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ABSTRACT

A new algorithm, which is exceptionally fast for certain
choices of numerical parameters, is described for the study of
nonlinear, incompressible flow between two rotating disks. Typical
examples for Reynolds number R in the range 10 < R< 2000 are
described and discussed. Comparisons are made with the limited

available results generated by other methods.






1. INTRODUCTION

The study of fluid motion between rotating disks is of both
practical and theoretical interest (see, e.g., references [1]-[7],
[9]-[17], [18]-[25], and the references contained therein). It appears
that the first mathematical paper on the subject was that of von Karmen
{247, who dealt with the steady flow above an infinitely large rotating
disk under the assumption that axial velocity was radius independent.
This model was extended to steady flow between two coaxial rotating
disks by Batchelor [2], and then to nonsteady models by Greenspan [9],
Greenspan and Howard [10], and Pearson [15]. In studying the related
mathematical and physical problems, various techniques have been
applied, including asymptotic analysis ([2], [6], [20]-[22], [25]),
linearization [10], [11], [16], numerical analysis [5], [1.7;], [13], [15],
[16], and experimentation [13], [21]. Unfortunately, the results of
these analyses often are either unreasonable or contradictory. Thus,
as the Reynolds number becomes infinite, Batchelor [2] and Stewartson
[21] both find unique, steady, limiting flows, but which are qualitatively
different, while Tam [22] claims that the problem admits an infinite
number of flows. Pearson [15] and Lance and Rogers [12], using
different numerical techniques, generate qualitatively different lows
for certain classes of nonsteady problems. Mellor, Chapple and Stokes

[13] claim to have produced several classes of solutions for a given



problem by analytical-numerical means, but then can produce only
one such class in laboratory experiments.

Our purpose in this paper is to study numerically only the
steady motion of a viscous, incompressible fluid between two rota-
ting, infinite coaxial disks. For simplicity, the first disk is positioned
in (x,v,z) space in the plane z = 0 with its center at (0,0,0) and
is given an angular velocity Ql’ while the second disk is positioned
in the plane z = 1 with its center at (0,0,1) and is given an angular

velocity € If the cylinderical coordinates of (x,y,z) are (r,9,z),

25
and if the fluid at (x,v,z) has velocity components (u,v,w), then

the substitutions

(1.1) u:—flz“rH‘(z), v=rG(z), w= H(z)

enable one ([9], [15]) to transform the dimensionless, steady state

Navier-Stokes equations to

(1.2) H" = M L, 0<z<1
(1.3) G" + R(GH' - G'H) =0 ,0<z<1
(1.4) M" - R(HM' + 4GG') = 0 ,0<z<1,

where differentiation is with respect to z . For the coaxial flow under
consideration, the boundary conditions fornonlinear system (1.2)=(1.4)

are ([9], [15])




(1.5) Go) = Q. , G(1) =0

1 2
(1.6) H(0) =0, H(l) =0
(1.7) H'(0)=0, HY(1)=0.

The numerical method to be used is an extension of one developed
for cavity flow problems [8], and which was convergent for all Reynolds
numbers studied (0 < R< 106), Since the present work is largely ex~
perimental in nature, and since errors in computation often seem to
be more the rule than the exception, the FORTRAN program used is

being made accessible in a report [18], so that every aspect of the

calculations can be reproduced by the reader,



2 THE NUMERICAL METHOD

In this section we give a precise description of the algorithm
to be used for the numerical solution of (1.2)-(1.7).
1
Divide 0< z< 1 into n equal parts, each of length h = Az =7,

Let the points of subdivision be 0 = z0 < z1 < z2 < see < z = 1. Thus,
zj = jh :lﬁ , 1=0,1,2,...,n, Let Sh be the set of boundary grid

points ZO and zn, while Ih is the set of interior grid points Zl’

zz, oo s 2 . If F is any function defined on § X + I, then a con-

n-1 I§ h’

venient notation will be

We attempt to approximate H, G, and M by generating three

sequences, H(k) (k), and M(k), k=0,1,2,e0., on I +8S ,

G h h

each of which is convergent. This is done as follows. For all values

of k , let
(2., 1) H(Ok): H;k): 0, k=0,1,2,...
(2.2) c-a, el -a, k=012 .
Set
(2.3) Himz 0, i=1,2,00e,n~1
(0)
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(2.5) Mi =0 , 1=0,1,2,¢00,n.
By induction, H(kH), G(kﬂ') and I\/I(kJrl) are generated
from H(k), G(k) and M(k) as is shown next,

At the points z1 and Zn-—l write down the two equations

which are difference approximations (see [4])of (1.7). At each of

the remaining points of I , write down the difference analogue

hl

(2. 8) H, - 2H, + H, =h™ M
] i i+

s ’ 122,3,...,,1’1"2,
i- 1 i

of (l.2). Insertion of (2.1) into (2.6)-(2.8) results in a diagonally
dominant linear algebraic system. Solve this system by SOR (point

successive over-relaxation) with over-relaxation factor rH and
~(k+1
L and denote the solution by Hi * ),
k+1
i=1,2,...,n -1, Define Hf o 1,2,....n -1, by the

convergence tolerance o

smoothing formula
i: 1,2,...,1'1“1
(2.9) g ) _oq sa-pEY, k=012,
0

< p<l.

At each point of 1"1’ write down next the following forward-

backward difference analogues’o.f (1.3):



. (k+1), ~ _ (k+1)
(2.10) Gi_1 + [ &+RhHi ]ai-i'[l RhHi ]Gi+1
1 . .
- AR L gk e gD o,
i i+1 i-1 i
(k+1) o (k+1)
(2.11)  [1+RhH, ]Gi_l+[ 2~ RhH, ]Gi+ Gy
o1 (k) L (k+1) L (k+1). (k+1)
= ZRhGi [I—IHI H, ]l if H; > 0.

Solve the resulting diagonally dominant linear algebraic system by

SOR with over-relaxation factor r. and convergence tolerance o

G 2!
call the solution é(kﬂ), and on Ih define G(kH) by
i - ].,Z,oac ,I’l - 1
k - (k k
(2.12) Gi T ;LGi( 1 —-m@i )

' k=0,1,2,¢00
0

<< 1
Note that (2,10)=(2.11) avoid the possible eigenvalue problems

inherent in viewing (1.3) as an equation in G by using the iterate

(k+1) (k)

G to approximate G" and G' and using the iterate G to

approximate G .

k
To construct M( ) on Ih + Sh' first set (see [4])

(k+1) _ (k)

) Lo(k+l) , 2 _5
(2.13) MO 1 [&Hl /h7] + (1 1) MO ' 0< 61_<_1
k l kl . k k:O,l,Z,aco
(2.14) vt g [zH( K )/ha] + (1-—5»)1\/1( ),
n-1 1'"'n 0< 6, <1.




Using (2.13) and (2. 14) as boundary values, write down at each

point of Ih the following forward-backward difference analogues of

(1.4):
2.15) M, +[-2+RhE T M 41 - rep® ) M
- i i i i+1
_ 2Rh GFkH) [GFkH) _ G(,kH)], 5 Hfk+1) <0,
i i+1 i=-1 i
(2.16) 1+ ruE" M 4 -2 - rer®t M, + M,
i i=-1 i +1
_2rn R (@BHD D gDy e kD
i i+1 i=-1 i

Solve the resulting diagonally dominant, linear algebraic system by

SOR with successive over-relaxation factor rM and convergence

tolerance a3, call the solution M(kH), and define M(k+1) on Ih
by

i=1,2,000,n-1
(2.17) Mikﬂ) =5, M(k+l) (1-6, I\/[i(k), k=0,1,2,...

0< 52 <l .

For given positive tolerances Elr Eor Egu the iteration proceeds

for k =0,1,2,..., until for some value k = K, one has

(2.18) |H(K+1) - H(K)| < g uniformly in Ih
(2,19) IG(KH) - G(K)[ <&y uniformly on Ih
(2.20) ]M(KH) - M(K)l < £y s uniformly on Ih + Sh"



(K+1) (K+1)

G , M(KH)

Finally one verifies whether or not H
are solutions of the difference equations being solved, and, if they
are, then they are taken to be the respective approximations of H,

G, M.




3 LXAMPLES

From the large number of examples run on the UNIVAC 1108,
several which are typical, which are of physical interest, and which
display readily the changes of flow patterns with increasing Reynolds
number, will be presented in this section.

For h :'*1" , =1, and Q_ = 0, the results for H, H'

50 1 2
and G, with H' determined by central differences, are shown graphic-
ally for Reynolds numbers 10, 100, 1000 in Figures 1, 2, 3, respec-
tively. The other parameter choices were: (a) for R = 10, p = 0.9,
L =0.9, &6 =0.8, 5, =0.1, rH =1,8, rG =1.0, rM = 1.0, a =
= 0,005, (b) for R = 100, o= 0,9, 1L =0.9,

Q
1
]
0
M
1
™
1
m
!

65, =0.,8, 6, =0.1, r__=1.8, r , =1.0, r. =1.5,qa,=a, =¢ =& =

1 2 H G M 1 2 1
0.001,(13: 53:0.05, (c) for R=1000, 0 =0.9, b = 0,05, 61:0.9,
— juund — = powst pomnt e a — -
6,=0.2, ro=L8, r =Ll =L5 a=¢=0.005 0, =¢,
0.03, oc3 =€y = 0.3. The number of outer iterations necessary for

convergence for Reynolds numbers 10 and 100 were 72 and 182,
, (0) (0)
respectively. To speed convergence for R = 1000, Hi and Mi

were modified to agree with

r—0,6z . ngg%
(3. 1) H(O)(z):
1
K(0.6) (z - 1), 25251
C 1
-12 + 36z , Og_zg‘z‘
(3.2) .M(O)(z): 1
~6-24(z-1), S<z<1,
- 2~
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respectively, at the grid points, and convergence was attained in
19 outer iterations. Choices (3.1) and (3.2) were motivated by the
results for R = 100 shown in Figure 2. The maximum running time
of all cases discussed thus far was under thirty seconds and con-
vergence resulted for a variety of other choices of parameters,

In h :“5*16, Ql = 1, and QZ = -1, the results for H, H' and
G are shown graphically for Reynolds numbers 10, 100, 1000 in
Figures 4, 5, 6, respectively. The other parameter choices were:

(@) for R=10, p=0.9,u=0.9, 6 =0.8, 6, =0.1, r__=1.8,

=1.0, r =1.0, 04 =a_=0q_ =¢ :g‘:%:0.00S, (b) for

'G M 17277875

R=100, o =0.9, 1 =0.2, 61: 0.8, 52:0.1, rH:l,S, rG:l.O,
rM:l,5,al:OLZ: g = EZ:O.OOl, a3:e3:0.05, (c) for R = 1000,
p=0.1,1=0.1, 61: 0.05, 62 = 0.9, Ty = 1. 8, I = 0.9, "M = 1.1,
al =g 7 0.005, 062 =€, = 0,03, CL3 =g = 0.3, The number of outer

iterations necessary for convergence for Reynolds numbers 10 and

100 were 67 and 31. Convergence for Reynolds number 1000 was

(0) (0)

0
achieved in 22 outer iterations by modifying Hi and Mi 1o agree

with
-1.2 0<z< 1
(-l.2)z p £z<
A 0 1 1 3
(3.3) H (z) = 0.3 + (1l.2)(z P 45_254
(-1.2)(z - 1) , Scac
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1

- ! , 0 =

10 + 52z 52__4

(0) 1 1 3

3,4 = - - - -
(3.4) MU (z)=(3 -2 (2= ), G <z<y
10 + 52 (z - 1) ,i‘_{zgl

respectively, at the grid points.

Finally, because of the broad interest in large Reynolds numbers
and because the contradictary conclusions reached in certain cases of
counter rotation, attention was turned to refined calculations for the
case R = 2000, Ql =1, and QZ = -1, 1In Figures 7 and 8 are shown
the results for H, H', G, and M for the parameter choices h = 1/400,
p=0.051=0,05, 61 = 0.1, 62 = 0,925, Ty = 1. 8, Te =Ty = 0.8,

= 0,001, OL,% = 0,002, g, = €, = 0.001, e, =0,01

o) = 0.0003, o 1 3

2
and for initial functions (3,.,3) and (3.4). Convergence was achieved
in 128 outer iteration, which required seven minutes of running time,
The increase in precision is readily apparent by comparing Figures
6 and 7. Moreover, since Figure 7 shows clearly that the fluid has
separated into two distinct parts which rotate with relatively large,
bqt with opposite, angular velocities, it is concluded the numerical
solution supports Batchelor in the Batchelor-Stewartson controversy
([2], [20], [22]).

With regard to the computations byother methods, only the work

of Pearson and that of Lance and Rogers appear to be numerically
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rigorous and moderately successful, For R< 100, their results
and ours for the case of a single rotating disk are completely com-
parable. Thereafter, various results differ widely. For example,
for R = 1000, Ql = 1 and QZ = -1, Pearson produced two, distinct
solutions but failed to produce the symmetric one. By relaxing the
convergence tolerances, we too were able to produce more than one
solution, However, sharpening these tolerances always resulted in
one and only one solution. It is also rather interesting to observe
that if, for Pearson's results (see [15], p. 632, Figure 9), the points
where G and H cross the z axis are relocated to z = }1: , while
the points where Hz crosses the z axis are relocated symmetrically
about z = T;j, then the resulting configurations for G, H and Hz
are gualitatively analogous to those shown in our Figure 7. One can
only surmize, then, that Pearson's time dependent calculations are
stable, but relatively inaccurate due to an accumulation ’of roundoff
error. Such types of calculations are very common in the study of
nonlinear problems,

In the study of R = 1023, Ql =1, QZ = -1, Lance and Rogers
assumed symmetry and reformulated the problem on the half interval
0<Lzx é‘ All their previous calculations were limited to R < 529,

but the use of symmetry allowed for a decrease in grid size and a

corresponding increase in Reynolds number. Their results (see [12],
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pp. 119-120) show that the main body of the fluid is only slightly
disturbed, thus contradicting the flow shown in our Figure 7, and
thereby supporting Stewartson in the Batchelor-Stewartson controversy.
However, Lance and Rogers failed to demonstrate that the problem they
study on the interval 0< z 5_—;" is, in fact, equivalent to the given
problem (1.2)-(1.7) of counter rotating disks. Indeed, numerically,
they should have required that the differential equations be satisfied
on z = Ti“, which they failed to do ([12], p. 119, eq. 5.8). Indeed,
since the solution shown in our Figure 7 also satisfies the conditions
(5.8) of [12], the Lance and Rogers formulation has at least two solutions,
namely theirs and ours, aﬁd appears to be a weaker problem than the
one originally posed, The question as to whether or not the Lance

1
and Rogers solution satisfies the differential equationson z = 'Z does

P

not, however, appear to be trivial.
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i;;: C BLIM{TMHAQMQQEN EXCEEDEDS R ONEXT ITERATION UNLESS 1TERATION
120 33 JF(MOPINTH,INCSOR)«NE«O ) GO 7O 133
121> WRITE(4:,88) NTH
122: 5 WRITE(&:90) (H({1e3)el=1,NP]aINCPR)
12 133 JFINTHoLTMAXIT) GO TO 20
124° WRITE(&,98) 1T0UT
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;gg: 34 DO 3% [=24N ERATION
1287 BO(1)amw2o=RDXeARS(H{I,3))
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1 37 G(loe2)=G(],3)
lg?» 16 DO 38 1=m:2,N
3/ N Giledy=AGI®G(]},2)=RGe(B]{
- Giles)=ALlRGl],2 1)2G(
122: . TEST rOR CONVERJENCE I=] ,3)4B2(118G(J¢),2)=¢G(1))/BO(1)
Lo ?o HD 1=2,N
FleNOTo{ABS({G(]2)%
13;: LT 9 G(I1,3))elLT.ESG)) GO TO 44
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e ODI(NTG, INCSOR)aNEsQ) GO TO 144
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RITE(6090) (Gl1e3)pl=1gN
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igé: 144 JFPINTEoLTeMAXIT) GO TO 236 P INCPR)
522 WRITE(6,97) 1Yo0UT
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Loee C yo COMPUTE M=BAR AT BOUNDARY POINTS
foee - 4 S}&;?):?ELTA(x)QﬁSQZ@H¢293)¢(!a@DELTA(l))mM(z,x)
Lo . SQLVE, BDELTA(1)eHSQ22H (N, 3) ¢ (]l owDELTA(L))I®M{NP]), 1)
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167 ¢ TEST FOR CONVERGENCE




[68% DO 54 1=22,4N

169¢ IF(eNOTo (ABS(M(1:2)=M(143))0L.ToESM)) GO TO 5é

170e 54 CONTINUE

17e ¢ CONVERGENCE ATTAINED==SMOQTH SOLUTION

1720 DO 55 [=2,N

173e 55 M(J93)sDELTA(2)eM(1p3)¢(1o=PELTAC2))®M(T,1)

[74% GO TO0 58

1760 C CONVERGENCE UNATTAINED==UPDATE FOR NEXT SOR [TERATION UNLESS
1760 ¢ ITERATION LIMIT HAS BEEN EXCEEDED, B i
1776 77 66 [F(MOp(NTM,INCSOR)eNE+O) GO TO &7

1789 WRITE(&,288) NTM

179 WRITE(6090) (M(1o3),181 NP1 oINCPR)

T80% 57 JFINTMoLToMAXIT) GO TO 49

lgle WRITE(6,96) 1T0OUT

ig2e Go T0 62 ] o

lgye 658 [F(MOp(ITOUT, INCOUT)EQaD) CALL OUTPUY

lage IF{MOD(ITOUT,, INCRES)eEQeO) CALL TEST

1889 NTOTHaNTOTH®*NTH

iges NTOTGaNTOTG*NTG

1879 NTOTMz=NTOTM4NTHM

lgge c TEST FOR CONVERGENCE OF OUTER ITERATION L )
189¢ DO 59 1m2,N

190@ IF(oNOToe (ABS(H(T93)=H(I,1))eL.TeEH))IGO TO 40

191® IF(oNOTo(ABSI{G(193)=G(1,1))eLTeEG))IGO TO 60

I9ze IF(oNOTo(ABSI{M(193)"M(TI,11)eLT.EM))GO TO 4D

193e 59 CONTINUE

1940 IF(oNDTo(ABS(M(193)=M{1,1))eLTeEM))IGO TO 40

"19%e T1F(oNOTo (ABSIM(NPL:3)=aM{NP1ol))olLTeEM))IGO TO 40

196 c CONVERGENCE ATTAINED=-«OUTPYT SOLUTION

1978 IFI{MOD(ITOUT,INCOUT) «NEoD) CALL OUTPUTY

198% [ COMPUTE H®PRIME

199 DO 159 [=m2,N

2000 159 HPR(T)mlH(1*1,3)=H(1=1:3))/(2:20DX) B
TZGEe T T TWRITE(6,87)

2029 WRITE(6090) (HPR(I)pla L NPloINCPR)

203@ IF(MOD(ITOUT, INCRES) oNEoDO) CALL TEST )
Y{ILX: WRITE(4,93) NTOTH NTOTG,NTOTM

205¢ Go TO 62

2060 c CONVERGENCE UNATTAINED==OUTPUT VALUES FOR QUTER ITERATION. AND
Zo7e ¢ UPDATE FOR NEXT OUTER TTERATION UNLESS OUTER [TERATION LIMIT
208» C HAS BEEN EXCEEDED,

2099 60 IF(1ToUT.LTeMAXOUT) GO YO 16

Z10% WRITE(6.,92) NTOTHNTOTG,NTOTM

2)1e WRITE(60295)

212¢ 62 1F(ABS(END)oGTo00) GO TO 43 -
T2r3e T 6o To 7

2149 63 IF(ABS(FIN)oGToeDe) GO TO 64

2150 Go TO 5

Z1ée 69 JF(ABS(FIN2)oGTa00) STOP

217w Go TO 4

218¢ END




