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ABSTRACT

The present paper considers the effects of several types of
noiselike transforms on regular sets of infinite tapes. These
transforms can be interpreted as message distortions resulting from
factors such as static, deletion, interference, and errors occurring
during transmission or reception. We show that distortions of this

kind do not destroy regularity.
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1. INTRODUCTION

While some physical systems or machines, on being activated,
pass through a finite sequence of states and then terminate in an
equilibrium condition, others have the property that under certain
conditions no equilibrium is reached, and the system passes from
state to state indefinitely, to be halted only by breakdown or human
intervention. Buchi and Landweber (1967), Muller (1963), and
McNaughton (1966) have studied the extension of the concept of
regularity to sets of infinite sequences, which provide mathematical
models of certain of these systems.

In this paper the effects of several types of noiselike trans-
formations on regular sets of infinite tapes are examined. The finite
analogues of some of these transforms were studied by Stearns and
Hartmanis (1963). The transformations considered can be interpreted
intuitively as message distortions and losses due to factors such as
static, deletion, interference, and errors during transmission or recep-
tion. It will be shown that these distortions do not destroy regularity,
even if an infinite number of occurrences of the given type of distortion

exist.



2., w-EVENTS

The reader is presumed to be familiar with the content of
McNaughton (1966). We briefly restate the needed results and
definitions from this paper:

An w-event is a set of infinite sequences from some finite
input alphabet Z; i.e. a set of sequences of ordinality ® , where
w is the first infinite cardinal number.

Regular expressions (in the sense of McNaughton and Yamada
(19 0)) can be extended to describe w-events by introducing a new
operator; thus, if @ is a non-empty event (set of finite words) not
containing the null word, o® is the set of all infinite sequences
formed by concatenating countably infinitely many members of «.
Thus (0 U 1)(D is the set of all infinite sequences (or ordinality o)
of 0's and 1's.

If @ is an event and B is an w-event, then «f is an
w-event. Note that in general Pa may have ordinality greater than

e
R

D
w, and need not be an w-event. For example, 0 1 is an w-event,

W ko
but 170 is not.

s ias W, . .
Definition: An w-event R~ is regular if there exist regular events

w w o w
@, QL ﬁl, ,ﬁn such that R = ozlﬁl U Uoznﬁn . (Clearly

. (C I
since R is an w-event no Bi can be allowed to contain the null word.)



W , . L .
Definition: An w-event R~ is finite-state if there is a finite (determi-
nistic) automaton (@,6,50,75), where ¢ 1is the state set, § the

transition function, s, € £ the start state, and 7 is a subclass

0
[ul ,———,um} of the class of all nonempty subsets of states of the
automaton such that, for any infinite sequence x whose terms are from
alphabet %, x is in R(D iff the precise set of states that the auto-
maton assumes infinitely often when given x as input sequence
(starting from the initial state) is one of the sets upemTmau
The above definition is easily extended to the case where the
automaton is non-deterministic by stipulating that x be in R(”D
iff it is possible for the automaton to take on precisely the states of
one of the UL infinitely often under the input x.
Theorem: (McNaughton) An w-event is regular iff it is finite-state.
It is also the case that given the w-event characterized in
one way, the other kind of characterization is effectively determined.
The following corollary follows easily from this theorem, and
will be used implicitly throughout:
Corollary: If an w-event R(D is the set of tapes accepted by a non-

deterministic automaton, then there exists a deterministic automaton

W
accepting R .



3. NOISELIKE TRANSFTORMS

We consider sets of infinite tapes which are obtained from
regular w-events through noiselike changes corresponding to static,
signal loss, interference, and errors. The first type of transform
considered is the case of deletions of finite segments from the
members of an w-events, with the locations of the deletions known.

w o w )
Definition: Let R < % . Then E(R) = {(xeX :x=
Yl TV, Y My T Yy ¢ ¥ for each i, such that there exist
- —==, € 5% for which Z A Rw We
Z I lzil ’ O Yl lyz Z Yi i € }'
will say an event is w-regular iff it is a regular w-event.
W, _ . (oD .
E(R) is simply the set obtained from R by replacing blocks
W

of consecutive symbols of members of R~ by tildas, with no
restrictions on the length or number of these blocks. The tildas
may be thought of as "static" occurring at those points on the tape.

Note that any of the v, and Zi above might be the empty
word. In the case that all the v, are empty, we obtain the tape

w o
(~) ", since each ~ can replace only finitely many symbols.
w . L
Theorem l: If R~ is w-regular, then so is E(R").
Proof: Let M = (£,0, s.,¥) be a deterministic automaton
3 3 (D ] ] a
recognizing R~. Let M' = (£,0', {so}, £) be the following

non-deterministic automaton: &' (s,a) = {b(s,a)}, forall s € €,



5
acs b'(s,”)=({s'el :exists x ¢ 5" such that O(s,x) = s'}.
Let G = {v:exists u e § such that v ¢ u}. Then we claim that
. (&) , A
M' recognizes E(R). Let x be in E(R). Then

X = YI ~ ---”yi~ --—, where for some 2z

........_.z' ,

’

l,

. . w = — - €1 —
ylzl~m~—yizi~—~ € R*. Suppose that o(so,yl) = s]_, then O (SO’yl) =

{sj}. If é(sj,zl): then s, € 0o (sj,“), hence M' can go

S k

to state s, on receiving input ¥y ~. Now suppose that for i > 1,
if o(so,yl,z.“yi) = S, then s, € O (SO’yl ~ - ~yi). Then
=S, then sz €0 (si,~),
and thus s, € 6'(so,yl” - ~yi"‘). Hence if x ¢ E(Rw), then M'

as before, if 6(so,yl,zl—-—yizi) = 5(si,zi)
can accept x.

We now show that if M' can accept x, then x € E(Rw).
Suppose x = yl“’ —-~~-—’“yi~ --— ig accepted by M'. Then there
exists v ¢ u e § and a state sequence ¢ = sosi si --- such that

1 72
the set of states occurring infinitely often in the sequence ¢ is
v, and o is a possible state sequence of M', given input x. Let
the state (in this sequence) after input yl Y Y be g, and
the state after input v N Vs ~ be s', i.e.‘ s'e o' (s,7).
Then there exists a tape z, sﬁch that 6(s,zi) = s'; moreover,

both s and s' are in v ¢ u. Thus, since u is strongly con-

nected, z, can be chosen so that M takes on every state of u at



least once under input zi, starting in state s. Thus, replacing

7

the i'th ~ with the Z described, we obtain the tape ylzl—-——yizi—-m

and by construction, the set of states assumed infinitely often by
M under this input is u. Hence x ¢ B(Rw), as desired, and
E(Rw) is w-regular if R(D is.

Thus w-regularity is preserved under "static". The following
theorem states that w-regularity is also preserved if the locations

of the deletions from the tapes are unknown,

Definition; For R(D o Zw, let D(Rw) = {x = yly2~——yi———e Zw

E

Yj e 3 , and there exist =z ~-——zi,~~-— € Zﬂ\, such that

1
Y2777V 27T € Rw}.
Theorem 2: If R® is w-regular, then so is D(Rw). The proof is
similar to that of Theorem 1.

A third type of noiselike transform is mesgsage interference in
the form of insertions of members of one event into members of another.
Before considering such transforms for w-events, we note that they
are regularity-preserving for finite-tape events:

e %
Definition: Let R, W < 3 ; we define the insertion I., (R) of W

w

into R as follows: IW (R) = {rlwlr2 LTTTW LT W W

n-1'n’ 1 €W,

n-1

r,==-,r_ €R}. Any of the w,,I, may be empty.



Theorem 3: If Rand W are regular, then so is IW(R). The reader
may easily verify Theorem 3 by means of non-deterministic automata.

We extend the definition to w-events:

Definition: Tet R < 3%, We . Let L (RY) = fr.w.——-r.w ——:
Definition: Le o ; c - Let I, = {lwl W :

w
Ify===I,~== € R, Wy TTT W T e Wi,
Theorem 4: If W is regular and R is w-regular, then IW(R(D) is
w-regular.

o w W n W
Proof: Let R = .U aiﬁi ; we have IW(R ) = IW(,U aipi) =
i=1 i=1

n W
u IW (wiﬁi ). Also, since there are no deletion involved, and hence

i=1

no possible loss of tape junctures, it is clear that it is immaterial
whether the insertions involved were performed before or after
assembly of the infinite tape from tapes of a« and B ; insertions
occurring at junctures between tapes of @ and B or B and B can
be counted with either the preceding or the succeeding tape at will.

For example, given awoblwlbzwz--—-biwi--—-—, where a € «, bi € B,

w, € W for all i, this tape might have been assembled either from

the tapes a, WOb ;W bZ,m—-,w,b_ or from aw_, b.w,, ==~

1 1 Y R 0’ 7171 !

biwi,~~—-, etc., each set of tapes belonging to IW(oz) and IW(B)

w
)

w
respectively. Thu h 3 = Si
pectively us we have IW(aiBi) IW(ai)(IW(Bi) Since for

each i Iw(ai) and IW(Bi) are regular, by McNaughton's result (see
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n
w (@) (1, (B, = Y Ly(eB,) = 1, (&), as

Section 2) so is

TR G

i
claimed.

Finally, we consider distortions which may be interpreted as
the effects of errors introduced while reading or transmitting tape
symbols.

Definition; Let B < %, Then FE") = (xe =" exists y e R
such that x and y differ in only finitely many places}.
Theorem 5: If R(D is w-regular, then so is F(Rw).

Proof: We describe informally an automaton which accepts
F(R(D). Let M =(,0 N %) be a deterministic automaton accepting
Rw. Define the non-deterministic automaton M' = (£, 0", {SO} ,3) as
follows: foreach set,aeX, let 8'(s,a)= {s' e { : exists b e by
such that 0(s,b) = s'}. Note that 0(s,a) is always in 0'(s,a).

Let M" be another finite-state automaton monitoring the input and
state changes of M', and suppose that M" has a red light (in the
manner of the machine described by McNaughton (1966)) which
flashes whenever M' makes a state change differing from the one

M would have made, i.e. the light flashes iff M' changes from state

s to state s' on an input a, and 0(s,a) #s'. Clearly the system

composed of M' and M" is a finite-state automaton. We stipulate



that the system accepts a tape iff with this tape as input the red
light flashes only finitely often, and the exact set of states taken
on infinitely often by M' is a member of F. It is easy to verify

that this system recognizes F(R(D).

4. CONCLUSIONS

A large number of noiselike transforms besides the ones dis
cus.sed can be defined and shown to be w-regularity preserving. In
particular, if R is w-regular, then so is the set of tapes with at
most k errors, the set of tapes with at most k errors per any m
consecutive symbols (k < m), the set of tapes with infinitely many
errors, etc. However, the transforms discussed are the ones that
suggest themselves most naturally from considerations of actual

systems, and the methods of proof employed are typical.
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