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1. INTRODUCTION

In this paper we consider solutions of the boundary value prob-

where a,b>0, 0< g<< 1, f(x,e) has a single simple zero in
[-a,b]. Without loss of generality we assume £(0,¢e) = 0 (hereafter
referred to as the turning point). Many authors (Wasow [11], Cochran
[2], Sibuya[10], O'Malley [7]) have studied asymptotic solutions of
(1.1) as ¢— 0+. However, the recent work of Pearson [9] and
Ackerberg and O'Malley [1] is of particular interest to us and moti-

vated the present study.

We restrict our attention to the case where f and g are Lipschitz
continuous and

f(x,e) > 0, -a<x<0
1. 3)
f(x,e) <0, 0<x<b
and (uniformly)
1.4) £'(0,e) < ~a < 0, 0<e<ce

=0
for some 0o > 0 and some 50 > 0.
In the case where f(x,e), g(x,e) are analytic in (x,¢),

Pearson [9] and Ackerberg and O'Malley [1] proved the following



basic result: Let
1.5) -g(0,0)/f'(0,0) = £ .

. o0
Suppose £ #0,1,2,... and {y(x, gn)} is a sequence of solu-

n=1
tions of (1.1), (1.2) which converges (pointwise, as En—» 0+) to a

function Y(t) for te (-a,0) U (0,b). Then
1.6) Y(t) =0, te(-a,0) U(0,b).

However, when { is a nonnegative integer the situation is "cloudy".
Pearson [9] seems to have ignored these cases. Ackerberg and
O'Malley [1] applied the WBKJ method (which is also the basic tool
of [9]) and seem to have an analysis for these cases. However, they
do not make a precise statement of their hypothesis or results. And,
as we shall see, their results are incomplete.

In section 2 of this report we establish certain basic estimates
on the regularity of solutions vy(t,e) of (1.1) and (1.2). These

estimates enable us to treat the problem without assuming the analyticity

of f(x,e), 9(x,¢g).

In section 3 we discuss some results and examples in the ex~

ceptional case when [/ is a non-negative integer.

As we shall see, the occurance of non-zero limit functions (called

"resonance" in [1]) is an interesting and delicate phenomenon.

The basic estimates of this work are obtained by using maximum
principle estimates as in [3]. However, similar results can be obtained
via LZ estimates. Indeed, related work by H. B. Keller and H. O.

Kreiss [5] displays the power of the Lz theory.




2.__ REGULARITY

Let v(x,e) be the solution of (1.1), (1.2). Suppose f(x,e),

g(x,€) € Ck[-a,b] as functions of x , uniformly in e. That is,

there is a constant L > 0 such that

2.1)

Let
8 ]
2.2) vj(x,E)E <‘"‘") - y(x,e), 0<j<k

oX

Then, a simple induction shows that

2.3a) gv]!'(x) + 1(x, €) va(x.) + {g(x,e) +jif'(x,¢)) Vj =

j=1
v
oo AisVsxie)
where
2.3 A = - ()T e e ) o070, 03,

We now recall some basic estimates. For any y(x) ¢ Cla,p],

let

2. 4) lhﬂlot’6 =max {|¢p(x)]; a<x<Bl,

Lemma 2,1 Let o(x) e CN[OL,B]. Let t> 0 be given. There exist

constants Cj(t) < o (j=1,2,...,N-1) such that
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j 0 ‘
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Proof: We will carry out the proof in the case N = 2. The general
cases follows from an elementary induction. Let X be the point
at which |@'(x)| assumes its maximum. Let 2t< (R-a)/2. Then

there is a point x, e [a,B] such that

ixl—-xol = 2t .
Then
o(x) = p(x,) (x, = x.)
1 0 1 0
' (x ) = . - P"(€)
0 xl XO 2
Thus
el o
1 1 ——— IB 1]
lo'll o 5 = [0l = et qa.
Lemma 2, 2. Let > 0 and let o¢(x,e) satisfy
2.6) e +AX)9 = y(x), 4<x<h,
where
2.7) 0<Aogmm, a<x< P,
and
2.8) lyx)| <M a<x< B,

Then, there exists a constant M, depending only on A, B-q, but not

on g, such that




2.9) lo'(x,e)| < (o, )| +|oB,e)|+M,), a<x<B,

X -0
Similiarly, if (2.8) holds and (2.7) is replaced by
A)<-A <0, a<x<p,

then

l(p'(x,E)I < {|(‘P((Y.,E)|*l'l(i’)(ﬁ,F')I'l'MO},”SX<Ho

X + B

Proof: See [3, theorem 2.7].

Lemma 2,3: Let / be defined by (1.5). Then, in the neighborhood of

the origin (say -A < x < A) the solution of the reduced equation
2. 10) f(x,0) u'(x) + g(x,0) =0
can be written in the form

X
)\,lx’ﬂ exp (JO p(tydt), -A< x< 0,

2.11) X

)»Zxﬂ exp [J Y(t)dt), 0< x<A.
' 0

Moreover, suppose k is a natural number (i.e. a non-negative integer)
with k > / and u(x)e Ck(-A,/,,\). Then Xl = >\2 and (i) if £ 1is not

a natural number, then

2.12) }\l = >\Z =0, and u(x) = 0;

(ii) if £ is a natural number and u(x) # 0 in |-A,A] then u(x) £ 0

for x# 0 and

2.13) () u(x)



Proof: We rewrite (2.10) in the form
2.10") [x£'(0,0) + XZ?(X)] u'(x) + [g(0,0) + xla(x)]u(x) = 0,
Set

u(x) = xg W(X).
Then (2.10') takes the form
1 2 1 -~ P :
[£'(0,0) + x~ I(x)]w'(x) +[g(x) + f(x)|w = 0,
Thus, (2.11) follows with

W(x) = = [g(x) + £(x)]/[£'(0,0) + x?"f“(x)].

The remaining parts of the lemma follow from the representation (2.11).

For the remainder of this section we shall always assume

k
H. 1) f(x,¢e) and g(x,e) ¢ C H[—a,b] as a function of ¢ uniformly
in g with k> £.
Ilemma 2.4 let 0< < a. There existsan ¢, = g,.(5) > 0 and

0 0

constants, Mj(é), j 0,1l,2,...k+2 such that: forall g, 0< e < £0 the

boundary value problem

ew" + Hx, )"+ g(x,e)w =0, —a< x< =8/2
2.14)

L w(-a,e)= A, w(-8/2, €) =0
has a unique solution, Moreover

2.15) 0 < |o(x,e)| <A, -a<x<-6/2




and
2.16) Id—l—‘*—’r“ < M, (6)[e]|A
* dx) -a+s,-6/2 = i )[e|A] 1.

Furthermore, the corresponding inequalities hold for the interval

Proof: Let
f(x,e)>4p >0, -a<x<-=8/2,
and let

eo =0 /N9y _o/a -

Let 0< g< g, and suppose o(x,¢€) satisfies (2.14). Let

0
X+a

£
u{x, e} = e

w(x, ).

Then u(x,e) satisfies

eu" + (f=2p)ju' - |

weae) = K, u(=5/2,¢) = 0.

However, the maximum principle shows that u(x,e¢) is unique.

&8/2 < x < b,

Thus wi(x,e) is

unique and (2.15) holds. Moreover, we may apply lemma 2.2 to obtain (2. 16)

with j = 1. The complete lemma follows from repeated differentiation and applica-

tion of lemma 2. 2.



Lemma 2, 5: et 0< &< a. There exists an EO = 80(5) > 0 such that for

all g, 0<e< e, andall F(x) e C[-a,-&/2] the boundary value problem

0
e + (X, el + g(x, ) = I'(x), -a<x< -6/2

w(-a,e) =w(=6/2,¢) =0

has a unique solution. Moreover, there is a constant K such that

2.17) lot-va g _s/0 <KIFI 5 -2 -

Proof: The unicity of the solution w(x,e) follows from lemma 2.4. Suppose

(2.17) is false. Then there is a sequence € Fn(x) e C[0,1], n=1,2,... with

”Fn“—a,—&/z =L en—*0+

and the corresponding solutions mn(x, En) satisfy

Hwn(. ’ En) I —a,—(S/Z_'OO *

Let Xn ¢ (0,1) be a point at which

m;l(xn, F,n) = 0, ]mn(xn, En) | = Hmn(- ‘ En) l ca, -2

Let
z (x,e ) =w (X, En)/nw(' rEp) I -a,=6/2 °

The functions Zn(x, gn) are now uniformly bounded. Thus using lemma 2.3

and the arguments of [3] (or directly using [3, theorem 4.1]), we see that for




every p, 0<p<a- o/2,

2.18) — 0 as n-— o,

“ n(‘ ' En) ” _a+p,_(5/a + HZ;}(- ’ En)” —-a+p,-—(‘)/2,

Thus, for n sufficiently large
—a< X <=a+p.,
n p

Since Z;l(xn,en) = 0 we may apply theorem 2.8 of [3] in the interval [:x,n,—-&/zl.

Thus, there is a constant C such that

lzn(x,an)l > 1/2.

Let r=1/2 C. Then

which contradicts (2.18).

Corollary: Let 0< g < ¢ Let w(x,e) satisfy

O.
e +f(x,e)n' + g(x, e =0 -a<x<-8/2

-~

w(-a,e)= X, w(=8/2,¢) = B.

Then there is a constant KO such that
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j

d ~ s

Hd}ﬁJ H SKO[[B| + E!Ai], i=0,1,2, 000, k4l
—a+(3, "'((:J/Z,

2.19)

Proof: In view of lemma 2.4 and the linearity of the equation we may just
consider the case where A = 0, The corollary now follows from repeated

differentiation and the application of lemma 2.2 and lemma 2.5.

Lemma 2.6: Let 0< §< min (a,b). There exists an €4 = 50(6) > 0 and a

constant Ko(é) such that for 0 < g < ¢_ the solutions of (l.1), (l.2) belong to

0
Ck+l[-a,b] and satisfy

2.20) Iyl g b s KollylZg, o v (2] + B] ]

2.21) (|A] +|B])] 3=0,1,2,...k+l,

”a;;j y”-a+(‘3,b-—<‘)~<— KO[ HyH_g)’(v) t+ €

Proof: Consider the equation 2.3a for j = k+l. Without loss of generality we

may assume that & and & are so small that
g(x,e) +k f'(x,e) <0, -5< x< b

Thus, the maximum principle implies

dk+l k+l }ul
dek+l ” l +ly o F)l lwy( Oo I+ F ” dXJ“-(‘> n

-0,0
The inequalities (2.20); (2.21) now follow from (2.17), (2.,19) (and the corresponding

results for 6/2 < x < b) and lemma 2.1.

Lemma 2. 7: Let En'-v G+. Assume there is a constant Kl > 0 such that we

can find a solution ml(x,E ) of (l.1) with
n
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K .

2.22) (bl("a:En) =1, “wi“ -a,b = 1

Then /(= -g(0,0)/f'(0,0)) is a natural number and there is a unique solution i

of the reduced equation (2.10) with

2.23) Lim o (« € 0

n) - ﬁ[] -a,b -
n— oo

and
2.24) a(-a) =1, ub)#o0.

Proof: The functions wl(x, en) form a compact set., Therefore wy can tind a
convergent subsequence which converges to solution u of (2.10) for which

u(-a) = 1. Furthermore, by lemma 2.6 and (2.22) we see that

k+l
1Sy @t Wl ase,br25 €2

for some constant Cz. Thus U ¢ Ck[‘—a/Z,b/Z']. Therefore, lemma 2.3 implies
that £ is a natural number (since 0(x) #0) and (2.24) holds. Thus 0 is

uniquely determined and the entire sequence ml(x, g,n) converges to U(x).

Lemma 2.8  Assume that the conditions of lemma 2.7 are fulfilled and that

b
2.25) I= f f(x,0)dx > 0.
—a

Then there is a corresponding sequence [mz(x, f{n)] of solutions of (1.1) (with

e = ¢ } for which
n
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. . . 1.
2.26) Lim sz(x,gn) f(-a . 0) exp (-3 f(
o0
Proof: Let w,(

1

All other solutions w.(

2:x,gn) of (l.l) are solutions

X

oo

2,27) Z

< -a

Let m be a constant which satisfies 0 < mn < min (

Then it follows from lemma 2,7 and (2.27) that there is a solution

which satisfies (2.26) on the restricted interval

4
2.28) Lim || 5,5 @20 el a2, —n = O

1= 00

Therefore lemma 2.6 and Taylor expansions give

a,0)(x+a)}|| cap © 0 -

b

X, sn) be the solution of (l.1) as described in lemma 2.7.

of the first order equation

2; exp [-1/¢e [\ f(x,e)ds) .

b

“2', z) and choose X\ = l.
m&(x, En)
-a < x < -1, Furthermore

j = O,l,Z,...,,{H—&.

£+1

T o4l — 9
Lim Jlo.(«,e) < (2n) Lim w, (e )|
241
b4+l T
2.29) < (2n) Lim ||=— 57w, e )] _
oo deH 2 n'll-a/2,b/2
S T
< Ky(0)e(2n) Lim flo, (e )| —a/2,b
where A = min (a/2,b/2) and KO(/\) is independent of 7).
For x >n we may write this solution wz(x, En) in the form
wz(x, e.n) = ch(x, en) + wp(x, gn)
where
( wz(n,ii
w (% En) = &T(n, e cnl(x, en)
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and wp(x,gn) is the solution of (2.27) with XA =1 and cnp(ﬂ,e) = 0. By lemma

2.7 the function u)l(x, en) converges to the solution u Z 0 of the reduced

equation and therefore lemma 2.3 implies that there is a constant (33 >0

such that for all sufficiently small ?n:

]wl(n,en)[ > C3 n"o.

Furthermore, for every fixed n > 0

Lim pr(- ’En)”n,b =0.

N0

Thus (2.,28) and (2.29) imply

Lim o (¢, ) <_'f{5 (D,(',E;)I_ + Lim Hm (=, ¢ )H
oo H 2 n H _a/zlb oo ]l 2 n l nln 00 2 n T},b
At - . TGP
< Ky(2n) Lim floo,(+ e )| cap | ] A’ Lim _ﬂ__é_,._ﬁrl_, o
n-—co = 00 C 3 m e

< I‘Il(n) Lim ”u)z(. 'En)“

-a/2,b
where
K /() = 2K, [(zn)"Z s c;l l —a,b:] SR
Choosing 1 so small that Kl(n) < 1/2 weoc sce that

Lim floy el gz, = ©

and the lemma is proven.

In exactly the same way we obtain our next result.
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lemma 2.9: Assume that the conditions of lemma 2,7 are fulfilled and that
b
2.30) I= f f(x,0)dx < O,
-a

Then there is a corresponding sequence of solutions [mz(x, gn)} of (l.1)

(with € = gn) for which

, ’ ! Loy -
2.31) Lim flo, (- € ) tB0am) P (+7 fb,0)b x)}| ca,p 20
Finally, if
PP
2.32) I= 1 f(x,b)dx =0
—a

there is a corresponding sequence of solutions {mz(x, En)] of (l.1) (with ¢ = Fn)

for which

]
f(b,0)u(b)

1
2.33) Lim sz(o,g exp (-3 f(-a,0)(x+a)} -

o n' " f(-a,0)
1
&

- exp | f(b,O)(b—x)]H_a b= 0.

A consequence of the last two lemmas is

Theorem 2, 1: Assume that the conditions of lemma 2,7 are fulfilled. Let
b
I= ’Ip f(x,0)dx
‘a

Then, there exists an €>0 such that,

(i) Forall A and B and all € < ¥t (gn in the given sequence) equations




(1, 1) and (1,2) have unique solution y(x, En),

(ii)  there is a solution u(x) of the reduced equation (2.10) such that
Lim | y(x, gn)—uu Ca4d bt " 0,
N~ 00

(iii) if I> 0 then u(b) = B and there is no boundary layer near X = b,

(iv) if I< 0 then u(a)

i

A and there is no boundary layer near x = &,

(v) if T=0 then u(x)= Au(x) where

A f(-a,0) = Bf(b,0)u(b)
f(-a,0) - £(b,0)|{(b)|&

A=

Proof: The general solution of (1.1) can be written in the form

Y(X,En) = le(x, en) + aw (x,en)

2
where wz(x, gn) satisfies one of the inequalities (2.26), (2.31) or (2.33) and

w, (%, )~ 4(x). The theorem follows without difficulties.
The results of this theorem should be compared to the claims of Acherberg
and O'Malley [1]. These results are consistent with their results in cases (iii)
and (iv) and yield contradictory results in case (v). However, in a private
communication R. E. O'Malley has indicated the same result in case (v) when
the WKBJ can be applied.
In general, it is not easy to verify the assumptions of lemma 2.7. Indecd,

in general we do not know that all solutions of (l.1), (l.2) are bounded for &

sufficiently small.
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Definition 2, 1: A sequence €, 0+ will be said to satisfy Condition ZB
relative to the interval [~a,b] if: for any sequence of uniformly bounded

solutions y(x, en) of (1.1) we have

2.34) Lim [ly(«,e )|l 0 .

n-—oo

-a+d6,b=0 -

Definition 2. 2: A sequence £, 0+ will be said to satisfy Condition 2

relative to the interval [-a,b] if: There exists an ¥ > 0 such that for all choices
of A and B and all € < £ there exists a unique solution y(x, en; A,B) of (I.1)

and (1, 2) and there is a constant C4 = 04(A,B) > 0 such that

) L] Fa ; 1 < I
2.35) ly(x,e iAB)| < C,
2.36) Lim Hy(o,Ln;A,B)“_aMlb_é = 0.
N~ 00
Remark: The results of lemmas 2.7 - 2.9 and theorem 2.1 as well as these

two definitions have been phrased in terms of sequences of solutions rather than
all solutions because of our limited knowledge of this rather delicate situation.
For example, it seems possible (although we have no examples of such behavior)
that there is a sequence € — 0+ such that the assumptions of lemma 2.7 are
satisfied and another sequence € 0+ which satisfies condition 7 relative

to the interval [-a,b].

Lemma 2.10: If the sequence e~ 0+ satisfies Condition ZB relative to the

interval [-a,b] then it also satisfies Condition 7B relative to every larger interval,




L7

Proof: Apply lemma 2.6.

Theorem 2,2: If 4 £0,1,2,... then all sequences i - 04 satisfy condition

ZB relative to all intervals [-a,b] with 0 <a, 0< b,

Proof: Assume that (2.34) does not hold. Then, in view of lemma 2.6 we may
assume that there is a subsequence T 0+ such that y(x,: n,)—-—» u(x) /0,

k
-A < x< A, where u(x) e C [-A,A] is a nontrivial solution of the reduced

equation., However, this contradicts lemma 2.3,

Theorem 2.3: Suppose e 0 is a sequence which satisfies condition ZB

relative to the interval [-a,b]. Then the sequence € also satisfies Condition

7 relative to the interval [-a,b].

Proof: If we show that all solutions of (1.1), (l.2) (with ¢ = Fn < £) are bounded

we will have established the uniqueness of solutions of (1.1}, (l.2) and hence

the existence of solutions of (1,1), (l.2). Thus, the theorem will be proven.
Suppose there is a subsequence Ep T 0+ such that the associated solutions

of (1.1), (l.2) y(x.,p_n,) are unbounded, Let

2.37) Z(x,sn.) = y(X,E‘:n')/HY('Hn')H -a,b °

Using lemma 2.6 we may extract a subsequence {Z(x, &n,,)} which converges uni-

k ,
formly to a function u(x) e C [-a/2,b/2] which is a solution of the reduced equation
(2.10). Using lemma (2. 6) we see that in fact, the sequence (‘Z(X'F”n")] satisfies

the hypothesis of lemma (2.11). However, the sequence [Z(x, en,,)} also satisfies
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condition ZB. Thus u(x) 0. Now consider /,,(x,en,,) on the intervals
[-a,-a/2], [b/2,b]. When n" is large enough, lZ(X,Ln,.)! assumes its maximum

one of these intervals, Thus

2.38) 26 e il g —ap * 120 A N
while
2.39) |Z(-a,e_ )| +]2(-a/2 e )| +]|20/2 6 ]+ |Zb, ¢ "] — 0.

However, (2.38) and (2.39) are impossible in view of lemma 2.5,

Corollary: If £ Z0,1,2,... then there exists an £o > 0 such that for all
e with 0< g < €y there exists a unique solution of (l.1) and (l.2). Moreover,

there is a constant (35 > 0 such that

HY(X'E)H—a,b < Cg .
Proof: Apply theorem 2.2.

Theorem 2. 4: Suppose [y(x,rn)] is a sequence of solutions of (l.1), (1.2)

which is unbounded on [-a,b]. Let 0< &, 0< &'. Then

(1) On every strictly smaller interval [-a+&,b-0"] there is a subsequence
e 0+ and a sequence of solutions wl(x,sn,) of (1.1) which satisfy the

hypothesis of lemma 2.7; and,
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(ii) On every strictly larger interval [-a-&,b+¢'] there is a subsequence

e Ot which satisfies condition Z relative to the interval [~a=-&,b+&8'].

Proof: Let 7Z(x, Fn) = y(x, En)/H v(e, &‘.n) ][ _ Using lemma 2.6 we may extract

a,b’
a subsequence En' and a solution u(x) of the reduced equation (2.10) such

that

I:im ”Z(' ’En') B u“ -a+d,b~a
n'— o

The argument of Theorem 2.3 shows that

u(-a+6) # 0,

The functions

Z(X,Fnl)

w, (X, ) =
n

1 Z(-a+d,epn")

satisfy the assumptions of lemma 2.7 on |~a+d,b=0].

On the other hand, consider any larger interval |-a-¢&,b+6']. Suppose there
exists a sequence of solutions {w(x, &:n)} of (l.1) which also satisfy y(-a-¢, ?,n) =
AO, y(b+d, rn) = BO' If this family is unbounded on [~a~&,b46A'] part (i) shows
that the solutions of (1,1), (l.2) on the interval [~a,b] are bounded. Thus, we
may assume these functions are bounded, If any subsequence {w(x, &-n,)} were to
converge to a non—-zero limit solution that sequence (using lemma 2.6) would also

lead to functions which satisfy the assumptions of lemma 2,7 and the original

sequence {y(x,gn)] is bounded on [-a,b].
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3. EXAMPLES

In [1] Ackerberg and O'Malley and in [8] O'Malley observed
* that there is a whole class of equations of the type (1.1) for which

one always obtains nontrivial limit functions. Interestingly enough
these are the "simplest” equations of the type (1.1). These are our

first examples,

Example 1: Consider the boundary~value problem

3.1) gy" = xy' + ny = 0, —-a<x<b

3.2) y(-a) = A, y(b) = B

where n is a natural number,

In this case the exact solution is given in terms of parabolic
cylinder functions, see [1], [8]. A complete discussion of this case
is given in [8]. Forall ¢>0, a> 0, b> 0 and all n there exists
a solution of the type described by (2.22) and discussed in lemma

2. 7. Thus, theorem 2,1 applies.

Example 2: Suppose £ = -g(0,0)/f'(0,0) =1 and there is a family

of linear functions

3.3) p(x,e) = ale)x + B(e)

which are solutions of (1.1). Suppose the coefficients aleg), B(e)
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continuous in e so that
p(x,0) = a(0)x + B(0)

will be a solution of the reduced equation. Then, of course, the
functions @(x,e) can be normalized to give a family of functions

ml(x, g) satisfying the hypothesis of lemma 2.7. Thus, theorem 2.1

applies.

As specific examples of this case consider the equations

" ' X 1 1
. — = =0 ey ‘ -

ey" = x(1+x)y' + xy =0, =

In both of these cases

y(x,e)= 0(1+x)

is a solution of both the second order equation and the reduced equation.

Example 3: Let g(x) = 0. Then the constant function Wl(x’ g) =1
satisfies the hypothesis of lemma 2.7 and thus theorem 3.1 applies.
It is of some interest to note that in this case one can actually "solve"

the problem completely by elementary methods.

4
Example 4: Let go(x) ¢ C |-a,»] and satisfy

(‘ QO(X)>O, -0 < X < O
3.4) Yogyx) =0, a<xgh

xgo(x)>0, B< x< o
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for some values «¢,B with -o<a< 0<B< » and
3.5) / f(t)dt = 0.
We consider the equation

3.6) ey" + f(x)y' + g% v = 0.

Our discussion of this example depends upon the following elementary

result,

Lemma 3.1: Let y(x) be a solution of the initial value problem

n
o
X
\Y
%

ey" + pO(X)y' + pl(X)y
3.7)

yix,) >0, y'(x,)<0

where po(x) <0, pl(x) > E) > 0, Then the first zero of y(x), say

Xl satisfies

— I
. I
Xo <X <X+ VE/B

Proof: Since y"(xo) < 0, as long as y(x) is nonnegative the

function y(x) continues to decrease as x increases. Moreover,

v'(x) decreases as long as y(a) is nonnegative, We see that

y" = 4 [P (x)y' + p,(X)y] £ - T Dy.

e 0

m =

1

Thus, as long as y(x) is nonnegative and x > X, we have
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0 < y(x) < ylx,) cos | b/ e (x=x) ]

Remark: If pO(x) >0, y(x.)>0, y'(x.)>0, then the first zero,

0 0

X-l’ behind X’O satisfies

Theorem 3, 1: Let

3.8) -a<a<0<b<f,

There exists an Eo > 0 such that, forall ¢, 0< e< £g there
exists a solution of equation (3. 6) which satisfies the conditions

of lemma 2.,7. Thus, theorem 2,1 applies.

Proof: We shall construct the functions ml(x, ). Let o¢(x) be

the solution of the reduced equation (2.10) which satisfies (-a) = 1.
Using lemma 2.4 and lemma 2.5, we know that there isan &> 0

such that; for all ¢, 0< €< € there exists a unique bounded solution

W(x,e) of the boundary value problem

(X)W =0, -—-a<x<a

j eW" + f(x) W' + 9

3.9)
1 W(-a) =1, W(@) = p(a),

Moreover, from the general theory (see [3]) it follows that
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3.10) Lim ][W

"'Cp[]— :On
=0 a,a

Indeed, we also have

Lim HW‘

—(*P'H_ - 0.
£ =0 atod,q

In fact, we claim that there is an £, > 0 such that

3.11) Wha,e) < 0, 0< 55_50

suppose this is false, using the remark of lemma 3.1, we see that
there is a sequence en-—+ 0+ such that each function W(x, gn) has
a zero in the interval [-a,a]. Since @(x) has no zeros this contra-
dicts (3.10).

Now let us extend W(x,¢e) into the region a< x<b< . Let

X
u(x) = //" f(t)dt.

\,a
Then
__lé u(x)
3, 7) W'x,e) = WHa,e)e /
X —%u(t)
3.8) Wi(x,e) = ¢() + WH,e) [ e dt.

A¢

Since u(t)> 0 in a< x< and

WHa,e)—=o'(a) =0
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we see that the assumptions of lemma 2.7 are indeed satisfied.

Theorem 3, 2: Let

3.9) —-a<a<0<B<bhb,

Then all sequences gn‘—* 0+ satisfy Condition 7 relative to the

interval [-a,b].

Proof: In view of theorem 2.3 we need only verify that {gn)
satisfies Condition ZB relative to the interval |-a,b]. Suppose not.
Then there is a family of solutions (y(x, en)} of (l.1) which is uni-
formly bounded and does not converge to zero., Using lemma 2.6

we may extract a subsequence en,-—> 0+ such that

Lim H yie, Enl) - YH -a+d,b=4 =0

n'— o
where Y(x) is a nontrivial solution of the reduced equation and
—a 4+ 6< a<0<PBP<b- §<bh,

We may normalize both Y(x) and vy(x, e,;]) so that

As in theorem 3,1 we claim that there is an % such that

y'(algl)<ol O<En|§__é¢
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Moreover,

y'(oc,gn,)-ﬁo as n'-— o,
Thus, we may consider the function y(x, gn) in the interval [a,B].
As in (3.7) we see that

y.(BI Enl) < 0‘

Moreover, as in the proof of lemma 3.1, y'(x, z—:n) decreases to the

right of B as long as y(x,z—:n.) >0, Let A >0 and let

p(d) = min {g, (x), B+A < x< D]

Then, applying lemma 3.l we see that the function y(x, :—:n.) has a

Zero Xl which satisfies
p< X <A + ‘g J E;l/ﬁ(Ai

Thus,

and

Y (x)

i
o
L)
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Example 5: Suppose g(x,e) € C[-a,b] uniformly in e and g(x,e) < 0.

Suppose ther exist two points X-,X+ with
—a<x-<0<x+<b

such that

g(x-,0) g(x+,0) 7 0.

Then, applying the maximum principle, we see that
(i) for each > 0 there is a unique solution y(x,¢) of

(1.1), (1.2). Moreover
|v(x,e)| < max (|A], |B]).
Moreover, using the argument of [3, Thm. 3.6] we have

(i)  Lim | y(-, 0. YA>O0,

e)ll A1 =
O+ [~a+A ,b-A]

Remark: This example indicates that an analysis which is based only- on

the behavior of y(x,e) "near" the turning point may not be adequate,

E}

Example 6:  Suppose

3.10a) g(x, &) :x2 b(x)
where

3.10b) b(x) > bo > 0.
Let

3.11a) f(x,e) = = x a(x)
where

3.11bh) a(x}y>a_ >0



Then all sequences e 0+ satisfy condition % relative to every

interval [-a,b].

Proof: The solution of the reduced equation (2. 10) is given by
*t b(t)
3.12) Y(x) = Y(0) exp [ dt ,
Jdo 2t

If Y(0)> 0 then Y(x) has a relative minimum at x = 0. And, if
Y(0) < 0 then Y(x) has a relative maximum at x = 0, Suppose

{y(x, gn)};j:o is a sequence of solutions of (1.1), (1.2) such that

Li  ,5) - Y -0,
enimo 108 =¥l g a5

Suppose Y(0)> 0, Then for €l small enough; y(x,gn) >0 and,
in the interval [-A ,A], vy(x, gn) has an interior relative minimum.,

But

i ' O & ,
£,y (x,en) + f<x,en) y (x,en) = =X b(x) y(X.sn) < 0,

Applying the maximum principle, we see that y(x, gn) cannot have

an interior relative minimum, This contradiction shows that

Y{(0) < 0.

A similiar argument shows that
Y(0) >0

and hence, using (3.12),

Y(x) = 0.
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Example 7@ Suppose f(x,¢) = f(x,0) = f(x) ¢ C"[~a,b].

3.13) f'ix) < -1, £'(0) = - 1.
Suppose there exist two point x-, x+ with

3.14) —-a< xXx-< 0< x+<b

with
f'ix-)< -1, f'(x+)<-1.
Consider the equation
ey" +f(x)y' +y =0, -a<x<b
y(-a) = A, y(-b) =B

In this case

Suppose {y(x, gn)} is a sequence of solutions.

Suppose there is a function Y(x) ¢ C(-a,b) such that

Lim HYPrﬁJ”YH[ 0.

£ > O+ _-a‘*’/\ ,b—A l -
“n

We claim that

Y(x) 0.

Suppose
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Proof: As before, let v.(x,e) = yv'(%x,¢g). Then

1

gvi‘+ f(x)v'1 + 1+ £'(x)] vy = 0.

Since vl(x, gn) be bounded in any interval [-a + A ,b - A], we may

apply the results of example 5 in this interval.

Example 8: Suppose
(a) £%0,¢e) =~1
(b) g(x,e) = g(x) is independent of -
(¢y g(0)=4=0
(d) g(x)= g(~=x)
(e) there isa A > 0 such that g(x) e Coo[-A ,A] and f(x,¢€) €

Cm[—é\ ,A] as a function of x.

Then all sequences e, 0 satisfy condition 7 relative to the
interval [-a,b] unless
3,15) g (0)=0, k=1,2,0.0
3,16 0,8) =0, j=1,2,c00
) sz( €) J

Of course, if g(x) is analytic in [-a,b] then we require g(x) -~ 0,
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o0
Proof: Let (y(x,gn)}n:1 be a sequence of solutions of (1.1) which

are uniformly bounded and converge to a function Y(x) Z 0.

Let

Then Y(x) Z 0 implies
3.17) vo(;n),& 0.

Consider (2.3a), (2.3b) with j = 0, Then V¢

gvz(g) =0,
Thus, Vz(e) = 0. Consider (2.3a), (2.3b) with j = 2. Then

EV4~ 2\72 =-gqg (O)VO.

Thus, (3.17) implies
3,18) g"(0) = 0, V (g) = 0.

We proceed by induction. Suppose

(28) N _ _ . ;
(3.19) ¢ (0) =0, ZSJrz()— r S=1,2,000,7.
Then
Y _ o 2it2 (21+42)
E‘sz+4 (&]M)szu == 0 ) g (0) VO'
Or
(2j+2)

EVoy4a™ "9 (0) V-
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Once more, (3.17) implies

(2j+2) oy _ N .
g (O) - O, V2j+4<&) - 01 VJ.

This completes the discussion of this example.
Before going on to other examples, we prove a basic estimate,
Lemma 3.2, Let f'(0,e) =-1. Let
V, = V.(g) = v, (0,£e).
J J J )
Let

3.20) b =n=9(0,¢€)

Let (vy(x, en)}:_l be sequence of solutions of (1.1) which are uniformly

bounded and converge to a function Y(x). If

3.21) 0

IA

j<n+1-2k, k>1,

IN

then
. k
3.22) Vj(E ) = O(e )
Proof: We proceed by induction on k and j. Take k =1,
Suppose
0<n-1.

Then

Suppose that

V =0(e), 0gr<j<n-2
r s
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Consider (2.3a), (2.3b) with j =j +1. We obtain

g\/3+3(ss)+[n-—(j+l)]Vj+l(eS) = O(es).
Hence
j+l - O(Es)'

Thus, the lemma is established for k 1,

i

Suppose the lemma has been established for k and

2<n-=2k+ 1.

Hence, by the inductive hypothesis

k
VZ(ES): O(ES) .
And,
F
_s ~ k+l
VO(FS) =~ VZ(ES) = O(aS ) .

Now assume that the lemma has been cstablished for (k +1) and

all jO which satisfy

Ogjogn-Z(kH)
or
(j0+l)+25_n—2k+.1.

Then
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and the lemma is proven,
Example 9: Consider the equation

3.23) ey" -xy' +49g(x)y=0, -a<x<hb,
Under the hypothesis of lemma 3.2, if

3.24)  Y(x) £0 ,

then
3.25) - [g'(0)] = (n +1/2)g"(0).
In particular, if

g(x) = n + Bx, B#0,
then (3.24) is false.

Proof: Using lemma 3.2 and (2.3a), (2.3b) with j=n-2 we
obtain

€
-8 , 2
3.26)  V__,leg) = =5 V(e ) +O(e)).

Letting j = n -1 and using (3.46) we obtain

1 n-1 ‘ 2
5 (hp) 97(0) v le )]+ Ote ).

(ES)-

Letting j = n +1 we obtain

€ - . i :
Svr14-3 Vn+1 n n s
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or

3.28) Vv . (g) =g'(0) (n+l) (e)+Q(s)

H

Combining (3.27) and (3.28) we obtain

2
3.29)  V__(e) = £.8'(0) [3(n-1) = (n+1)]V () +OleQ)

- - ' __!l@,}"_l.)__ n 2
eV ,,(e)=-ng" OV  (e) > (0) V__, +Ole)

Using (3.26) and (3.29) we obtain

3.30) V(e = ([(a)n - 5 n(n=D)][g" ()] + § n(n=1) 2" (0)]V, (¢ )

+ O(ES).

On the other hand, letting j= n + 2 we obtain

(e )= = (n+2)(n+1)g" (O)V (¢ )+O(e ).

eV (e Y= 2V (ES) = - (nt+2)g (O)Vn+1 s 2 n's 'S

nt+4 s n+2

Using (3.28) this gives

3,31) Vn+z(gs):% {(n+2)(n+1)[g'(0)] +é‘ (n+2)(n+l)g }\/’ e +O(E Ve

However, (3.24) together with the basic representation of Y(x) (See

lemma 2.3) implies
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Comparing (3.30) and {3.31) we obtain (3.25).

Lemma 3, 3: Consider the equation (3.23) under the additional

hypotheses

(a) there isa A >0 such that

(b) g(0) = n,

Let {y(x, es)}oo be a sequence of uniformly bounded solutions of (3.23)

s=]
which converge to a function Y(x). Then
J
(-€¢) it
3.32) \Y (e )= —=—V (g ) +O(EJ+1), n-2j> 0,
" 22(j ®

Proof: Using (2.3a), (2.3b) and lemma 3.2 we proceed by induction.

Suppose n-2 > 0., Then

n-3
oy _ . < -2y (n-2-1) g2
esvn(es) + zvn_z(es) = r>;.0 ( . )g (O)Vr(r;s) = O(ES)‘
Hence
I:IS 2
Vn_Z(ES) = - ’Z‘Vn(Es) + O(Es)~
Suppose the lemma has been established for j = j() and n - Zjo - 2> 0.
Then
Jot2
ESVH-ZjO(ES) + [2j0+z]vn_zj0_2(es) = O(e,~ )
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That is

B (- }S)Vn—z‘jo

Vo =T (jgth)+l
n (10+) [30+ ]

+ O(&
s

using the inductive hypothesis we obtain

jo+
(- £ 07V (Eg)

n-Z.(]O—!—l) s i+l S
207 [+ 1 ]
and the lemma is proven.
Lemma 3.4: Under the same hypothesis as in lemma 3.3, suppose
3.33) ooy =0, j=0,1,... k-1
Then,for 1< j <k we have
(2k) kAL k=i
3.34) v (e 90D e [G-D)1VR(Es)
n+2j s K +1-j
2 (k1)
J -1 s n+2s k k+41=j
< —
5o =D (n~2k+25)(k—s) * O(g’s ) .
s=0
Proof: Once more, we proceed by induction. Let j - n in (2.33),
(2.3b). Using lemma 3,2 we obtain.
‘ __ (2k) o K+l
Esvn+2(s) - (n-Zk)g (O)Vn—zk(&'s) + Ol s ).
Using Lemma 3.3 we obtain
2k k+l k-1
g'#0) (=1 £
Vo () = e & ons
n+2' s Zkl" n s’ 'n-2k’ 'k S
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That is, the lemma is true for j - 1. Suppose the lemma is true for

1,2,...(,~-1) and j_ < k. Then using (2.3a) and (2.3b) with

1

J 0 0

i
1

n + Z(jo—l) we obtain

3.35) eV =2(j -1V _ n+2(g-D) (2k)

s n+2j0 0 n+2.(j0-l) n=-2k+2(jg=1) (0) n-2k+2(j0~l)(ss)

¥ 0(8;”0*2).

Using the inductive assumption in (3.35) we obtain

i okl k==l o (2K)
s n+2j0_ Z(JO (-1 g 0 [tGp=2)']g (O)Vn ¢
j.-2
0
- (_1)r(n+2r ( k ) - (n+2(j0—1) ) (Zk)(o)v
0 n-2k+artk-r n-2k+2(jg-1) N n-2k+2(j,-1)
+o( ot
s
Applying lemma 3.3 we have
4 2k k+l k= , Jo=2 _
€s "n+2jg &k""l"j()(k,) r-0 n=2k+2r k-r
. (2k) kAl k=jgtl,
3. 36) g . [(—1)10 1 n+2(jg-1) k )] g (0)(-1) £g K]O 1)!]\/1.}
n=2k+2(jo=1)" k=(ip-1) 2k+1"‘]0(k!)
k + O(Ek—j0+2).

S
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Combining the terms on the right hand side of (3.36) and dividing by £q

(since k _>_j0) we obtain (3.34).

Corollary:
2k k+1
g (0)(-])" “fk-Dvpleg) k-1 oo K
- T (-
331 Vi x(®) 2 (k1) r=0 " iz ber
Lemma 3.5: Under the hypothesis of lemma 3.3, assume that
ooy =0, j=1.2,... kD).
Then
1 n+2k (2k)
Vn+2k(E‘S) = 5SK ( n ) 9 (O)Vn(ES) + O(ES)-
Proof: Apply (3.2a), (3.2b) with j = n+2k.
Lemma 3.6 Let
k
r n+ar k
3.38) Jo=oo = n-2k+2r)(k—-r '
r=0
Then J > 0.
Proof: Let V denote the backward difference operator with step size

1 and let 7(2) denote the backward difference operator with step size

2. lLet k Dbe fixed and r~2k> 0, Let

+ O(e e
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_ ., r r!
P = o) = (2K 1 (r-2k)

then

J =V (2) e(r)

r=n+2k °
As is well known, (see [6, page 6])

k

v o(r) 0.

>
r>n+k

Thus, the lemma follows from the identity

k. k
= 2 (OTAm|
0 m=0 0

This identity is easily established by induction.

Example 10: Under the hypothesis of lemma 3.3 consider the ecquation

(3.23). Then all sequences £ 0 satisfy condition 4 relative to the

interval |-a,b] unless

3.39) g (0) =0, k=1,2,000

304:0) (E):O, j:llz,-oo

vn+2j S
Of course, if g(x) is analytic for x ¢ [-A,A ], then we require

3.41) g(x) =n, =-A<x<A.
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Proof: Let [y(x, t‘sn)} be a uniformly bounded scquence of solutions
of (1.1) which converge on [-a+&,b-0] to a nontrivial solution Y(x)

of the reduced equation 2,10, As we know

From example 9 we know that

Assume

g(z‘j)(O) =0, j=1,2,...(k=.

Combining lemma 3.4 with lemma 3.5 we obtain

(2k) k-1 , )
g (0) Ve[ T (-l r n+2r k k n+2k, k

2k n''s r=0 n+2r—-&k)(k-—r) =D n )(O)Vl = 0.

Applying (3.42) and lemma 3.6 we see that

a*¥0) = o.

Thus we have established (3.40). Returning to (2. 3a), (2.3b) with

j = n we obtain
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Suppose

30453 = j = ‘ j
) Vn+2j(8) 0, i=1,2,000 ..

Then, applying (2. 3a), (2.3b) we have

e V. _ . -2j.V = 0.
n+2(igr) ~ 2o Vniejy = °
Or, using (3.43) we obtain (3.41).
Example 11:  Consider the equation
3, 44) ey" +ix)y' +ny=0, -a<x<b
where
(@) f£'(0) = -1, f(0) = 0,

(c) thereisa A >0 such that f(x) ¢ Gw[—/\ N
Then all sequences eﬂ—-» 0+ satisfy condition Z relative to the
interval |-a,b] unless
3. 45) fDoy=0, j>e.
Of course, if f(x) is analytic on [-A,A], then
f(x) = -x, =A<x<A.

Proof: The proof follows the same lines as the discussion of example

11 and is omitted.
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As a special case we obtain the following result., Consider

the boundary value problem

sy"-x,(1+xz)y'+2y:0, -a<x <b

Then all sequences gn—+ 0 satisfy condition Z relative to all intervals
[-a,b] with a> 0, b> 0,
This example is discussed by Ackerberg and O'Malley [1] who

asserted the existence of nontrivial limit functions.
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