Computer Sciences Department

University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

*The research reported herein was partially supported by a grant from

the National Science Foundation (GP-7069) and partially by USAF Proj.
RAND (project #1116).

Use of the University of Wisconsin Computing
Center was made possible through support, in part, from the National

Science Foundation and the Wisconsin Alumni Research Foundation (WARF)
through the University of Wisconsin Research Committee,

A NET STRUCTURE FOR SEMANTIC
INFORMATION STORAGE, DEDUCTION AND
RETRIEVAL™
by
Stuart C. Shapiro

Technical Report #109

January 1971

ABSTRACT

This paper describes a data structure, MENS (MEmory Net
Structure), that is useful for storing semantic information stemming
from a natural language, and a system, MENTAL (MEmory Net That
Answers and Learns) that interacts with a user (human or program),
stores information into andretrieves information from MENS and
interprets some information in MENS as rules telling it how to de-
duce new information from what is already stored. MENTAL can be
used as a question-answering system with formatted input/ou’tpl_rt,
as a vehicle for experimenting with various theories of semantic
structures or as the memory management portion of a natural language

guestion-answering system.

Keywords and phrases: question answering, memory net, memory
structure, data structure, semantic memory, semantic information

retrieval, deductive inference, fact retrieval.

1. INTRODUCTION

In order to develop machines capable of "understanding;‘
natural language, it is extremely valuable, if not necessary, to
design a method of organizing a corpus of data to facilitate the
storage and retrieval of information on many subjects, some in depth,
some in breadth; to facilitate the storage, retrieval and use of the
many complex relationships among real-world concepts; to facilitate
the storage, retrieval and use of information which tells how other
information in the corpus may be used to further explicate implied
relationships among concepts; and to facilitate the identification
from the vast corpus of data of those pieces of information most
directly relevant to any given topic,

This paper describes a data structure (MENS) and procedures
for manipulating it (MENTAL) that have been designed to meet the
requirements outlines above. This system is intended to be used
as the memory of a natural language question answering machine (see
[5; 6; 7; 8] and could also be used as the memory of a general theorem
prover or problem solver. Since the system allows its user (either
a human or an outside program) to specify the relations that will be
used for the basic structuring of information, the system can be used
for experimenting with data structures suitable for various contents

and purposes. The major features of the data structure are:

It is a net whose nodes represent conceptual entities
and whose edges represent relations that hold between
the entities.

A distinction is made between n-ary relations about
which information and deduction rules are to be stored
and strictly binary relations that are used only to struc-
ture information about other entities. The former are
represented by nodes in the net, just like any conceptual
entity. The latter relations are the ones used as the
edges of the net.

Some nodes of the net are variables, and are used in
constructing general statements and deduction rules.

Fach conceptual entity is represented by exactly one
node in the net from which all information concerning
that entity is retrievable.

Nodes can be identified and retrieved either by name

or by a sufficient (though not necessarily complete) des~-

cription of their connections with other nodes, likewise

identified,

The system and data structure described here follow along the
general lines laid out by such systems as Semantic Memory [9], TLC
[10], Protosynthex II and ITI [12,17,18], GRAIS [3] and SAMEMAQ
[15,16], but differ mainly in the clear separation of the two levels
of relations and in the ability to store and use general deduction
rules.

All the procedures for storing information into the data struc-
ture, as well as all those for explicit retrieval and some of those for

implicit retrieval have been programmed in PL/1 and are running inter-

actively on an IBM System/360., All the research reported herein has

(O8]

proceeded both theoretically and by writing, checking out, revising
and improving programs in PL/1, SNOBOL3 and Burroughs Extended

ALGOL.

A more detailed discussion of MENS and MENTAL which also

shows their applicability as an experimental vehicle is given in [14]

°

2. BASIC CONCEPTS OF THE STRUCTURE

The basic motivating factors for MENS were:

1. Unified representation: All conceptual entities about

which information might be given and questions might be asked should
be stored and manipulated in the same way.

2. Single file: All the information about a given conceptual
entity should be reachable from a common place.

3, Multientried, converging search: A search of the file

should start from as many places as possible and proceed in parallel,
converging on the desired information.

4, Storage of deduction rules: Rules determining how deduc-

tions may be made validly, even when specific to certain areas or
relations, should be stored in the memory file just like other informa-
tion, and the system should be able to use them in directing its de-
ductive -searches,

5. Direct representation of n—-ary relations: N-ary relations,

for any n, should be as natural for the system as binary relations.

6. Experimental vehicle: The file should be designed with-

out any commitment to a particular semantic theory, i.e. the memory
system should be a research vehicle for experimentation on various
ways of structuring the information in it.

In this section, we will describe how these motivating factors

led to the particular structure decided upon.

Ut

Unified representation requires that every conceptual entity,

i.,e. every concept or individual about which one can talk, have a
memory structure representation which can be put into relationships
with representations of other conceptual entities., It further requires
that all conceptual entities be represented in the same way regardless
of their exact relationships to other conceptual entities, We will refer
to a conceptual entity or to the logical representation of a conceptual
entity as an item. When referring to the computer structure used to
implement the representation of a conceptual entity, we will use the
term item-block. In illustrations, we will picture an item block as

a rectangle within which we will place an English word to indicate
what concept the item block represents. If no such word exists some
other symbol may appear so that the item block may be referred to.

The full implication of unified representation is that every word sense,

every fact and event, every relationship that is to be a topic of dis~
cussion between the system and its human discussant will be repre-
sented by an item. Therefore, the items must be tied together by
relationships that are not conceptual entities. The reasoning for this
is as follows. Statements (e.g., "Brutus killed Caesar.", "The sky
is green, ") are conceptual entities since we may say things about
them such as someone believes them or they are false. Therefore,

they must be represented by items, and such an item must bear some

relation to the items (Brutus, kill, green) that make up the statement.
If this latter relation is a conceptual relation, the fact of this rela-
tionship's holding between two items may be discussed and thus must
be represented by an item which then must have some relationship to
that relation, etc. Eventually there must be some relation which is
not conceptual, but merely structural, used by the system to tie a
fact-like item to the terms partaking in it. We will refer to a con-

ceptual relation as an item relation or simply a relation and to a non-

conceptual relation as a system relation, link, or pointer. The MENS

structure is, thus, a collection of items tied together by system rela-
tions into a directed graph with labelled edges. The nodes of the
graph are the items and the edges are system relations. The edges

are directed to indicate the order of the arguments of the system rela-
tion. The edges are labelled to allow for several different system
relations. The distinction between item relations and system relations
is very important and must be kept in mind.

Single file means that there will be exactly one item for each
conceptual entity. Therefore, all the information about the conceptual
entity will involve its item and be retrievalbe from its item block.
Since the system relations are the links that tie items together and
thus provide the information, this means that whenever a link goes

from one item to another, there is an associated link in the reverse

direction. Looking at the fact and event items as records in a rec-
ord oriented file and at the links going from participating items to
fact and event items, MENS is an inverted file and may be searched
as one. However, it is more than an inverted file, since links go the
other way also. In illustrations, a link pair is represented by a line
connecting two item blocks., The name of the system relation appears
in the item block where the line emanates, from it., For example in
Figure 1 the system relation AGENT goes from item 241/000104+23 to
the item representing JOHN,

Multientried, converging search implies that items equally

identifiable by the human conversant should be equally identifiable by
the system, By this is meant that any item named by an English word
can be located as quickly (by the same lookup procedure) as any other
item so named, rather than some being locatable by lookup while others
require an extensive search, Items that do not have English names,
but must be identified by description will be located via searches that
are quick or involved depending on the complexity of the description.
The lookup is done through a dictionary which gives the internal names
for the items which represent each of the senses of each natural
language word used in the conversations. The internal name of an
item is its address in secondary storage, so once looked up the item

block is easily found. Items are connected to facts (which do not have

English names) as mentioned above and when two items are connected
in the memory structure, each is reachable from the other since every
link between two item blocks is stored in both directions. Another

implication of multientried, converging search is that searching the

file is done by starting at an arbitrary number of item blocks (all

those that can be looked up directly) and converging to the desired
information structures. This involves repeated intersections of sets
of items as will be explained in section 3. Special care has been
taken to make this search process as efficient as possible and special
constructs have been developed for this purpose.

Storage of deduction rules implies that deduction rules should

be capable of being stored inand retrieved from the memory structure
in the same way that specific information is stored and retrieved.
This implies that the structures used to store deduction rules must be
basically the sar=ne as those used to store specific information. It
further implies that the executive routines must include a very general
deduction rule interpreter that is capable of initiating searches of the
memory and generating appropriate consequences based on any stored

deduction rule.

"‘By "deduction rule" is meant any statement which, properly
interpreted, provides information as to what statement(s) may be con-
cluded from what other statement(s). Deduction rules include (among
others) rules of inference of symbolic logic, general statements and
disjunctive statements (any clause may be the conclusion if the nega-

tion of all the others holds).

Direct representation of n-ary relations implies that an item ;

representing a relational statement based on an n-ary relation should
have links to each of its n arguments directly, regardless of the
value of n . This means that any item must be capable of having

an arbitrary number of pointers emanating from it. This number may
even change throughout the life of an item as the types of system
relationships it has with other items change.,

Experimental vehicle implies that the user must be given the

capability of declaring what and how many system relations he will
use rather than having a maximum number imposed on him, He must
be able to decide what will be his conceptual entities rather than be
provided with a closed set of them. He must be able to decide how
items and pointers will be combined into structures to represent the
information he wishes to work with. He must, finally, not be restric-

ted as to what deduction rules the system may store and use.

10

3. EXPLICIT STORAGE AND RETRIEVAL

Both storage into and retrieval from MENS are accomplished by
describing how an item is (or is to be) connected to other items in
the net, The storage instruction in effect says, "Create an item and
connect it into the net in this way." The retrieval instruction in ef-
fect says, "Tell me all items that are connected in the net in this

way. " Both instructions are expressed in a statement, called a
specialist, which describes the item by describing the paths in the
net that lead away from the item. These paths may be quite compli-
cated, but the edges along the paths must be explicitly named system
relations.

We will now describe the language which a human (or an ex-

ternal program) uses to interact with the system.

INPUT SYNTAX:

The input language is defined in modified BNF notation. Under-
lined words in lower case letters are non-terminal characters. Strings
enclosed in square brackets are optional. Strings arranged vertically
and surrounded by braces are alternatives -- one must be chosen.
Strings followed by an asterisk may appear one or more times, Strings
surrounded by broken brackets are informal English descriptions of
object language strings. J§ represents a required blank; additional

blanks may be inserted anywhere. The following characters are

11

delimiters in the language: -)Y o ? . = Y

’

A ‘"character" is any legal character except a delimiter.

4 relspec B
(speclist)
input — <
describe-request
B
describe-request — DESCRIBE ¥ cname | cname |*
D s
relspec - $ linkname ¥ linkname ¥
M M
speclist - spec [-spec] [- restrictions] | = vname]
restrictions — (linkname [, linkname }¥)
linkname — <a string of 1 to 13 characters>
buildspec
spec -+
findspec
buildspec - (. linkname : speclist [, linkname : speclist]¥)
r)
name
findspec — (name | , name]*) >

(findprefix linkname : speclist | , linkname :

g speclist J#) J

12

(vname)
findprefix - ? num , num
r
cname
name -~ ‘'vname
Y%vname
p

<a string of 1 to 13 characters>
cname -

< 3 digits> / <5 digits> + < 3 digits>

(< a string of 1 to 13 characters, the

first of which is not X, Y, or 42>

vname —
—— <a string of 1 to 13 characters, the

_ first of whichis X, Y, or Z>

31
<any integer i, 0< i _<_2J >
num —

#

Input Semantics

A relspec is used to declare a system relation, i.e. a relation
that will be used as a pointer in the file. The first linkname in a
relspec will be the symbolic name of a pointer (considered the forward
pointer of the system relation) and the second linkname will be the
converse of the first (and will be called the reverse pointer). Each
pointer will be single or multiple depending on whether "S" or "M"

follows its linkname. Examples of relspecs are:

13

¢ AGENT S *AGENT M
$ VERB S *VERB M
A cname is the external name of an item in the net. The first

form of a cname (a string of 1 to 13 characters) is the one normally
used in a speclist, and is introduced by the user to represent some
concept he wishes to discuss. Although we will use English words
for these cnames in this paper, it must be remembered that they each
stand for an unambiguous concept (word sense). A cname is associated
with an item after the first time it is used in a speclist, and maintains
that association. The second form of a cnhame is the direct representa-
tion of the internal name of an item and is used by the system to men=-
tion to the user an item that does not have another external name. The
user should not use such a cname unless it has previously been used
by the system in the reply to a speclist or in the display following a

describe-request. Examples of cnhames are:

JOHN 241/000104+23
HAS SENSE_1 240/000234002

The describe~reguest causes the system to display, for each

cname in the request, all paths of length 1 emanating from the item
identified by the cname. That is, for each item identified, all pointers
emanating from it are listed, and with each pointer is listed all items

pointed to. An example of a describe-request is:

14

DESCRIBL JOFIN, 241/00010+023, LOVES 241/00023+002
A possible system response to this request is:
DESCRIPTION OF JOHN:
*AGENT 241/000104+023
#OB]J 241/000104024

241/00023+002

DESCRIPTION OF 241/00010+023

AGENT JOHN
VERB LOVES
OBJ JANE

DESCRIPTION OF LOVES
*VERB 241/00010+023
241/00010+4+024

241/00023+002

DESCRIPTION OF 241/00023+002

AGENT SUE
VERB LOVES
OB]J JOHN

A structure described by this response is shown in Figure 1.

A vname is a variable of the input language. It may be associated

with a single item or with a list of items, but when ", is given as

the input (not enclosed in any parentheses) all vnames lose their

[

241/00010+G23

241/000104+024

241/00023+002

AGENT | VERB |OB]

AGENT |VERB |OBJ

AGENT|VERB [OBJ

“AGENT | +OB]|

JOHN

+OB] | *AGENT]

JANE

Figure 1,

LOVES

«AGENT]

SULE

A MENS substructure, described in the text.

‘ ' 16

associations. It is important to distinguish between variable items
and vnames. Variable items (see section 4) explicitly exist in the

net, although they do not have external names. There are also some
constant items that do not have external names, for example items
which represent facts or events, Vnames may stand for either of these
two types of items, and may also stand for items which do have ex-~
ternal names. The important thing about a vname is that its assoc~
jation with an item or a list of items is only temporary. Turthermore,
the system never uses a vname to refer to any item; it is used only

by the user, The only time the distinction between vnames that begin
with X, Y or Z and those that do not matters is when the first appear-
ance of a vname immediately follows the delimiter " ' ". In that case
a new item will be created in the net and the vname will temporarily be
assigned as its name. If the vname begins with X, Y or 7 the item
created will be a variable item., Otherwise, the item created will be

a constant item that will not have an external name. Although the
vname construct is not the only way to introduce a constant item
without an external name, it is the only way to introduce a variable
item into the net, If the first use of a vname is in a findprefix or
immediately preceded by " %", or in the = option in a speclist a new
item will not be created, but the vname will be assigned an item or a
list of items which will be found in the net according to the instructions

embodied in the speclist,

17

The speclist is used both for storing new information into the
net and retrieving information from it. Its main component is the spec,
which is considered to have as its value a list of zero or more items.
If a speclist consists of only the spec, the value of the speclist is
the value of the spec. If the -spec option is included, the items on
the list that is the value of that spec are removed from the value of
the speclist. This allows a retrieval request of the form: "Tell me all
items described in spec, that are not also described by §Q§£ZG " For
example, the request to list all things written by Scott except Ivanhoe
might be:

((?0,4#,*0OBJ:(?0,#,AGENT:SCOTT, VERB:WHITE))-IVANHCE)

The = restrictions option causes the removal from the value of the
speclist of any item that has any of the links named by the linknames
of the restrictions emanating from it. The purpose of this option is
to limit the value of the speclist to items without certain extraneous
pointers. Tor example if a TIME link were used to point from items
respresenting events to items representing the time interval of their
occurrence, and the TIME link were not to emanate from any item repre-~
senting a "timeless fact", then a request for all items representing
timeless facts about the United States might appear as:

((?0,#,AGENT: UNITED_STATES) = (TIME))

The -spec and -restrictions options would not, of course, be used in

18

a speclist whose initial spec is a buildspec. The =vname option
causes the vname to be assigned as its temporary value the itém or
list of items that is the value of the speclist. The main use of this
option is that if the same speclist is to appear in one spec in more
than one place, much retrieval time can be saved if the =vname option
is used in the first occurrence of the speclist and the other occurrences
of the speclist can be replaced by the vname in the ‘vname form of a
name. [For example, a retrieval request for all those th; both love
and are loved might be:

(?0,=,*AGENT:(70,#,VERB:LOVE)=LUV_RELATIONS, *OB]J:

'"LUV_RELATIONS)

The spec is the basic construct for describing items to be built
or found in the net, The item(s) described by the spec is the value
of the spec and the procedures used to evaluate the spec are the main
storage and retrieval procedures of the MENTAL system. There are two
ways an item can be described: by its name or by a description of its
connections Wi‘ﬂun the net structure, Use of the item's name references
the item directly -- the internal name is either a direct translation of
the name or is discovered by lookup in the main symbol table or in the
temporary vhame symbol table. Use of the description form requires
searching the net, The description is formed in the following way.

Suppose you are looking at the actual item block. List the pointers

19

that emanate {rom the item block, and for cach pointer list all the

item blocks it goes to. These item blocks are listed by either giving
their names or describing them in the same way as the original item

is being described. At least one pointer of such a second level item
points back to the original item, viz. the converse pointer of the
pointer that points from the original item, so it will clarify nothing

to list it, It may be the case, however, that some other item is en-
countered more than once in this expanding description. In that case,
if its name is not known, the “vname option is used as mentioned
above and described below to insure that this significant property of
the structure is represented in the description, The description is
continued until all paths that lead away from the original item being
described end in an item described by a name. What has thus been
described is a sub-structure of the net structure, and at the center

of the sub-~structure (or, we may say, at the head of the sub-structure)
is the item described by the spec. It may be that the description fits
more than one sub-structure of the net., In this case, the value of the
spec is a list of all items that are heads of the sub-structures so des-
cribed. If no sub-structure fits the description, the value of the spec
is the null list, If the spec was a buildspec, a new item would be
connected into the net so that it would be the head of a substructure
described by the spec, and the new item would be the value of the spec.

In describing an item it is not necessary to list all pointers emanating from

20
it if some are not known or if their existance is irrelevant for the in-
tended retrieval.,

We will now consider the findspec in more detail, specifically
those in which the findprefix occurs. The first num is the minimum
number of items which are to be found satisfying the description,
while the second num is the maximum number. If the number of items
found is less than the first num, more must be found using the de-
duction techniques (see sections 4-9). If the number of items found
exceeds the second num, there is a semantic ambiguity that must be
cleared up. The character "#" is used to represent the largest inte-
ger that can be held in the internal computer field used to store the
nums, Some uses of the nums are:

If the spec is a definite description == 71,1

To find the active members of a football squad -~ 740,40

To find all the authors of a coauthored book == 72, #

The (vname) option is a way to change the value of a findspec from
the head of the substructure described by the findspec to an item
which occurs elsewhere in the substructure. This is sometimes
necessary when the complexity of the substructure precludes the item
being sought from bing described in the normal way. For instance if
we wanted a list of all narcissistic people, we might be tempted to

use one of the following equivalent findspecs:

21

(?0,4,**AGENT:(70,#,VERB:LOVE), *OBJ: (?0, #f, VERB: LOVE))

(?0,/} ,*AGENT: (?0,#,VERB:LOVE)=5, *OBJ:5)
Fach of these specs would, however, evaluate to a list of all those
who love and are loved, not necessarily by themselves. The proper
way to form the request would be:

(?0,#(N)AGENT: 'N, VERB:LOVE, OBJ: 'N)
Similarly, the proper request for all who love someone who loves them
back would be:

(?0,#(LOVED_ONE)AGENT:'LOVED_ONE, VERB:LOVE, OBT:

(?0,4,*AGENT:(?0,#,VERB:LOVE, OBJ: 'LOVED_ONE)))

The manner in which such a spec is evaluated is discussed below.,
We will now discuss how a spec that does not contain a vname is
evaluated,

First let us look at the simplest spec -~ where all speclists in
the spec are just names. Say we wish to enter into the net the sen-

1

tence, "John kissed Mary in Chicago on Tuesday." and we want it
to have the structure described in the buildspec:
(,AGENT:JOHN, VERB:KISS, OBI: MARY , LOC: CHICAGO,
TIME: TUESDAY)
We would enter an input consisting of the above speclist in an additional
pair of parentheses. The linknames and external names would be looked

up in the appropriate symbol tables and a new item block would be desig-

nated to represent the sentence. Note that every buildspec causes a

22

“new item block to be built., The rationale for this is that every

buildspec is supposed to represent a conceptualized piece of informa-
tion about which further information might be given. For example, the
above example might, in fact, be part of the sentence, "Henry said,

"

‘Tohn kissed Mary in Chicago on Tuesday.' Furthermore, no check
is made to determine if there is already an item in the net which is
described by the buildspec. Although it was at one time planned to use
an already existiﬁg item whenever it satisfied a buildspec instead of
building a new one, it was eventually realized that this involved cer-
tain problems. One problem is whether two irs tances of a sentence
reporting an event are two reportings of the same event or reportings
of two similar events. Also, if the same item were used for the sen-
tence represented by X in the sentences, "Henry said X." and "Bill
said X.", the sentence "John heard what Henry said." would imply
“John heard what Bill said." which would not necessarily be correct.
Therefore, it has been left to the user (be it a human or a parsing-
transducing program) to ascertain if a given substructure already ex-
ists and if so, whether or not to reuse it.

The item created for the above buildspec is given an AGENT
pointer to the pblock representing JOHN, a VERB pointer to the block

representing KISS and so on, so that it has five pointers emanating

from it. The block representing JOHN gets a pointer for the converse

of AGENT (say *AGLNT) pointing from it to the block representing
the statement., Presumably, *AGENT has been declared in a relspec
to be a multiple pointer, In that case JOHN may already have *AGENT
pointers to other item blocks, and the name of the new block will be
added to a “AGENT multiple pointer list, If #AGENT was declared to
be a single pointer and JOHN already had a *AGENT pointer to another
item block, the attempt to add another *AGENT pointer to JOHN will
bhe in error and will not be performed.

To enquire if the sentence, "John kissed Mary in Chicago on

Tuesday. " is already in the net, the following input would be entered:

((?0,#,AGENT:JOHN, VERB:KISS, OBJ: MARY , LOC: CHICAGO,
TIME: TUESDAY))

This is a request to list the names of any (zero or more) items which
have the named system relationships to the named items, The item
created for the above example would be an answer to this request and
so would any other item that had these pointers, even if they also had
additional pointers. The items would be retrieved in the following way.
The list of itams pointed to by the *AGENT pointer (let us assume that
we have declared all linknames so that the linkname for the converse

Moo 08
P

pointer is the linkname for the forward pointer with prefixed)
from the JOHN block is retrieved, along with the list of items pointed

to by the #VERB pointer from the KISS block, the list of items pointed

24

pointed to by the #OBJ pointer from the MARY block etc. These lists
would be intersected and the result would be the value of the findspec
and the answer to the input request. The methods making possible
efficient intersecting of these lists are derived from the algorithms for
list set generators [13].

The situation is slightly more complicated when the embedded
speclists are descriptions, First the embedded speclists are evaluated
leaving a findspec of the form (... L:(I1 I& ceo)ess). Dince we are
looking for an item with an L pointer to at least one of the Il or
I& or ... and likewise for the other linknames in the findspec, what
we want to intersect are the union of the =L lists from each of the
I's with the unions of the other converse pointer lists, This inter-
section of unions is performed efficiently using the methods discussed
in [13]. If this spec were a buildspec, an item would be created with
an L pointer to each of the I's, If L were a single pointer but more
than one I appeared in the list, an improper substructure would be built,
so it is important when building an item with a single pointer to an
item which is to be found, that the findspec describing the item to be
found have the definite descriptor (?1,1) notations

We will now discuss the evaluation of a spec¢ that contains vnames.
As was mentioned above, if the first occurrence of a vname is preceded by

the delimiter ', it is immediately assigned a new item, From then until

N
(o1

the appearance of the input ". ", cvery occurrence of that voame is
immediately replaced by the name of the item which has been assigned
to the vname. Therefore, we are now concerned only with vnames whose
initial occurrence is preceded by the delimiter "%" or whose initial
occurrence is in the findprefix. The prupose of such a viname is to
specify that some unknown block is reachable by several different paths
from the head of the substructure described by the spec. Thus, such
vnames should be used in findspecs rather than in buildspecs. When
a spec with vnames is evaluated, associated with every item in the
value is a substitution which is a list of every vname in the spec and
with each vname the item(s) that are the value of the vname as deter-
mined by the evaluation of the spec. Thus, if two embedded speclists
in a spec both use the same vname, when their values are intersected
the substitutions within them are compared and adjusted so that every
path specified by the position of a given vname in the spec leads to
the same item.

The intersection and union routine have been modified to take

substitutions into account as well as to update them properly as the

intersection and union operations are proceeding., TFurther discussion
of this in this paper is precluded by space limitations. A detailed

analysis is given in [14].

4., REPRESENTATION OF DEDUCTION RULES

In section 3 it was shown how the MENS structure is used for
explicit storage and retrieval. In this section we will explain how
it can be used for deduction. Since storage of deduction rules is a
motivating factor of this project, the deduction method
will involve the storing of general deduction rules and the use of
fairly simple theorem proving techniques. The reason for this is
that we want the system to be as general as possible and we want
to concentrate on the data structure rather than the executive routines.
Tt would be possible to build a complex and sophisticated theorem
prover which uses MENS for its data storage, but this is not our
current interest,

In order to allow for complete generality in what deduction rules
could be stored, including arbitrary orderings of arbitrarily many
quantifiers, it was decided to represent quantifiers and variables
directly in the structure, and build executive routines to interpret the
deduction rules. These routines would operate, upon being given a
deduction rule, by carrying out searches required by the rule and
building consequences justified by the rule. Representing quantifiers
and variables directly seems to be a compromise of the motivating
factor of unified representation since they will require special routines

to deal with them and their status as conceptual entities is questionable.

[
-1

However, dealing with the order of quantification implied by some
Inglish sentences is enough of a problem that at least one linguist
believes that quantifiers and variables might profitably be comprehended
by the base rules of English grammar [1, p. 112]. Besides, including
this capability extends the use of the system as an experimental ve-
hicle, another motivating factor.

The decision to allow direct representation of variables leads

to the questions of how to represent them and what will be allowed

to substitute {or them. Considering the second guestion, the cuin-
clusion is that a variable should be able to stand for any item but not
for any system relation. This is supported by the discussion in sec-
tion 2 that anything about which information could be given should be
represented by an item, that all items should be equally able to have
information stored about them, and that system relations could not have
information given about them since they are not conceptual entities.

As Quine says, "The ontology to which one's use of language commits
him comprises simply the objects that he treats as falling ... within
the range of values of his variables." [11, p. 118 quoted in 2, p. 214].
Since the ontology of the data structure comprises the set of items (by
definition of item), the values of the variables must be allowed to

range over all the items, and since the system relations are to be ex-

28

cluded from the ontology, not allowing them to substitute for a
variable reinforces their exclusion. Allowing the variables to range
over all the items, however, brings up the possibility of storing the
paradoxes that were eliminated from formal languages only with the
introduction of types of variables or restrictions on assertions of
existence (of sets). This possibility will be accepted. We make no
type distinctions among the items and impose no restraints on item
existence, leaving the avoidance of paradoxes the responsibility of
the human informant. We will do the same with the variables. How-
ever, we do use restricted quantification. What is meant by this is
that with each quantifier in a deduction rule will be included, not
only the variable it binds, but also an indication of the set of items
over which the variable ranges. Woods [19] uses restricted gquantifi-
cation to reduce the time needed to handle a request by including in
the restriction a class name and a predicate. The class name must be
of a class for which there exists a generator that enumerates all the
members of the class one at a time. [Each member is tested with res-
pect to the predicate. Those for which the predicate is true are acted
on by the main body of the request., Our restrictions may be more
general. We will allow any statement, however complex, about the
variable. This statement will be used as a search specification to

find all items in the structure for which the statement is true. The

sct of such items will comprise the range of the variable. Thus,
even omega ordered type theory may be represented in the structure
by entering a statement about every item giving its type and in-
cluding type specifications in the restrictions on each variable.,

We now return to the question of how variables should be re-
presented, Lach variable will be represented by its own item block.
All cccurrences of the same variable within a given deduction rule
will be represented by the same item and no such item will be used
in more than one deduction rule. The same item is used for all
occurrences of a variable in a deduction rule so that a substitution
made for the variable in one occurrence will at the same time be made
in the others and so that all the information about what items can
substitute for the variable will be reachable from one place. Different
items are used in different deduction rules to eliminate the possibility
of information about a variable in one deduction rule becoming assoc-
iated with a variable in another. Part of the internal name of an item
is used to distinguish variable items from constant items so that an
item can be recognized as a variable when it is pointed to from an-
other item.

Besides quantifiers and variables, the connectives NOT, AND,

OR, IMPLIES, IFF and MUTIMP:‘: are also represented as item relations

"MUTIMP stands for mutual implication, It is a predicate with
an arbitrary number of arguments and says that its arguments mutually

30

in the structure and the executive routines that interpret the deduc-
tion rules are designed to handle them.

Deduction rules are stored using two types of items that will
be recognized by the executive routines., We will call them quanti-
fier clauses and connective clauses, A quantifier clause is the head
of a quantified general statement and has four special systems rela-
tions emanating from it. They are:

(1) ¢ points to the quantifier

(ii) VB points to the variable being bound

(iii1) R points to the restriction on the variable

(iv) S points to the scope of the quantifier
A connective clause is the head of a construction formed of several
clauses joined by one of the connectives mentioned above. It has
an OP system relation to the connective and one of the following sets

of argument relations:

s(continued) imply each other by pairs (are pairwise equivalent).
Looked on as a binary connective, MUTIMP, like AND and OR and
unlike IMPLIES and IFF is idempotent as well as associative and
commutative., A possible definition of MUTIMP is:

n n
MUTIMP(P. ,...,P) df AND (P, IMPLIES AND (P_))
1 n’ = j-1 i j=1 j

i

That is if MUTIMP (P_, ... ,Pn) is true and P, is true (false) for some
i, 1<i<n, then Egi is true (false) for all li, l<i<n. Fortwo
arguments MUTIMP is equivalent to IFF.

31

(1) ARG to the argument if the connective is unary (NOT)

(i1) ARG1 to the first argument and ARG2 to the second
argument if the connective is binary (IMPLIES,IFT)

(iii) MARG to all the arguments if the connective is associa-

tive, commutative and idempotent (AND OR, MUTIMP)

The clauses forming the arguments of a connective clause and those
forming the restriction and scope of a quantifier clause may be any
net sub-structure with the requirement that a clause may contain a
free variable only if a sequence of converse argument pointers, con-
verse restriction pointers and converse scope pointers leads to a
quantifier clause in which that variable is bound.
Examples of deduction rules are given below, Fach deduction
rule is given first as an English language statement and then as a
buildspec.
1. Every man is human,
(. O:ALL,VB:'X, R: (. AGENT:'X, VERB: MEMBER, OBJ: MAN),
S:(,AGENT: 'X, VERB: MEMBER, OBJ: HUMAN))
2. [Every car has—as-part an engine.,
(,Q:ALL,VB:'¥X,R: (,AGENT: 'X, VERB: MEMBER, OBJ: CAR},
S:(.Q:EXISTS, VB: 'Y, R: (.AGENT: 'Y, VERB: MEMBER, OBJ: ENGINE) ,

S:(.AGENT: 'X, VERB: HAS_AS_PART,OBJ: 'Y)))

32

3. If a male is the child of someonc, he is the sone of
that person.
(. Q:ALL,VB:'X,R: ((AGENT: 'X, YERB: MEMBER, OBJ: MALE) ,
S:(. Q:ALL,VB:'Y,R:(,AGENT: 'X, VERB: CHILD_OF ,0OBJ:"Y)
S:(.AGENT:'X, VERB: SON_OF ,OBJ: 'Y)))
4. John is at home, at SRI or at the airport,
(.OP:OR, MARG: (. AGENT:JOHN , VERB:AT ,OBJ: JOHNS_HOME),
MARG: (. AGENT:JOHN , VERB:AT , OBJ: SRI),

MARG: (.AGENT:JOHN, VERB: AT, OBJ: AIRPORT_4))

“This sentence taken from Green and Raphael [4].

o
(UN]

r

5. USE OF DEDUCTION RULES

There are six operations that can be performed with respect to
a deduction rule in MENS. They are:

(1) It may be used for generating conseguences.

(ii) It may be confirmed by exhaustive induction, i.e.
proved F-true in the universe of the data structure at any given time.

(iii) It may be deduced from other deduction rules.

(iv) It may be refuted by finding a counter~instance in the
data structure.

(V) Its negation may be deduced,

(vi) It may be treated as a specific statement, which includes
its use as an assumption in the deduction or negation of other rules

as in (iii) or (v).

We will be mainly interested in using a deduction rule for
generating consequences. In this process, there are two ways of
using a restriction, They are:

(i) A possible substitution for the variable may be checked
to see if it fulfills the restriction.

(ii) The data structure may be searched to find all items that

fulfill the restriction.,

The amount of information that may be deduced with any deduc~

tion rule depends on more than the quantifiers and the number of items

34

that are found able to fulfill the restrictions. It also depends on the
structure of the logical connectives in the deduction rule. For ex-
ample, a deduction rule might have a consequent that was the conjunc-
tion of several sub-structures. Thus, several independent sub~
structures might be deduced from each choice of items to substitute
for the variables. There are, therefore, several different ways we may
use a deduction rule for generating consequences. We may instantiate
over all items that satisfy the resirictions or just over those we are
interested in. Similarly, we may generate all the consequences justi-
fied by the deduction rule or just those needed to answer a particular
question.

In the following sections, we will first discuss how a deduction
rule useful for answering a particular question is found, and then dis-
cuss how the executive routines interpret the deduction rules and gen-

erate consequences.

Lo
Ul

6. U'INDING DEDUCTION RULES

N deduction rule is needed when the number of items found to
satisfy a findspec (see section 3) is less then the minimum number
required. The problem then, is to find a deduction rule capable of

generating an item that satisfies the findspec. Say the findspec is

i ?20,#,L.: oo e peese Lot(I ..., 1
(1) ('ﬁ’Il (Ill' Ilml) Ln (1111' inmn)>

where L1 Je ooy Ln are system relations and I1 REERE Inm are specific
items (we will assume at first that a substructure only on;a level deep
is required and consider the case of several level structures later).

In order for a deduction rule to generate the desired item, it must he
headed by a quantification clause that is connected through a path of
scope and argument pointers to an item which contains the lahels

L1 Jooo ,Ln one or more of which point to variable items and the rest
of which point to some item in the appropriate list in (i). We can,
therefore, locate the deduction rule by searching for any item that
satisfies the find-spec:

{ii) (?O,#,le((I)UV),M.,,Ln:((I soea])y UV

nl nm

,uwa,:[
11 lml n

where V is a list of all variable items in the data structure. For the
sake of efficiency, we maintain an item which we shall call VBL.

No other item in the structure contains a pointer to VBL, but whenever
a variable item contains a pointer L to an item I, VBL also contains

a pointer L to the item I. Thus, the find-spec (ii) is equivalent to:

36

20 4 . ']
(iii) (.O,h,Ll.(VBL,IH,a”,I Jieeo . L VBL,IH,MO,I))e

|)
1m n 1 nm
n

1

Note that any item that satisfies (i) must be an instantiation of
any item that satisfies (iii) and, further, it is possible to deduce an
item that satisfies (i) only if an item satisfying (iii) exists in the data
structure,

For each item, I, found satisfying (iii) we may record what sub-
stitutions we are interested in for the variables pointed to from I. If
I has a pointer Li to a variable item Xi' we record that the only

eos o1, b
1 1mi Y

putting them in a "possible substitution" list for Xio They will later

items we are interested in substituting for Xi are Ii

be checked against the restriction on Xi°

For each item 1 satisfying (iii), we then follow the paths of
reverse scope and argument pointers until coming to an item D that
is the head of a deduction rule. This will be a deduction rule capable
of generating the consequence we are interested in. While following
this path a trace list is created. This is a list (S1 Jeoe ,Sk) where Sk

is I, S. 1is pointed to by a scope or argument pointer from D, and

1

Si' 2< i<k, is pointed to by a scope or argument pointer from

Si—l . The trace list will be used to limit the consequences generated
to the ones desired.

In the case of failing to find items matching a findspec involving

several levels, the same process is carried out, but we must be sure

37
to allow for all possibilities of variables replacing constants. That
is, each level is handled as above for progressively higher levels,
and the reverse scope and argument pointers are not followed until

the highest level has been done.

38

7o GLNLRATL

The routine to generate consequences from a deduction rule is
a recursive procedure that is initially given the internal name of an
item that heads a substructure with no free variables. It returns a
list of itzms (internal names) that head substructures representing
the consequences that have been generated. These substructures
might then either be left in the data structure or be erased. The
Generate routine is written to generate consequences according to
the author's understanding of the meanings of the quantifiers and
logical connectives. It is not designed to prove theorems, but to
use deduction rules and other data that have been stored and are
assumed to be valid by generating consequences of them.

The various sections of the Generate routine assume the existence

of certain global information, viz:

(1) If the trace flag (TRI'L) is set, a trace list (TRACELIST)
has been huilt as described above.

(i1) The negation flag (NEGFL) is used to pass negations down
to minimum scope. If it is set the substructure being considered
should be considered to be the negation of itself.

(iii1) ELvery variable item has a list of possible substitutions,

a list of substitutions and a substitution. The list of possible sub-

stitutions may be filled as described above. The list of substitutions

39

consists of those possible substitutions that have survived a check
against the restriction or those items that have been discovered to
fulfill the restriction via a search on the data structure, The sub-
stitution is the item actually substituting for the variable at a given

time during generation.

As examples, two sections of the GENERATE routine will be
described - ALLGEN, which generates a substructure headed by the
universal quantifier, and ORGEN, which generates a substructure

whose main connective is OR.

ALLGEN transfers to EXISTSGEN (just after the point where
LXISTSGEN tests NEGFL) if NEGIFL is on. Otherwise, if there is a
list of possible substitutions for the variable of the quantifier clause,
they are checked against the restriction and those that succeed are
placed in the substitution list. If there is no list of possible sub~
stitutions, the vestriction is usad to direct a search for all valid
substitutions and they are put in the substitution list. I'or each item
in the substitution list as the substitution for the variable, GENERATE
is called recursively with the scope of the quantifier clause as argu-
ment. If TRFL is on, TRACELIST is popped hefore GENERATE is called

since the top item on it must be the item pointed at via 5.

49

ORGEN transfers to ANDGEN (after its NLGTL test) il NEGIL
is on. Since we want to generate the most concise information
possible, an attempt is made to refute each item pointed to via MARG
(except for the one on top of TRACELIST if TRFL is on), If only one
item is not refuted, it is generated. Otherwise a disjunction is gener-
ated with the instantiation of each item that was not refuted as a dis~
junct. If ORGEN was transferred into from ANDGEN, NEGFIL will be
on and items will be discarded if confirmed rather than refuted. It
ORGEN was transferred into because NEGFL was set at MUTGEN, two
passes through ORGEN will be made, one with NEGFL on and one with it

off.

4]

8. CONFIRM AND REFUTE

The Confirm and Refute routines are used by the Generate
routine as indicated above. It is, of course, possible for an ex-
pression to be neither confirmed nor refuted. For example, the
statement "All men have two arms" would be neither confirmable nor
refutable if we knew of exactly 100 men, of whom 99 had two arms,
but we had no information about the hundredth.

The Confirm and Refute routines also use the author's know-
ledge of the quantifiers and connectives. For example a disjunction
is confirmed if and only if any argument is confirmed and is refuted

if and only if all the arguments are refuted.

42

9. SUBSTRUCTURE DIRECTED SEARCHING

Using a restriction to find all the items that satisfy it and
finding an instantiation of a substructure containing free variables
in order to confirm or refute it require a process similar to the one
used to find an item described by some findspec., Such general sub-
structures may contain some items which are connected to the head
item by several different paths. If these items are constant items,
any instantiation of the general substructure will contain them at the
end of similar paths from the head item., If, however, they are variable
items or items heading substructures containing variable items, the
instantiation substructures will have different items in their place
and we must be sure that no item in the general substructure is sub-
stituted for by more than one item in any instantiation substructure,
This is done in the same way as evaluating a findspec which contains

vnames which originally appeared preceded by "%" or in the findprefix.

10, SUMMARY

In retrospect, we can see several significant facets of the
MENS structure and the MENTAL system. First, the work has been
developed with a unified viewpoint grounded in the theoretical basis
represented by the six motivating factors discussed in section 2.
Underlying these have been the desires to maintain complete generality
and to keep the executive routines as simple and general as possible.
Thus the number of ad hoc features have been kept to a minimum. The
only departure from building just a structure and those routines necessary
to manipulate the structure ignoring what information might be stored in
the structure was the establishment of the system relations and item
relations used to store deduction rules and the executive routines to
interpret them. Once that was done, however, no further constraints
were placed on the deduction rules so that generality was maintained
to a large degree,

Another significant facet of MENS is the two levels of relations -=
system relations and item relations. System relations are the basic
organizational mechanism of the structure, vet the user is allowed to
define the ones he wants to use and thus may experiment with different
semantic structures. Item relations are the conceptual, meaningful
relations that hold between other concepts, yet the fact that they are

relations is preserved only by the way they are connected in the struc-

44

ture, which is determined and interpreted by the user. Item relations,
as conceptual entities, may have stored information about them as
well as information using them,

A very important facet of MENS and MENTAL is the ability to
enter, retrieve and manipulate deduction rules the same way specific
facts are entered, retrieved and manipulated, yet deduction rules
are used by the system to deduce information that was not previously
explicitly stored in the structure. Thus one may explain to the system
what a concept means by giving, in general terms, the implications
of the concept, and one may give this explanation just like he gives
the system any other information.

The system and structure as presented in this paper provide an
environment in which important problems in guestion—-answering and
conputer understanding may productively be investigated, Also MENS
and MENTAL may be used as an experimental vehicle for further re-

search in semantic structures,

10.

11.

12,

45

REFERENCES

Bach, E. Nouns and noun phrases. Universals in Linguistic
Theory, Bach, E. and Harms, R, T. (Eds.), Holt, Rinehart
and Winston, New York, 1968, 90-122.

Carnap, R. Empiricism, semantics, and ontology. in [10],
205-221. Originally in Revue Intern., de Phil, 4 (1950) 20-40.

Elliott, R. W. A model for a fact retrieval system. unpublished
Ph.D, dissertation, University of Texas, Austin, Texas, 1965.

Green, C. C. Raphael, B. Research on intelligent question-
answering systems, AFCRL-67-0370, Stanford Research
Institute, Menlo Park, Calif., May, 1967.

Kaplan, R. M. The MIND system: a grammar-rule language.
RM-6265/1-PR, The RAND Corporation, Santa Monica, Calif. ,
April, 1970,

Kay, M. The MIND system: a powerful parser. (forthcoming).

o , Martins, G. R. The MIND system: the morphological-
analysis program., RM=6265/2-PR, The RAND Corp., Santa
Monica, Calif., April, 1970,

___ , Su, S, Y. W. The MIND system: the structure of
the semantic file. RM=-6265/3-PR, The RAND Corp., Santa
Monica, Calif., June, 1970,

Quillian, M. R, Semantic memory. Semantic Information
Processing, Minsky, M. (Ed.), MIT Press, Cambridge, Mass. ,
1968, 227-270,

The teachable language comprehender: a
simulation program and theory of language. Comm. ACM 12,
8 (Aug., 1969), 459-476,

Quine, W, V. O. Notes on existence and necessity. J. Phil.
40 (1943) 113-127.

Schwarcz, R. M., Burger, J. F., Simmons, R. F. A deductive
question~answerer for natural language inference. Comm. ACM
13, 3 (March, 1970), 167-183,

13.

14,

15.

16,

17,

18,

19,

46

Shapiro, S. C, The list set generator: a construct for evalu-
ating set expressions. Comm. ACM 13, 12 (Dec., 1970),
741-744.

A data structure for semantic information,

processing, Unpublished Ph.D. dissertation, University of
Wisconsin, Madison, Wisconsin, 1971.

and Woodmansee, G. H. A net structure based
relational question answerer: description and examples. Proc,
Int, Jt. Conf, Art, Intel., Walker, D. E. and Norton, L. M,
(Eds.), Washington, D. C., 1969, 325-345,

, , Krueger, M. W. A
semantic associational memory net that learns and answers
questions (SAMENLAQ). Technical Report #8, Computer Sciences
Department, U. of Wisconsin, Madison, Wis., Jan.,, 1968.

Simmons, R, F., Burger, J. F. A semantic analyzer for English
sentences., SP-2987, System Development Corporation, Santa
Monica, Calif., Jan., 1968,

, , Schwarcz, R, M. A computational
model of verbal understanding, SP-3132, System Development
Corporation, Santa Monica, Calif., April, 1968.

Woods, W. A, Semantics for a question-answering system.
Mathematical Linguistics and Automatic Translation Report No.
NSF-19 to the National Science Foundation, The Aiken Compu-
tation Laboratory, Harvard University, Cambridge, Mass. ,
September, 1967,

