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ABSTRACT

The question of an optimal I/O buffer size for multiprogramming
is considered by analyzing a probability model of the operations of
multiprogramming. An algorithm is given for finding the optimal
solution based on number of jobs in core, length of programs, number
of /0 requests, and other parameters. Statistics obtained from the
UWCC 1108 system are used in the experimental work. A simulation
program is done in SIMSCRIPT and the analysis of the results herein

presented.
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I. INTRODUCTION

The performance of single thread (uniprogramming) batch
systems used on second generation computers suffered from the
disparity between high processing rates and low I/O (Input/Output)
capability. Current systems employ several techniques for multi-
programming in an attempt to keep the CPU (Central Processor Unit)
busy. Although main memory sizes have increased greatly, pro-
cessor power has increased faster than I/O rates. Thus it is still
true today that most 1ar§e—-scale systems cannot store enough com-
plete tasks in main memory to keep the CPU busy.

In order to ready more tasks for the CPU, two types of
buffering have been devised: Buffering of data required by executing
programs, and buffering of programs themselves. Hardware assistance
in data buffering has taken the form of sophisticated channel and
1/O processor organizations which offer simultaneity between CPU
and 1/0 activities and between multiple I/O activities. Hardware
and software developments in program buffering have led to the
virtual memory concept [3,4, 14], which allows execution of a frag-
ment of a program while some part of it resides only in secondary
storage. The units of a program which are passed back and forth in

the memory hierarchy are either arbitrary fixed-size blocks (pages)



or larger units (segments) of variable length which correspond to
functional units of subprograms and data [16].

A great deal of work has been done on program buffering
recently, and efficiency improvements have resulted from advances
in file system organization [6,18,19], scheduling of I/O operations
[1], and system resource allocation [2,15]. As program buffering
increases, so does the need for data buffering. SPOOLing
(Simultaneous Peripheral Operations On Line) techniques which were
developed for second generation systems require careful integration
with multiprogramming systems.

The choice of optimal data buffer size has been an important
question for many years. It is closely related to the choice of
optimal program buffer (page) size, but there are some differences:

(1) whereas the I/0 channel hardware for data buffering
assistance exists in some form on all current machines, dynamic
address translation hardware necessary for program buffering is
present only on a small fraction of today's machines;

(2) the two kinds of buffering are typically controlled by dif-
ferent levels of system programs, and may use different secondary

storage devices;




(3) the individual programmer is often allowed to exercise a
measure of control over his data buffering, whereas program buffering
is controlled by the system.

This paper deals with the selection of an optimal data buffer
size. Due to the tremendous difference between I/0 transfer rates
and CPU processor rate, the use of an optimal data buffer size could
greatly increase CPU utilization. The work reported here partly
consists of the description and analysis of a probability model of the
operations of multiprogramming. This model is used to investigate
the multiprogramming of the UNIVAC 1108 system [17] now used at
the University of Wisconsin Computing Center. An Ievaluation plan
is described in [5] for measuring the performance ot that system.
Statistics for various days' runs are analyzed and in each case, the
effect of an optimal data} buffer size is demonstrated. A simulation
model of the system is also d’one using SIMSCRIPT [11] with similar

results indicated.



II. THE PROBLEM AREA

In the subsystem relevant to this study, the two main functions
performed are (1) execution of programs, including the executive
routines, and (2) transfer of data between auxiliary memory and the
main core. A configuration of this subsystem is shown in Figure 1.
This consists of a single central processor, a main storage area, and
a peripheral subsystem of I/0 and secondary storage devices.

Jobs enter the main memory via I/0O devices and reside there
while being processed by the CPU. With only a part of the total
data file contents of a given job being input, the operation is buffered
and parts are processed one at a time. Each job thus undergoes
alternating operations of the two functions mentioned: an I/O
period, then a compute period, followed by another I/O period, and
so on until the job is completed.

Assuming then that there are a number of job segments residing
simultaneously in core, each of these segments will be in one of the
four states: (1) being processed by the CPU, (2) waiting for CPU
processing, (3) engaging in I/O activity, or (4) waiting for I/O
facilities. The CPU is busy when it is processing a job. The CPU
is inactive when all job segments in core are either undergoing 1/0

activities or waiting for I/0 facilities.
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The performance criterion used in this study is the index of CPU
productivity as defined in [7]:
Expected CPU busy periocd

Expected CPU busy period + expected CPU
idle period

CPU productivity = (1)

This is the long-run fraction of time the CPU is busy. The success
of the multiprogramming system is measured by the value of this
index. In Figure 2, the expected CPU busy and idle periods are
shown for four job segments residing in core simultaneously; a basic
unit of w words is used as the buffer size.

It is clear from (1) and Figure 2 that CPU productivity is im-
proved if for each job segment, the expected compute period may
be increased at a rate faster than that of the expectéd 1/0 period.
The I/0 completion time distribution is a function dependent on the
buffer size being used for 1/0 activities and the number of job
segments in core simultaneously. This distribution is derived and
analyzed in Section III.1 for direct access storage devices. The
expected compute period generally increases or decreases at the

same rate as the input buffer size used. With some exceptions®, an

%
For example, user programs accessing libraries and their own
private files. These I/O operations use separate buffers and would
not be affected by changing input buffer sizes.
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increase in the input buffer size, say doubling it, will in effect
double the compute period by delaying the demand for the next logical
input buffer. A decrease in the input buffer size will hasten the de~
mand for the next logical input buffer.

In Figure 3, a possible effect of increasing data input buffer
size, say to 2w words, on the expected CPU busy and idle periods
is shown for the four job segments in Figure 2.

It must be noted that an increase in input buffer size causes a
corresponding decrease in the number of job segments which can
reside in main storage simultaneously. This will significantly
affect the expected CPU busy time and hence the index of CPU
productivity. This constraint plays heavily in the optimization
problem analyzed in the next section.

SPOOLing techniques have been provided most large-scale
multiprogramming systems. Under this scheme, 1/0 data from the
card reader and to the line printer are put on disk or drum prior to
transfer to or from core during execution. The reasons for using this
procedure are: (1) a better utilization is achieved for the devices con-
cerned: (2) priority queueing is made possible; and more directly
related to the model here, (3) 1/0 delays during execution are re-
duced considerably because faster devices are used with larger buffer

sizes.,
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Figures 4 and 5 show the effect SPOOLing might have on the
same four job segments illustrated in Figure 2 and 3. While the
CPU busy period remains constant, the reduction in 1/0 completion
time shortens the CPU idle period thus increasing the index of
CPU productivity.

It is important to observe that SPOOLing capses a significant
increase in the total number of 1/0 operations. Input data from the
card reader must first be brought into core before their transfer to
disk or drum. Similarly, output data residing in disk or drum must
be brought into core again prior to transmission to the line printer.
However, the advantages of SPOOLing noted above usually outweigh

the burden of these additional I/0O operations.
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III. THE MATHEMATICAL MODEL

An important factor in the mathematical model is I/O

completion time. This consists of the total time required to com=-

plete an I/0O operation from the instant a request is made. By far
the biggest obstacle to efficient I/O operation is that file memory
devices~-being mechanical in nature--are not totally random
access. This means that each request may experience a variable
positioning delay before the actual information transfer can begin.
1/0O completion time has the following components:

(1) wait in queue; measured from the moment a request

enters the queue of a specified mass storage unit to the moment it
is chosen for service.

(2) seek time; the mechanical delay due to the positioning
of a read/write head to tﬁe addressed track. This delay is a func-
tion of the length of the move.

(3) rotational delay; time taken in accessing the sector

addressed.

(4) transfer time; the time required to read or write one buffer

of information from or to file memory.
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1. 1/0 Completion Time Distribution Function

Standard distributions such as the negative exponential
distribution are generally used to represent completion time dis-
tributions in queueing models; however, this is often unrealistic.
Completion time distribution functions for various 1/0 devices have
been derived in a number of papers. In particular, Pinkerton [14]
has given a description and analysis of paging with the IBM 2301
Drum in a general-purpose time-sharing system. The analysis and
experimental work on I/0 in this study are based mainly on the
UNIVAC FASTRAND II movable head drum. This differs from [14]
mainly in that a head positioning time (seek time) must be included
in most 1/0 completion times.

FASTRAND 1I units employ 64 read/write heads moving
laterally over 192 recording tracks. Each track may be considered
to be situated on the surface of a cylinder. The subsystem posi-
tions all of the heads in a drum unit with one movement of its
positioning mechanism in an average time of 57 milliseconds. The
maximum head positioning time is 86 milliseconds over all the tracks,
and the minimum time is 30 milliseconds. All data on a FASTRAND
subsystem is recorded in 28-word groups known as sectors.

In the analysis that follows, the assumptions are made that

(1) all 1/O transfers consist ot one buffer of information and arc
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processed sequeﬁtially through a single channel, (2) I/O transters
are distributed uniformly over all s drum sectors, (3) transfer time
of the information (28 words) lying within one sector is taken as
one time unit, (4) a linear relation exists between seek time and
length of the seek, (5) seek time is not a function of individual
cylinders, (6) a FIFO queue discipline (first-in, first out) is used
with the drum sector queues, and (7) unless otherwise specified,
the capacity of one buffer of information is the part of a track
lying within one sector. By (4) and (5), seek time may be expressed
as
seek time = c|i-j|

for cylinder i to cylinder j where c is a constant. The results
derived in [14] are modified for this purpose. Rotational delays are
implicitly considered in both formulations.

LEMMA 1. Given that (i) maximum head positioning time is
p time units, (ii) the sector associated with a request is known, and
(iii) k requests precede the arriving one on the sector queue, then
the conditional distribution for completion time is

F(k,t) = Prob[T < t|k]

i

1

(i) 0 if t< ks +1
(1) 1if t> (k+ 1)(s+p)+ 1

(iii) (t - ks = 1)/(s + (k + 1)p) otherwise
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Proof: Each drum revolution takes s time units. The minimum
time required to service k + 1 requests is k drum revolutions with
zero head positioning delay plus one time unit. The maximum time is
k + 1 drum revolutions \with maximum head positioning delay for each
operation plus one time unit. The completion time of the (k + 1)th
request is treated as if it were distributed uniformly between the
minimum and maximum values. (See Section III.4 (ii), p. 32 for
more discussion on this.)

LEMMA 2. The probability that a given sector queue contains
exactly k entries, given that n transfer requeysts are enqueued in

the entire system, is

k/gh (3)

G, k) = C(n,k)(s - "~
where C(n,k) denotes the binomial coefficient.

Proof: The k entries in the sector queue can be chosen from
n in C(n,k) different ways, and the remaining n - k requests can
be found on the other s - 1 queues in (s - 1)n -k ways. The total
number of distinct configurations is of course sn.

Since the given sector queues must contain k entries for
some value of k between 0 and n, we have also that

n

3% Gin,k) =1 (4)
k=0
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THEOREM 1. Given n prior requests to the drum I/0

channel, the unconditional distribution function for the completion

time is
H(n,t) = Prob [T < t]
. (5)
= 3 Gin,k) F(k,t)
k=0

Proof: An arriving request is assigned at random to a sector
queue in which k requests are already enqueued with probability
G(n,k) and n requests are already waiting in the whole system. Its

completion time in this case is F(k,t) where k ranges from 0 to n.

THEQOREM 2. The mean value Mi(n) of H(n,t) is given by
(s + p+2n+ 2)/2 + np/2s (6)

(o]

Proof: By definition, Mi(n) = }’O t dH(n,t).

Applying (4) and integrating,

n
M(n) = [ td % Gn,k) F(k,b)
0 =0
n (ntl)(s+p) + 1
= % G,k ¢ dF(k,t)

k=0 0
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n ©ks+l (k+1)(s+p) + 1
3 G, k) f ] f
=0 \ 0 0dt + ks+1t/(s + (k + 1)p) dt

i

o0

s f(ko dt

+1)(s+p) + 1

n
S Gn,k) {2(ks + 1)+ (k + I)p + s}/2
k=0

1t

n
S G(n,k){k(2s+p)+p+s+ 231/2

1

k=0
n
= (s +p/2) = kG(n,k)+p/2+ s/2 + 1
k=0
n-1
=(1+p/2s)n = Gn -1,k + p/2 +s/2+ 1
k=0

il

n + np/2s + p/2 +s/2 +1

i

(s + p+2n+2)/2 +np/2s
COROLLARY 1. The second moment of the drum completion
time distribution is
2 2
s /34+4s+2sn+n +n+ 1+ pf (7)
2 2 2 2 ) 2
where @ =1/3s” (pn~ + 3sn - np+ 3snp+ 8ns 4+ 2s +s p

+ 382) (8)

COROLLARY 2. The variance of the drum completion time

distribution is

(s2 +12(s - I)n + p¥)/12 (9
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2 2 2 3 2
where ¥ = 1/s (pn - 4np + 6snp + 17ns + 2s” + s p - l2sn) (10)

In order to represent a configuration of several independent
buffering mechanisms, the function H(n,t) is simpl\y modified. For
éexample, with two drums on separate channels, and assuming that
requests for buffers are equally distributed between the two, then

LEMMA 3. The probability Gz(n,k) that a given sector queue
contains exactly k entries, given that n transfer requests are
enqueued in the entire system, is

G%(n,k) = Cn,k)@2s - )" K 2s)® (11)
where C(n,k) denotes the binomial coefficient.

Proof: As in Lemma 2.

THEOREM 3. Given n prior requests to the pair of drum
1/0 channels, the unconditional distribution function Hz(n,t) for

the completion time is

i

Hz(n,t) Prob [T < t]

D2

5 G {n,k) F(k,t) (12)
k=0

i

Proof: As in Theorem 1.
A simple modification is also possible when buffer sizes are

changed in multiples of the sector capacity. In this case, if the
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new size is a multiple j of the base size, then the transfer time

for one buffer is j time units. However, for multi-sector operations,
the effective transfer rate is reduced as a result of the following
discontinuities in the actual transfer of data:

(1) the interval between reading or writing the last data bit
in one sector and the first data bit in the next sector on the track;

(2) the interval between reading or writing the last data bit on
the last sector of a track and the first data bit on the first sector
of the track under the next head of the same drum.

In the UNIVAC FASTRAND II drums, (1) is approximately 106
microseconds while (2) is between 100 and 150 microseconds. These
intervals are very small in comparison to the other quantities of
1/0 completion time. An additional assumption is made below that
these time intervals do not exist.

LEMMA 4. Given the hypothesis of Lemma 1 and that buffer
size is j times that of the sector capacity, then the conditional
distribution function for the completion time is

F(k,t)

I

Prob [t = tl|k]

1l

(1) 0 if t< ks +j
(13)
(ii) 1 ift> (k+ 1) (s +p)+i

(iii) (t - ks - j)/(s + (k + 1)p) otherwise
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Proof: As in Lemma 1.

THEOREM 4. The mean value M(n) of the modified uncon-

n
ditional distribution function H(n,t) = 3 G(n, k) F(k,t) where
k=0
F(k,t) is defined in (13) is
(s + p+ 2n+ 2j)/2 + np/2s (14)

Proof: Use (4), (5), and the definition of M(n) and integrate
as in Theorem 2.
COROLLARY 3. The second moment of the modified drum com~-
pletion time distribution is
32/3 4+ sj + 2sn + n“2 -n+ 2nj + j’2 + ;)2‘112/382 + p'nz/s
- np2/3sa + npz/s + 8pn/3 + 2sp/3 + pZ/S + pj (15)
- np/s + npj/s
COROLLARY 4. The variance of the modified drum completion
time distribution is
sz/lz +sn-n+ pznz/lZs2 - np2/3sz + npz/Zs + 17np/12

5 (16)
+ sp/6+p /12 - np/s

2. Formulation to the Problem

Objective Function. As stated earlier, our performance

criterion is to maximize CPU productivity as defined in (1), p. 6.
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Let £ and t, be the expected compute time and I/O time that
each job segment undergoes alternately assuming that buffer size

equals one sector capacity, w words. Then the index of CPU
productivity v is

Expected CPU busy period
Expected CPU busy period + expected CPU idle period

m tl (L7)

t1+t2

Y o=

‘where m is the mean number of job segments residing in core
simultaneously.

When the buffer size is augmented by a multiple j (to j xw

*

words), the expected compute time becomes jt1 while the expected
I1/0 time tz(j) is given by (14) in Theorem 4. Then the objective

function is

m]tl

8
¥ 0) (18)

max Y = "
s

Maximizing (18) naturally carries the constraints

Y o= 1

(19)
and m, j = positive integers

ate

This is not completely true as noted in Section II, p. 6. A
modification of this model is given in Section III.5 (ii), p. 35.
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Equivalently, (18) and (19) may be rewritten as
min b5 = }tl + tZ(J) - mJ’c1 {20)
with constraints
b= 0
(&1)
and m, j = positive integers

where b denotes the expected CPU idle time.

Additional Constraints. Consider the area of main storage

used for the buffer and for storing the m job segments. Let this
have a capacity of C words. Let L be the average length of the
job segments. Then

C=mL+ mjw+r (22)
where the surplus variable r satisfies

0<r < L+jw (2.3)
This expresses the goal of storing as many ta sks in the main
memory as possible to keep the CPU busy. |

Although buffers may be assigned dynamically as needed from
a buffer pool (see Section III.5(iv)), this scheme is not used in the
model: instead, each job segment is given its own private buffer.
This formulation makes it poésible to analyze more effectively the

correlation between memory utilization and CPU productivity.
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Moreover, the job segments at hand are often all engaged in 1/0
activities at the same time. Requiring a buffer pool to be suf-
ficiently large to eliminate the probability of overflow would resulit
in an equivalent formulation for the purpose here. In practice, the
buffer pool used in EXEC 8 on the UNIVAC 1108 provides buffers
for many other uses beyond basic I/O buffering. In other cases
where buffer pools are used, the assumption is made that not all
jobs will require 1/O simultaneously.

The Problem. To summarize, the problem may be stated
mathematically as

0=jt. +t, - mjt
1 2 1
min (24)

0 if 6<0
subject to
(i) C= mL+ mjw+r
(ii) r< L+ jw
(iii) t, = (s+p+2(m-=-1)+2j)/2+ plm - 1)/2s (25)
(iv) m, j = 1 integers
(v) r= 0 integer

3. Solution Procedure

The optimization problem has the following characteristics:

(1) Quadratic constraints and objective function, thus a nonlinear
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programming problem. (2) The variables are integers, thus an
integer programming problem. It may be seen that the classical
methods of nonlinear programming [8] and integer programming [9]

do not apply here. While nonlinear programming methods do not
restrict variables to be integer, standard integer programming
techniques only deal with optimization problems where the objective
function and constraints are linear. Integer programming algorithms
with parabolic constraints have also been developed but are dif-
ficult to applg/. A procedure is presented in this section that solves
this optimization problem.

LEMMA 5. The objective function (24) is a concave function.

Proof:
0 —tl
The Hessian matrix of (24) is which is negative
-t 0
1
definite for all m, j = 1 since
0 -t X
1 m m
(m, j) . . ‘ = (-jt;, -mt,) _
1 J J
= —ijtl < 0

Hence, (24) is strictly concave. (See Section 3-10 of [8].)
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LEMMA 6. The constraints (25) are convex functions.

Proof:
0 w
The Hessian matrix of (i) is which is positive
w 0
definite for all m, j =z 1 since
0 W\ m m\\\
(m, J) = (jw, mw)
w 0 J j )
= 2mjw > 0

Hence, (i) is strictly convex. (ii) - (v) are linear functions, and
thus convex.

THEOREM 5. The feasible solution set of (25) is a closed
convex set.

Proof: Follows from Lemma 6. (See Section 2-6 of [8].)

THEOREM 6. The optimal solution of (24) - (25) exists and
is an extreme point of the feasible solution set.

Proof: The feasible solution set is closed and bounded from
below. Also, the global minimum of the concave objective function
is finite (zero). Thus the optimal solution is taken at one .or more

extreme points of the set (Page 93 of [8]).
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The procedure described below find the optimal solution to the
minimization problem. It is intended to store the maximum number of
tasks, based on core space available, in the main memory while
minimizing CPU idle time. In the model, this quantity is determined
by the buffer size used. Hence starting with a feasible solution-~the
minimal buffer size--the objective function is evaluated. This value
denotes CPU idle time and equals zero if full utilization is achieved.
The buffer size is changed in multiples of the sector capacity. Since
the core space in question is large in comparison to buffer and pro-
gram sizes, increasing buffer size by one sector will either reduce
the maximum number of tasks in core by only one or leave it unchanged.
In both cases, the change is desirable when CPU idle time is re-
duced. On the other hand, an increase in objective function value
could mean that only a local minimum is found. An analysis of the
relation between the objective function and the constraints produces
conditions which when satisfied implied global optimality. In the
algorithm, local minimum points are found in sequence and tested for
this optimality.

ALGORITHM 1.

Step 0. Initialize j at 1 and let

C

jw L] (26)

m= [
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where [y] means integer part of y.
Step 1. Evaluate o; stop if & = 0, i.e., CPU idle time equals

Zero.

Step 2. Let j=:j+ 1, m=[‘}:;v"%*f . If m remains unchanged,

go to Step 3; otherwise proceed to Step 5.
Step 3. 1If tl > 1/(m - 1) (27)

return to Step 1; otherwise, go to Step 4.

i

Step 4. Let r=C -m((j - I)w + L) (28)

1

q = [t/mw] (29)
If g(l - (m - 1)1;1) -(p/2s 4+ (m-(G-1) -2 - q)t1)< 0 (30)
go to Step 1; otherwise, stop.

Step 5. If p/2s + ((m+l) - (j - 1) - 2) tl >0 (31)

return to Step 1; otherwise, go to Step 6.

1

Step 6. Letr=C - m(jw + L) (32)

i

q = [r/mw]
If (-p/2s - ((m+1) - (j-1) —Z)tl + q(l - (m - 1)t1) <0 (33)
go to Step 1; otherwise, stop.

The proof of the algorithm follows:

~; - —S . . '
LEMMA 7. Given m, = [jw T L] where [y] means the integer

This means replace j by its original value plus one.
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part of vy,

C

and m, = [qu)w B L]

:mll

m, = | <
3 G+ g+ )w+ L

]:ml-l

then g = [r/mlw] where r=C - m, (jw + L). (34)
Proof: m, = m, implies that
C C _
el ol P e
or C=m(jw+L)+rO where Osro<_jw+L
and C =

m((j + qQ)w + L) + rq where 0 = rq <L{G+agw+ L
thus r.zr ~-r
= C-m@w+L)-C+m((+aw+1l)
= mwqg
the maximum value of g where r, = mwa is (34).
THEOREM 7. Algorithm 1 finds the optimal solution of
(24) - (25).
Proof: Due to (i) and (ii) of (25), m is strictly determined for
any value of j by (26). Since C >> w, then increasing j by 1

will either not change the value of m or cause it to decrease by 1.

Case (i}. j =:j + 1, m unchanged: The objective function 0 is

affected by an amount of
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1= (m - 1)t (35)
which is negative if (27) holds. Thus, it would be beneficial to make

the changes.

Case (ii). j=:j+ 1, m=:m - 1: The objective function 0 is
affected by an amount of

1 - (1+0p/2s) - ((m - 2)( + 1) - (m - 1)),

(36)
= -p/2s - (m - j - 2.)1:l

If (36) is negative, the changes should then be made.

Suppose (27) does not hold for Case (i) and j may be in-
creased by at most g without affecting m, then letting
j =:j+ g+ 1 will increase 0 by

q(l - (m - l)t1 >0 (37)
due to (35) and decrease it by

p/2s + ((m-2)G+q+ 1) - (m~-1)F+a)t, G9)

=p/2s+ (m-j=-2-qt

Thus the changes would be beneficial and should be made only if the

total effect is negative. By Lemma 7, q is found to be (29).
Suppose (31) does not hold for Case (ii) and j may be in-

creased by at most g more without affecting m again, then letting

j=:j+ g+ 1 will increase © by the amount in (36) and decrease
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it by q(((m - 1) - 1) tl - 1). The changes should be made only
if the total effect decreases © . Again by Lemma 7, q is
determined by (29).

When at any time, (27) and (31) both do not hold, then the
algorithm stops and the optimal solution is found. Itis noted that
(35) and (36) are increasing functions as j increases and m
decreases. Thus once either (27) or (31) does not hold, they

will remain that way.

4, Limitations

(i) In the probability model, the control variables (i.e.
buffer size and number of programs in core) are functions of various
parameters such as program size and CPU time. When the value
of one or more of the parameters is changed, it will in general be
true that the optimal values of the control variables will also
change. The algorithm here and standard techniques for solving
such problems provide an optimal solution only for one specified
set of values of the parameters. Using these methods, one cannot
obtain explicit expressions for a set of optimal values of the con-
trol variables as functions of all the parameters. A detailed
sensitivity analysis to determine how the optimal values of the

control variables change as various parameters are changed (singly
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or in different combinations) could require considerable computa-
tional effort.

As it turns out, some of the parameters appearing in the
problem must be treated as deterministic ones. Consequently, the
standard procedure is to optimize the expected value of the objective
function. This procedure belongs to a class of optimization tech-
niques known as stochastic programming [8]. Such methods are
avoided here due to the difficulties involved in their solutions.
Instead, a simulation model is used for sensitivity analysis with
results presented and discussed in Section V.

(ii) The FASTRAND II mass storage unit being a movable
"head storage device has similar behavior to a movable arm disk.
Typically, the average seek time of such device is much greater
than its average rotational delay. Hence in general, I/O requests
are sorted first by cylinder (or set of cylinders under heads in the
same position) and then by sector. However, the difference
between the average seek time and the average rotational delay
for FASTRAND is very small. Furthermore, since the sector queues
are usually empty or not very long under EXEC 8, it is adequate
to sort the 1/0 requests by sector in this case.

Each FASTRAND unit has 64 read/write heads moving laterally

over 192 recording tracks, or 3 cylinders per head. The correspond-
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ing probabilities of a seek of 0, 1, or 2 tracks are —é‘, '%-, and%

respectively, by no means a uniform distribution. (See Figure 6).
Neither is the seek time uniformly distributed between 0 and the
maximum value of 86 milliseconds (See Figure 7). But the shapes

of these two distributions counteract each other so in this case,

a uniform approximation is satisfactory.

Probability

1\
1 + P

v
2
S+
1
3
} » number of tracks
0 1 2

FIGURE 6

Cumulative Distribution Function for the Number of
Tracks in a Seek
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Seek Time (Milliseconds)

50 |
Vai
60 .} 7
30 4 A
' i > number of tracks
0 1 2
FIGURE 7

Distribution of Seek Time vs Number of Tracks
in a Seek

5, Generalizations

(i) When several independent I/O mechanisms are used,
e.g. two drums on separate channels, the model may be modified
easily. Theorem 3 gives the completion time distribution function
for multiple drums when requests for buffers are equally distributed
among the drums. For uneven distribution of 1/0 requests, the
objective function may be rewritten as

gt (39)

= (I - m)jt. +
1 > il

i

Mo

where each ti gives the expected completion time of a particular

I/0O mechanism and ﬂi its corresponding probability of being
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utilized. ﬁi is easily represented by

_ expected number ot I/O requests for mechanism i

i expected total number of I/O requests (40)

(ii) An improvement on the model is possible and desirable
when the number of I/0 operations unaffected by a change in the
input buffer size becomes great. Let Y be the fraction of 1/O
operations belonging to this class. Then the index of CPU
productivity Y becomes

(1 -5 mj’cl + fmtl
Y o= (41)

(1 -0 jt, + ft, +t,0)

Equivalently, the problem becomes one of minimizing the expected

CPU idle time 0 where

o
t

(1 - )it + ft, +t,(3) - (1 - fmjt, - fmt
1 1 2 1 1 (42)

1}

jt, + t,0) - mit, + £m - D=1t

1 1

To show that an optimal solution still exists for the modified
problem as in Theorem 6, it is necessary only to show that the
objective function remains concave.

LEMMA 8. The objective function (42) is a concave function.

0 —'t1 + ftl
Proof: The Hessian matrix of (42) is which is

--tl + ftl 0

negative definite for all m, j = 1 since
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0 —(l-:E)t1 nm

i

(m.3) (-3(1=6t,, -m(1-Ht ()

-(1-9)t, 0 j

i}

—ij(l-f)t1 < 0
Hence, (42) is strictly concave.

THEOREM 8. The optimal solution of (42) and (25) exists
and is an extreme point of the feasible solution set.

Proof: As in Theorem 6.

}(iii) It is assumed in the model that buffer size is increased
only by a multiple j of a standard capacity, i.e. that part of a
track lying within one sector. This restriction can be easily re-
moved by setting the sector size w to one. j then becomes the
variable that determines the number of words in a buffer.

(iv) Within the UNIVAC 1108 Exec 8 operating system is
EXPOOL, a core resident element that contains a buffer pool and
two routines to maintain this pool. All system tables, queues, and
control words are also located in EXPOOL. In the allocation of buffer
areas, a scheme must be adopted for allocating and releasing blocks
of memory, maintaining a list of available blocks, and extending
the buffer pool when it nears depletion. Basic schemes for dynamic

allocation along with algorithms for implementation have been well
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defined in the computer science literature [10, 12].

A study is undertaken in [13] on two basic algorithms for the
allocation of variable size buffers. This study shows under what
operating environments one method might compare favorably with
another. Buffer pool memory maps resulting from simulations of
the two schemes are given to indicate the degree of memory frag-
mentation caused. In some cases, the problem may become so
severe that although there is sufficient space to satisfy the buffer
requests, the space is fragmented so there is insufficient contiguous
space.

The variability of the size of buffer requests is the main cause
of fragmentation. In addition, blocks of memory are released in
increments; hence, a page of j x w words may not be released
all at once but rather w words at a time for j times. In Figure 8,
a buffer of 8 sectors is allocated to a certain I/O request at time
tO‘ Although the 1/0 operation is completed only at time tz, each
of the sectors is released upon completion of the read/write on that
sector. An estimate of buffer space available and size of buffer
pool necessary to prevent overflow must take all these factors into

consideration.
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IV. EXPERIMENTAL WORK

1. Data

The statistics of jobs run at the UWCC in five randomly chosen
days are compiled and used for analysis here. These data are also
used for the simulation model in Section V. Core utilization by
user programs vary from 1 block of 512 words to 128 blocks. This
distribution of program sizes is by no means even. (See Figure 9.)

In fact, local peaks are detectable and are due largely to the
popularly used programs such as the FORTRAN compiler.

Figure 10 shows the distributions of the number of jobs versus
compute time given in seconds for the five sample days' runs. The
compute times are expressed exponentially in powérs of 10.

Values of other parameters are also gathered. These include
number of jobs, mean number of programs per job, mean compute
time, mean I/O time, number of 1/0 requests, average request time,
number of queue requests, and average queue time. The number of 1/0
requests is further broken down into the requests for each I/O
mechanisms which iﬁclude the FH Drums, FASTRAND, and tapes.

(See Table 1 and 2.) Furthermore, a summary of core utilization from

a sample day's run is given in Table 3.
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FIGURE 10

Compute Time Distributions (in Seconds) Using an
Exponential Scale
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TABLE 3. Summary of Core Utilization from a Sample Day's Run

Core
Size

40K~

48K~

56K~

64K~

72K~ 80K

80K~ 88K

88K- 96K

96K~104K
104K-112K
112K-120K
120K~128K
128K~136K
136K-144K
144K-152K
152K-160K
160K-168K
168K~176K
176K-184K
184K-192K
192K~200K
200K~208K
208K-216K
216K-224K
224K-232K
232K-240K
240K-248K
248K-256K

48K
56K
64K
72K

Totals

Time

Seconds

56.
258,
81.
212.
141.
166.
441,
136.
209.
199.
172.
480.
257.
406,
510.
933,
1147,
1758.
2647,
2793,
2684.
2358,
1717.
694.
39.

20508,

OB OOV NTOWLYLOoPR WO~ Ohd O WOt OO

ot

o~

Core Size IS 256 K

Number
Requests

0

0
1231
1633
1886
3624
2496
4954
5108
3393
2670
3336
5025
8785
8523
12879
17486
25890
34287
47561
65754
72519
68021
60036
40547
15112
689

513445

1 dkesjesfesiesiesiedls

Percent
Utilization
01
01
.3 1%
1.3 sk
.4 14
1.0 13x%
T 1%
.8 %%
2.2 1sksksRsiok
L1
1.0 I%:%
1.0 13%
.8 13k
2_3 1*****
1.3 1k
2.0 1kt
2.5 Ddsksokk
4,6 1 dksesskosksksiokoik
5.6 1kl
8.6 1%ddsesdlsiodoiokslotokoltoriok
12.9 1****************************
13. 6 1%k >}<$}<:{:>}<>{:>}<>}<*>{<>{: she sl sk o sk e e sie sk e sfesie sfesfe siesiesi
13.1 1%k steste stesle sfesle st sfe ol sfe sl sfe sfeske sie sfeole e sfesie siesfesiesiesie
11.5 13k sleaesle ol e s sl slesfe sie s sfesie sie sle sfeesfes sieaesie
8.4 1 koo stesle s sle skeosle sie s s e s 3
.4
.2

1%

100.0
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As mentioned earlier, SPOOLing is used in the multiprogramming
system under study. This is accomplished on the UNIVAC 1108
system by the so-called symbiont routines. However, the additional
I/O operations due to SPOOLing are not included in the scope of the
study here since they would not be affected by changing data buffer
size., The procedure used for gathering data does not exclude these
I/0 transfers and they must be deducted using an estimate based on
number of cards read in and lines printed. Included in the data then
are total number of runs, cards in and out per run, and lines out per
run. An estimate of 50 characters per card and 80 characters per line
is used. These figures are then converted to number of cards or lines

per buffer.

2. . Experimental Results

In addition to using the data for the simulation model in Section
V, these figures are used as parameters in the mathematical model.
The algoritﬁm for finding the optimal buffer size is programmed in
FORTRAN V.

In Figure 11, distributions of CPU productivity against buffer
size are given. Although full utilization is achieved, this is not to

be expected in the real situation because of overhead factors which
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are difficult to include in the mathematical model; such as additional
1/0 operations due to program swapping and system 1/0, other uses
of the buffer area, etc. The parts of the graphs that exceed the
full utilization line could be represented by utilization of a second
CPU. These are intentionally drawn to illustrate where the true
optimum points lie. For all practical purposes, a particular buffer
size where CPU use is fully achieved is no better or worse than
another with the same utilization. However, if the overhead
factors mentioned above had been included in the mathematical
model, it is expected that the full utilization point will not be
reached in the distributions. In that case, it will be necessary to
see how one buffer size compare with the other.

The graphs show the distribution up to a buffer size of 30
sectors. CPU productivity at buffer sizes larger than this fluctuates
back and forth without reaching again the real optimum points

indicated. As should be expected, given a fixed number of programs

in core, peaks of the distributions occur at points where the largest
possible buffer size is used. A sudden drop in CPU productivity
occurs when the buffer size is further increased, causing the number

of programs in core to be reduced by one. Thus, many local maxima
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occur at various points in the distribution. The algorithm finds the
frue optimum.

From the five sample days' runs, optimal buffer sizes are
found to be the following multiples of sectors: 12, 18, 15, 22, 10,
or a mean of about 15. This is slightly less than twice the 224~word
buffer used currently on the UNIVAC 1108 at the UWCC. The
optimal buffer size for each day's run is determined based on
parameters such as average program length and number of 1/0
requests which change dynamically for each day. A sensitivity
analysis would better show how the optimal buffer size changes as
various parameters are changed. This is done in the simulation

model in the next section.
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V. THE SIMULATION MODEL

This section discusses the implementation of the simulation
model in the SIMSCRIPT language [11] and the data and results
obtained from the simulations.

1, Implementation

In SIMSCRIPT, the status of the simulated system is defined

in terms of what are called entities, attributes of entities, and sets

of entities. Any type of unit to be independently identified in the
simulation is called an entity. Each entity is in turn described by
enumerating its particular attributes, and interrelationship among
individual entities is done by grouping them into sets. The pro-
cedure for specifying statusvconsists of defining each different

type of entity, attribute, and set on the SIMSCRIPT Definition Form.
The definition form for the simulated system here is given in Figure
12.

Briefly, the simulation model has the following features. The
system consists of two main "first-in, first-out" queues--one for
the CPU and another for I/O. At any instant, each task in core is
in one of the two queues; it is either (1) executing or enqueued
for execution, or (2) waiting for 1/0O facilities or completion of an

I/0 operation.
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An overloaded operation is assumed in the sense that there
is always a task ready to enter the system. A record of the tasks
is kept during the entire duration of simulated time, beginning with
the scheduling of the first 1/0O request. Once a job is brought into
core, it undergoes a series of I/O and compute periods alternately,
remaining in main memory until its completion.

Workload Description

As in a few cher simulation models that measure the per-
formance of existing systems, real data from the system itself was
used. This is invaluable not only in the presentation of subtle
correlations and interrelationships among the different characteristics
of system operations, but because the simulated results can be
compared more directly with the performance of the real system under
the same conditions.

Each program to be processed is a temporary entity called a

JOB with several attributes such as size of program, number of
1/0 requests, and processing time. The distribution of program
size is obtained from real data of several days' runs and is given
as a step function of 512-word blocks. Other parameters are
similarly obtained and represented, and values of these attributes

are generated randomly from their distributions.
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Hardware Description

In the model, direct representation of physical devices occurs
in the consideration of the drum rotational delay and positioning of read/
write heads. A model parameter specifies the core storage. The
loading of jobs into core and allocation of their buffer areas are also
modelled.

System Parameters

While a change in the distribution of the workload description
may alter the system performance, a number of parameters may be
changed when desired to learn more about the behavior of the system.
Examples of such parameters existing in the model are the amount of
real memory available to a task, the size of the buffer area, and the
limitis on the length of time a task may continuously use the CPU.

These values are specified so system attributes in the SIMSCRIPT

program.

QOperating System

Several events and subroutines are represented in the model for
the operating system. A SIMSCRIPT timing routine permits the

occurrence of both endogenous events (those caused by previous

events within the simulation) and exogenous events (those introduced

from outside the simulation). These include
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(1) the interruption of a task currently using the CPU,

(2) the completion of an I/O activity,

(3) the bringing of new tasks into core to compete for the use
of the CPU and I/0 faéilities, and

(4) the completion of a task.

Statistics Gathering

For the purpose of measuring the system performance and
summarizing its behavior, statistics are gathered at intervals of the
simulated time. These include CPU utilization in the time interval,
accumulated CPU productivity, CPU idle and busy time. Other
information such as mean program sizes, mean compute time, mean
1/0 time, number of 1/O requests, and number of jobs finished are
also gathered.

Although the length of the time intervals where data are to be
collected may be easily changed, care must be taken in deciding
when the performance of the system is to be measured. To allow
transient effects to disappear, the initial period of simulation must be
ignored. In SIMSCRIPT, the output of these data is easily generated

by calling a report routine.
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2. Simulation Results

In order to validate the theoretical results, a number of simula-
tion runs were made using real workload data. Initially, runs were
made using only buffer sizes of 8 and 12 sectors to investigate (1)
the length of the initialization interval necessary for stabilization of
the system, and (2) the length of the run segments at the end of
which, statistics are gathered.

Over the relatively short real-time period for each run (60
minutes) which the data represents, there are significant differences
both in the system performance and the workload variations. These
are shown in Figures 13 to 17, which are discussed below.

Since parameters of the workload are described by distributions
and their values determined by random look-up procedures, simulation
runs were repeated for the same basic model using a different seed
for generating random numbers.

In order to see how the system performs with different buffer
sizes as various parameters (or their distributions) are changed,
simulation runs are also made where only one parameter at a time is
varied from the basic model. This is done with the distributions for

CPU time and the number of 1/0 requests of individual programs.
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Tor ease of making comparisons between runs where parameters
are varied, the workload characteristics are shown for each run. A
core size of 190K was used in all but Figure 17 where this value was
doubled.

Figure 13 shows the basic model where the workload character-
istics and system performance are given. Simulation results are
obtained for buffer sizes of 8, 10, 12, and 16 sectors. These values
are close to the optimum. Statistics are gathered at every interval
of 5 minutes. The results of the first 10 minutes of simulated time
(initialization interval) may be ignored. Of the four buffer sizes
used, that of 12 sectors or 336 words gives the best system perform-
ance.

The result of the simulation run using a different random seed
ig given in Figure 14. The run is made only for the two buffer sizes
that yield the best system performance, 10 and 12 sectors. Again,
using buffer size of 12 sectors gives better CPU utilization, 0.83,
compared to 0.78 for buffer size of 10 sectors.

In Figures 15 and 16, the results are presented for simulation
runs where only one parameter at a time is varied from the basic
model. In Figure 15, a different compute time distribution (taken

from a different day's data on the 1108) is used causing the mean
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compute time to increase from 11.65 seconds per job to 14.72

seconds. The effect on system performance is as expected: a better

CPU utilization. The distribution for the number of I/O requests is

changed in Figure 16. The mean number of 1/0 requests increases

from 2271 to 2710, causing CPU utilization to drop as expected.
Finally (see Figure 17), a simulation run is made for the basic

model except that core size is doubled. This causes almost full

utilization of the CPU. This should be expected since, on the average,

twice the usual number of programs are permitted to reside in core

and compete for CPU use.




Workload Characteristics

Real-time period

Mean no. of 1/0 requests
Mean I/0 time

Mean compute fime
Average size of program

60 minutes
2271
72 .43 seconds
11.65 seconds
20288 words

Index of CPU Productivity

Buffer size
8 sectors | 10 sectors | 12 sectors |16 sectors
Simulated
Time (mins)
5 0.69 0.69 0.61 0.58
10 0.74 0.79 0.73 0.51
15 0.83 0.81 0.88 0 73
20 0.76 0.74 0.84 0.66
25 0.80 0.83 0.79 0.72
30 0.76 0.77 0.86 0.79
35 0.81 0.75 0.91 0.80
40 0.72 0.81 0.83 0.64
45 0.79 0.85 0.92 0.81
50 0.84 0.79 0.82 0.63
55 0.71 0.83 0.84 0.77
60 0.82 0.78 0.79 0.71
Averagce 0.77 0.80 0.82 Q.56

FIGURE 13

Basic Simulation Data




58

Workload Characteristics

Real~-time period

Mean no. of 1/0 requests
Mean I/0O time

Mean compute time
Average size of program

60 minutes
2463
65.89 seconds
12.15 seconds
30167 words

Index of CPU Productivity

Buffer size
10 sectors 12 sectors
Simulated
Time (mins)
5 0.63 0.58
10 0.77 0.70
15 0.82 0.84
20 ‘ . 0.74 0.76
25 0.81 0.89
30 0.77 0.93
35 0.73 0.88
40 0.83 0.89
45 0.80 0.94
50 0.76 0.79
55 0.85 0.82
60 0.79 0.90
Average 0.78 0.83
FIGURE 14

Simulation Data Using a Different Random Seed

!
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Workload Characteristics

Real-time period 60 minutes
Mean no. of I/0 requests 2271

Mean I/0O time 72.43 seconds
Mean compute time 14.72 seconds
Average size of program 20288 words

Index of CPU Productivity

Buffer size
10 sectors 12 seclors
Simulated
Time (mins)
5 0.71 0.64
10 0.79 0.76
15 0.86 0.88
20 0.81 0.94
25 0.87 0.90
30 0.78 0.93
35 0.83 0.85
40 0.77 0.92
45 0.84 0.87
50 0.88 0.94
55 0.75 0.83
60 0.90 0.90
Average 0.81 0.86

FIGURE 15

Simulation Data Using a Different Compute Time Distribution
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Workload Characteristics

Real-time period 60 minutes
Mean no. of 1/O requests . 2710

Mean 1/0 time 72 .43 seconds
Mean compute time 11.65 seconds
Average size of program 20288 words

Index of CPU Productivity

Buffer size
10 sectors 12 sectors
Simulated 3
Time (mins)
5 0.64 0.58
10 0.72 0.76
15 0.80 0.83
20 0.74 0.79
25 0.70 0.88
30 0.77 0.77
35 0.83 0.77
40 0.79 0.84
45 0.86 0.80
50 0.80 0.87
55 0.78 0.76
60 0.74 0.74
Average 0.76 0.77
Figure 16

Simulation Data Using a Different Distribution for the Number
of I/0O Requests
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Workload Characteristics

Real-time period

Mean no. of I/O requests
Mean 1/0 time

Mean compute time
Average size of program

60 minutes
2271

72.43 seconds
11.65 seconds
20288 words

Index of CPU Productivity

Buffer size
10 sectors 12 sectors
Simulated
Time (mins)
5 0.93 0.89
10 0.96 0.92
15 1.00 0.98
20 - 1.00 1.00
25 1.00 1.00
30 1.00 1.00
35 1.00 0.98
40 1.00 1.00
45 0.97 1.00
50 1.00 1.00
55 | 1.00 1.00
60 0.96 1.00
Average 0.98 0.97

FIGURE 17

Simulation Data Using Double Core Size
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VI. CONCLUSION

This study has concentrated on demonstrating the correlation of
1/0 buffer size used in a multiprogramming system to productivity
of the CPU. The results of the work done shows that CPU utilization
is sensitive to the size of the data buffer and system performance may
be greatly improved by an optimal choice of this value. In the math-
ematical model, an algorithm is formulated for finding the optimal
1/0 buffer size given the workload and system parameters.

Analysis and numerical results are presented specifically for
the UNIVAC 1108 with FASTRAND II storage units. Using real data
from five days' runs/at the UW Computing Center, results from both
the mathematical and simulation model agree closely with the opinion
of a system analyst at the UWCC. This points to the need to consider
an increase in the data buffer size currently used in the multiprogram-
ming of the UNIVAC 1108 system under a similar workload.

The analysis.here is based on the use of a single buffer for
each program in core. It may be useful to do a similar study for systems

using two data buffers for each program where one buffer may be filled

while the other is being processed (double buffering). Another technique

involves the use of floating buffering where in addition to individual
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buffers, a number of floating buffers may be allocated to any of the
programs in core. As systems grow larger and even more parallel
processing is done, the analysis of these buffering techniques and
the optimal selection of their buffer size will prove increasingly

beneficial.
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