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Abstract

Earlier work on interactive graphical approximation of data
using linear programming has now been extended to ordinary dif-
ferential equation multipoint boundary value problems. The approxi-
mation is obtained using a suitable spline basis where the degree
and uniform knot size is specified by the user. The coefficients
of the spline basis are determined so as to minimize the maximum

error in the differential equation over a specified discrete grid.
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I. INTRODUCTION

Interactive graphical systems have proven to be powerful tools
in the area of numerical analysis. This has been demonstrated by a
number of general purpose mathematical analysis systems and also
by some more specific systems for the approximation of data,
functions, and differential equations [3,6,4]. For a fairly extensive
survey of interactive graphical systems for mathematics, the reader
is referred to [10]. In this paper we describe an interactive graphical
system, DIFEQ, which allows us to approximate a specified function
or obtain an approximate solution to a linear differential equation.
One of the important characteristics of this system is that it allows
the user to place various auxiliary conditions on the desired approxi-
mation. These conditions include lower and/or upper bounds on the
approximation, or its first or second derivative, at specified points.
A special case of this is the possibility of requiring that the approxi-
mation be monotone and/or convex (or concave).

Linear programming (LP) is the mathematical technique which
allows us to find an approximation to the above types of problems
while enforcing various auxiliary conditions. This has been discussed
by a number of authors for the approximation of functions and approxi-

mate solution of ordinary differential equations [7,2] and also for the



approximate solution of certain types of partial differential equations
[8,9]. In all of these cases the approximation v(a,x) is obtained as

m
a linear combination of selected functions: Vv(e,x) = & a 0.(X).

=1 11

Experience with a variety of possible choices indicates that

spline functions offer an excellent compromise between complete
generality and ease of use in this type of interactive program [1,5].
For this reason the system is limited to this class of functions. The
user may however, very easily, specify the degree and number of
basis splines he wishes to be used. The user also states the
differential equation (or function) to be approximated, together with
any auxiliary conditions he wishes to impose. The "best" coefficients
@ will then be obtained by the system using LP to minimize the
maximum error in the differential equation. Appropriate graphical
results are then displayed on the Adage scope. If the user feels, on
the basis of this display, that the approximation has some undesirable
characteristics, he can modify the auxiliary conditions, the degree
or number of splines, or other parameters and try again. In this

interactive way he can easily and rapidly explore various approxima-

tions until he has obtained a satisfactory approximation.




It should be remarked that the computing power of the 1108,
or a comparable computer, is needed to solve the LP problem in a
reasonable time (10 seconds or less). Because of the limited
computing power of the graphics terminal, a high speed data channel
connection between the terminal and the 1108 is essential for interactive
use of this system.

In Section II we briefly give a mathematical description of
the approximation problem, and the LP formulation using a suitable
spline basis. Section III contains a description of the program
DIFEQ and gives four examples of its use. The utility of an auxiliary
condition (convexity in this case) for a differential equation is
illustrated. The system is implemented on the ADAGE Graphics

Terminal (AGT/10) and Univac 1108 computers.



i1, MATHEMATICAL FORMULATION

In this section we will consider the class of problems on the

interval 1 = [a,b] given by

q-1 .
tu] = @4+ s a, () LD R T, (2.1)
k=0
where L is a linear differential operator and g € {0,1,...,4].

For 1 < g < 4, this is a linear differential equation of order (.

1f g = 0, we understand that (2.1) becomes u = £(x), so that we have
the usual approximation problem. In the rest of this discussion we
shall refer to (2.1) as a differential equation, with g = 0 as a
special case. In general, when given a ¢th order differential
equation, ¢ initial value or boundary conditions are also required.

These will be of the form
g,lux)l=cy, £=1,....q (2.2)
where gg ,£=1,...,q9 are linear boundary operators to be discussed
later.
We wish to obtain a function v(«,x) which will approximate

u(x), the exact solution of (2.1), assuming the solution exists and is

unique. The approximation
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via,x) =

i ™M

@, P, (x) (2.3)

i=1




will be given by a linear combination of m selected functions
rpi(x), i=1,...,m, where each P has a continuous gqth derivative
on I. We will also let « ¢ g™ denote a vector with elements @ .
In this system splines of degreer = g + 1 may be chosen,
wherer € (2,3,4, 5}. For computational purposes a convenient
basis for an arbitrary spline of specified degree and uniform knot
size is given by a slight modification of B-splines [5]. Details of
this modification (denoted as B-splines) are contained in a previous
publication [6]. Here we will just give a simple example. Suppose
we wish to approximate a 2nd order differential equation on [a,b]
using six P-splines of degree three. Thenm =6, r = 3, and
6 ,
vie,x) = 2 o cpi(x) where the cpi(x), i=1,...,6 are the PB-splines.
i=1
DIFEQ would then determine the uniform knot size A by

b-a b-a
A = -3 (2.4)

and position the six B-splines as shown in Figure 1
where the sections of the functions lying outside of [a,b] are
indicated with dashed lines.

If r and m have been selected and A has been determined as

in (2.4), then we can define the set of points

Iy = | X = a+id, j=1,2,...,mr-1},



Fig. 1.

-

_b-a
h= 3

Position of B-splines for m=6 and r=3,




consisting of the knots lying in the open interval {(a,b). Let

T ¢ {1,2,4,8,16}, and define

h =

>

and Ih = [xj !x]. =a+jh,j=1,2,...,T(m-r)-1},

so that IA < Ih.

We wish to determine a function v(«,x) for x € [a,b] which
minimizes the maximum error over the discrete set of points Ih.

That is, we want to find o so as to minimize

¥(@) = ||Liv(@] - £
h
(2.5)
a-1
- max Vx4 5 a6y e - ) |
x. €1 7 k=0 )
b h
If we let
® . (x) = Lp, (x)] (2.6)
then (2.5) can be expressed as minimizing
m
V(@)= || & ao -ff 2.7)
=1 © ! Iy
We also define
_ i=l,...,m
Op = 9p Loyl s (2.8)

Then our boundary conditions (2.2) become



Z a6, =c, L=1,...,9. (2.9)

m
Finally, let A= (e, ! fl a6

= = 2.
5= Sy L=1,....,49) (2.10)

Now our minimization problem becomes:

Find a vector « ¢ A, such that

P(@) = min P(a). (2.11)
aeh

For the details as to how a problem of this nature is expressed and
solved using LP, see [6].

We now briefly mention the type of auxiliary conditions that
the system DIFEQ can handle. We can place lower and/or upper
bounds on the approximating functions v(e,x), v'(a,x), and
v'"(a,x) at specified points in [a,b]. In addition, we can place
lower and/or upper bounds on the elements of the coefficient vector
«, Additional points can also be added to the set Ih so our grid
can become nonuniform. The manner in which these auxiliary
conditions may be added to the LP problem is also discussed in {6].

After solving the LP problem and getting the coefficient vector
,0; and corresponding best approximation v(gz,x), we would also like

to see graphs of the error in the differential equation (also called

"defect") given by




ED(x) = L{v(a,x)] - f(x) (2.12)
and of the solution error given by

Ex) = v(@,%) - u(x), (2.13)
if we happen to know the exact solution u(x). When applicable,

DIFEQ displays both of these graphs.
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IIr.  PROGRAM DESCRIPTION

The system DIFEQ is implemented on the Univac 1108 and
Adage AGT/10 computers. The adage has a 16,000 30-bit word memory,
two magnetic tape drives, a teletype, a graphical display with light
pen, and various function switches and analogue inputs. As shown
in Figure 2, DIFEQ actually consists of two programs, ADIFEQ and
UDIFEQ which run on the adage and Univac respectively. These two
programs communicate via a high speed data channel connecting the
two computers. Almost all of the routines in ADIFEQ are written in
ADEPT, the adage machine language, whereas UDIFEQ is written
exclusively in FORTRAN.

To initiate the program UDIFEQ, a small deck of about five cards
must be submitted at the 9300 input system which is adjacent to the
Adage. This deck instructs the Univac to fetch from drum the program
UDIFEQ and execute it. Usually UDIFEQ is active within five minutes.
Assuming ADIFEQ has been initiated at the Adage, the display shown
in Figure 3 would appear. In this frame we are requested to select the
order q of the differential equation to be approximated, by tagging
the appropriate line with the light pen.

Say we wish to approximate, as described in Section II, the

function
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u =1+ 9sin (3x) + 2 sin (9x) (3.1)
over the interval [0,1]. We wish to find the best approximation on
a specified discrete grid Ih’ with the additional conditions that our
approximation be exact at the two end points; that is u() =1 and
u(l) = 3.095. After tagging the first line in Figure 3, the display in
Figure 4 appears.

We have selected q = 0 and are now requested to enter the
cquation. This is done by using the light pen in conjunction with
the sixteen function switches shown in Figure 5. The function switches
programmatically represent the various syntactic units indicated below
the switches. When a switch is pressed the appropriate symbol or
symbols appear on the display to form the equation. There are not enough
function switches to include one for each of the variables and functions
in the set {x,u,u',u",u""}, and rather than redefine the switches when
one of the members of this set is to be selected, we decided to use the
light pen in conjunction with switch 1 as illustrated in the following
example. Assume we had indicated in Figure 3 that we wished to enter a
second order differential equation. Then, whenever switch | was pressed,
the following text would be added to the display
L
% U

% !
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Fig. 5. Panel of sixteen function switches.

U= 1.680000 + 9.00888%SIN( 3.88880%X) + 2.0B8FF*SIN( 9. #BFAR*X)

sk END

Fig. 6
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and the desired line could be selected with the light pen. Notice
that the functions u"” and u"' are not offered since they are not
legitimate entries for the remaining terms of a second order differen-
tial equation. In our current problem, pressing switch 1 automatically
sets the variable x into the equation.

Function switch 2 allows us to enter a constant. When it is
pressed an array of numbers like the one in Figure 8 is added to the
display, and the desired constant can be entered with the light pen.
By operating the function switches with one hand and the light pen
with the other, the equation as shown in Figure 6 can be generated
quite rapidly. If an error has been made, the equation can be erased
from right to left by pushing the foot pedal which is essentially another
function switch. Each time the foot pedal is operated one syntactic
unit in the equation is erased.

When the equation has been entered and "% END" is tagged,

a syntax analyzer routine in ADIFEQ parses the equation and checks
for syntax errors. If there are any errors we are taken back to
Figure 3, otherwise we move on to Figure 7 where we may specify
auxiliary conditions. In particular, we can place lower and/or upper
bounds on the coefficients ozi of the B-splines, or bounds on the

functions u(x), u'(x), or u"(x) at any specified points (as indicated
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in Section II, these bounds will actually be placed on the approxi-
mation v(e,x), v(@,x), or v'(a,x).) Since we want to constrain u(x)
at the end points, we tag "*% THE FCN U", and Figure 8 is shown
allowing us to enter the point x = 0. Figure 9, now permits us to
specify the lower bound, if any, for u(0). After entering the lower
bound u(0) = 1, the next display allows us to specify an upper bound
in the same way. This sequence is then repeated for the condition
u(l) = 3.095.

In Figure 10 we are requested to specify the interval [a,b] and
m, the number of B-splines to be used. Since we wish to use seven
splines to approximate the equation over [0, 1], these numbers are
entered, after forming them above the number array, by tagging the
appropriate line "A =", "B =", or "M =". We could go back (* B)
to figure 7 and make changes in the auxiliary conditions or continue
on (* c) to Figure 11 where the degree r of the splines is entered.
After selecting the degree, the spline knot size is determined, using
the equation A = (b - a)/(m - r), and this is displayed in Figure 12.
If a different knot size is desired, we could go back and change m.

Now we are ready to specify the grid size for the discrete grid,
Iy, over which we will minimize the error. We may choose a grid that

is 2, 4, 8, or 16 times as fine as the knot size, or we can choose
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Ih = IA\ . This last case allows us to satisfy the differential equation
exactly at the knots in (a,b) and corresponds to the special case of
interpolation at the knots. In Figure 12 we have selected T = 4 and
therefore our grid will consist of the fifteen points X = (.0625)]
j=1,...,15, The end points a and b are not included in Ih,
but may be added later, if desired.

In designing DIFEQ we have tried to make only the valid
options available to the user. Thus in Figures 3,7, 11, and 12 only
legitimate choices are displayed. Whenever possible, the user's
selections are immediately checked for consistency. For instance,
in Figures 10 and 11 we would get no response if we tried to choose
b< a or m< r. Thus, to the extent possible, both syntax and
consistency of input are automatically checked by the program.

After choosing the grid size, Figure 13 is displayed. If we
wish, we may now place additional points in our grid. Since we
don't wish to add points at this time, we tag "#% NO".

Now that the problem has been defined, it is printed on the
Adage teletype as shown in Figure 14 so the user has a hard copy
of the input and has a final chance to look for mistakes. If he wishes

to make some changes he can go back to Figures 3, 7, or 10. Other-

wise, this data is sent to the 1108 where UDIFEQ generates the
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U= 1.00000 4+ 9.00000%SIN( 3.00000%X) + 2.00000%SIN( 9.00000%X)

7 B-SPLINES OF DEGREE 3 WILL BE USED
ON THE INTERVAL ( 0.000, 1.000)

KNOT SIZE = 0.2500 T= 4
FUNCTION POINT LOWER BND UPPER BND
U 0.00000 1.00000 1.00000
u 1.00000 3.09500 3.09500

Fig. 14. Statement of problem (3.1) with no auxiliary conditions.

THE MAX GRID ERROR IS  0.77192E-01
THE MAX ERROR IS ABOUT 0.89143E-01

THE COEFFICIENTS ARE: THE SPLINES ARE SUPPORTED ON:
-8.09967 ( -0.750, 0.250)
1.18576 ( -0.500, 0.500)
7.35662 ( -0.250, 0.750)
4.38630 ( 0.000, 1.000)
6.87899 ( 0.250, 1.250)
3.64083 ( 0.500, 1.500)
~9.06232 ( 0.750, 1.750)

Fig. 15. Teletype results from problem stated in Figure 14.
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primal LP problem which is then solved by SIMDX, a double pre-
cision linear programming routine [1 1].

The coefficient vector /c\v, obtained from SIMDX, is used by
UDIFEQ to generate graphs of the approximation v(/c\r,x) and the
equation error ED(x) = v(a,x) - f{x), and this is then sent to
ADIFEQ.

In this manner, the tedious job of generating and solving the
LP problem is accomplished without any further intervention by the
user. The waiting time between sending the data to the 1108 and
the display of the graphical results on the Adage varies between one
and sixty seconds. This time depends on the magnitude of the problem
and the load on the 1108, with the majority of problems falling in
the two to ten second range.

Figure 16 shows the results from our approximation. This
display contains a graph of the approximation v(a,x) versus x and
a graph of the equation error ED(x) = v(a,x) - f(x). These graphs are
calculated using a fine grid of 101 points in [a,b]. While this is
being displayed, the Adage teletype is printing out the results in
Figure 15. It types out the coefficients /&i of the splines, the
interval over which they are non-zero, and the grid error of .077,

which is the maximum equation error ED over the grid points Ih’
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8.98469

1. 000500
sk NEXT
0.08914

ERROR:

~0.07952 -
0.00000 1.00000

Fig. 16. Solution of problem stated in Figure 14.
Also see Figure 15 for teletype output.
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and’is attained at the points indicated by the vertical bars in Figure
16 . The maximum error of .089 is the maximum equation error over
the 101 points. Notice that, since we specified boundary condi-
tions, the equation error is zero at x = 0,1.

We would now like to obtain an approximation which does not
have the "camel~back" shape seen in Figure 16, We do this by
adding the convexity constraints: u"(x) s 0 for x ¢ {.25, .375, .5,
.625, .75}). It is not necessary for us to reenter the equation or
boundary conditions, as thése are retained by DIFEQ. The problem
with the additional constraints is stated in Figure 17 along with the
results from UDIFEQ. As seen in Figure 18, our approximation is
now convex as desired. This convexity is obtained at the cost of
an increase in the error to approximately 0.56.

To illustrate the approximate solution of a two-point boundary
value problem, we now consider the following second order dif-
ferential equation:

u" + 9u = 9 - 144 sin (9x)
(3.2)
u(0) =1 u(l) = 3.095
Here we are assuming that the right side of {(3.2) is not known
exactly. In practice this may arise for example, when the right side

is given by a set of experimental data subject to error. In
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U= 1.00000 4+ 9.00000%SIN( 3.00000%X) + 2.00000%SIN( 9.00000%X)

7 B-SPLINES OF DEGREE 3 WILL BE USED
ON THE INTERVAL ( 0.000, 1.000)

KNOT SIZE = 0.2500 T= 4

FUNCTION POINT LOWER BND UPPER BND
U 0.00000 1.00000 1.00000
U 1.00000 3.09500 3.09500
DDU 0.25000 0.00000
DDU 0.37500 0.00000
DDU 0.50000 0.00000
DDU 0.62500 0.00000
DDU 0.75000 0.00000

THE MAX GRID ERROR IS 0.54855E 00
THE MAX ERROR IS ABOUT 0.55838E 00

THE COEFFICIENTS ARE: THE SPLINES ARE SUPPORTED ON:
~15.54486 ( -0.750, 0.250)
3.42160 ( -0.500, 0.500)
5.85846 ( -0.250, 0.750)
5.71396 ( 0.000, 1.000)
5.56947 ( 0.250, 1.250)
5.42497 ( 0.500, 1.500)
-14.88935 ( 0.750, 1.750)

Fig. 17. Statement and teletype results of problem
(3.1) with convexity conditions added,
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8.61916

e,

i

0.55480

ERROR:
ED

o S
o
&;&m
D

~0.55838
0.00000 X 1.00000

Fig. 18. Solution of problem stated in Figure 17.
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addition to satisfying the boundary conditions, we will require that
our approximate solution be convex and bounded above by 9.0 on the
interval [0,1]. These auxiliary requirements are based on assumed
prior knowledge of the behavior of the solution to the problem. The
differential equation (3.2) is entered in the same manner used to
enter the function (3.1). As shown in Figure 19, this problem will
be approximated using 13 cubic B-splines. For the purpose of
illustration we have not included the convexity requirement but have

entered the constraints:

(8]

u(x) = 9 for x e (.4, .55, .7} (3.3)
The graphical results are given in Figure 21 where the approximate
solution v(/c;z,x) and the differential equation error ED(x) = L[v(/c\x,x)] -
f(x) are shown. The teletype output is shown in Figure 20. In this
problem the constraints (3.3) are not active, that is, the solution
would have remained the same even if the constraints had not been

included.

In order to obtain a convex solution we shall now add the constraints:

u"(x) < 0 for x € {.25, .375, .5, .625, .75}.
This new problem is shown in Figure 22 and the results are given in
Figures 23 and 24. Here we see that the approximate solution has

the desired characteristics, but the differential equation error is
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U''=-9.00000%U+ 9.00000-144.00000%SIN( 9.00000%X)

13 B-SPLINES OF DEGREE 3 WILL BE USED
ON THE INTERVAL ( 0.000, 1.000)

KNOT SIZE = 0.1000 T= 4
FUNCTION POINT LOWER BND UPPER BND
U 0.00000 1.00000 1.00000
8] 1.00000 3.09500 3.09500
U 0.40000 9.00000
U 0.55000 9.00000
u 0.70000 9.00000

Fig. 19. Statement of problem (3.2) with upper
bound conditions added.

THE MAX GRID ERROR IS 0.80474E 01
THE MAX ERROR IS ABOUT 0.80834E 01

THE COEFFICIENTS ARE: THE SPLINES ARE SUPPORTED ON:
~1.63070 ( -0.300, 0.100)
0.65843 ( -0.200, 0.200)
2.99697 ( -0.100, 0.300)
4.33735 ( -0.000, 0.400)
4.37833 ( 0.100, 0.500)
3.67536 ( 0.200, 0.600)
3.17701 ( 0.300, 0.700)
3.43349 ( 0.400, 0.800)
4.22838 ( 0.500, 0.900)
4.73655 ( 0.600, 1.000)
4.08032 ( 0.700, 1.100)
2.15122 ( 0.800, 1.200)
-0.30520 ( 0.900, 1.300)

Fig. 20. Teletype results from problem stated in
Figure 19,
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6.81631

%% NEXT
8.08337
w““'\\ i
ERROR:
3
ED [

\ |

-8.04741
0.00000 X 1.00000

Fig. 21. Solution of problem stated in Figure 19,
Also see Tigure 20 for teletype output.
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U''=-9.00000%U+ 9.00000-144.00000%SIN( 9.00000%X)

13 B-SPLINES OF DEGREE 3 WILL BE USED
ON THE INTERVAL ( 0.000, 1.000)

KNOT SIZE = 0.1000 T= 4
FUNCTION POINT LOWER BND UPPER BND
U 0.00000 1.00000 1.00000
u 1.00000 3.09500 3.09500
U 0.40000 9.00000
U 0.55000 9.00000
8) 0.70000 9.00000
DDU 0.25000 0.00000
DDU 0.37500 0.00000
DDU 0.50000 0.00000
DDU 0.62500 0.00000
DDU 0.75000 0.00000

Fig. 22. Statement of problem (3.2) with upper bound
and convexity conditions added.

THE MAX GRID ERROR IS  0.68573E 02
THE MAX ERROR IS ABOUT 0.69490E 02

THE COEFFICIENTS ARE: THE SPLINES ARE SUPPORTED ON:
-1.52409 ( -0.300, 0.100)
0.61534 ( -0.200, 0.200)
3.06273 ( -0.100, 0.300)
5.00717 ( -0.000, 0.400)
5.80057 ( 0.100, 0.500)
6.04631 ( 0.200, 0.600)
6.01420 ( 0.300, 0.700)
5.98210 ( 0.400, 0.800)
6.03877 ( 0.500, 0.900)
5.55391 ( 0.600, 1.000)
4.28751 ( 0.700, 1.100)
2.07749 ( 0.800, 1.200)
-0.21746 (  0.900, 1.300)

Fig. 23. Teletype results from problem stated in
Figure 22.
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9.03722
\Y
1.00000
¥ NEXT
69.49022
ERROR:
Al
ED an
-69,18152
0.00000 X 1.00000

Fig. 24. Solution of problem stated in Figure 22.
Also see Figure 23 for teletype output.
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of course significantly larger. The constraints (3.3) are active,
for v(.4) = v(.55) = 9. Notice however that the upper bound of 9.0
over [0,1] is not strictly enforced since v(.45) = 9.037. If desired,

this could be avoided simply by including more points in the con-

straints (3.3).

If the right side of (3.2) is exact, then this differential equation

has as its exact solution the function (3.1). For equations of this
type (when the differential equation is exact and we happen to know
the exact solution) we may wish to see a comparison between the
exact and approximate solutions. If this is the case the exact solu-
tion must be entered, and a graph such as the one in Figure 25 will
be shown. The top graph in this figure gives the solution error

E(x) = v(a,x) - u(x) where the approximate solution v(a,x) is the

one shown in Figure 24, and the bottom graph is the differential
equation error which is also shown in Figure 24.

In this section we have presented four examples and would now
like to indicate the amount of human and computer effort involved
in defining and approximating these problems. A rough estimate of
this is the amount of time required on the computer. At the Adage
a total of 19 minutes was required to generate and approximate the

four examples (this is from log-in to log-out), and during this time
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~0.87788 e
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Fig. 25. Graph of solution error for problem

indicated in Figures 22, 23, and 24.
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the 1108 used only 19 seconds of CPU time. In an effort to make
DIFEQ an easy system to use, it has been designed so that informa-
tion does not have to be repeated during successive iterations of a
problem. When it is desired to change some auxiliary conditions or
parameters and recalculate the approximation to an equation, it is
only necessary to specify the parameters to be changed, as DIFEQ
retains the original values. 1In Figure 26 the flow of control or
sequence of displays is illustrated, with the numbers in the boxes
refering to the figures in this section. The normal flow of control,
which is indicated with double lines, can be modified by the user,
as indicated, to avoid reentering any parameters which are not to be
changed. Thus for example, when we approximated the differential
equation (3.2) the second time with additional side conditions, it
was not necesgsary to redefine the equation or any of the parameters
since they remained the same; only the auxiliary conditions had to
be defined. In Figure 26, the line from box 7 to box 13 is dashed
to indicate that even though the intervening displays (10, 11, and 12)
will appear, it is not necessary to redefine the parameters at these
displays and one can very rapidly pass through them to box 13.

In this manner we can approximate functions and solutions to

differential equations, and can rapidly explore the effects which
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auxiliary conditions and chosen parameter values have on these

approximations.




4,

37

REFERENCES

Ahlberg, J. H., Spline approximation and computer—aided

design. In Advances in Computers Volume 10, F. L. Alt and

M. Rubinoff (Eds.), Academic Press, New York, 1970,

pp. 275-289.

Barradale, I., and Young, A. Computational experience in
solving linear operator equations using the Chebyshev norm.

In Numerical Approximation to Functions and Data, J. G.

Hays (Ed.), Athlone Press, London, 1970, pp. 115-142,
Culler, G. J., and Fried, B. D. The TRW two-gtation on-line

scientific computer. In Computer Augmentation of Human

Reasoning, M. A. Sass and W. D. Wilkenson (Eds.), Spartan
Books, Inc., Washington, D. C., 1963, pp. 67-87.
Gallaher, .. J., and Perlin, I. E. A learning program for the
integration of systems of ordinary differential equations. In

Interactive Systems for Experimental Applied Mathematics,

M. Klerer and J Reinfelds (Eds.), Academic Press, New York,
1968, pp. 335-340.
Greville, T. N. E. Introduction to spline functions. In

Theory and Applications of Spline Functions, T. N. E.

Greville (Ed.), Academic Press, New York, 1969, pp. 1-35.



6.

10.

11.

38

LaFata, P., and Rosen, J. B. An interactive display for

approximation by linear programming. Comm. ACM 13, 11

(Nov. 1970) 651-659,
Rabinowitz, P. Applications of linear programming to numerical

analysis. SIAM Rev. 10 (1968), 121-159.

Rosen, J. B. Approximate solution and error bounds for

quasilinear elliptic boundary value problem. SIAM J. Numer,

Anal, 7 (1970), 80-103.

Rosen, J. B. Minimum error bounds for multidimentional spline
approximation. Tech. Rept. No. 100, Computer Sciences
Dept., U. of Wis., Madison, Oct. 1970.

Smith, L. B. A survey of interactive graphical systems for

mathematics. Computing Surveys 2, 4 (Dec. 1970) 261-301.

U. of Wis. Computing Center. SIMPDX/SIMPLX linear

programming subroutines. Madison, 1970.




