line number
= , EQ, LE, GT, GE, NE
COTO n r LT, EQ, L GT, GE, N
= ifi ion, i 10),
IF el re2 THEN n b := array specification, as in A{10)

B(3,4)
FORv =el TO 32 STEP e3 ,.. NEXT v

GOSUB n ... RETURN
STOP

i := integer

Declarations
DIM bl, ..., bn
DATA i1, ..., in

DEF 5'"v(v1)
{v(vl,ve)

=e

N,

.

Miscellaneous

REM, END

Intrinsics
ABS, SGN, TAB (TAB(i):= PLACE NEXT OUTPUT (CHAR IN COL I)
Sample program

10 REM COMPUTED WEIGHTED AVERAGE 110 STOP

20 DATA 10,15,-2,27,3,1 120 PRINT ‘OVERFLOW!'

30 INPUT I 125 RESTORE ("REWINDS" DATA)
40 FORI=1 TO N 130 GO TO 30

50 INPUT X 140 END

60 READ WEIGHT

70 LET SUM=SUM+X"WEIGHT

80 IF SUM GT 2047 THEN 120

90 NEXTI
100 PRINT '"WEIGHTED AVERAGE=' SUM/N

integer arithmetic expression,

Appendix 4

PL/1.5 — UNCOCL CODES FORMAT

These are guidelines, to be modified by mutual agreement |[CODE al a2 a3
{(PL/1.5) — 3 - address code & 6 6 :

o y NOP 00
1) a=b+c= +a b c LET 01
Z) a=b = =+ ab READ 02
i 3
3) READA,B(I),C(K,L) = Runitn - mapur 0
0 0 0A PRINT 04
DATA 05
1 0 I B e 06
, IF
2 KLC GOTO 07
4) ¥ e}L roe, THEN n == '.['1 e e1 FTOR 08
- T NEXT 69
278 GOSUB 10
Ir T1 r TZ RETURN 11}
DIM 12
0 0 0afn) RESTORE 13
5) PRINT el,..,.,e = T1<—-e1 DET 14
n LT 30
T, <= e LE 31
) 2
P unit count ¢ EQ 3,,
0 00T GE 33
1 GT 34
N NE 35
0 0 0 Tn Function call 50
label 60
6) GOTO n = GO a{n) - - REM 97
. STOP 98
7) DIM VI(SI)' VZ(SZ,SB) = DIM v1 s;1 0 END 99
DIM vz Sz Sz
8} DATA NysDyyeee ,nn = DATA count 0 0
- n
- 1
(n
n
Q = QTmr
3y FOR v el TO e, STEP e
= v=+e,
GO -
T3 e 63 &
v - vV + T3

Ty — ez &——

GT vy T, out
GO * (NEXT v)

