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ABSTRACT

An error bound for a quasilinear elliptic boundary value problem
(including the case  of nonlinear differential boundary conditions)
is obtained as a positively weighted sum of the absolute defects of
the operator equations, Once an approximate solution is computed,
using linear programming, by minimizing this error bound over a
discrete grid, a corresponding realistic e?ror bound over the whole
domain of definition can also be obtained by solving an associated

linear program,
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1, INTRODUCTION

This paper is concerned with the numerical determination of
approximate solutions and error bounds by linear programming for

the following quasilinear elliptic boundary value problem:

Lz[u] + gz(x,y,u) = rz(x,y) in RZ (1.1)
Q(gj). Ll[u]+gl(x,y,u) = rl(x,y) in R, (1.2)
u = ro(x,y) in RO (1.3)
2 2 2 2
- 9 9 9 9
where L_ = ~(a(x — +b —— —— ) and a ——
2 (a(x,y) 2 + b(x,y) sxoy T c(x,v) Py ) 5.2 T
X
. +c 7, 5 is a linear uniform elliptic differential operator such that
oxXoy 0
_ _ 92 . .
L&[ ¢] =0 for any constant c. L1 = 5, isan outward nontangential
¢
directional derivative, and g],, j=1,2, may be nonlinearin x, y

and u . RZ is a bounded, simply-connected and open domain in .EZ.
Its boundary is composed of two mutually disjoint parts RO and R1 .
each (possibly empty) consisting of a finite number of smooth arcs.
Each point of R1 lies on the boundary of an open ball which lies
entirely in RZ' (This is the inside sphere property. See Friedman

1964, p. 55]). 1, e C'(R), 1=0,1,2.

Figure 1



In Section 2 some preliminary material is given, In Section 3,
an error bound for a given approximate solution to the problem Q(gj)
is derived, making use of the conditionally inverse-positive pro-
perty of the operators Ll and LZ and the local Lipschitz conditions

and g_,. This error bound is a positively weighted

f the functi
of the functions g, 5

sum of the absolute defects of the operator equations. In Section 4,
by means of this error bound, a theoretical constrained minimization
problem is formulated by which we can determine an approximate
solution and a corresponding error bound. Section 5 discusses the
various advantages of such approach. In Section 6, a computational
scheme, making use of linear programming, is suggested to solve
this constrained minimization problem. Section 7 presents some
numerical results and extensions,

Rosen [1970] considered a particular case of the problem Q(gj),
in which the quasilinear boundary condition (1.2) is not included,
Though our approach is slightly different, his results motivated this

research work.




2, PRELIMINARY

Def. 1

Def, 4

Def. 5

g,

ILet f be a function defined on a set X < EZ. Set

fll=  inf | f(x,y)
| HX (x,¥y)eX

If there is no ambiguity, the subscript X may be omitted,

R= | .
R ROJR1URZ

YRy n clry).

V(R) = CO(RO) nc 1 5

agj(x,y,u)

I

u) = g.(x,y,u); gl(u
g].() g]( Y, u) gJ() P

For j =1,2, suppose g]f exists and is bounded. For a

fixed v ¢ V(R) and a constant £> 0, define

p, = p.(£v,x,y) = min {g/(n)] |n-v| < €
i 0o

for each (x,Y) ¢ R],,

and
gj(u) v+E>u> v-E£in Rj
(u)séj(x,y,u): gj(V+fi)+(u~v-€>g_]f(V+€) u>v+E in Rj
9;(v=£) - (v=E-u)g (v -£) v-£>uoin R

The following lemma is obvious:

(2.1)



Lemma 1
Let pj and §j be defined as in Def., 5. Then @ is differentiable
]
with respect to u, and, for a fixed (x,v) € Rj and arbitrary u e V(}—{),

we have

944 . ,
) = gl‘x;t‘ﬂzpj<e,v,x,y> () eR,j=l2 (2.2

! au

g

or equivalently

A A !
gj(x,y,vl) gj(x,y,vz) zpj(&.v,x,y)(vl Vz)

(X,Y)eRj, j=1,2 (2.3)

> o
where Vl"“VZ' vl,vz e V(R)

In particular,

gj(x,y,vl)—gj(x,y,v )z_pj(&,v,x,y)(vl-v )

2 2

(X.y)eRJ., j=1,2 (2. 4)

where v, > v 1vi-v]_<_£, vieV(R), i=1,2.

1 2’

Def, 6 (2.4) is called a one-sided local Lipschitz condition.

Def, 7 The problem Q(g,) is said to be inverse-positive if, for

every v,,v, € V(R), we have

ll

L[v.,]+g.(x,y,v,) > L [v.]+g.(x,y,v,)in R, j=1,2
J[ 1] gJ( g 1)—~ J[ 2] gj( ’ 2) ] J —>v,>v. on R
1— 2 :

S .
vl > v2 in RO




Notation: We say [(L]_ + gj, Rj)’ j=1,2; (I, RO)] is inverse-

positive, where I 1is an identity operator.
An important feature of an inverse-positive problem is that it
can have at most one solution.
The elliptic problem Q(gj) is not always inverse-positive.
For the linear case, where g},(x,y,u)z ukj(x,y), j=1,2, the

{ollowing conditionally inverse-positive property, as a consequence

of the maximum principle of Hopf [1952] and a theorem by Oleinik

[1952], is stated in theorem 13 of Protter and Weinberger [1967, p.

781,
Lemma 2

Consider the linear problem Q(uk]-) , where k], are bounded in
R,, j=1,2. Let there exist a positive function Il € V(ﬁ) such that

J

<L3‘ +kj)[u]_>_0 in Rj' j=1,2

and that the three conditions (i} (L, + kl)[u] =0 in R; (ii)

1 1

(L. +k2)[u.]20 in R

) and (iii) RO is empty, do not hold simul-

27

taneously. Then Q(ukj) is inverse-positive.



3. DERIVATION OF ERROR BOUND

By means of the local Lipschitz condition (2. 4) and the above (Lemma 2)
conditionally inverse-positive property, we can derive an error bound

for any approximate solution to Q(gj). In fact, we have

Theorem 3

For the problem Q(gj), the following assumptions are made:

1) For any u e V(R), g]f(u) exists and is bounded on ﬁj (the
closure of Rj), j=1,2,
2) Let (3], be defined in Def. 5 and Q(@j) have a solution in

V(R).

3) A V(I—{) is an approximate solution to Q(gj). XJ_, j=20,1,2,

are scalars such that

A, > | Livl+g(v)-r] in R,j=1,2
j J ] J j (3.1)
>\O > v - ro[ in RO
4) For p},(g,v,x,y) as defined in Def. 5 and
r B
. inf ,
min {X’y) R pj(é,v,x,y), kj/ko} if X, #0
P, =D (E,v) = (3.2)

J ]
inf
min A€,v,x,y), O if X = 0,
{(x,y) €R, pJ(é’ V) } 0
- J
there exists a solution to the following system of differential in-

equalities,




-
(Lj + pj(éz,v,x,y))[u-]zl in R, i=1,2
- } (3.3)
< 4 >0 on R
Z p— —
E> Ny +1 Z =2 pi(e,vn on R, (3.4)
. i=1
Then, there exists exactly one solution u ¢ V(ﬁ) of Q(gj)
such that
. > ) _
lu(x,y) = vix, y)| < plx,y) = X, +1(x,y) & (A, =X _P)onR (3.5)
0 i=] 1 0
Proof. We first prove that
[(Lj + {;}Jj, Rj)’ j =1,2; (I,R)] is inverse-positive, (3.6)

In fact, by (2,2) and (3, 3), there exists a positive u ¢ V(R) such that

(L, + ’c_?;]f)[;,l.]z (L + Pj)[u-]zl in R, j=12. (3.7)

Hence, (3.6) follows from Lemma 2, with k‘j replaced by c'j)‘
Now, let u be a solution of Q(@j)' For j=1,2, let @J,(v) -

éj(u) = @Jf(\-fj)(v—u) where i'/]_ = ejv + (1 —ej)u, 0< ej < 1. Since

g.(v) = gj(v), we have

(LJ. + gj(vj) )[v+o-u]= (LJ. +gj)[V]' (Lj +§JJ.)[L1]+(Lj +g]f j

= (LJ, +g],)_[v]—rj + ((Lj +gj(vj))[>xo+ui

By (3.1), (3.2), (3.7) and (2.2),

(L_j +ng(vj))[v+ p-ul]> - >\j + D“O gl.

Z =+ Dy o+ 0y =y P)} 1A]

ZOinRj.



On the boundary segment RO' (3,1) implies

- - 1 - -
V+p-u v+[>\0+‘ Z(Xi }\Opi)] u
(3.9)
_>_v+>\0+0-‘r02_0
Hence, by (3.6), (3.8) and (3.9) we get
V+ p>u on R.
Similarly, we have
v-p<u on R.
Next, by (3.4)
|lv-ul< p< ¢ on R. (3.10)

But then (2.1) implies that u is also a solution of Q(g)),
J

Lastly, suppose that Q(gj) has two solutions Wy and u, € V(R)

satisfying (3.10). For j =1,2, set gj(vj)(ul—uz) = gj(ul) - gj(uz),

where v, =0, u, +(1-08)u., 0<6 <1, Then, |V, ~v| < €,
j il { J)Z j 11 | <€

A —
(V) = g (V, in R,j=1,2,
gJ( J) gJ( J) i j
and
Lo+gu-u.l=(L +g)[ul-(L +g)fu.]=0 in R, j=1,2
(3.11)
U -y, = 0 in RO

Since [(L, +§]‘,,Rj), j =1,2; (I,R;)] is inverse-positive, (3.11)

has the only solution u - u, = 0 on R. |




The basic idea of theorem 3 is as follows: For g! = g'(v.),

'
J |
[(LJ. + g}f,Rj), j=1,2; (I,RO)] is not inverse-positive in the whole
domain of u, we want to finda set Z = (u|v-p<u<v+p,(x,y)
¢ ﬁ) in which it has this property (i.e. locally inverse-positive)
and hence Q(gj) has at most one solution in Z . This is done by
first taking an approximate solution v as the 'center' of 7, If
n is determined in theorem 3, then it can be a possible 'radius’' of
Z. The constrained minimization problem formulated in the next

section is devised for finding the 'smallest possible' p such that

Z may ‘'trap' a solution of Q(gj).

if
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4., CONSTRAINED MINIMIZATION PROBLEM

In this section, we derive from the error bound formula (3.5)
of the last section a constrained minimization problem, In solving
this problem by some numerical techniques and linear programming
method, we can obtain an approximate solution and the corresponding

error bound for the problem Q(gj).

Notations

k
For a given function v , define

k
g.(v )= gj(x,y,v ):

k
. . 9g9.(x,¥,V )
K = '(vk) = - and
9 = 9 = su ’
k k k k
G, = vqg ~g({v)4+r, .
J <:1J g]( ) i

Constrained minimization problem

Suppose O(gj)SatiSfieStheAssumptions 1) and 2) of Theorem

30
. . e . . 0 0
Given suitable initial approximation v  and constants £ ,
A0 -0 ) th , . )
1 and p, j=1,2, the k"' cycle of the following iterative pro-
cess starts with known vk—l, gk“l, ﬁk-l and —%k-l :

Step 1 Let vk(x,y) e V(R) and 6;(, j=0,1,2, solve




11

~
k- ~k -1 k-1 2
min  {((1 - lu D, )6O+ﬁ 1 508,
vl 6]‘ j :l J j:l J
subject to:
o, > (LJ. + q};—l)[v] - G;{"l > -5, in RJ,, i=1,2
<, —_ > —
0p 2V Iy 50 in RO y

Step 2 For j=1,2, evaluate

k k
XO:HV -1

k k k
0” ROl >\j - “LJ'[V ]—{—gj(v ) r]'“Rj

k -1 k . . k k-
Ble,y) = PUET T v, x,y) = min {gj(ﬂ) In-v'| <¢
’ n

1

for fixed (x,VY)

) inf k k. .k , k
min ((X,y)eRJ. pj (x,v), xj/xo} if XO 20
-k
and P = .
j inf k , k
(e, y)er, By oY) g =0

Step 3 Let the scalar &k’ and the function 1.Lk e V(R) solve

(L +p§.<(x,y))[u]>l in R,j=1,2
min LAL
A
(L, A -
w>uw>0 on R
kK .k sk % kK _kx-k
Set € =x_ +1L I A -A.p ).
0 ] 0 7j

(4. 1)

(4. 2)

(4. 3)

(4. 4)

(4.5)
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Theorem 4

In the above iterative process, if at the kt}

égk < é_gk“l, then the error bound (3. 5) holds with

1
cycle we have

k k k k- k k
Plx,y) =X, +u (x,y) = (XJ. R pj(é V) (4.6)
where ED,({{,V) = inf PE,Vv,X,V).
: (x.y)eR,
Proof. Clearly we have only to show that (3.3) and (3.4) hold for
£ = é’;k, v o= vk and u :uk.

Since ﬁ‘kzukzo, and, for fixed vk and (x,v), pj and 5]’

are both monotone non-increasing functions of £, it follows from

Step 3 that

. . 1 k
(L + pJ.(ek,vk,x,y))[uk] Kl

Y
e
-
NS
oo
<
<
=
=
J—
\Y%
[—
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5 DISCUSSION

(1) By (4,1) we see that the approximate solutions vk are obtained
by minimizing a positively weighted sum of the absolute defects of the
linearized differential equations and the identity boundary equation.
Also, by its structure, the error bound p is a monotonic decreasing
function of each of the quantities XJ, and (L(x,y). >\,j (see (4.2)) are
absolute defects of the operator equationse. Lix,y) {(see (4.5)) is
obtained by minimizing an upper bound. Hence, we may say that the
approximate solution is obtained by minimizing its error bound in
certain sense,

A similar error bound, which depends on the maximum of the
absolute defects instead of a sum of them, can also be derived. But
it can be shown that the error bound discussed in this paper is more
realistic., See Cheung [1970].

(2) Suppose, instead of the local Lipschitz condition (2. 4), g],
satisfies a global Lipschitz condition, i.e. there exists a bounded
function k],, independent of u, such that

a(v,)-g.(v,)> (v, =v_ )k, in R, forallv. >v
1 27 j

1, (v) iV v, e V(R),

1 2’

i = 1,2 (50 ]-)
Theorem 3 and the constrained minimization problem of Section 4
still hold, with p], = kj' However, a local Lipschitz condition has

at least two advantages:
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i) The global Lipschitz condition (5.1) may not exist: whereas,
we can always construct a local Lipschitz condition provided ng(u)

is bounded for every u, For example, consider g(x,y,u) =

e u. Then no global Lipschitz condition exists, but

, _ « _mv=g)
g(x,y,vl) g(x,y,vz)z e (vl VZ)

where vieV(ﬁ), [vi-—vl <€ i=1,2 and v > Vs

1
ii) A local Lipschitz condition gives a 'better' error bound

than a global Lipschitz condition. In order to show this, we

first prove

Lemma 5

Let (1! be the minimum value of the minimization problem:

(Lj+k;)[u]_>_l in Rj, j=1,2

Q"% min€ 0 : ‘ _ , i=1,2
T i >u >0 on R

(Notice that the superscript i does not imply iteration here),
Ly k,z, j=1,2, then ngllz .
)

Proof, Let HZ be a minimiziag function of QZ. Then

<Lj+le.>[uZ]_>_ kA0 T2 1 R =12

1°>u*>0 on R

i.e. &Z and MZ also satisfy the constraints of Ql. It follows

that Q,l < (e, i
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. 1
Now, for j =1,2, let kj = pj(g,v,x,y) be the local Lipschitz

function as defined in (2. 4) and ka = k‘j be the global Lipschitz

function as defined in (5.1). Obviously, pj > kj' It follows from
NI | 1 2

Lemma 5 that 1" <{i . Generally, we may hope that L <p” on

R also. This implies a better error bound for local Lipschitz con-

dition. (see (4.,6)).



16

6. COMPUTATIONAL METHOD

In this section, we consider a computational method of solving

: m
the constrained minimization problem of Section 4, ILet {q»i(x,y)}i_l

< V(R) be a set of suitably chosen functions. Assume the function

11 and the approximate solution v to be of the form

w M3

B; ¢5(x,y) and  v(aix,y) =

(].(f).(xl °

iL(Pix,y) =
i

M3

1

Let Dj and D;i be two discretizationsof the region Rj’ where

D;i has finer grid sizes than D]. (Figure 2) .

Figure 2

grid siZe of D
k ] w

grid size of Dj

Computational Method

Given suitable initial approximation vO and constants go,

~0 -0 .
(1 and pJ , the kth cycle of the following iterative process starts

(i

k-1 k-l 51.0-1 k-1 )

k-1
with known £ Pt , and v T(x,vy > a ¢ (x,y):
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k ‘
Let «,, i=1,...,m, and 6;(,_]‘:0,1,2, solve

Step 1
2 2 )
~k-] - k-1 k-1
min  {(1 -0 S b )6 +0 5 8, )

a;, 0 j=1 ) 0 -1 )

.-i/ —J. ] - ]"
subject to:

> (6.1)

step 2 For
k k k
>\O~ | v —IOHD‘ , >\] = | L,[v ]+g(v)-—rHD,
k ~1 , k~1
p]. (x,y) = p}(é( 'V ,X,Y) =~ min {g]f(n)l In-vi]<ée )
n
for fixed (x,vy).
and
a
) min k k .k , k
min {(X,y)eDj* pj (x,v), x.]_/xo} if XO;!O
pE -
]
min p}f(x,y) if 25 <0 .
P ) O
(X,Y)FDI

step 3 Choose suitable small positive constants ¢, j = 0,1,2.
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k
Let Bi , i=0,1,...,m, solve
e m k
5 BA(L, + P (x,¥))[¢.]>1+ €. in D,, j=1,2
., 1] ] 1 ] J
i=1
min § B (6.2)
;| m i
1 . =
602,2 Bicpiz g, on D"DOUDIUDZ
\_ i=1
Ak m . Ak 2 & o
Let I = max 5 B, ¢, and é;kzkk+uk s (kk—xkp.k), where D7 =
. i 0 ] 0]
D" i=1 j=1
D* P :}:.
OUDl UD2

L Lo 0 - , . 0
Choice of initial values for the parameters FDO, {‘L . p? and approximation v

0 .
By Theorem 4, we see that the initial € should overestimate the
s , . 0 . 0.
error of the initial approximation v . Usually if ¢ is large enough we

1

should have ﬁo > £

el

and hence an error bound is obtained at a single
cycle. However difficulty may arise that if go is too large, (6.2) may
have no feasible solution.

Without better values, we may set ﬁo =1, P,=0,])=1,2 and

vo(x,y) =0 (or l) and go = 1.

Choice of the parameters e.,j = 0,1,2
]

In (6.2), we add the positive quantities ej to the right sides,
If the density of discretization is fine enough and the differential

operators satisfy some Lipschitz conditions, it can be shown (for detail,
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see Cheung [1970]) that a solution 1 = % Bi ¢; of the discretized
problem (6. 2) also satisfies the inequalities (4.5) over the whole

region, Therefore, the error bound is valid over R instead of over

D* only.

Criterion for terminating the iterative process

k-1
The iterative process may stop whenever é( < € . However,
in practice, this is usually satisfied at the first cycle. To obtain

better accuracy, we may use the following criterion:

k k k=1 k k-1 k
Let &) = HLZ[V ]+q2 v =G, ”Dz and A =

-k k
IL, 17T+ g (v

)—rH ke
ZDZ

For a preassigned quantity ¢ (convergence tolerance of

N

Newton's method), the iterative process is stopped at the kth cycle

when

k k
Since XZ and (52‘ are quantities obtained during the iterative

process, only little additional computation is required,

Linear programming formulation

It is easy to show that both (6.1) and (6.2) are linear programs

of the form (for detail, see Rosen [1970]):
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min  {d'm|A'm > -c] (6.3)
T

where d, mw and ¢ are vectors and A 1is a matrix. denotes
the transpose. With w = -7, (6.3) is equivalent to the dual problem
of a standard linear program (see Dantzig [1963]):
max {d'w |A'w < c} (6.4)
w
Instead of solving (6. 4) directly, most available computer
linear programming code (e.g, SIMPLX [1969]) are derived so as to
solve its primal problem

min {c'z|Az=d, z>0] (6.5)
z

(6.3) and (6.5) have the following relations which are well
known in the duality theory of linear programming:

(i) If (6.5) has an optimal solution z* with optimal base B¥,
then 7™ = - w* = =(B® "2z* is an optimal solution to (6.3). In some
computer linear programming codes, 7* is one of the output data.
Hence, we can directly obtain an optimal solution to (6.3) by solving
(6.5)

(ii) If (6.5) has an infinite (negative) solution, (6.3) has no
feasible solution. This fact can be used fo test the inverse-positive

property of the given problem Q(gj).
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Sizes of the linear programs

For the linear program (6,1), the dimension of the matrix A
is (m + 3) x 2n, where m is the number of base functions {q;i}inil
and n is the total number of grid points over the three meshes Dj'
j=0,1,2.

For the linear program (6. 2), the dimension of A is (m +1) x

(3n ~ nO), where no is the number of grid points on D0 .
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T EXTENSION AND NUMERICAL RESULTS

Throughout our previous discussions, it was assumed that there
is only one boundary differential operator. In fact we can consider
the more general case where there are (J - 1) of them. Let the interior
elliptic operator be defined over a bounded simply-connected open

domain R_I Then, by similar argument, we have the error bound

(A, =A_D))

p(x,y) =X +u(x,y) % 0%

0 ,
J

I M

Obviously, all previous results can be generalized.
Extensions to parabolic and hyperbolic problems had been con-

sidered by Cheung [1970].

Example (mixed BVP on square domain)

f—-Au+g3(u):r‘3 0<x< .6, O0<y<.6, R3
--Q"i+ (u) = =0 0<y<.6, R
ox 92 =1 x="5 )
'Q}:l_-}- (u) =r 0<x<.6 = .6, R
oy T A T h -0 Y =005
01X

u = e cos x 0<x<.6, y =0
06 o

u u = e’ cos (. 6+y) X=,.6, 0<y<.b
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where gl = u, gz = .002 cos u, g3 = —.OOZyuZ;
. 11X ,
r, = C fcos (x+.6) = sin (x+.6)];
rz = siny-.1cosy + .002 cos (cos y)i and
. 1X s 1X ol
r, = {1.99 - .002 ye cos (x+y)} e cos (x+y) + . 2e sin (x+y).

. 01X
Exact solution u = e cos (x+y)

Algorithm It is not known whether this problem is inverse-positive.

The computational method discussed in Section 6 is applied, starting

0 - - -
with v =1, ¢ = .,4, ﬁ.o =1 and pO: p(.) = pO =0. | is approxi~-
? 1 2 3 Rj

mated by

e

D where D;:, j =0,1,2, are uniform meshes on the
i
boundary all with the same grid size .0125, and D%‘ is an interior

uniform square mesh with grid size ,025. The termination criterion is

applied with ey = - 0016,

Discretization method The iterative linear programs (6.1) and (6. 2)

are solved (see Section 6) with sj =.0001, j=0,1,2,3. D;_q is the

same as Dj*, j=0,1,2, but has grid size .025, Dg' is the same as

D3 but has grid size .075.

(344, 3+4)

Function space S (bicubic elementary splines with 5

knots in both the x- and y=-directions. See Appendix),



Computer and LP code

Time

Numerical results
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3 minutes 50 seconds.

CDC 3600, RS MSUB (Clasen [1961]).

After a single iteration, the termination criterion

is satisfied and the following results are obtained (omitting super-

scripts):

T

1t

9.00 E-5,

1.14 E-1,

)

Py

i

1

8.29 E-4, 7\2: 1.03 E-5, X

= 3098 E_3,

~2.00 E-3, 53 = -3,37 E-3, £= 4,89 E-3,

Lach entry in Table 1 is the coefficient of a basis function which

is the product of the corresponding functions at the top row and on the

leftmost column,

Table 1

Coefficients of Approximate Solution

1 x 2 (x)z (x-—.ls)f (x—.30)3 (x-.hS)f

1 0.99992| .09999|-0.49572{~0.03230| 0.00940| 0.03836| 0.00298

NG 0.00002 |-1.00046|-0.05499|~0.06568| 0.L7911|-0.L46823| 0.53879
y2 -0.50062 {~0.04L6Y | -0.19463| 1.99857|-3.90312| 3.84170|-3.03943
(y)f 0.01101| 0.15202| 1.15686|-4.95939| 9.61352|-9.26311| L4.88510
(y~.15)f 0.02729 | 0.01980{-1.33839| 5.54766|-0.10710| 9.73219|-0.41881
(y—.3o)f 0.0228k4 {~0.01531| 0.22011 —0.79819 1.27428| 0.03618(-9.98217
(y-.hs)f 0.02248| 0.00901{-0.23179| 0.63576|-0.67888(-0.95072| 0.11270
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Table 2 shows the values of the approximate solution, the actual
error and error bound at some points distributed fairly uniformly over the
whole region. Figure 3 shows the errors along 4 horizontal lines
at equal distance. The error curve for y = 0 oscillates as expected
for uniform approximation to boundary data. This is not true for the
other 3 curves since we only minimize the absolute defects of the

differential equations there.
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Table 2

Approximate Solution v, Error (u-v) and Error Bound p

e y v u - v p
.0 .0 .999924 -7.62 E-5 2.81 E-k
.1 .0 1.00493h ~-6.99 E-5 8.05 E-5
A5 Lo . 932643 8.99 E-5 9.41 E-5
1 075 .99k559 -6.43 E-5 8.76 E-U
.225 |.075 .9770LS -3.01 E-5 6.30 E-k4
.525 |.075 . 869820 ~3.68 E-6 2.19 E-k
LTS L1 . 880016 3.50 E-T7 3.49 E-L
.0 175 .98L655 -7.17 E-5 2.11 E-3
.375 | .175 . 885076 -2.53 E-5 8.23 E-b
.6 .175 . 758518 ~8.01 E-5 9.38 E-5
.0 3 .955263 -7.39 E-5 2.94 E-3
.125 1.3 .922L30 -6.87 E-5 2.37 E-3
.3 3 . 850423 -4.78 E-5 1.61 E-3
L7s5 (.3 . Tho1ks -2.99 E-5 7.86 E-L
.0 . 375 .930L32 -7.59 E-5 3.37 E-3
¥ .3 . 375 .80k433 ~4.99 E-5 1.93 E-3
575 1.375 .616117 6.81 E-6 2.79 E-L
1 L7s . 847555 -7.09 E-5 3.39 E-3
.3 hs . 736133 -4.53 E-5 2.35 E-3
7s L kTS .609980 -3.10 E-T 1.21 E-3
.6 475 .505219 6.94 E-5 8.33 E-5
.0 .6 . 825268 -6.76 E-5 L. 45 E-3
.15 |.6 . Th2688 -5.94 E-5 3.71 E-3
.3 .6 . 640502 -3.88 E~-5 2.89 E-3
45 .6 .520L75 1.85 E-6 1.88 E-3
ﬁA.6 .6 .38L4839 7.40 E-5 2.80 E-L
¥ grid points; o max. error; + max. error bound; T min. error bound
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APPENDIX

Monovariate splines

In the following we consider the space of spline functions of

degree m with n 4+ 1 knots in terms of the basic splines defined

by

m

Elementary splines

Let X, X ,.0.,%X_ bea set of knots over [x_,x ]. An arbi-
0 1 n 0" n

tary spline of degree m is given by

m~1 . n=1

i . \m
5 aicbi(x) = .Z X + ‘Z am+i(x Xi)+ .
i=0 i=0

This space is of dimension m + n.

Given a function 0(x) € Cm([O,a]), it was proved in Theorem
1.2 of Cheung [1968, pp. 8-10] that there exists a sequence of splines
of fixed degree m and with uniform knots which converges (as the
number of knots tends’ to infinity) to 6(x) together with its derivatives
up to the order m , This is the denseness property of splines. On the
other hand, the evaluation, differentiation and integration of splines

are simple. Also, when m is small, evaluation of the values of the
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functions and their derivatives usually will not lead to large relative
round-off errors. (For references, see Ahlberg, Nilson and Walsh [1967]

and Schoenberg [1969]. )

Bivariate splines

A convenient way of obtaining splines of two variables is to form

m+n

\ be a basis for
i=1

products of one~dimensional splines., Let {q;i(x)}
JI.\iIfN be a basis for another

j:l,. ° o ,M+N
i=l, m+n

a space of dimension m + n and {cpj (v)}
space of dimension M + N, then (q)i(x)cpj ()} would

form a basis for the product space of dimension (m+n)s (M+N) ,

Notations: If q‘>i and cpj are elementary splines the product space
M_ ——
is denoted by §{M*/MHN) g,
Bivariate splines had been used to approximate the solutions of

partial differential equations by Birkhoff, Schultz and Varga [1967] and

Schultz [1970].
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