Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

THE SOLUTION OF THE DIRICHLET PROBLEM FOR
LAPLACE'S EQUATION WHEN THE BOUNDARY DATA
IS DISCONTINUOUS AND THE DOMAIN HAS A
BOUNDARY WHICH IS OF BOUNDED ROTATION BY
MEANS OF THE LEBESGUE-STIELTJES INTEGRAL
EQUATION FOR THE DOUBLE LAYER POTENTIAL.
by
Colin W. Cryer

Technical Report #99
August 1970



CONTENTS

1. INtrodUucCtion. « « + « v v e e e e e e e e e e e e e e e e e e e e e T
2. Curves of bounded rotation:

basic properties . . . . ¢ ¢ . i i i i i i e e e e e e e e e b
3. Curves of bounded rotation:

further properties . . . . . « &« . v v e e e e e e e e e e e e 1
4, Curves of bounded rotation:

still further properties . . . . . . . . . v v « v« v . .. ... 22
5. The generalized Dirichlet problem ., . . . . . . . .. e e e e 29
6. Some definitions and remarks. . . . . e e e e e e e e e e e 35
7. Double-layer potentials:

behaviour near the boundary . .. ... .. ... ... ... .. 38
8. Mapping properties of T . . . . . . . .. e e e e e - X |
9. The integral equation . . . . . . . ¢ v v v v v o e v e e e e . 57

10. The integral equationwhen C hascusps ... ... ... ... b4

Appendix A. Survey of the literature on double-layer potentials . . . . 76

A.l. Historical background. . . .« . . . . . . . L 0 4 e e e e e e e . 76
A.2. Theclassicaltheory . . . . . . . ¢ ¢ v v v v v v v v v v v ... 81
A.3. Generalizations of the classical theory. . . . . . . . . .. .. 94
A.4. Numerical methods . . .. . .. .. e e e e e e e e e e e ... 103
Appendix B. Radon's paper: areworking. . . . . . .. . ... ... .110

Appendix C. Properties ofthespace . .. . . . .. ... ... ..118

References. . . . . . . . . v v v v v v v .. R




THE SOLUTION OF THE DIRICHLET PROBLEM FOR LAPIACE'S EQUATION
WHEN THE BOUNDARY DATA IS DISCONTINUOUS AND THE DOMAIN HAS
A BOUNDARY WHICH IS OF BOUNDED ROTATION BY MEANS OF THE
LEBESGUE-STIELTJES INTEGRAL EQUATION FOR THE DOUBLE-LAYER POTENTIAL.
by
Colin W. Cryer;:<

Introduction .

Let C be a rectifiable Jordan curve in the xy -plane which
separates the plane into a bounded simple-connected domain & = @+ and
an unbounded simply-connected domain ® _ (see Figure l.1).

Let C have the paramelric representation
(1.1)

x=x(s), vy=vy(s), 0<s< S,

where S is the length of C and s denotes arc length measured in the anti-

clockwise direction from a fixed point A .
The point (x(o), y(0)) e C will be denoted by P(¢), and the

length of the shorter of the two arcs joining P(s) and P(o) will be denoted by

s = o] so that
||S’0”= min s -o+ksl|.

k=-1, 0,1

i ||s - o]l < 8/2, we write P(s) < P(o) if P(s) is "before" or "to the
left" of P(¢) and P(s) > P(o) if P(s) is "after" or "to the right" of P(o).

The distance between P(s)
g(s) be defined on C and let

and P(¢) is denoted by |P(s) - P(®)] .
u = u(x,y) be the

Let g =

solution of the Dirichlet problem
uxx+uyy=0, (x,y)e ® , (1. 2)
(1. 3)

u =g, (x,vy)e C.

*Sponsored by the Office of Naval Research under Contract No. :
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Figure 1.1

The curve C.
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If C and g are smooth then it is well-known (Kantorowitsch and
Krylow [55, p. 115]) that u is equal to the potential corresponding to a double-

layer of density ¢ = ¢(s) on C. Thatis, for Qe R,

wQ) = [ o9 garsy log |Q - P(o)lde, (1.4)
C —

where n(o) is the unit outward normal to C at P(¢) and ‘Q - P(cr)f is the
distance from Q to P(o) (see Figure l.1). The density ¢ satisfies the inte-

gral equation.

S
o(s)+ [ (o) K(s,o)do = g(s)/m, 0<s<§, (1. 5)
0
where K(s, o) is a known smooth function which depends only upon C . (In
fact,
N S § y(o) - y(s)
K(s,0) = — 35 arc tan [ 0')~xs)] )

When C has corners the above theory is no longer adequate.
Carleman [24] considered this case, but a more satisfactory theory was developed

by Radon [110]. C is said to be of bounded rotation if

S
x(s)=x(0)+f cos [§( )] do ,
0
S
y(s) = y(0) + [ sin[§(e)]do , (1. 6)
0

for 0< s<8S

where A is of bounded variation on [0,S], that is,

S
[ a8 () < =. (1. 7)

0

(This concept is due to Radon who generalized earlier work on convex curves
by Study [124, p. 103]). Radon showed thatif g is continuous and C

is of bounded rotation then the Dirichlet problem (1.2), (1.3) is solved

by the double-layer potential (1.4) provided that o satisfies the Stieltjes

integral equation



S
MS%FI MﬂdGWGﬁ)=g@V%, 0<s<8, (1. 8)
0

where U is as in Figure 1.1 (an analytic definition of ¢ is given in section 2).
Recently, Radon's results have generalized by Arbenz [7], Burago et al[19, 20, 21],
Maz'ja and Sapoznikova [ 88], and Kral [58,139]; for further references see
Appendix A .

So far as the author is aware, previous workers have considered

(1. 8) under the assumption that

(a) g is continuous,
(1. 9)

(b) C has no cusps.

When considering (1. 8) as a means of obtaining numerical solutions for the
Dirichlet problem, assumption (l. 9a) is undesirable since in practical problems
g may be discontinuous or, even if g is continuous, approximate solutions to
(1. 8) may be computed by approximating ¢ by piecewise continuous functions.
For example, Bruhn and Wendland [16, p. 142] assert that the theory for (1. 8)
can be extended to the case when ¢ is Borel measurable. Benveniste [12]
also encountered difficulties when working in the space of continuous functions.
The main purpose of the present paper is to extend the theory for
(1. 8) to the case when C is of bounded rotation and ¢ is bounded and
measurable. The question as to whether the Dirichlet problem (1. 2), (1. 3) is
meaningful in this case is answered affirmatively in section 5. In section 7
it is shown that the Dirichlet problem (1. 2), (1.3) is solved by the double layer
potential (1. 4) provided that ¢ satisfies the Lebesgue-Stieltjes integral equation
(I+T)=g/m , (1.10)
where I denotes the identity operator, the operator T is defined by

(Te)s) = [ ol0) L (do), (L.11)
C

and Hs is the Lebesqgue-Stieltjes measure determined by the function (s, ¢)

(Dunford and Schwartz [26, p. 142]). In section 9 it is proved that (1.10) can
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be uniquely solved for ¢ if C has no cusps.

For a long time the author believed that assumption (l. 9b) was
not essential and could be relaxed, perhaps by permitting C to have outward-
pointing cusps. However, in section 10 it is shown that if C has cusps then
(1 + T)‘1 is unbounded, so that (1. 9b) is essential within the present frame-
work.

Certain other results are also obtained: in sections 3 and 4 some
new properties of curves of bounded rotation are proved; and in section 8 some
properties of T are derived. The author believes that these results will be
of value when studying the numerical solution of (1.10).

In conclusion, two questions arising from the present work may
perhaps be mentioned. Firstly, it would be of interest to determine whether the
case of cusps could be handled by working in the space of absolutely integrable
functions. Secondly, it would be of interest to study the theory of (1.10), (l.11),

for the case when the measure II s is not determined by a function such as

Y(s, o).

Acknowledgement
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2. Curves of bounded rotation: basic properties

In this section the geometrical results obtained by Radon [110] for
curves of bounded rotation are summarized. It should be mentioned that Radon's
paper contains several minor misprints, some of which are corrected in the
Russian translation [111]. A detailed reworking of parts of Radon's paper will be
found in Appendix B.

Let C be a curve of bounded rotation so that (1.6) and (1.7) hold. Then
it can be shown that C has a tangent at all except a denumerable number of points,
the corners of C, at which points forward and backward tangents exist. Itis
convenient to assume (and involves no loss of generality) that P(0) = P(S) is
is not a corner and that 'S'(S) is continuous and differentiable for s = 0 and
s =8,

Since C is smooth at P(0) = P(S) we shall sometimes allow ourselves
the liberty of abusing notation in order to avoid having to treat P(0) or P(5S)
separately. For example, strictly speaking, G(S-i—) is not defined. However,
since ’8' is continuous for s = 8§, 3 (S+) should clearly be interpreted as
meaning '9(8).

Theorem2.1.

To every point P(s) there corresponds an €{(s) > 0 such that if B(s; p)
is the circle with center P(s) and radius p < e(s) then
(a) B(s; p) cuts C in precisely two points, P'(s; p) and P"(s; p) say,
where P'(s; p) <P(s) and P"(s; p) > P(s). Hence B(s; p) splits C into two
subarcs, an open subarc CO =CO(S; p) containing P(s), and a closed subarc

Cl = Cl(S; P).




(b) Let B+(s; p) =5%+ ~B(s; p), B_(s; p) =6%~—_ ~B(s; p), and denote by

W+(s; p) and W _(s; p) the angles subtended at P(s) by B+(s; p) and

B_(s; p), respectively. Then as p — 0, W+(s; p) and W (s; p) tend to

. limits, W+(s) and W _(s) say, which will be called the interior and exterior

angles at P(s).

(¢) If P(o) lies inside or on B(s; <(s)) then

>ls = ol s Ips) - P(a)| = |Is - o]

(d) If one moves from P'(s; p) to P"(s; p) along B _(s; p) and back to
P'(s; p) along B+(s; p), then B(s;p) has been traversed in the positive (anti-

clockwise) direction.

The function ¢ shown in Figure 1.1 will now be defined. Let
}={(S, c): 0<s<oc<S and c-s<S}.

Then
cos Us, o) = [x(s) - x(a)]/|P(s) - P(o) ],
sin W(s, o) = [y(s) - y(9)]/ |P(s) - P(d)],
(2.1
for (s, o)e }7
Ws, o) = Wo, s), for (o, 8) e
¢ is required to be continuous on }so that (2.1) determines Y up to a multiple

of 2w, It can be shown that ¢ can be extended by continuity to all the points

of the square [0, S] x [0, S] with the exception of points of the form (s, s)
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where P(s) is a corner point. At such points the limits

Ws, s+) = lim Y(s, o)
cr->si-0

can be shown to exist, and setting

(s, s) = (s, s+),

(2.

2)

the definition of ¢ is complete. It should be noted that (2.2) holds for all s,

not just s for which P(s) is a corner.

At this point it is convenient to redefine 9 :

$(s)= ws, s)+m, 0<s<8§.

It can be shown that (1.6) and (L.7) remain valid and that, in addition,

Jis+) =Ss),

'9(5+) ——g(s—) =W (s)-m=m- W‘+(s),

S(s+) = Ws, s+) + , }
S(s-) = Ws, s-) + 7.

From (2.5) it follows that

19(s+) - $(s-)| <,

(2.

(2.




and
+w, iff P(s) is a cusp which
extrudes from f,
S$is #) - $is-) = (2.8)
-m, iff P(s) is a cusp which
intrudes into f .
Next, let w _(s) be as in Figure 1.1. That is,
cos w_(s) = |x(s) - x P(s) - ,
0s v (s) = [x(s) oV Ipts) - Q]
sin w (s) = s) - P(s) - ) 2.9
Q() [y(s) yQ]/H) Ql (2.9)
0<s<S, Q eR, VR _ -
wQ is required to be continuous in s and Q and is therefore determined up to

a multiple of 27 in both R+ and ® .

There are three useful and geometrically obvious relations:

98y - S0 = 2,

Y(s, S) - (s, 0) = m, (2.10)

wQ(S) - wQ(O) =2m .,

Finally,

Theorem 2.2.

For fixed Q, wQ (o) is of bounded variation in ¢ and

J ldeg(o)l < [ ld¥e)] .
C C
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Theorem 2.3.

For fixed s, y(s, o) is of bounded variation in ¢ and

Jld us, ol < [ |afe)| - =,
C c
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3. Curves of bounded rotation: further properties

Lemma 3.1.

For fixed £¢[0, S] let

Then ¥ is a continuous function on [0, S].

Proof: For ¢ >0 let

;:={(s, 6): 0<s,0<8 and |s-o|>¢},

and let
m = sup |y(s, o)] .
0
Now choose <o > 0. Since ¢ is continuous on ﬁe— there is a
60, 0 < 60 < €y such that 0

[Ws', o) - Ys", 0)] < €

provided that |s' -s"| <&, and |s' - o] > 2¢

0 0’
Hence, if |s'-s"| < 8,
| ¥(s') - ¥(s")|
< [lus', o) - Ws", o)|do,
C
< [ lus', o) - Ws", o)|de+ [ [W(s', o) - Y(s",o)|do,
C C
|s'-0o|> % Is'-w|52€0

<[S + 4m]eo .

Q.E.D.
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Lemma 3. 2.
Let Cl be a rectifiable arc of length .. Let ¢ denote the arc

length on C1 . Let P, and P, be two points not on C For i =1,2 let

1 2 1

ozi( o) be a continuous function of ¢ which is equal, modulo 27, to the angle

between the x-axis and the line joining Pi to P(o) e C1 .

Then
@) [ ldleyo) - ay(o]l < L 1P, - B,1/a°
G
where
d = min {dist. [Pi , C1]} .
i=1,2
@) [ldegal < v/,
G
where
d; = dist [P1 , Cl]'

Proof: First consider the case when C1 is a line segment joining two points,

P; and P4 say. Let 2y through z, be the complex numbers corresponding

4

to Pl through P4 . Let z =z( ¢) be the complex number corresponding to

P(o) e C1 so that ¢ = |z - z3| . Finally, let B (o) = al(cr) - az(cr).
Then,

S ldleg(o) - eyl = [ lap@)l
Cy Cy

d
- [1E a,
Cy

< L max l%%l
1
Similarly,
d
[ ldeya)l £ L max s
1 - do
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However,
B(o) = Imag[Log(z - z;) - Log (z - 22)], (mod 2m),
so that,
LB 1< | £ (Log (z - 2) - Log (z - z,) ,
- L |
z -2z z -z, ’
_ ! (Zl~ ZZ) |
- — — b
(z -~z )z - z,)
2
< ipl - p,| /d
Similarly,
dal
35 | 2 4

Therefore, the lemma holds for the special case when C, isa line segment.
Now consider the general case. Let w be any partition,

0 =0, <0y <...< o =L,

0 1
with || 7| = max lo, - o, 1' <d. Then every line segment P(o, 1)P(<r.)
l<i<p 1 i- i-1 i
is at a distance greater than or equal to (d - l| TrH) from Pl and P2 . Hence,
n

4 ILey(o) = ept o] = [ey(oy ) = eyl I

IA

n
2
121 P( o) - P(o,_pllp - 2,0 /1d - I«

< Llp -p | /M- lnlr®.

Similarly,

n
L Veytop ety pl <1 /0a; - Inl].

The lemma follows by letting ||1rH - 0.
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Corollary 3. 3.

If Q]. 3 QZ € R then
ldlen (0) - o ()] < s 1Q, -, /d
where d = min {dist.[Qi, cl}.

i

Corollary 3. 4.

Let C, be a subarc of C. Let P(Sl)’ P(sz) e C-C Then

1 1

S ld, [ (s;,0) = 6 (s, 00l < 8lRis)) - B(s,)l / a%
)
where d = miin {dist.[P(si) , Cl]} .
Lemma 3. 5.
Let
Ys,0), 0<o<s,
P(s,0) = { Ws,s-), o=s,
Y(s, o) - [(s,s+) - Y(s,s-)], s<o<S§.
Then, for fixed s , JJ(S,U) is A C (absolutely continuous) as a function of
¢ on [0,8].
Proof: Throughout the proof it is assumed that s is fixed. For clarity, set
f(ey=d (s,0), 0<o<8§.
Clearly f is continuous. Hence, it suffices to prove that f is
A C on each of the intervals [0,s] and [s,S]. The two cases are essentially
the same and only the interval [0, s] will be considered.
For 0<e <s set I(fe) =[0, s -€¢]. We assertthat f is AC

on I(e). To prove this we begin by observing that, from Theorem 2.3, f is

of bounded variation on [0,s]. Since f is also continuous the function

g
[ lag(m)l
0
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is continuous for o e [0,s8] (see Natanson [92, p. 226]). Hence there is a
partition of I(e),
= < < < = -
0 3y, a1 . an S - ¢
such that the variation of f on each subinterval Ii = [a1 10 8 ] is less than
8 .

Let ¢y be the smallest integer such that

If([ai ta,_J/2)-¢c /2 | < /4.

(ci—l)v/z + arc cos [ XP(O(;):?;(SS)‘ 1, if c, is odd

. (0) - y(s) . .
c, /2 +arc Sln[%P(O‘)—-P(S)I]’ if c; is even.

Set

Remembering that the variation of f on Ii is less than /8,
and that o < s, itfollows from (2.1) that f(o) = gi(tr) for oe Ii' But, from
(1. 6), [%(o) - x(s)] and [y(¢) - y(s)] are A C . Since arc cos and arc sin are
Lipschitz continuous, 9; is also A C (see Natanson[92, p. 247]). Hence,
f is A C on each Ii , and thus A C on I(e), as previously asserted.

Next, we observe from (2.1) and (1. 6) that
cos [£(v) - J(s-)]
cos [ Wo,s) - AF(s-)]
cos Y(o,s) cos r\(}'(s—) + sin (o, s) sin '\(}(s-—) ,

|P(0) - P(s lﬁx(cr - x(s)] cos F(s-)+ [v(o) - y(s)] sin F(s-

IP(O’) - P(s)!—lf {cos Q( T) cos «9’(s~-) + sin «3(7) sin '9(8—) }dr

= |p(o) - P(s)]” fcos [4(7) - $(s-)]d~ .
Similarly,

sin [f(o) -$(s-)] = |P(o) - P s)] f sin [$(7) - H(s-)] dr.
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Now let J(e)=[s - e,s] where 0<¢ <s, and assume that e

’
is so small that the variation of f on J(e¢) is less than w/8 . Then it follows
from the above that on J(¢),

f(o) = J(s-)+cm  +F(0),
where ¢ is an integer and

[ sin[ §(r) - (s-)] dr

s
arc tan , ¢<s,

~
F(o) = [ cos[9(r) - §(s-)] ar
S

0 , 0= 8.
If it is further assumed that ¢ is so small that |cos [§(o) - g’(s—)] > 1/2
on J(e), then, for oe J(e),

|F(o)| < arctan[2 sup |9(o) - ()11
s-e< o <s

We can now prove that £ is A C on [0,s]. To do so, we recall
that f is continuous and of bounded variation. Therefore, by a theorem of
Banach (Natanson [92, p. 252]) it suffices to prove that f maps sets of
measure zero into sets of measure zero.

Let E< {0,s] be of measure zero, thatis m(E)=0. Let ¢ be
small, and set E' =E mI(e) and E" =E mJ(¢). Since f is AC on I(e), we
have (Natanson [92 , p. 251]),

m{£(E')] =0,
while by the preceding results,
m{£(E")] = m[Hs-) + c 7 + F(E")]

< 2 arc tan[ 2 sup ! S’(O‘)—~ 9’(5—)|] .
s-e<0<sg

Letting ¢ tend to zero, it follows that m[f(E)] =0 so that £ is AC on[0,s].
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Lemma 3.6.

wQ(O‘) is AC (absolutely continuous) as a function of o on
[0,8].
Proof: Using arguments similar to those employed in Lemma 3.5, it can be
proved that the interval [0,S] can be split up into subintervals I. such that
throughout each Ii wQ(cr) can be represented by one of the following

formulas:

x(o) - x
¢, m/2 + arc cos [‘TP—(E)‘?—C%.]
y(o) - v,
ciw/Z + arc sin[-'—P(—U)—:-—QQ‘-] ,

where the c; are integers. Since the functions arc sin and arc cos are Lipschitz

©o(0)

“olo)

continuous, and since, by (1.6), [x(o) - xQ] and [y(o) - yQ] are A C, it
follows that wQ(cr) is AC on each Ii and hence AC on [0,S].

The final two lemmas concern certain geometrically obvious
properties of curves of bounded rotation.

The unit outward normal to C at P(s) is defined to be
n(s)= (nl(s), nz(s)) where

nl(s) = sin[ {Hs+) + %(s-—) Y/ 2],

(3.1)

nz(s) = —cos [{ $(s+) + »9(5—) }/2].
If C has a tangent at P(s) then n(s) is the usual normal. If C does not
have a tangent at P(s), then, since rg(s-b) and g(s—) exist, C does have
forward and backward tangents t, and t and hence forward and backward
normals n, and n_ (see Figure 1.1); obviously n(s) bisects n

--+
If C has a cusp at P(s) then it follows from (2.8) that n(s) does indeed

+ and n .

point out from C . Hence, in all cases n(s) corresponds to the outward

normal as understood geometrically.
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Lemma 3. 7.

Using the notation of Theorem 2.1 let

C (sip) = {PeC,(sip) i P(o) > P(s)},

C_(sip)= {PeCy(sip)i P(o) < P(s)} .

There exist el(s) <e(s), and a function a(s;p) such that
(i) a(s;p) + 0 as p— 0.
(ii) If p< el(s), P(Ol), P(g,) € C, (s;p), and 0 < s < 8, then
(8) x(9)) - X(v,) = (6)-0,) cos F(st) =0 a(sip)llo; - 0,1,
(b) v(s)) - ¥(s,) - (5 - 0,) sin F(s#) =0 a(sie) o) - v, ],
(© (1 -a(sipNlk, - 0,1l < [P(o)) - Pe )l <llq - o,
where Iexl ’ Iey‘ <1
Similar results hold when s =0 ors =S.
(ii1) If P(v)c C, (sie(s) and p<ey(s)-llo-sl,
then B(G;p)— cuts C+(s ; el(s)) in precisely two points.

Proof: Set

a (sip) = max { sup |3(0) - G(sH) |, sup|$(0) -Q )|\,
P(a)eC_(s:p) P(0) € C_(s:p)

a(s;p) = max {Zal(s;p), 8[a1(s;p)]2}.

Let el(s) be any number less than e¢(s) which satisfies a(s; EI(S)) <1.

Condition (i) clearly is satisfied. To prove (ii), assume that p < el(s) and that

P(ol), P(oz) € Ci (s;p). Then




-19-

|x(0)) - x(5,) = (5] - ©,) cos Hs?) |

o
= !f 2 [cos 9(1’) - cos Q(Si')]dTl
o
1

=2 2 sin[(%7) - He)/2] sinf(3(m) + Hs+)/2] drl,
1

2 _ .
< Icrl o‘zl a,(s:p),

which implies (iia). Similar arguments yield (iib).

Next, note that if P(ay), P(o,) « C+(s;P) with p<e(s) then

|B(o)) - P(s,) |

a a
=1 [ 2 sin(§(rpar 1% +[ [ 2 cos (Y(rydr 1%,
ag o
1 1
a (o
= f 2 f 2 cos (S(T)- 9’(v))d-r dv.
a a
1 9
Therefore,
|P(oy) - P(o*z)lz - oy - 02!2
o2 0'2
= [ % [ Pleos( §(m) -Fvn -1]dvav,
0'1 0"1

H

%2 "2, 2
-2 [ 2 [ “lsin(§(m) -8 ))” drdv,
1 1

’

2
-2 | o - o~2|2 [Zal(s;p)]2 z - a(s;:p) \01 -0,

Iv

which implies (iic).

To prove (iii) it suffices to prove that if P(crl), P(O'Z) € C+(s;p) and
p < e(s) then, for o fixed, |P(0"1) - P(crz)l is a continuous, strictly monotone,

function of 02 for g, > ol and for 02 < 01. That this is so follows from the

observation that if (03 - 01)(02 - 01) > 0 then
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o, - al]Z - loy - ollzi cos [2a, (sip)]

o a g g
< I S22 0703 cos (9 -Fm1dvavl,
o NS R B

| Ip(oy) - Plo,)| % - (o)) - B(ay)l 2

IA

, 2 . 1
[[02 - 01] - [03 Ul] l'
Lemma 3.8.

Let U(s,p) denote the open cone with axis -n (s), vertex P(s),
and vertex angle 28. Assume that P(s) is not an extruding cusp. Then there
exist ¢ =w(s)> 0 and Py = pl(s)> 0 such that if H ¢ - sH < p1 then
P(c) £ U(s, @) .
Proof: Since P(s) is not an extruding come, it follows from (2. 7) and (2. 8)
that there is an o, 0<a< w/2, such that

~/2 <[ s+ -Js-)]/2 < /2 - @
Since g is of bounded variation, there exists & > 0 such that if Hs -crH <56
then

| Jo)-Fs-)ls esa, it po)<B(s),

| (o) - Qist)l< a/4 , if P(o)>P(s).
Throughout the remainder of the argument it will be assumed that 0< ||s -l <& .

First, note that

|P(e) - P(s)] 2
a 2 (2 2
=[ [ sin §(ndar1® +[ [ cos F(r)dr]?,
S S
(13 (52
= [ [ cos[&m)-F()ldrav,
S S
g o
> f cos [e/2]dT dv,

0

]

1]

Is - (T“Z cos [«/2].
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Next, note that
/2 - /2 < Yoy -[ $st) + Fs-)V2 </2 - /2, if P(o) > Ps),
-m/2 + a/2 < Yo) - [Hs+) + Hs-)1/2 s /2 + a/2, if P(o) < P(s).

Consequently,

[-n (s)] - [P(o) - P(s)]

a
_sin [ Yo+ s 2) [ ocos F(mydr o+
S
g
+cos [ Ssty+ Fs-/2) [ sin §ryar,
S
o
= [sin[§m-{ Sty + Ss-) ¥/2]dr,
S

< lo - sl sin[ n/2 - /2],

o~ sl cos(a/2),

1
< |p(o) - P(s)] [cos (@/2)1° .

Setting ]

B = arc cos [[cos(oz/Z)]E]

the lemma follows.
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4. Curves of bounded rotation: still further properties.

Up to the present point Stieltjes integrals have sufficed, but it now
becomes necessary to use Lebesgue-Stieltjes (Radon) integrals (Radon [108]).

Consider the functions wQ( o), Y(s,c), and 9(()') . By Theorems 2.2
and 2.3, these functions are of bounded variation on [0,S]; since P(0) = P(S)
is not a corner, they are continuous for ¢ =0 and ¢ =S ; by (2.2) and (2.4)
they are continuous on the right at every point in [0,S8]. Hence (Radon [llo,
p. 1143], Dunford and Schwartz [26, p. 141]) the functions wQ(U') , Y(s,0), and
'9'(0') , determine Lebesgue-Stieltjes measures HQ s IIS , and @ ,on[0,8].

Certain elementary properties of IIQ s IIS , and @, are discussed
below. To avoid unnecessary repetition, let f(B) denote a function of bounded
variation on [0,S8] which is continuous except possibly at the corners of C
where it is continuous on the right, and let Z denote the measure determined
by f; in particular, Z may be either IIQ , HS , Or @ . Then:

Property (a). Since P(0) = P(S) is not a corner of C , Z‘ may be regarded as

a measure on C . This point of view will often be adopted since it obviates the
need to treat the points s = 0 and s =S differently from the other points of
[o,8].

Property (b). If E is Borel-measurable then it is Z—measurable. In particular,

open, closed, and semi-open intervals are Z—measurable. (Dunford and Schwartz
[26, p. 142].)

Property (c). If E is Z—measurable then, as usual, the variation of Z over

E will be denoted by

f1) ldey.
E
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Property (d). If Cl is a closed subarc of C , and if f is continuous at the

end points of C then

1!
[ 12X @ey = [ lage)] .
C

C ]

(Dunford and Schwartz [26 ; pages 98, 137, 138 , and 141].)

Property (e). Let C and G be two curves which have an open subarc C1

in common. Let f=f on C;. Then Z and Z agree on C, .

Property (f).  Let P(s) #P(s;). Set E= {P(s)}. Then, by direct computation,

[1@lo) = [l ldo) = 14 (s,54) - s, 5-)] = [S1s4) - (s ],
E E

£|HQ¥(dcr) = [ln l@n=o.

Lemma 4. 1.

Let C, be an open subarc of C with closure (_31 . Then

o l@dey < w o+ 1D o)
I, o [ 1o

Proof: This lemma is essentially due to Radon [110, p. 1147].

Let (31 be the subarc a <s <b, and let C be the closed curve
obtained by doubling 61 .

Applying Theorem 2.2, and remembering that E has cusps at P(a) and

P(b) , it follows that, with an obvious notation,



24

2 [ lngl@o)
61

IITQi(dm < [ 1®ld oy,

~

C

]
QP

H

[ 1®lde) + [IGw@e,

C-(P(a),P(b)) {P(a),P(b)}

=2f i@l(do*)+21r.
C

1

Lemma 4. 2.
Let C2 be an open, closed, or semi-open subarc of C with closure

C Let P(s) « 62 . Then

5
J i lae)y < [ [Oldo) .
Ca )

Proof: The lemma will first be proved for the special case when CZ is an

open arc with endpoint P(s).

~~

Construct a closed arc C by extending 52 smoothly beyond its
endpoints by means of line segments. The lemma will follow if it can be shown
that, with an obvious notation,

~ ~
LI lde) < [ I©ld,
C

or, equivalently,

f [do. (s, ml < f ld § ()] .

L

C C
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For the remainder of the argument the tildas will be omitted. Therefore,
we wish to show that if C is a closed arc, P(s) is an interior point of C , and

P(s) is not a corner, then,

[ld_wis,ol < [ 1da %ol .
C C

Choose > 0. Then there is a partition w of C , consisting of
points Pi =P(cri) , 0<i<n, such that
éidqws,m < 2.1 [4 (s, 0) = w(s, ol +0.
By refining m if necessary it may be assumed that
(1) For some k, 0<k<n,
P(s,) = P(s),
(ii) [P(e_)) - P(s) = [P(s) - P(oy ] = p <o),

where €(s) is as in Theorem 2. 1.

Set | 7l = m?x |P(ci) - P(oi__l)l .

Let Q ¢ C. Applying Lemma 4.1,

9}
{121 log(Py) = gy pIE+ log(B) - vy _pl+ Tegy) - og @)l
i#k, k+1

< ldw (o),
] laeg

™+ f ld.g(cr)l .

C

[A

Letting Q tend to P(s), and noting that

Qgrlr;(s)[ | 0g(Pyyy) = 0ol + log(P) - wn (P 1= W, (sip)mod 2m),
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where W+(S;P) is the interior angle subtended at P(s) by Pk—l and Pk+l R

it follows that

n
i}:jl [ (s,0) - ¥(s,0, ) W Lsie)
i#k, k+l
< + [la%ol.
C
Hence,

(f; !do_qg(s,ml

n
< L lws,o)-wis, o plo+p,

i=1

IN

é [d o)l + [m-w )] + [w,(s) - W, (s:p)|

(s, q ) - ws, o) + 1y (s, q.0) - Ws,s)l +4,

where W+(s) is the interior angle at P(s) (see Theorem 2.1). Since P(s) is
not a corner, (s, o) is continuous for o = s, and W+(s)= 7™ . Noting

Theorem 2.1 , the required result follows by letting ”Tl‘“ - 0.

Now consider the general case. Let C'z be the interior of C2 and

- ol
set C3 —CZ C

5 Then

C,=C, ul{rs)} -[C, -c,l U C U Cy

where 04 and C_ are open, possibly empty, subarcs of C2 with endpoint P{(s).

5
Applying the results already proved together with Property (f), the lemma follows.
Lemma 4. 3.

Let C, =C, (8)

denote an open subarc of C with endpoint P(s) and length & . Then
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im [ I®lde = 0.

50 CZ(6)
Proof: Only the case when C(6) is the subarc s< o <s +8& will be considered.
For some d > 0 let 82 be the subarc, s< o< s+d of C. Set
(s+) , 0=5,

Va4

Jo) <{§o), s<o<s+d,
$(s+d)-), o=s+d.

Since & (o) is of bounded variation and continuous at o =s , it follows

(Natanson [ 92, p. 226]) that

g+d ~
lim [ ld §()l=0.
65—~ 0 s

Since C has only a denumerable number of corners there is a sequence {6n} s
such that 6n> 0, 6n -0 as n—~>®, and P(s+ 6n) is not a corner. Noting

Property (d) ,

s +6
n o~
lim f Mldo)= 0
n—-xg
which implies that

st
im [ [®ldey=o0.
6~ 0 s

Applying Property (e) the lemma follows.
Lemma 4. 4.

Let P(s)e C. Let KL (s,0) be as in Lemma 3.5 and let ffs be the
corresponding measure.

Then, for any ¢ > 0 there exists n(s)> 0 such that

glﬂt~ﬁsl(dv)_<_ | $(s4) - Hs-)l + <,

for all t satisfying Hs - t“ <mn(s).



28

Proof: Let B(s;p), C0 = CO(S; P), Cl = Cl(s; p), be as in Theorem 2.1.
Set Cy=Cg - {P(s)} . Assume that p < e(s) and that
o < p/2
Using Corollary 3.4, Lemma 4.2 and Property (f), and remembering that H‘S and

ﬁs coincide on Cl , it follows that if P(t) is such that

|p(s) - Pt)] < o
then
i = [ Im -0 1 @0,
C
< é intl(dcrn-cf3 lfxsl(dcr)+cflnt—ﬂsl(dc),
0 0 1
< [ 1®@er+ [ 11 l@er+ o*s /02)%,
Co Co
= ‘9(s+) - 9(5—)[ + Il(p)+ Iz(p) +43 p2 s
where

I(p) = é ®lde,

0
L)y = [ I ] @0.
Co
It follows from Lemma 4.3 that Il(p) -~ 0 as p—> 0. Since U (s,0)
is continuous and of bounded variation as a function of ¢, it follows (Natanson
[92, p. 226]) that Iz(p‘) - 0 as p > 0. Therefore, given ¢ > 0 there exists

Py > 0 such that if
[B(s) - P(t)] < g
then
1)l < | S(s+) - Fs-)l + e

Setting 1 < p% the lemma follows .
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5., The generalized Dirichlet Problem

When C and g are not smooth, the Dirichlet problem (1.2), (1.3)
may be meaningless. In this section a more general problem is introduced and

discussed. First, some notation is necessary.

For P(s) e C,

lim u(@Q)
Q=P (s)

will denote the limit, if it exists, of u(Q) as Q ¢ @+ tends to P(s).
For P(s) not an extruding cusp,

lim(n) u(Q)
QP (s)

will denote the limit, if it exists, of u(Q) as Q ¢ 6%+ tends to P(s) along the
normal to C at P(s). The reason for excluding extruding cusps is that with
such cusps certain topological problems can arise. As an example consider the

case when C contains an extruding cusp with "arms"

y(x) = xlo[sin (%) +1/2],
10, . .1
y(x) =x [sin(g)-1/2], 0<x<1.

Then the normal at the cusp (0, 0) coincides with the x-axis. However, there

is no e > 0 such that the line segment joining (0, 0) to (e, 0) lies in ® .

The Generalized Dirichlet Problem:

Find a function u = u(x, y) such that
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(a) u is continuous and bounded in R, h
(b) u__+tu =0, (X,Y)¢eR,
e 4 5 (5.1)
(c) lim(n) u(Q)= g(s), for almost all s € [0,S].
Q—P, (s)
J
Theorem 5.1.

Let g be bounded and in LI[O, S], the space of Lebesgue integrable
functions on [0, S]. Then
(@) The generalized Dirichlet problem has a unique solution, u.
(b) 1f g is continuous at s, then
lim w(Q) = g(s).
Q—P +(S)
(c) 1If g(s+) and g(s-) exist, and if P(s) is not an extruding cusp,
then
lim(n) u(Q) = [g(s+) + g(s-)]/2.
Q-P (s)
Proof: This theorem is based upon well-known facts but does not seem to be
explicitly stated in the literature.
Let ® be the unit circle centered at the origin in the Xy -plane with
boundary 6 Let X map R conformally onto &. Since C is a Jordan curve,
X can be extended to C, and it will be assumed that this has been done.

Then X is a bicontinuous and one-to-one mappingof ® UC onto £ UC.

(Hille [47, p. 367]).
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Let @ be the restriction of X to C. Then @g: [0, S] ~[0, 27]
and is continuous and one-to-one. Furthermore, both # and ﬂ_l map
measurable sets into measurable sets and sets of measure zero into sets of
measure zero (Goluzin [36, p. 420 and p. 421]).

Now let U and g correspond to u and g under the mapping ¥.

Clearly g is bounded. Moreover, ¢ is measurable since
{8: g(8)> a} = g{s: g(s)> a},

and hence g ¢ Ll[O, 27].

For P(3) ¢ G, let

_ lim(A) §Q)
Q~P,(8)
denote the limit, if it exists, of ﬁ(@) as C} € @, tends to 13(’5') along the

path n which is the image under X of the normal to C at P(ﬁ—l(g)).

Then, using the above-mentioned properties of X and # it follows

that u is a solution of the generalized Dirichlet problem iff u satisfies:

(@) U is continuous and bounded in R )

(b) Tgg + oo =0, (% 7) e R,

(c) Um(A) u(Q) = g(s), for almost all s e [0, 27].

Q~P,(8)

Since u is bounded it can be represented as a Poisson integral

(Goluzin [36, p. 391]). That is,
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-+ [ o
—2'/70

w?

u(r, 1) 1- chos(t—§)+fz dt, 0=<sr<1, O0ss =27, (5.3)

where f € LZ[O' 2w] and (f, 8) are polar coordinates in C. Furthermore,

(Goluzin [36, p. 384]),

lim  u(Q) = £(3), (5.4)
Q~B(8)

for almostall § € [0, 27], the limit being taken along all "non-tangential"
paths.

Since X is conformal at almost all points of C (Goluzin [36, p. 422]),
X maps the normal to C at P(ﬁ—l(é)) into a non-tangental path at i;(é) for
almost all 3§, Hence it follows from (5.2c) and (5.4) that £(sS) = g(s) for

almost all s, so that, from (5.3),

fgu) N — dt . (5.5)

Equations (5.4) and (5.5) imply the existence and uniqueness of u
satisfying (5.2) and hence the existence and uniqueness of u satisfying
(5.1), so that Part (a) of the theorem has been proved.

Part (b) of the theorem follows from the fact that (Goluzin [36, p. 381])

if 4 is given by (5.5) and g is continuous at S then

Jlim w(@Q) = g(s)
Q—B(S)

where C~) tends to f’(é) along any path in C.
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To prove Part (c) of the theorem we follow Zygmund [138, p. 98].
Without loss of generality it may be assumed that S = @#(s) = 0. Then
g(0+) and g(2m-) exist and are equal, respectively, to g(s+) and g(s-).

Set

d = g(0+) - g(2m-),

%(77 - 8), 0<0<2r,
@(0) =
0, 6 =0 or 6 =27,
o4~ - ~
g(B)—*T;Cp(G), 0< 6 <21,
h(0) =
[3(0+) + §(27-)]/2, 6 =0, 27,
_ 1 217“ 1 - ~2
W, 6) =5/ b ——— dt.
™0 1 - 2fcos(t - 8) + 7

Since h is continuous at the point 6 = 0, 27, it follows as in the

proof of Part (b) that

jr—y
o
3
=
32
D
i
il

(0) = [g(s+) + g(s-))/2 .

Now, by direct computation,

SO I d fsing
u(r, 8) = v(r, 6) + - arctan[l"*—“'—-w‘_f, o5 6 ]
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Since the arctan in the above expression is equal to the angle between the
negative x-axis and the line joining the point (1, 0) to the point (r, 5),

it follows that (F, 6) tends to [g(s+) + g(s-)}/2 if (F, 6) tends to (I, 0)
along a path which is tangential to the x-axis at (1, 0). Since C has forward
and backward tangents at P(s), and since P(s) is, by hypothesis, not an
extruding cusp, it follows from the angle-preserving properties of conformal
mappings at corners (Caratheodory [23, p. 91]) that X maps the normal to C

at P(s) into a path which is tangential to the normal to é at (1, 0), that

is, tangential to the x-axis at (1, 0)., Part (c) of the theorem follows.

Remark.
The hypothesis in Theorem 5.1 that u be bounded is necessary. To

see this it suffices to consider the well-known example (Goluzin [36, p. 391]),
1+2 .
w(x, v) = Real(I:Z-), zZ=XxX+1iy.

w is harmonic in the unit disk., But w is equal to zero on the unit circle
except at the point x =0, y =1, and w cannot be represented as a Poisson

integral,
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6. Some definitions and remarks.

In the remainder of the paper the solution of the generalized Dirichlet
problem (5.1) by means of double-layer potentials will be considered. In the
present section certain preliminaries are disposed of.

M will denote the space of bounded real-valued Lebesgue-measurable
functions ¢ defined on [0,S] with the maximum norm

lell = sup  lots)] . (6.1)
0<s<S8S

M is a Banach space for, as is well-known (Halmos [42, p. 84]), if ¢ is the
pointwise limit of a sequence of Lebesgue-measurable functions then ¢ is
Lebesgue-measurable. Note that two functions Py 9y € M are equal iff

qol(s) = <p2(s) for all s e [0,S]; therefore, M differs from the Lebesgue space
Lol 0,8] in which the elements are equivalence classes of functions.

The space M belongs to the class of spaces B(s, Z) discussed by
Dunford and Schwartz [26, p. 240]. Indeed, M =B([0,S8],£ ), where £ is the
field of Lebesgue-measurable subsets of [0,S]. It should be noted that we can
assert that M =B([0,S], £ ), instead of merely that M < B([0,S],% ),
because £ is a o-field. Two basic papers on the properties of M are those
of Vulich [132] and Fichtenholz and Kantorovitch [31]; further information will be
found in Dunford and Schwartz [26, chapters IV and VI].

If o ¢ M then ¢ is integrable with respect to HQ and Hs . For it
is a consequence of Lemmas 3. 5 and 3. 6 that the o-fields corresponding to HQ
and II 5 coincide with the o-field corresponding to Lebesgue measure. (see
Dunford and Schwartz [26, p. 142]). Indeed, using the connection between
Lebesgue~-Stieltjes integrals and Lebesgue integrals implied by the Radon-

Nikodym theorem (Riesz and Sz.-Nagy [113, p. 126], Dunford and Schwartz [ 26,

pages 132, 180, and 181]), if ¢ e M then
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[ o) Hgtan) = [ o) g Lag(o] av (6.2)
(To)(s)
= -}T-ggo(cr)ﬂs(dcr), (6.3)

= 300 (5,58 - Us, 5o wls) +3 L olo) Foluis, N do .

As usual (Dunford and Schwartz [26, p. 218]) s is said to be a

Lebesgue point of ¢ if

lim xth)=0, (6.4)
lhl >0
where
] S+h
x )= [ lo(s) - o) | do . (6.5)
S
If T: M~ M, the Fredholm radius of T, QT y is given by

Q,, = [ inf IlT-vH]“l,
T Ve

where ‘y is the set of compact operators mapping M into M . Clearly,

It t< a

< o,

T

The concept of the Fredholm radius was introduced by Radon [109, p. 1114] , and

is discussed in Riesz and Sz.-Nagy [113] . It should be noted that Arbenz, to

whose work [ 7] we often refer, defines the Fredholm radius of T to be [.QT]_1 .
Several subspaces of M will be considered. Each of these subspaces

is of course also equipped with the maximum norm and is a Banach space.

1. ﬁ , the subspace of all bounded Borel-measurable functions. It should
be noted (Halmos [42, p. 90]) that if ¢ e¢ M then there exists P € ,5

such that ¢(s) = cpl(s) except on a set of measure zero.
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2. 6', the subspace of continuous functions.
3, The Baire spaces @ 0’ 31, ... . These spaces are defined by
induction:

L. @o = 6
2. e ﬁ K iff there exists a sequence {gon} such that

a) ¢, ¢ gk_l , n=12 ... .

b) lim <pn(s)= (s), 0<s<S3.
n->o

The most complete description of the properties of the Baire spaces of which we are
aware is in the books of Hahn [40] and Natanson [92]. Bk is not separable

for k>1, and

p-S B

k=1 k
4, The subspace é) which consists of functions ¢(s) such that
(1) ¢ (s+0) exists for 0<s <SS,
(i1) ¢(s - 0) exists for 0<s <SS,

(iii) f(s)=[f(s+0)+f(s - 0)]/2, for 0<s<S§.
5. g , the subspace of ‘Q consisting of step functions, that is
functions ¢(s) such that there exist constants ai and ci for which
= < =
0 ap < <ee <@y S,

o(s) = c, for s e (ai—l’ai) ,1i<i<n,
= <i<n-
e(a,) (Ci+ci+1)/2’ 1<i<n-1.
The spaces 0?7 and € are considered by Hahn [40, 41]; see also
Appendix C . ‘Q is of interest from the viewpoint of numerical analysis since
S" is dense in ﬁ or, to put it another way, 0@ is the largest space whose elements

can be approximated with arbitrary accuracy in the uniform norm by step functions.
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7. Double-layer potentials: behaviour near the boundary.

If u(Q) is the double-layer potential (l.4) then we set

Jr(s): lim u(Q),
QP (s)

and

“”(n)+(s) = C;TPSE;) u(Q),

if these limits exist.

Theorem 7. 1.

Let voe M.
(1) If s is a point of continuity of ¢ then qo+(s) exists and
0, (s)/m™ = ¢ (s)+ (Te)s) .
(i1) If s is a Lebesgue point of ¢ and P(s) is not an extruding cusp,

then +(s) exists and

“n)
Anya(8)/ T = ols) + (Te)s) .
Proof: Using (2.10),

u(@Q) = mo(s) + T (Te)(s) +I(Q),
where

1Q) = [ [o(o) - ols)] @y -1 _)do),
C S

so that the theorem will follow if it can be shown that, in case (i),

lim Q) = o,
Q = P(s)

and, in case (ii),

lim(n) I(Q) = 0 .
Q~P,(s)
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Let e(s), p, B(s:ip), CO=CO(S;P), and Cl=Cl(s;p) be as in

Theorem 2.1. Set & = |Q - P(s)].

Let Il(Q;p) and IO(Q;p) denote the splitting of I(Q) corresponding

to Cl(s;P) and CO(S;p)° Setting P, = P(s) and PZ =Q in Lemma 3.2, it

1
follows that if 6 = p/2 then

m@ie)l < [ e - o)l ldglogio) - s, 0]l
1

< 8 lollslq-rs)l/e”. (7.1)

The remainder of the proof differs for the two cases.

Case (i).
Using (7.1) and Theorems 2.1c, 2.2, 2.3,

l1(Q)]
1

g4 4
< @ st + I1@ie®],

< elloll s 872 + [ lotw) - eto)ldng |+ |1 o),
cO

< sllol 5 672 +[ max Lle(e) - o)1 [ (lmg |+ Im lydo),
|s-o|s25* C

< ellels 87242l max  ploto) - ets)l] [ la ol
|Is—0[15264

Part (i) of the theorem follows.
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Case (ii).
From (7.1),

lim (n) II(Q;e(s))= 0,
Q ~P.(s)

so that it suffices to prove that

lim (n) IO(Q; e(s))=0.
Q~P,(s)

Since P(s) is not an extruding cusp, Lemma 3.8 is applicable.
Assume that
§ < min {p1/3, e(s)/3}.
where P is as in Lemma 3. 8.
The circle B(s; 28) splits Co(s;e(s)) into two parts, C2 = 02(6)
and C3 = C3(6) , Where C2 is an open subarc containing P(s) and
C3 = CO - CZ . Let IZ (Q; 6) and 13 (Q: 6) denote the corresponding splitting
of IO(Q; e(s)) .
Consider I2 . If P(o)e CZ then it follows from Lemma 3.8 that
|Q - p(o)| > ks
where k is a positive constant. Set C. = CZ - P(s) . Then, using Lemmas

2
3.2and 4.2,

|1, (Q 56
< J lew -os)ln ey + [ Toe) - as)l 14l @o),
C'Z C'Z
< 2ol [ In_l@oy+ o= [ loto) - ats)l do,
C: CZ
= zlel [ 1Olae) + Llx@o)+ x (400, (7.2)
2

where X is as in (6.5).
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Now consider I; . Let P(o)e C, and consider the triangle P(s) Q P(c).

Then
lQ -p(o)l > | Ps)-P(o) | - 1Q -Pis)l
> |p(s) - P(o)| / 2.

Therefore, using Lemma 3.2 ,

1, (Q: 8)]

< [ lets)- eto)l IQ-—Ps)I do
T c [I1p(s) - (o] /2]

3
< 15| [ l¢(S)~<p(2<r)l ds
C3 (s-0)
d do
=165 | [ == [(¢-s)x(v-5)] |
é?) do (o0-s)

Remembering that C3 consists of two parts, one to the "left" and one to the

"right" of P(s),

1, (@ ;8)l
-208 2e¢

< 16s{ [ + [ L nxmn-2y,
- ;ge 46 dh 2
= 168 f2 Shix ) +x (-mY] L

55 dh hZ ’
= 16 5[ (x(h) + X(-h))/h ]§€6+ 2u(8))
=16 {5 [ x(2e) +x(-2¢)}/ 2¢ + [x(28) + X(-28)] /2 + 26 1 (8) } , (7.3)

where
€
Mé):f‘ [x(0) £ x(=)] g,
25 h
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From (7.2) and (7.3) it follows that
lim (n) T .(Q e(s)) =0
Q ~P(s)
provided that

lim 6 u(8)=0. (7.4)
5> 0

Equation (7.4 ) is easily established. If w (8) is bounded as & = 0 then (7.4)

holds. On the other hand, if w(6) is unbounded then, applying the rule of

'Hospital ,
5 1 x(28) +x(-28)] / 26°
lim {1/5) = lim > =0.
5= 0 &~ 0 ~1/6
Remarks
1. The idea of splitting CO into two parts was suggested by the work of
Glinter [38 , p. 52].
2. Similar results, for Lyapunov surfaces, were obtained by Fichera [30];

this work is reproduced by Glinter {38, p. 108].

3. Related results have been obtained by Evans [27, 28].
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8. Mapping properties of T,

In the present section the mapping properties of T are considered.
It turns out that T has certain smoothing properties in that if ¢e¢M then
Ty eﬁi, (Theorem 8.4) and T¢ is continuous except at the corners of C
(Theorem 8.3). Without further assumptions no more can be said (Theorem 8.8),
However, if ¢ and C have additional smoothness, then this is inherited
by T¢ (Theorems 8.1, 8.5, 8.6, and 8.7).

Theorem 8,1.

T maps 67 into (f.
Proof: It is known (Riesz and Sz.-Nagy [113, p. 220]) that T maps (5
into (; provided that the following conditions are satisfied:
(a) There is a constant m such that
S
f |d (s, ¢)| £m, for se&fo0, 8],
0 a

(b) For every £e[0, 8],
3
\I'(s)=_([)qj(s, ¢ )do

is a continuous function of s,
(c) Y(s, S) is a continuous function of s,
(d) (s, 0) is a continuous function of s.
(Condition (d) is necessary since to bring T into the form studied by Riesz

and Sz.,-Nagy, we set 'Ts(tr) = (s, v) - U(s, 0), thereby ensuring that
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Conditions (a) and (b) follow from Theorem 2.3 and Lemma 3.1,
respectively, while conditions (c) and (d) hold because P(0) = P(S) is not
a corner,

Remark.

Theorem 8.1 is due to Radon [110, p, 1142], However, Radon's proof
is somewhat indirect since he first shows that the double-layer potential
(1.4) can be continuously extended to C, and then uses this fact to deduce
that T¢ is continuous,

Let 9e M, and P(s)eC. In the next few theorems we generalize

Theorem 8,1 by establishing conditions which ensure that the limit

lim (To)(s
;s

L

exists. In order to avoid repetitions, we first prove an auxiliary lemma which
states essentially that the behavior of T¢ near s depends only upon the
properties of C and ¢ near s.

Lemma 8,2.

Let ¢9eM and P(s) be a fixed point on C. Let

(3)11/4

p= IP(Sl) - P <eg(s),

where €(s) is as in Theorem 2.1, Finally, let B(s; p), CO = Co(s; p) and
G1 = Cl(s; p) be as in Theorem 2.1,

Then

(To)(s)) = (Te)s) + (g, s, sl)/ﬂ + E(o, s, sl)/vr
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where

Ue, sos) =  olo), -0)(do),

CO 1

—’S.

and & (¢, s, sl) -0 as Sy

Proof: Straightforward manipulation shows that

(To)s)) = (T)(s) + L, s, sl)/ﬂ + E(¢, s, sl)/m

where

E(g. 50 5)) = [ @lo)I - )(do) .

Cl 1

It may be assumed that s, is so close to s that

1
4
p-=|P(s) - P(s)|<p/2 .

Then, by Corollary 3.4,
[€(0, s, )

<llel S ld [usp, o) = w(s, )11,
<

< lells p*/lp/21% = 4] osp® .

The lemma follows,

Theorem 8,3,

If ¢ €M then T¢ is continuous except possibly at the corners of C.
Proof: Let P(s)€C be a point which is not a corner point, With the notation

of Lemma 8.2, it is sufficient to prove that
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lim I{e, s, ) = 0.

S,~*s
1

Using Lemma 4.2,
(e, s, 5))]

<lell J g |+ JmgDido)

CO 1

< 2] Xip),

where X(p) = [ | ® |(do)]|.

o

For sl close to s,

s+2p
Xy <[ a8 ],
s=2p
so that, since 9 is continuous at s, X{(p) -0 as 6 -0 (Natanson [92,

p. 226]). The theorem follows,

Theorem 8.4,

T maps M into &.
Proof: Let ¢eM and g = To.

Then g is bounded. Furthermore, it follows from Theorem 8.3 that
g has only a denumerable number of points of discontinuity because C has
only a denumerable number of corners. But it is known (Natanson [92, p. 407])
that any bounded function with only a denumerable number of points of dis-
continuity belongs to 61.

Theorem 8.5,

Let peM. If ¢(s-) {p(s+)} exists then (To)(s+) {To(s-)} exists

and satisfies:
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(To)(s+) = (To)s) + [Ys+) - Hs-)]lels-) - o(s))/ 7,

{(To)(s-) = (Te)(s) + [Ys+) - Hs-)lotst) - ()Y 7 }

Proof: Set a = ¢(s-). Then, with the notation of Lemma 8.2 it suffices to

prove that

Lim g, s, 8) = [Ys+) - Q(S-)][a - o(s)]
sl->S+

Set

c, = {p(g)eco; c> s},

C_={P(c)eCy; o< s}.

Throughout the proof it will be assumed that s1 > 5,
Then,
4
I, s, 5y) = Z L(s))
k=1
where,

I(s) = [ olo)n, ~L)do) = [ o(e)n (dr),

1 C+ 1 C-
I(s)) =/ oo )T . =T _)do) ,
2'1 {P(s)} sl s
I(s;)= [ al_(do),

3'71 C- s1

I(s) = [ (¢lo) -a) (do) .
C- 1
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Consider Il' Using Lemma 4.2,

spl<2lol [ Blde)+ ol f 1©l@e) .
Ct+ C-

It follows from Lemma 4.3 that

Clearly,

L(s) = -[¥s+) - s-)lals) .

Consider 13 .

where P(sz) is the "left" end of C_ . Since lp(sz) - P(s)| =p and
4
[P(s,) - P(s)) | =p ",

lim [b(s, s,) = d(s;, s,)] = 0.

S;st

Therefore
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lim I‘<Sl) a lim [y(s, sl) - Y(s, SZ) + (s, SZ) - q;(sl, sz)],

~ g -t
Sl Sl s+

a [W(s, st) - (s, s-)],

L

a[Y(s+) - Hs-)1 .

Finally, consider I Given € > 0 thereisa pl such that if

4'
p<p, then |<p(53)~a| < e for P(s;) € C_. Thus, if p<pj,
T(spl< e 1T [do),
471 C- S
so that

lim 14(51) =0,

s,~>st
1

Combining the above results, the theorem follows,
Theorem 8.6,

T maps ‘,9 into g

Proof: Follows immediately from Theorem 8.5,

Remark.
Theorem 8.6 is due originally to Hahn [41]; see also Kaltenborn [52],
and Hildebrandt [46].

Theorem 8,7,

Let P(s)eC be such that

(i) For some 61 >0, S is continuously differentiable on [s - 61, s)

{(s, s+ 61]} .
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(ii) There is a constant ¢. {¢.} such that

lim Y_(|h[)y=0 { lim y (|n]) =0},

|h [0 |h |0
where
, s-ln]
X (hy=|= [ lo() = ¢_|dr|
h S
; s+ |h|
by =1l len) o, larl)

(iil) P(s) is nota cusp.

Then (To¢)(s+) {Te(s-)} exists and satisfies,
(Te)(s+) = (Te)(s) + [Hs+) - Hs~)o_ - ols))/7,

{(Te)(s-) = (Te)(s) + [Yst) - Hs-) o, - @(s)/7}

Proof: Set a = ¢_. Then the proof is the same as the proof of Theorem 8.5

except for the arguments concerning I 4

For sufficiently small p, & is continuous on C_ . Hence

(Natanson [92, p. 269])
I(s) =) B, (o)dalr),

where
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ﬁsl(o-) = (j} 4‘(51: o),

cos ﬁP(Sl)(c)

" Ip(s)-P(e)|

(see Figure 1.1)

[x(e') = x(sIsin(w ) - [y(e) - y(s)]Joos Yo )

‘ 2 2
[x(0) - =(s))]"+ [y(o) - v(s))]
Direct computation yields,

d
ar Ps )

[x(r) = x(s))]cos§(w) + [y(c) - y(s))]sinY(o)
= 2 2 [9(o) - 2B ()]
[x(c) = x(s))] + [y(c) - v(s))] 1

19" @) | + 2[Bg ()]
1

[P(e) - B(s))|

<

Let Plc)e C_, andlet § P(o )P(s)P(sl) be the angle subtended

at P(s) by P(s¢) and P(s Since

V-
x(c) - x(s) = (¢ - s)cosJ(s=) + o(|s - |),

y(o) - y(s) = (¢ - s) sinY(s-) + o(|s - ¢ |),

x(s,) - x(s) = (s

] =9 cos3(s+) + o(|s - o |),

y(sl) - y(s) = (s1 - s) sind(s+) + o(|s - o |} ,

it follows that, for small p,
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|sin P(cr)P(s)P(sl)l 2'21 sin|Q(s+) - §(s-)| .
>0,

Considering the triangle P(s,)P(s)P{(c ), one finds that

1

|P(c) = P(s)]
sin 4 P(o )P(sl)P(s)

|P(o) - P(sl)l = . sin § P(o)P(s)P(s)) ,

>3 [P(e) = B(s) | sin|Y(s+ - s

>Als -0,
where A = sin[3(s+) - H(s-)]/4 > 0,
Therefore,

1 1
lﬁsl(ﬂ")lf. IP(sl)—P(cr)! SAls-—o-l ’

IS'(0~>1+2|681(¢>|
Als - o |

e Sl(cr)ls

Furthermore, by hypothesis,
le(e) | < |s =0 |x(]s - o ) < |s - o [x(2p).

Since both BS and « are continuous and of bounded variation
1
we may integrate by parts to obtain (Dunford and Schwartz [26, p. 154]),

- 0=s- 4
T4fop) = [eto B (7))o= ¢ gz(o) 4o [Py (e,
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where P(Sz) is the "left" end of C_. Consequently,

<xepl+ [ (1§ + 21, (o) |lac I/ ,
C- 1

=xzp)t+ [ la%e) ]+ [ ld s, o)|VA,
C- C- L

so that
Slirr;_ 14(8

The theorem follows,
Remarks.

1. The proof is modelled after the proof of a similar theorem given by
Dunford and Schwartz [26, p, 219].

2, Condition (ii) of the theorem might perhaps be paraphrased as follows:
s is a left {right} Lebesgue point of ¢,

Theorem 8.8,

Let ® be the right-angled triangle with vertices (0, 0), (0, 1),
and (1, 0),

Then T does not map 51 into f)
Proof: To prove the theorem, a function ¢ e,ﬁl will be consiructed such that

To&d.

Let d and D be constants such that

0<d<1<D,
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and
D
| dZZ =91 /10,
d 1+z
where
® g
‘ Z
1= | =
0 14z
Set
6 =d/D,
k-1
ak-dd , k>1,
25
(1, i 67 ey <o, 120,12, ...,

gly), if P=(0, y) and 0<y<l,
0, otherwise,

Then ¢ has only a countable number of discontinuities so that
(Natanson [92, p. 407]) o egl .
Let P(0) = (0, 0). (It is convenient to ignore the condition that P(0)

should not be a corner.) Then, for 0 <x <1, P&) =(x, 0) and
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cos # (o)
_ P(x)
- é (70(0-) [P(X)_P(U_)l dU’ ’
1 X
= [ aly) > dy
0 x +vy
Setting z = x/y,
* 1
(To)x) = [ of% dz
X [z} 1+z2
Therefore,
(To)a, )
= foo gFﬁ] dz
ak z l+z2
d D 00 a,
kK| d
= f + f +f g[‘;] ——% s
a d D 1+z
k
= Il(k) + (k) + I,(k) (say).
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Since |g| <1,

5,0 |+ |15) ] <1710,

k-1 k

On the other hand, since ak/d =6 and ak/D =6,

91/10, if k = 2i+l,

1(k) =
0, if k= 2i+2 ,

Therefore,

(Tgo)(ak)_?_SI/lo if k is odd,
and

(T(p)(ak)f_ 1/10 if k is even,

Consequently, (T¢)(0+) does not existand ¢ £ k7
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9. The integral equation.

Theorem 9. 1.

The generalized Dirichlet problem (5.1) is solved by the double -layer

potential (1. 4) provided that ¢ ¢ M and

(I+ T)e =g/m. (9.1)
Proof:  Assume that ¢ ¢ M and that (9.1) holds. Since s ¢ [0,S8] is a Lebesgue
point of ¢ for almost all s (Natanson [92, p. 258]) it follows from (9.1) and
Theorem 7.1 that, for almostall s, <p(n)+(s)exists and satisfies

?(n)+(8) = 9ls).
Noting Theorem 5.1, the theorem follows.

Theorem 9. 2.

QT= T /8 where

6 = max ‘ S‘(s+) - g(s—)| .
sel0,8]
Furthermore, given e > 0 there exists a compact degenerate operator of

the form

(ch)(s)=;1;i c, (s) {: #(0) d_1 () (9.2)

k=l

where S Etke £ . and q?k is of bounded variation, such that
lT-vli< (6+e)/m. (9. 3)

Proof: As in Lemma 3.5 let
Y(s,0), o<s,

Y(s,0) =4 ¢(s,s-), o=5s,
Y(s,o ) -[d(s,s+) - d(s,s-)], o>s.
Then JJ is continuous and of bounded variation as a function of o . Let ﬁs

be the measure corresponding to U .
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Given e > 0 it follows from Lemma 4.4 that there is an n(s)> 0
such that

é lnt-ﬁsl(dw)g 0 +e,

for all t satisfying Hs -t] < n{s). Set

{te[0,8]; s -mn(s)<t<s+mn(s) .

The intervals IS cover [0,S]. Therefore, by the theorem of Heine-Borel , there

is a finite set of intervals, { I}, k=1,2,...,n, which covers [o,8].
k
Clearly, it may be assumed that s, <s and that I < 1 iff k=j.
k k+1 Sk sj

Now let Ck(s) , 1<k <n, be the continuous functions such that

0, if s;éISk,

Sk

linear, otherwise .

n
ck(s)= 1, if se I, -
i#

That is, the functions ck(s) are a partition of unity on [0,S] subordinate to the
cover {I < }.

k
Let V be the mapping

1 -
(Vo)s)= 2 o(o) T (do).
k=1 k
Then V is a degenerate compact operator of the form (9. 2) (with
Gy (0) = @(sk,c)) and V satisfies (9.3).
Since ¢ is arbitrary, it follows from (9. 3) that

Qp 2 m/e,

so that it remainsonly to show that

QT_<__ /0.
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Suppose that, on the contrary, QT > w /6 . Then there exists an

1> 0 and a compact operator V such that if B=T - V then

Il <@ -m) /.

Let SO be such that

o=1 Jsg0- Jisyo)

0

o

Set

N S+ 1/n,

1, s, <0 < s

0 n ?
¢, (@) =
0, otherwise ,
E, = [so,so+ 1/n],

for n=1,2,... . Since V is compact , the sequence {v cpn} must contain

a convergent subsequence {V ¢ } . In particular, there must exist N such

k
that

Ve, -ve lIl<n/tamy, i k,2 2N.
k )/
We shall obtain a contradiction by showing that this is impossible.

Choose n, > N such that
|4 (s S0,) " ¥ (505 soHl<n/ 10,

Choose s < s, such that

]\P(SO, -S-)- tlJ(SO,SO")I :\_ 1’]/10,

and

lu (s, 50, ) " ¥ (30 snk)l <n/lo.

Finally, choose n, > N such that

Wy, 8)-¥(sy, 5)l <m/l0.
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Next, observe that

”B[‘Pnk‘ wnglll < I8 llqonk ey T<@-m/m.

Now,

5) = L
(Te )E) = — é 2, (7 ) ¢ (o),

= L g
i S n

Therefore,

ITe -To |
oy )

v
3 =
——
<
—
w0
(]
-
w0
o
S’
i
<
—
421
o
-
wn
o
S
|

) | -
k

-l sy, sy VU (sy, snk>| - lu(sy, snkwwé, s,

sy sg) - wisgusil - Tutsg s -wis, L 9T,

(v

[6-n/2]1/m.
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Hence ,

ve -ve |
ny Ny

v

I,

”T<P ~-Te H—HBso -Beo
nk n)@ l’lk nz

v

[6-n/2]/7 - (0-m)/m

= n/(2m,
which is the desired contradiction.
Remarks
1. Let TG’ denote the restriction of T to 637. Then by Theorem 8.1,

2
T&, : & = . Theorem 9.2 , with T replaced by T@,’ , was stated by Radon
[110, p. 1149 ; 109, p. 1110 and p. 1121], butI am unable to follow the arguments

of Radon [110, p. 1149] which purport to show that @ < w/6 . The same

T
G
case was considered by Arbenz [7, p. 15], but Arbenz asserts only that
QT. >w/0. Our proof uses ideas from both Arbenz and Radon.

6
2. It might appear that the theorem would follow immediately from the
results for T(g . This does not appear to be the case. For example, the

operator VS s

0, otherwise ,

is a compact mapping of M into itself, but does not map é’ into 5 .
3. The construction of the splitting T =V + B in the proof is the same

as that used by Arbenz. Radon used the following splitting . 1If

Cy s = {P(o): lIP(t) - Pl =6},
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let Ve and Bg be the operators ,

Be)s)= [ olo) I (do).

Cs,é

Then T = Ve + Bg - It can be shown that Ve is compact and that, given > 0
there exists 6, > 0 such that HB6 | <@+e)/m if 6< 5, The splitting of
Radon is more elegant than that used in our proof, but has the disadvantage that
it does not lead directly to the degenerate operators V of (9.2). Itis interesting
that Carleman [24, p. 12] used a splitting of T similar to that used by Radon.

Theorem 9. 3.

Assume that ge M and that C has no cusps. Then there exists a
unique ¢ ¢ M such that (9.1) holds.
Proof: Consider the equation
(I +XT)e = g/m, (9. 4)
where N is a complex-valued parameter. It is known (Radon [109, p. 1113 and
p. 1119], Riesz and Sz.-Nagy [113, p. 217]) that the Fredholm alternative holds

for (9. 4) provided that l)\l <Q From Theorem 9.2, R, = 7w/ >1 , so that

T T
the Fredholm alternative certainly holds when X\ =1. To prove the theorem it
therefore suffices to show that if ¢ € M satisfies
(I+T)(p1:0 (9.5)
then ¢y = 0.
Assume that 9] satisfies (9.5). By virtue of Theorem 9.2 , there is

a splitting ,

T =V + B,
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where V is of the form (9. 2) and ||BH <1. Thus,

(I+B)o = o, (9.6)
where Py = - v o - Since |IBl <1 , (9.6) is solved by a Neumann series,
o kK _k
op = ) (-D° BYe, . (9.7)
k=0

Now it follows from (9.2)that V: M -~ Cf In particular , ¢y € & .
Moreover, by Theorem 8.1, T: - &, Consequently, B: & - &. Therefore,
the series (9.7) is a uniformly convergent series of continuous functions. It
follows that (9.7) converges to a continuous function.

It has therefore been shown that if 9 € M satisfies (9. 5) then
¢ € ¢. But, it is known (Radon [110, p. 1167], Arbenz [7, p. 20]) that if
) € <f satisfies (9. 5) then ¢ = 0. The proof of the theorem is therefore

complete.
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10. The integral equation when C has cusps.

The results of the preceding section leave open the question of what
happens in the case when C has cusps. It is this case which is studied in the
present section.

It is easy to show that if C has an intruding cusp then (9.1) no longer
has a unique solution. For (Radon [110, p. 1149]) let C have an intruding cusp at

P(sl) and set

0, otherwise .
Then it follows from (2. 8) that
I+T)Ye=0.
That is, N = -1 is an eigenvalue of T.
The case when C has an extruding cusp is less easy to handle, and
for a time the author believed that in this case (I + T) = exists and is bounded.

However, the following theorem shows that this is not the case.

Theorem 10. 1.

Let C have an extruding cusp. Then there exists a sequence {<pn} s

n=12,..., suchthat ¢ ¢ M, Hsvn” =1, but H(I+T)qon | -0 as
n-—> 9,
Proof: Let C have a cusp at P(s). Set
E . = {Plo)is<os=s+1/n},
E_ = {P(o)is-1/ns 0<s},
E:n - En+ ~ En- ’
"n(o-s)+1, if P(O)eEn_,
(pn(()"): n(c-s)y-1, if P(G)eEn+,

0 , otherwise ,

for n=12,..
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The notation of Theorem 2.1 and Lemma 3.7 will be used, and it will be assumed

that

It will be proved that

[+ 1) 0|

i

sup [o, (1) + (T ¢ )0) |,

te C
<1 [ |®ldo+ + D, (10.1)
En TN

where P, (which will be defined later) depends only upon n and is such that
P, ., 0 as n—=% ., Since @y € M and “ ? H = 1, the theorem follows from
(10.1) with the aid of Lemma 4.3,
Since ¢ (t, o) is continuous on the right and ¢ is continuous on En_, it

follows that (Dunford and Schwartz [26, p. 154])

[ e (14,9t 0

En—-

g = g—

o=(-1/n+ i

]
EN .

g (0) U, 0] bt 0o,

Ao
prd—,

= 2 y(s)- 2 [ wit,o)de,

E _

3o

1}
| o]
—
jon
-
et
L
~

where

I(n,t)= = [ [4(t,s-)- (t,0)]do.

E
n-—
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Similarly,

n
n+
where
I, )= = [ [4(t,s4) - b(t,0)]do.
E
n+
Consequently,
(T o) ()
1
i ‘r”n(a') Ht(dO'),

_ 4
o

e (@) d Wit o),

Dm\ bm%

I (n,t) + I+(n,t) .

To establish (10. 1) several cases must be considered:

Case l: P(t)e Cl(s;l/'\/_ﬁ')

Applying Lemma 3. 2, if P(0)« En then
[y (t,8) - g (t,0) |

< [la e, nl,

En

A

[2/n]/[1/Nn - =],

5 [

< 4/nWNn.
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Therefore,

(T ) ()]

< il + 1 m,ul,

< 201 wts) - e, o) do,
En

< % [[4/WNn]de,
En

= 8/(11"\/—1:1-)

Since (pn(t) =0, (lo.1) holds.

Case 2 : P(t) = P(s)

Then, using Lemma 4.2

(T o)D)

1
= | Ef ¢ (I (d o) |
n

1
<7 [ Imlae,
En
<1 [ 16l wo).
E
n

Since <pn(t) =0, (lo.1)holds.
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Case 3: P (t)e c+(s;1/~ﬁi)

Using Lemma 4.2,

1, (n,1)]

< 17 I, [do)
En+

< 2 [ 10 @y,
3
n-+

< 4

— ™

[ 1Ol @) .
E
n

To estimate I_ (n,t) we begin by setting

a = min (a (s; 2/Nny), 1/4),
_1/2
bn = a,

Then a4 0 and bn# 0 as n—> . Next, set
p = |P(s) -P()],
p]. = P (1 - bn ) )

(10. 2)

and let the circles B(s;pl) and B(s;pz) intersect C _(s; 2 / N]?l—) in P(s1 )

and P(s respectively (see Figure 10.1).

2)
Set

C”)z{ijeme;Z/VH);U>sl} ;

(2

C ) = {P(og)e C_(s; 2/ N1 ) ; SZO‘ZSZ},

1
c(3) ={P(e)e C_(s;2/Nn); U<SZ}°
Then

I (n,t) = i I(i) (n, t),

i=1
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Figure 10.1
Untitled.
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where

n,ty = 2 [ [wit,s0) - b (t,0)] do.

Without loss of generality, it may be assumed that ,9(5_.) = -,
9(5 H = 0. Then it follows from Lemma 3.7 that Co(s ; 2/Nn } lies in the

cone K, with vertex P(s), axis the x-axis , and vertex angle ¢ n o where

a

]

¢ = 2 arctan]|
n l-a,

Clearly, cn¢ 0 as n—= %,

Let P(o)e C_ (s; 2/N'n ). We denote by P'(c) the point of intersection
of the line joining P(s) and P(o) with B(s; p) (see Figure 10.1).

[1p(s) - P(t)| - |P(s) - P(o)| | = [P(o) - P*(0) | .
Since, for sufficiently large n, if P(T) ¢ C (s 2/Nn) then | $m)l< /4,
since { (t,0 ) is a continuous function of o, and since, from Theorem 2.1,
P(s) lies "above” C_(s; 2/Nn), it may be assumed that

-m/4 < (t,s) - (t,o)< 5T /4

and

cos [y (t,s) - Y(t,0)] = cos & P(o) P(t) P(s) .
Let P(o)) e ¢, and consider the triangle P(s) P(s;) P(t). Taking
projections on P(s) P(t)
[P(s) - P(t)| = |P(s) - P(ay)| cos & P(e)) P(s) P(t) +
+[P(o) -P(t)| cos g P(e)) P(t) P(s),

so that
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cos J P(o;) P(t) P(s)

[B(s) - P(t)] - |P(s) - P(oy)|

v

4

|[P(e)) - P(t)]
ARG
AR JON
L [P(e)) - Pt)| - [P(o)) - P'(ay)]
[P(oy) - P(t) |
[P*(e)) - P(1) |
> 1- ,
[P(o}) - P(t) |
C
> 1- _p = ’
P n
= 1-d_,
n
where dn =cn/bn. Clearly, dn Y 0 as n =%, Consequently,
| Wt s) - wit, o | < e, (10. 3)

where
e <arccos(l-d
n ( 1’1)'

and enJ,O as n >,

Let P(cr3) € C(S) , and consider the triangle P(s) P(o,) P(t). Taking

3

projections on P(s) P(v5),

[P(s) - P(o,)] | P(s) - P(t)| cos & P(o,) P(s) P(t) +

| P(o

~-

3) - P(t) | cos & P(s) P(o,) B(1),

so that
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cos 4 P(s) P(o;) P(t)

[P(s) - P(o;)| - |P(s) - P(1)|

14

iv

[P(e;) - P(1) |
[P(o;) - P'(oy) |

|p(o

3) - P() |

[P(e,) - P(0)] - |P(o;) - P'(o)]

= ]~
[P(c5) - P(1)]

|[P(t) - P'(;) |
1 - :
[P(o;) - P(1)]

Y%

Iv
!

= 1 - d

Consequently ,

| X P(s)P(o) P(t) [ < e,

so that

[ty s) - Wt o) -7l < e +e .

Finally, using Lemma 3.7 ,

p(l-b )< s -s; <p(l- bn)/(l -a),

o(l + bn)-<- 5 -5, <p(l + bn)/(l - an) R
so that

S| =8, = p £
where

an + an - a bn
fn < l1-a

Clearly, f + 0 as n—=> .

’

(10. 4)

(10. 5)

(10.6)

(10.7)
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‘We can now bound the integrals I(l)(n,t) . First, consider I(l) (n,t) .

Using (10. 3)

(1) n °n

1%,y < ;{ e do < 2. (10. 8)
n-.

Next consider I(Z) (n,t). Two cases arise:

CaseA: s - 84 z Hl
Then 1(2)(n, t)y= 0. (10. 9)
CaseB: s -5 < 1/n
Then using (10.5) ,
1 1
P = n l_bn !
so that, using(10.7),
@m0l < Znllel [ do,
&2
= %n “LP“ lsl_szll
< 9, (10.10)
where
) f_f_q_HLM!
9n ™1 - b_)

Clearly, g, + 0 as n— o

Finally, consider 1(3)(n,t) . Two cases arise:

Case A: lsz—slz 1/n

Using (10. 6),

5=
Y .
+|.
ol o
5 |s

p 2

so that
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i
3=
i
(o2

o
i
o]
=i
™~
—
-+
o’
=

Therefore,

Since 1(3)(n,t) =0,

130,00+ 0 (0 | < (@, +b)/ (L+b). (10.11)

Case B: |s, -s|l< 1/n

2

Then, from (10.6),

1 1
P 5
n l+bn
Hence,
lS-tl < _l__P__I
- l-a
n
1 1
< = e,
-~ n (l—an)(l-!-bn)
1 b -a_ -ab
= _[1__ n n nn]l
n
(l-—an)(l + bn)
2
) 1 {l_bn(l—bn_bn)]
n I
(l—an)(1+bn)
1
< =

since bn < 5. Consgequently,

o (t) = n(t - s)-1.
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Also, wusing (10.4),
1,y = 2 [ [eit,s) - ot 03)]de,

Ut,s) - Yt o,)] do

- 1.
= n[ = (s sz)] + H{n,t),
where

[Hm,t) | < = Ef [c, +e_]do,

n_
= (c:n + en)/'n .
Therefore, using (10.6),

1%, 1) + 9 ()]
<[[1 - n(s - s,)]+ H(n,t) +[n(t - s) - 1] |,

< |lH@,t)l +nl(t-s) - pl +nl(s-s,) - ol ,

5)
(a_ +b_)p
< IH(n,t)l +nanls—tl +pn —2 n

1-a ’
n

AN
=

where

Clearly hnt 0 as n—~ o,

Setting
e a_+b
n n

- I S 2 St S
Ph T +gn+ 1+bn +hn’

inequality (10.1} follows from inequalities (10.2), (10.8), (10.9) and

(10.10), (10.11) and (10.12).

(10.12)
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APPENDIX A

SURVEY OF THE LITERATURE ON DOUBLE-IAYER POTENTIALS

A,l, Historical background

According to tradition, potential theory began in 1666 when Isaac Newton,
while sitting in a garden at Woolsthorpe, was hit on the head by an apple,
thereby discovering the laws of gravitation. The subsequent development
of potential theory is an interesting example of the interaction between
mathematics and physics,

At first mathematicians only studied the gravitational potential induced
by non-negative distributions of mass in three dimensions, since this was the
only physically meaningful problem known., Two-dimensional potential problems
were not studied until about 1845, when physically meaningful two-dimensional
problems arose. (In the present survey we will, as is customary in potential
theory, distinguish between two-dimensional and three-dimensional potentials

by calling the former logarithmic potentials and the latter Newtonian potentials).

In 1785 Couloumb discovered the similarity between the laws of gravitation
and the laws of electrostatics and magnetostatics, This led to the study of
potentials induced by negative distributions and thus to the study of potentials

induced by double-layers or double-distributions, A double-layver may be

visualized as a curve or surface one side of which is covered with a certain
distribution of charge, and the other side of which is covered with charges of

equal magnitude but opposite sign. The theory of Newtonian double-layer
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potentials was first considered in detail by Helmholtz in 1853, while the
theory of logarithmic double~layer potentials was initiated by Beer in 1856,
(see Burkhardt and Meyer [22]).

In 1870 Neumann published his famous paper [93] in which he solved
the Dirichlet problem by means of double-layer potentials., We briefly
summarize Neumann's results for the logarithmic case,

Let C be a smooth curve in the xy-plane with parametric representation
x=x(s), vy=y(s), 0<s<8§, (A.1.1)

where s denotes arc length along C in the positive (anti~clockwise) direction
(see Figure A,.l1.1), C divides the plane into a simply-connected bounded
domain £ = @+ and a simply~connected unbounded domain ® .

Let g = g(s) be a smooth function on C and let u = u(x, y) be

the solution of the Dirichlet problem

uxx + uyy =0, (x,V)eER, A.1l.2)

u=g9g, (x,v)ecC. (A.1.3)

To solve this problem Neumann assumed that u was the logarithmic potential

corresponding to a double-layer of density ¢ = ¢(s) on C. Thatis, for

Qef,

wQ) = [ o) 5o Log 1Q - Plo) o ®.1.4)
C 7 o
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n(s)

P(0) ®

Figure A 1,1
The curve C .,
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where n(c) is the unit outward normal to C at P(c) and [Q - P(c)]|
is the distance from Q to P(¢) (see Figure A.1.1). If ¢ is smooth

then it is easily verified that the (A.l.2) is satisfiead. Neumann showed that

lim [ ¢lo) logIQ - P(c ) |de A
Q—»P (s) C an(
> (A.1.5)
s)+7rf o )K(s , oo ,
y
where
1 .d ﬂ__)___z.(_l

K(s, o) = = arctan | x(o ) - 1. (A.1.6)

and where in (A.1.5) is to be understood in the sense that Q € 6?,+ tends to
P(s). Hence (A.l,3)is satisfied if ¢ satisfies the integral equation,

{

S
o(s) + [ @lo)K(s, o)do =g(s)/m, 0<s<S. (A.1.7)
0

In his paper [93] Neumann proved, in outline, that (A.1,7) has a
smooth solution ¢ when C is convex. In a subsequent paper [94] he
generalized these results, in particular by allowing C to have corners.
Detailed proofs appeared in his book of 1877 [95].

The work of Neumann was remarkable both in itself and in its con-
sequences:

1. The connection between potential theory and laplace's equation
had been discovered by Laplace in 1782 and several attempts had been made
to prove the existence of the solution to the Dirichlet problem (see Kellogg

[56, p. 277] and Burkhardt and Meyer [22, p. 486]). However, Neumann's

proof was the first correct proof to be published.
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2, Although integral equations had arisen earlier (Hellinger and
Toeplitz [45, p. 1345]) equation (A.1,7) was the first integral equation to
arouse considerable interest. In 1896, while trying to generalize the results
of Neumann to non-convex curves C, Poincare introduced the parameterized
equation

S
wls) + x{ oo )K(s, o)do = g(s)/m ,
and investigated the dependence of ¢ upon \. Then, in his classic paper of
1900, Fredholm [32] created his theory of integral equations and used it to
prove that (A.1l.7) can be solved for every smooth C.

3., To solve (A.l.7) Neumann used a method which he called the
"Methode des arithmetischen Mittels". This method was essentially the
same as, and led to the development of, the Neumann series in functional
analysis. (The name is historically incorrect since Liouville used such a
series in 1837 (see Hellinger and Toeplitz [45, p. 1348])).

4, The reason why Neumann resiricted himself to convex curves C
was that for such curves the kernel K(s, o) of (A.1.7) is positive., In his
use of the positivity of K, Neumann foreshadowed the theory of positive
operators,

In the present survey an attempt is made to describe the development
of the theory ¢f double-~layer potentials since the work of Neumann. It is

therefore very appropriate that this is the centenary of Neumann's 1870 papers,
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A.2, The classical theory.

In this section, unless explicitly stated to the contrary, we will be
concerned with the logarithimic case. It will be assumed that C, o,
and g are "sufficiently smooth"; in particular it will be assumed that x(s)
and y(s) are at least twice continuously differentiable, and that @ and g

are at least once continuously differentiable,

eful formulas

First, we note that

on(o ) log |Q - P(cr)] =
o -
= [n (o) S50 wn (o) —g%’iﬂu]/l@ P(e)] ,

[, (7 )lx(0) = 2] + (030 ) = v 11/ [0-B(w ) |2

[n(c) . (P(e) - QV|Q-P(c)] ,

= [cos(ﬂQ(cr))]/lQ—P(cr)l , (A.2.1)

where ﬂQ(a) is as in Figure A,1,1. Hence, (A.l.4) is equivalent to

cos[f@_ (o)]
wQ) = [ of -———(-'L—- do . (A.2.2)

- |Q-P(a) ]

w (s) be as in Figure A,1,1 (see also (2.9)). Then it is

Q

geometrically obvious, and can be proved directly from (2,9), that

Next, let
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27, if QeR ,
d +

| tlogle)lds = (A.2,3)
0, if Qe _,

Furthermore,
. . d
lim { lim [ Z[lo.(0)]do) = . (A.2.4)
e~0 Q-P(s) c 490
|P(c)-P(s) |>¢
Since
o Lag(e)]
y(o) -y

= a"“ arctan [}_c'(_;)——:_;g—] ’
= [xt0) - %] & - [v(e) =y Z Y/ J0 - () %,

= [Ix(e) -~ x5 I (v) + [v(s) - oI (o)V/]Q - P(e) |,

= [COS[ﬂQ(v)]]/IQ - P(a)]|, (A.2,5)

it follows from (A.2.2) that (A.1.4) is also equivalent to
d
u(Q) = f o(c) 7 [o(c)]ds . (A,2,6)
do 7 Q
C
Next, we consider K(s, ¢). The defining equation (A,1,6) is only

meaningful for P(s) # P(0), However, using Taylor series,
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7K(s, o)

- o) x(e) = x(s)] = &(o My(o) - y(s)]
k(o) - x()]° + [y(e) - y()]°

=L -y(a)%(c ") + %(c)¥(a")
&[ ] + R(o")x(c") - x(c)] + [¥(o

NP+ (e y(e") - v(o)]

where o' and o¢" lie between s and o, Hence

mK(s, 0) = '%‘K(U) + 8(|s-al),

where &(|t|) -0 as |t| =0 and « (o) is the curvature of C at P(c),

k(o) = ¥(o)&(o) - X(c )y(0) .

Therefore, if the domain of definition of K is extended by setting

“71; ai arctan[%] , P(s) # P(c)
K(s, o) = (A.2.7)
5 K@), P(s)=Plo),

K is continuous for 0 <s, o £8.

Finally, it follows from (2,9), (A.2.3), (A.2.4), and (A.2.7) that

[ &(s, o)do =1. (A.2.8)
C

Other notation

If n(c) is defined to be the unit inward normal instead of the unit

outward normal then (A,1.4) takes the form
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7(‘
~—

wQ) = [ olo) 57 losll/ 1Q-P(e) [Jao (+

Certain authors (including Kellogg [56]) use (*) and state that n is the
"positive normal” but fail to define this concept.

Kantorowitsch and Krylow [55, p. 117] change the sign of K(s, o)
and interchange s and o so that

KK&A(S,O') = - K(o, s) .

Behavior near the boundary

Set
uy(s) =7 K(s, ¢)plo)do , (a.2.9)
C

and

(A.2.10)
u (S) = lim u(Q) v
Q-P_(s)

provided that the limits exist. Then (A.l1.5) is contained in the following

Theorem A,2.1.

u, and u_ exist and satisfy:
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u,(s) = mo(s) + u_(s) , 7

+ 0

u_(s) = -me(s) + u,(s),

> (A,2.11)
Zuo(s) = u+(s) +u_(s),

2mp(s) = u+(s) -u_(s). J

Theorem A.2.1 is intuitively obvious from (A.2.6), and a proof is
sketched by several authors (for example, Kantorowitsch and Krylow [55, p. 117]).
Proofs using complex function theory are given by several authors (for example,
Gakhov [34, p. 73]). So far as the author is aware, there is no elementary
proof in the literature which does not make use of complex function theory.

The integral equation

It follows from (A,2.11) that the Dirichlet problem (A.1.2), (A.1.3), is
solved by the double-layer potential (A.l.4) provided that ¢ satisfies (A.1.7).

In operator notation,

I+ Te=gqg/7, (A.2.12)

where
(Te)s) = | K(s, o)¢(o)do
C
The most direct way of solving (A,2.12) is by means of the series
solution

2 3
p=[1-T+T -T ...lg/7m. (A.2.13)
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However, from (A.2.8),

Tl =1, (A.2.14)

so that T has the eigenvalue 1 and the convergence of the series (A.2,13)
is by no means certain,

One way of establishing the convergence of (A.2.13) makes use of
the following:

TLemma A,2.2,

Let C be any convex Jordan curve which is not the boundary of a
quadrilateral or a triangle., Then there exists a constant k, 0<k <],
which depends only upon C such that if f = f(s) is any continuous function

defined on C then

osc(Tf) < k osc(f), (A.2.15)
where
osc(f) =[max fl-[min £]. (A.2.16)
C C

The idea underlying (A.2.15), namely that Tf is smoother than f,
was used by Beer in 1856 for Newtonian double~layer potentials (see Neumann
[95, p. 221]). Lemma A.2.2 was first stated and proved by Neumann [95,

p. 185], who called k the "configurations - constante" of C. Recently,
Schober [118] has pointed out, and corrected, an error in Neumann's proof. It

is known that k ="2l' if C 1is a circle (Neumann [95,p. 174]) and that
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k <1-8/(271R) where R < ® is the supremum of the radii of all circles
which intersect C in at least three points (Schober [118]).

If C and f are as in Lemma A,2.2 then K(s, o) 1is non-negative

so that, using (A.2.8),

min f <min Tf <max Tf <max f . (A.2.17)
C C C C

Combining this equation with (A,2.15) it follows thatas n tends to infinity
Tng tends to a constant, ¢ say, and

max |T"g - c| <k osc.(g) ,
C

max |Tn(I - T)g| < k™ osc.(g) .
C

Therefore, if

2n

o =24 (1= et THI - ohrs ... T - Thg/m,

n

then as n tends to infinity, ¢, converges uniformly to a continuous function,

¢ say. Since

o _ g _L2nt2 g
Tga—él_r.noo [c (pn+17 T - 1.
-9
—.77 (p’

¢ satisfies (A.2,12). Furthermore, it follows easily from (A.2.15) and (A.2.17)

that ¢ 1is the unique solution of (A.2.12).
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To summarize, it has been shown that if C is convex then the series
c _m3 _ mm2d
2+(I T)W+(I T)T - + ... (A.2.18)

is convergent and solves the equation (A.2.12).

We now turn to the general case when C is not necessarily convex.
If )\1 =1, )\.2, )\3, ..., are the eigenvalues of T. then it is known
(Blumenfeld and Mayer [14], Gaier [33, p. 27]) that

(a) )\l is simple,

(b) For i>1, |xi| > 1,

(¢} For i>1, xi is real and of finite multiplicity, (A.2.19)

{(d) For i>1, (-)\.i) is an eigenvalue of T with the

same multiplicity as )\i .

The proof of (A.2.19) depends upon (i) the connection of T with the Dirichlet
boundary value problem, and (ii) the fact that T is symmetrizable, that is if

H(s, t) = | K(s, o)log[l/|P(s) - P(t)[]do,
C

then H(s, t) = H(t, s) .

It follows from (A.2.19a) and (A.2.19b) that the series (A.2,18)
converges to the unique solution of (A.2.12).

Connection with singular integrals

There is a close connection between the theory of logarithmic double-
layer potentials and the theory of singular integrals with Cauchy kernels.
Some remarks on the historical background of this connection will be found in

Muskhelishvili [91, p. 23] and Gakhov [34, p. 75]. A brief, but lucid, survey
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of the theory of singular integrals is given by Seeley [119].
Following Mikhlin [89, p.137], consider C as a curve in the complex

plane and set z=Q € R, £ =P(¢) € C and
iw
£ -z=re . (A.2,20)
Then, using the Cauchy-Riemann equations,

Imag. [ ] = Imag.[d(log[l-z])] ,

= dw,

_ 9w do ,

do

=.___9_gif(>g)r do . (A.2,21)

Consequently, (A.l.4) can be written in the equivalent form,
dt
u(z) = Imag.[f () Tz 1. (A.2,22)
C

Now, it is well-known (Mikhlin [89, p. 117]) that if C is smooth, t = P(s)eC,

and
1 )
z) =5~ j (A.2.23)
C

then

- 1 21 1 el
F (1) = lim F(z) =5 o(t) + 5 f o At (A.2.24)
z>t, C

the integral in (A.2.24) being a singular integral with Cauchy kernel. Formula

(A.2,24) is sometimes called Morera's formula (Muskhelishvili [91, p. 41])

or Sokhotski's formula (Gakhov [34, p. 25]).
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Remembering that £ = P(0), t = P(s), and that ¢ is real-valued,
Imag. (fjgl_? d¢ = n fc K(s, o)p(o)do. (A.2.25)

Equation (A.1.7) follows from (A.2.22) and (A.2 .25) by taking the real part of (A.2.24).

In view of the above, it is natural to ask to what extent the theory of
double—layer potentials can be developed via the theory of singular integrals.
So far as the author is aware (and his knowledge is very limited) the answer is
that the theory of singular integrals is of little use in this context for the
following reasons,

First, the theory of singular integrals has been developed rnainly for
the case when C and ¢ are smooth. This is a sweeping generalization which
requires clarification. There are some results for the case when C is not
smooth, If C has a corner at t with interior angle «, 0 £a <27, then

the Sokhotski formula (A.2.24) becomes (Gakhov [34, p. 31]),
Sl-2 1 e
F (1) =(1 ko () + 5= J e 4t (A.2.26)

which leads to a corresponding modification of (A,1.7)., Kveseleva [73]

has considered the case of intersecting contours, and Alekseev [2] has
considered the case when C is "of class R" (this class is defined in
section A,3), Quite general Cauchy integrals are considered by Goluzin [36]
and Priwalow [107]. However, in all cases the conditions imposed upon ¢
and C seem to be stronger than those needed when singular integrals are not

used.
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Secondly, it appears that it is always necessary to appeal to the
Fredholm theory: although Gakhov [34], Mikhlin [89], and Muskhelishvili [91],
derive (A.1,7) via the Sokhotski formula (A.2.24), they establish the existence
and uniqueness of the solution of (A,1.7) by appealing to the Fredholm theory
for integral equations.

Connection with conformal mapping

Suppose that it is required to find the mapping
w = f(z) = f(x + iy)

which maps & conformally into the unit circle in the w-plane, in such a way

that £(0) = 0., Set

2(s) = x(s) + iy(s) = p(s)e =),

and denote by S(s) the angle between the x-axis and the positive tangent to

C at z(s) (see Figure A,1.1). Finally, let

f(z(c)) = St

Then it can be shown (Gaier [33, p. 7]) that 6 satisfies the integral equation

[0(s) - &(s)] = | [6(c) - &(c)]K(s, o )do + ¥s), (A.2.27)
C

where

cos[He )] - Ws, o)
lz(s) - z(o) |

@(s)=;1j‘ log plo ) do .
C
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It can also be shown (Gaier [ 33, p. 8]) that 6 satisfies the integral equation,
6(s) = [ K(s, o)6(c)do - 2B(s), (B.2.28)
C

where

Bls) = arg[Z(L =200y |
Equation (A.2,27) is due toLichtenstein while (A.2.28) is due to Gershgorin,
Several other equations with the Neumann kernel K(s, o) arise in the theory
of conformal mapping; for details see Gaier [33, Chapter I].
The Lichtenstein and Gershgorin integral equations are clearly related
to (A.1.7). There is, however, an even closer relationship. For if the exterior

Dirichlet problem

o

+
[o
1]

0, (x,y)eR ,

c
]

g, (x,vy)eC,

is to be solved by the double-layer potential (A.1.4) then it can be shown that

¢ must satisfy the equation
~@(s) + [ K(s, o)o(e)d(c) = g(s)/, (A.2.29)
C

which includes the Lichenstein and Gershgorin equations as special cases,

Newtonian double~laver potentials

In the Newtonian case, C is a surface in E3.

There is a close analogy between the theory of logarithmic and

Newtonian double-layer potentials., The main differences are that
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(i) The angle subtended by a unit sphere is 47 while the angle
subtended by & unit circle is 2,
(ii) log r must be replaced by 1/t .

Thus, (A.l.4) becomes

_ 9 1
wQ) —é«p(c) ae] oo - (A.2.30)
(A.1.6) becomes
1 3 1
Ki(ss 0) = 50 Bne) [P(s) - P(e)| (A.2.31)
and (A.1.7) becomes
ofs) + [ Ky(s, o)o(o)de = g(s)/2m . (A.2.32)
C

Exhaustive expositions of the theory of Newtonian double-layer potentials

are given by Kellogg [56] and Gunter [38].
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A.3. Generalizations of the classical theory

In the present section we consider various generalizations of the
classical theory in which the smoothness restrictions upon C and ¢
are relaxed,

In his second paper of 1870 and his book of 1877 Neumann [94, 95]
considered the case when C is a convex curve with corners and proved that
the series (A.2.18) converges provided that C is not a triangle or rectangle,
Neumann also obtained similar results :for the Newtonian case. This work was
subsequently forgoiten,

The next work in the area is due to Carleman who, in his mammoth
200-page thesis of 1916 [24], considered the case when C is a piecewise
smooth curve with corners s = Si’ 1<i<n, cusps not being allowed.

Carleman split the kernel K into two parts,
K(s, t) = G(s, t) + H(s, 1), (A.3.1)

such that [24, p. 12]
(i) H(s, t) is bounded for 0 <s,t <S8, and continuous except on a
finite number of lines parallel to the s and t axes,

(i) G(s, t) is zero except when
ls - sl lt-s;l<o

for some i, where & is a small positive constant.
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The splitting (A.3.1) induces a corresponding splitting

T=T. 4T

G H

and Carleman showed that (A.1.7) has a solution by constructing (I + >\TG)"l

and [I+ (I + \T )-lKTH]“l . Carleman also briefly considered the third

G
boundary value problem and Newtonian problems. Perhaps the most interesting
part of the thesis is a detailed analysis of the case when C has only one
corner, Itis shown that [24, p. 118]

(i) There is a denumerable sequence of real numbers )\i and continuous

functions 2 such that
[I - )\il‘]cpi =0

(ii) If the internal angle at the corner is 7 - 6, and if |\|> [7/6],

then there is a continuous function o(s), with a logarithmic singularity at the

corner, such that
[I - )\T](p =0,

Finally, we note that, according to Gaier [33, p. 60] the techniques of
Suharevskii [123] are similar to those used by Carleman.

In 1919 Radon [110] generalized the classical theory to the case when
C is of bounded rotation; theseresults are described elsewhere in this report.
In a series of papers written about 1937, Magnaradze [82, 83, 84] used Radon's
techniques to solve problems in the theory of elasticity for domains whose
boundaries are of bounded rotation., As we shall see below, Radon's work

became important in the 1960's.
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A somewhat different approach to double-layer potentials was taken by
Lyapunov and Gunter who studied Newtonian double-layer potentials on
Lyapunov surfaces. A Lyapunov surface is a surface which satisfies the three
Lyapunov conditions (Glunter [38, p. 1]):
(i) At each point of the surface there exists a well~defined normal,
(ii) The normal satisfies a HdSlder condition,
(iii) There is a positive constant d such that if M is a point of
the surface and / is a line parallel to the normal at M, then
the portion of the surface within distance d of M intersects

£ in at most one point.

Because of the resirictions upon the surface, Lyapunov and Gunter were able
to prove certain smoothness properties of the double~layer potential, The
culmination of this approach was the work of Fichera [30] who required only
that the density ¢ be Lebesgue integrable, A detailed exposition of all
these results is given in the book of Guinter [38].
Schauder [114, 115] also considered the behavior of double-layer
potentials on surfaces satisfying conditions similar to those of Lyapunov,
Evans [27, 28] considered a general class of logarithmic double-layer
potentials, Let C be a rectifiable Jordan curve of length S and let s denote
lengthon C. For P, P' e C let 6(P, P'}) denote the angle between the

x-axis and the line joining P to P', For P(s)eC set
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(S
+
—
€]
S
H

lim sup 6(P(s), P(s + €)),
€ >0+

8,(s) = lim inf 6(P(s), P(s + €)).
€0+

If either G+(s) or Q_,_(s) is not finite, set

otherwise, set

the integer n being chosen so that

0< 6(s)<2m.

Define 6 _(s) similarly and set

6(s) = [0,(s) + 6_(s))/2 .

Then the unit outward normal n(s)

(nl(s), nz(s)) is defined by

nl(s) = sin 6(s),

n
S
]

-cos 6(s) .

The curve C is said to satisfy conditions (y) at a fixed point P(s)e C

if there exists a function vy(t) such that
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(i)  y(t) is a positive, monotonic, non-decreasing function of t,
? ()
(ii) The integral f ¢ dt is convergent,
0
(ii) | ¥(n(s), n@) | <v([s-o|) .
Evans considered the logarithmic double-layer potential corresponding to a

density ¢ which is a completely additive set function on C. That is,

with the notation of Figure A.l1.1,

cos ff (o)
uQ) = [

do) .
L Ta-re] 74

Evans showed that if (i) P(s) is a point at which condition (y) is satisfied,
and (ii) ¢ has "a unique derivative ¢' =A at P(s)" then the double-layer

potential has the usual boundary properties. For example [27, p. 217],

cos ﬁP(c)(s)
& |P(s)-P(c)]

lim u(Q) = -27A +
Q»P+(s)

p(do) .

Evans and Miles [29] obtained similar results for Newtonian potentials of the

form

g 9 1
@ =] Faey o 1 -

under the assumption that the surface C has a tangent plane at every point and
satisfies certain additional smoothness conditions.
Recently there has been a resurgence of interest in the solution of

boundary value problems for domains with corners:
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In his thesis of 1958, Arbenz [7] extended the results of Radon,
Arbenz obtained certain additional properties of the eigenvalues of the operator
T, and also considered applications of the theory to conformal mapping and
problems in elasticity. A very brief summary of these results is given in
[ 6].

Leis [75, 76, 77] has considered the exterior boundary value

problems in two and three dimensions for the Helmholtz wave equation
2 2
Vu+ ku=o0,

for the case when the boundary C is piecewise smooth. He shows that the
appropriate integral equations have solutions in the Lebesgue spaces Ll
or L .

Wendland [135, 137] has extended the methods of Radon to the interior
and exterior boundary value problems for Laplace's equation in three dimensions
when the surface C is piecewise smooth,

The most important recent work is that of Kral [58,139 ], Burago et al
[19, 20, 21], and Maz'ja and Sapoznikova [88] whose results overlap., Here,

there is only space to indicate the central idea. Let C be rectifiable and

¢ continuous. Then the double-layer potential

COS[ﬂQ(G)]
w@ = J o) ooy o
C

is continuous for Qe R As Radon showed, if C is of bounded rotation,

then u(Q) can be extended continuously to C. Kral,Burago,and Maz'ja




100

turn this idea around, and study the class of curves C such that, for all
continuous ¢, u(Q) can be extended continuously to C, thereby extending
the techniques of Radon to their limit (for continuous densities ¢). Both
two-dimensional and n-dimensional problems are considered.

Two of the recurring themes in the theory of double-layer potentials
are the need of impose certain smoothness conditions upon C and the need
to establish the validity of the Fredholm alternative. Here we make some
remarks on these topics:

Conditions upon C

We mention yet two more conditions which have been imposed upon
curves C in the plane:

1. Let C be a rectifiable curve with the representation
x=x(s), y=y(s), 0<s<8.

It is known (Riesz and Sz.-Nagy [I13, p. 27]) that C has a tangent t at

each point of a set Ec [0, S], where ([0, S] - E) is of measure zero. Then,

according to Alekseev [2], C is of class R if, at each point P(s) of C,
(i) Forward and backward tangents, _t+(s) and t (s), exist.

(ii) t, (s)= lim (o).
f cr-’SiO

o€k

It is easily seen that piecewise smooth curves and curves of bounded rotation
are of class R. Alekseev shows that curves of class R have the same

geometric properties as curves of bounded rotation.
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2. Paatero [100, 101] has generalized the concept of bounded rotation, Let

G be a schlicht bounded simply~connected domain. Let G Gz, ..., bea

ll

o]
sequence of open domains such that G, CGi+ and G = iU-l G;. Now let £

1
be any smooth Jordan curve in G which contains Gi in its interior. Let s

denote distance along 4 and let 9(5) denote the angle between the x~axis

and the tangent to / at s. Set
af) = [ |dds)]
)
and
a, = lim inf a(4) ,

the lim.inf. being taken over all possible curves £. Then the boundary

rotation of G, a(G), is defined to be

a(@) = lim a, ,
i-=00 1

and G is said to be of bounded boundary rotation if a(G) < v ., The above

concepts can also be extended to domains G which are open, bounded, and
simply-connected, but not schlicht. For recent work in this area see Lonka
and Tammi [78].

The Fredholm alternative

Kantorovich and Akilov [54, p. 525] give interesting necessary and
sufficient conditions for the Fredholm alternative to hold. See also

Wendland [136].
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In conclusion we draw the readers attention to some related work:
see Agmon [1], Miranda [90, Chapter II], Gilbert [35], Lopatinskii [79],

Sovin [120], Warschawski [134].
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A.4, Numerical methods.

The method of double-layer potentials can be used to obtain numerical
approximations to the solution of the Dirichlet problem (A.1.2), (A.1l.3): one
computes an approximate solution ,; of (A.1.7) and then uses (A.1.4) to compute the
approximate solution 1? .

The first numerical solutions of (A.1l.7) (or closely related equations)
were obtained by Trefftz [131], Bairstow and Berry [9], and Lauck [74] all of
whom used graphical methods to compute the integrals. The first fully numerical
method was introduced in 1928 by Nystrém [97, 98, 99] . Nystrém's method,
like all the methods to be discussed here, is a discretization method. That is, a
system of linear algebraic equations is set up which, when solved, gives the
approximate values of the density ¢ at a discrete number of points on C . In
this connection it is amusing to recall that, writing in 1927 concerning the approxi-
mate solution of integral equations, Hellinger and Toeplitz [45, p. 1501] say
"Alle Methoden, die das Problem auf die Aufgabe der Aufldsung von n linearen
Gleichungen mit n Unbekannten zurlickfuhren . . . bedeuten numerisch keine
wesentliche Forderung . . o

When discussing discretization methods it is necessary to distinguish
between the case when C is smooth and C has corners:

Discretization when C is smooth

When C is smooth, ¢ satisfies (A.l.7). Hence ¢ can be obtained
by any method for approximately solving Fredholm integral equations of the second
kind. Discussions of methods for approximately solving Fredholm integral equations
of the second kind are given by Biickner [17, 18], Gram [37], Kantorowitsch and
Krylow [55], Kopal [57], and Walther and Dejon [133]. Recent papers on the subject

include those of Anselone [4,5], Atkinson [8], and Noble and Tavernini [96].
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As already mentioned, the first solutions of (A.1.7) by discretization
techniques were obtained by Nystrdm [97, 98, 99]. We briefly summarize

Nystrom's method:

Let
fs £(0) do i wiM gy, (A.4.1)
0 :
be a quadrature formula. Then (A.l.7) is approximated by
n
o ™s) + le(jn)K<S,c§n)) P (Jn) s)/m. (B. 4. 2)
J'=-
The n-vector g_)__ = {N( ) )} is obtained by solving the linear algebraic

]

system
(1+a®)y 7@ o ) (A. 4. 3)

b

where the n-vector _b_(n) and the nXn-matrix é(n) are given by

™ = { g™y / 7,

(A.4.4)
(n)
A = {W(.n) K(O'.(n)’ O’Fn) )} .
] i j
The approximate solution ;J (n)(s) is then obtained from (A.4.2):
n
o ™hsy = glsy/m - Z,lw(jn) kiso ™M) o Mty (A. 4. 5)
J:

Discretization when C has corners.

When C has corners, equation (A.l.7) cannot be used. Instead, we
must use equation (l. 10) which may be written in the form
1
¢ (s) + 7 fs ¢ (0)dg W(s,o) = g(s)/m. (A.4.6)
0
The simplest discretization method for (A. 4. 6) is the following . Let

n be an integer and let

0=t{)< oM <) < i< < e < o <M @
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Then the values of the approximate solution ,; (n) at the points cr](.n) are
obtained by solving the n linear algebraic equations

(1 +A(n))g(n) - g(n) ’ (A. 4. 8)
where

2 = (Nl )y

b = {g(@™ y/n},
(A.4.9)
£
N T TR A
o)

= (n) .(n), _ (n) _(n)

= Aoy e - ge e YT}
The above method was used by Arbenz [7]. The case when the points

G§n) and t](.n) are uniformly distributed over [0,S] was considered in 1929 by

Krylow and Bogoljubow [68]; see also Kantorowitsch and Krylow [55, p. 124] .

Equations (A.4.9) are based on thequadrature formula

t
[ ety d, Us,t) = elty) [Ws,t,) - Wls, )], (&.4.9)
t1 ‘

where ty e [tl’ tz]. Cryer [25, p. 9] has used the following quadrature formulas

in place of (A. 4. 9):

t, Lot))+ o(t,)]
[Ewund ws,t 5 [V (s,t5) - U (s,t)], (A 4.10)
£
and
1:2
Jeemad vis,t) = Blelt) +A, o(t,), (A.4.11)

Y4
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Here, if P(s) #P(tl) and P(s) #P(tz) ,

_ ol Ay 2, 2 2 . A
A = ZTrrz[ > (c"+ry -ry) +ror, sin(Ay) log rz] ,

1 Ay 2, 2 2 , 2
A = zn[__z.ﬂ"_ (r™+ ry-r, ) + r.r, sin(Ay) log";:" I,

2 - 12 1
where
qu = Llj (S;tz) - llJ(S,tl),
ro= [P - Pty |
r, = [P(s) - Pl
r, = |P(s) - Pet,)l

if P(s)=P(t)),

Al =[ m +¢(t1 s t}_"‘)" Lp(tl ’ tl")]/417 5

A, =0;

Al = 0,

Ay, =0T+ ult,, t,+) - bty t,- )]/ 4.

Formula (A.4.10) is obvious. Formula (A.4.1l) is exact if ¢(t) is linear in t

and the arc P(tl) P(tz) is a line segment.

Numerical experiments.

Nystrom's method has been used by many workers including Prager

[106], Kandler [53], Richardson [1I2, p. 1], Kantorowitsch and Krylow [55, p. 129],

Birkhoff et al [13], Todd and Warschawski [130], Andersen [3]. Several workers

(including Nystrdm) have considered the case of an ellipse, and some comparisons

are made by Gaier [33, p. 55].

Three-dimensional problems have been considered by Martenson

[86, 87] and Kress [65, 66, 67].
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Numerical results for the case when C has corners are given by
Arbenz [7], Benveniste [12], Gaier [33, p. 57], Cryer [25, p. 11], Wendland [135, 137].
Finally, we remark that Mikhlin [ 89, -p. 155] applies formulas of
type (A.4.4) to a problem in which C is a square. The solution to two decimals of
equations (6) on page 157 of Mikhlin is (correcting a misprint)
pl=0.60, pz=0.80, }J.3=3.32.

Since LLB is the density at a corner of the square, the coefficient 1.1239 in equations

(6) should be changed to 1.1239 + .5 = 1.6239 according to (A.4.9). The solution becomes

by = 0.70, =107 p,=2.24.

H2
The interpolating polynomial (8) changes from
px+ i) = 2. 56><:4 + 0. 16x:2 +0.60
to the far more reasonable
px +1i) = 0. 08x4 + l.-fléx2 + 0.70.

Error Analysis

The error in Nystrom's method has been analyzed by Brakhage [15],
Anselone [4, 5], Kantorowitsch and Krylow [55], and Gaier [33].

For the case when C has corners the error has been analysed by
Benveniste [12], Bruhn and Wendland [16]; see also Petryshyn [102, 103], and
Phillips [104], Haack and Wendland [39], Polsky [105].

For the purposes of error analysis it is important to note that ¢
is periodic with period S . It is well-known that,when integrating periodic
functions, high accuracy can be obtained with simple quadrature formulas such
as the trapezoidal rule. Provided that care is taken, this periodicity property
can be used to substantially increase the accuracy. See, for example,

Birkhoff et al [13, p. 123], Himmerlin [43], Kussmaul and Werner [72].
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Solution of (A.4.3) and (A.4.8).

Equations (A.4.3)and (A.4.8) can be solved directly. However,

many workers have used the iteration

g(n’k""l) - _—A—(n)g(n’k) + -l—).(n) ,k,:].,Z,..., (A.4' 12)
which is a discrete analogue of the iteration
¢(k+1) T g0(k)+g/ﬂ. (A.4.13)

As is well-known, the rate of convergence of (A.4.12) and (A.4.13) depends upon
the spectral radii of A(n) and T, respectively.
The iterations (A.4.12)and (A.4.13) have been extensively studied.

See Todd [129], Todd and Warschawski [130], Schober [116, 117], Gaier [33,p. 21].

Comparison with finite difference methods for solving the Dirichlet problem.

The greatest advantage of the method of integral equations is its
flexibility, particularly for two-dimensional problems. It is possible (Cryer [25,
p. 8], Hayes [44]) to write programs which can handle very general boundaries.

(n)

Moreover, the discretization points cr]. can be chosen for convenience and so
as to provide the greatest coverage in regions where the solution is expected to
vary most rapidly.

However, it must be borne in mind that when ©» has been computed
it still remains to compute iy , which can take a surprising amount of time. For
example, in one example Cryer [25, p. 12] found that 1_3_‘ s E , and Z(n) s
could be computed in 20 minutes (on a computer with a multiplication time of
500w s) but that it took another 70 minutes to compute the values of u on an
appropriate grid.

Terry [128] has compared integral equation methods and finite differ-

ence methods for Neumann boundary value problems and finds that the finite

difference methods are faster.
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Related work.

See Hayes [44], Kupradse [69], Symm [125, 126, 127], Jaswon [50],
Jeggle [51], Maiti [85], Kussmaul [70, 71], Kussmaul and Werner [72], Barnard et al

[10, 11], Lynn and Timlake [80, 81], Tkebe et al [49], Seidel [121], Stiefel [122].
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APPENDIX B

RADON'S PAPER: A REWORKING

In this appendix we rework certain parts of Radon [110] and correct
some minor errors. Some of these errors, but by no means all, were
connected in the translation [111]. This appendix has been written because
several authors, including ourselves, have based their work on that of Radon.

We recall that C is of bounded rotation, if (Radon [110, p. 1126])

S
x(s) = x(0) + | cos[§c)ldr, 0<s<S,

(; (B.1)
y(s) = y(0) + [ sin[§(c)lds, 0<s <8,
0
where 9- 9(3) is of bounded variation on [0, S], thatis,
S
[ 1ade) | <.
0
Hence, (Riesz and Sz.-Nagy [113, p. 9])
\
(a) 'gis continuous except at a denumerable number of points,
(b) The derivative of J(s), 3 (s), existsa.e. (almost
everywhere in the sense of Lebesgue), (B.2)

(¢) The following limits exist:

$(0+); 9(8—); and 9(s+), Qr(s—), 0< s < 8. J
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Properties (B.l) and (B.2) remain true if the initial point is changed, if
multiples of 27 are added to 3, and if the values of 9’ are modified at
the (countable) points of discontinuity of Q’ Therefore, it may be assumed
without loss of generality that

(a) 9 is continuous at s =0 and s =8, \

() $0) =3es)T

(c) 9'(0) and 9'(S) exist and are equal, > (B.3)

(@) |9(s+) -Fs-)| < 7, 0<s<s,

(e) $(s)=3J(s+), 0<s<s. ,/

Points of C at which 9 is discontinuous are called corners, and points
of C at which |9(s+) - S(s—)l = 7 are called cusps. We have already seen
that there are only countably many corners. Since 9’ is of bounded variation,
there are only finitely many cusps.

When studying the properties of C, the main difficulty is that there
may be points on C which are points of accumulation of corner points. Let
P(s) € C be such a point of accumulation. Then there are corners P(Si) e C,
i=1, 2, ..., such that s; >s as i -, However, since g is of bounded
variation, !S’(Si+) - S(Si—)[—»o as i+, In other words, although C has
infinitely many kinks near P(s), the kinks become smaller as they approach
P(s). In consequence, C has some of the properties of piecewise smooth

curves, as can be seen from Theorem 2,1,

TThroughout this appendix modulus equations are to be understood as being
modulo 27,
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Radon's proof of Theorem 2.1 (Radon [110, pages 1128, 1130, and 1131])
contains three minor misprints:

(i) At the bottom of page 1128

g o

for [cos[$r) - $(o)ldr read [ cos(Ym) - HoH)ldr,
S s

. . 2
(ii) On line two of page 1129 for u read u.

(iii) On line three of page 1129 for "alle s, fir welche |s - ¢ | <h"

read "alle o, flir welche |s - ¢ |<h und o #s" .

Remark.

At first sight it might appear that by using a compaciness argument
€(s) could be taken to be independent of s in Theorem 2,1. This is not so as
can be seen by considering the case when C is an equi-lateral triangle.

The function (s, o) is defined by (2.1) for (s, o)€ # and (o, s) e &

Namely,

cos (s, o) = [x(s) - x(c)]/|P(s) - P(c) ], A

sin W(s, o) = [y(s) - y(a))/|P(s) = P(c) ]| , (B. 4)
for (s, o) e% y
s, o) =uylc, s), for (o, s)e . (B.5)

We now consider the arguments whereby the domain of definition of { is

extended to [0, S] x [0, S].
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First, it follows from (B.l) and (B.4) that if s is a point of continuity

of then'

lim (s, sy =Fs)+ 7. (B.6)
s'—*s
s'"—>g
Radon states [110, p. l131] that
lim  y(s', s") =Hs);

s'—s
s'—+g

however, we believe that (B,.6) is correct. Similar errors occur in most of
Radon's equations connecting ¢ and 9’, but these errors do not propagate.
We mark with an asterisk those equations where we differ from Radon. The

equations of Radon would be correct if the roles of s and ¢ were interchanged

in (B.4):

cos (s, o) = [x(o) - x(s)]/|P(s)- P(9],

sin §(s, o) = [y(o) - y(s)]/|P(s) - P(o)]|,
for (s,0) 69‘,

but this would require further changes. Benveniste [12] has used the above
equations but it is not clear whether his use of them was intentional.
It follows from (B.6) that U(s, o) can be extended by continuity to the

points s = ¢ which are not corners of C . Since P(0) is not a corner, ¢ is

uniquely defined if it is required that

1"I‘hroughout this appendix equations suchas (B.6) are to be understood as implying
the existence of the limits involved,
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0 < (0, 0) <27 . (B.7)

Remembering that P(0) = P(S) so that

S S
f cos[H(m)]dr = f sin[$(7)]dT = 0,
0 0

it follows from (B.1l), (B.3a), and (B.4), that

lim (s, +) = 30), (B.8)"
50
oS

so that { can be extended by continuity to the points (0, S) and (S, 0).

Finally, from (B.l), (B.4), and (B.5),

~
Ws, s+) = lim (s, o) = Hst) + 7,
o —>s+
b(s, s-) = lim Us, o) = Hs-)+ 7, (B.9)"
(2t Tl
for 0<s<8S .,
.)
Introducing
~
(0, 0), s=0,
b (s) = Y(s, st), 0<s<3, (B.10)
L (s, 8), s =35,
~
(0, 0), s =0,
y_(s) = (s, s-), 0<s<8§, (B.11)
L Ll-’(Sl S)l S = S,
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and setting
(s, s)=qj+(s), 0<s<8, (B.12)

the definition of ¢ on [0, 8] x [0, S] is complete.
By evaluating a certain contour integral on C, two useful (and

geomefrically obvious) formulas can be obtained:
Ws, 8) - y(s, 0) =7, 0<s<S, (B.13)
d,x+(s) -y (s)=W_ (s)-m, 0L<s<8S, (B.14)

where W (s) is the exterior angle at P(s) (see Theorem 2.1.).
The final arguments concern the connection between ¢ and ¢ . It
is asserted that (B.l), (B.2), and (B.3) remain valid if -9’ is redefined by means

of
(s)y+7m . (B.15)

To justify (B.15) it is necessary to obtain some further properties of g,
y is continuous on [0, 8] X [0, S] except at the points s = ¢ corresponding
to the corners of C. To analyse the behavior of | at these points one notes
from (B.1l), (B.4), and (B.5), thatif s €(0, S) and € > 0 are given then there

is a 6 = 6(s, €) >0 such that

|cos[y(s', s")] - cos[.g(s+) + 7] <e ,
|sin[y(s', s™] - sin[Y(s+) +7]| < €, (B.16)

for s<s'<s"<s +6,
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and

|cos[u(s', s"J] - cos[Ys-) + 7]| L €,
|sin[w(s', s™)] - sin[$(s-)+ 71| < e, (B.17)

for s -6 <s'<sg" <s.
It follows that

g lst) =g (s)e b (s=) =4_(s) .

(B.18)
b_(st) =y, (s), Y_(s-) =y _(s).
For example, it follows from (B.16) that
lim Y(s',s")
s',s"— s~
s'< s"
exists. Hence
$ (s-) = lim ‘{:lim b(s', s"i} .
+ [} " )
s'-»g~ g"—>s'+
= lm s’y s"),
s',s"-»s-
s|<sll
= lim Y(s', s) ,
s'—>s-
= HL'(S"I S),
=y _(s) .
From (B.3e), (B.6), (B.9), (B.12), and (B.18),
Y(s)y=y (s)+m, 0< s<S, (B.19)

while it follows from (B.l4) and (B.18) that

|y, (s4) - 4, (s3] <7 (B.20)
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Hence, since ¢+(s) is continuous when 3 is continuous, z,b+ is of bounded

variation. It is now easy to justify (B.15).
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APPENDIX C

PROPERTIES OF THE SPACE &

The space & was apparently first introduced by Hahn [41, p. 53] who
proved most of the results given here.

We recall that & consists of functions f for which the limits

f(s +0) = lim f(s+ |e|), 0<s<S,
-0
¢ (C.1)
f(s - 0) = lim f(s - |e|), 0<s<S,
e—~>0
exist and satisfy
f(s) = [f(s + 0) + f(s - 0)}/2, 0<s<8S. (C.2)

£ is equipped with the maximum norm., We also recall that S denotes the sub-
space of stepfunctions.

Theorem C.l.

& is a Banach space,
Proof: See Hahn [4l, p. 53].
Since ﬁ is clearly a normed linear space, it suffices to prove that &
is complete,
Let {fn} be a Cauchy sequence in & Then
f(s) = lim fn(s) (C.3)
n—>0

is well-defined, Itremains to show that (C.l) and (C.2) hold.
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Let 0<s<S. Choose € > 0. Since {fn} is a Cauchy sequence

thereisan N, =N

1 l(el) such that

lfn(t) - fm(t)|_<_ 51/3, for m, n>N, and te[0, S]. (C.4)
let m, n> Nl' Then there is an s' »* s such that

|fn(s‘) -f (s + 0)], Ifm(s‘) (s +0)| < €1/3 . (C.5)

- £
m
Combining (C.4) and (C.5),

lfn(s+0)—fm(s+0)]§_e if n, m>N

1’ 1°

Consequently, {fn(s + 0)} is a Cauchy sequence. Set

p(s) = lim fn(s+0), 0<s<8S. (C.6)

n->

Now choose €> 0. Then there is an N such that

|£(t) - £ (1) | €¢/3, for 0<t< S,

(C.7)
lp(s) - fN(s +0)|<e/3 .
Given N thereisa 6 >0 such that
1fN(s+0)—fN(t)|__<_e/3, for s<t<s+6 . (C.8)

Combining (C.7) and (C.8),

Ip(s) - £(t)| <€, for s<t<s+ 6. (C.9)
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Consequently, f(s + 0) exists for 0 <s <S8 and satisfies

f(s+0)=p(s)=1lim fn(s+0), 0<s<S§S. (C.10)

n—-bOO

In similar fashion it can be shown that fn(s - 0) exists for 0 <s<S§
and satisfies
f(s + 0) = p(s) = lim f(s-0), 0<s<8s. (C.11)
n—->00

The proof of (C,1) is therefore complete.

To prove (C.2) it sufficies to note that

fn(s) = [fn(s +0) + fn(s -0 /2,

and use (C.3), (C.10), and (C.11).

Theorem C,2.

If fe /S then f has at most a denumerable number of points of
discontinuity.

Let n> 0 and set
I = {se(0, 8); |f(s+0)-£s-0)|>n}. (C.12)

Then Iﬂ is a finite set.
Proof: See Hahn [40, p. 216] or Hobson [48, p. 304].
Suppose that, for some 7, Iﬂ is not a finite set. Then Iﬂ has at

least one limit point, s say, in [0, S]. Set I=(s, S) if s is a limit point



121
of (s,8) N Iﬂ; otherwise set I = (0,s). For €>0 set
I€=I N (s-¢, s+e) .
Since Ie n ]n is not empty, there is an s' ¢ Ie such that
[£(s}+0) - £(s' =0)|> n
1,52 € I€ such that
|£(s)) - £(s,)| > n/2 .

Consequently, there are points s

But this contradicts (C.l) (since IG lies on one side of s). Consequently,
as asserted in the theorem, Iﬂ is a finite set for all n .
Now let Mps Mpe oee be a decreasing sequence of numbers which tend

to zero. Set

o0
7=0 Y, Ini] U {o,s}.

Then J is denumerable. But ] contains all the points of discontinuity of f .
The theorem follows.

We recall that f is said to have discontinuities of at most the first

kind in [0,8] if the limits
f(s + 0) , 0<s<5,
£(s - 0), 0<s<8§,
exist (Hobson [48, p. 301]).

Theorem C. 3.

Let f be defined on [0,S]. In order that f have discontinuities of at
most the first kind, it is necessary and sufficient that for every ¢> 0 there
exist a, ,

i

0=a <a <...<a =8, (C.13)

such that
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o [f:(a,_j,apl< e, 1<i<n, (C.14)
where
w[f: (a,b)] = sup [f(tl) - f(tz)l (C.15)
a<t,,t,<b
1’2
Proof;: See Hahn [40, p. 217].

Necessity: Assume that f has discontinuities of at most the first kind. Let
€ >0 be given. Then to each s ¢ [0,S] there correspondsa & = 6(s,e)>0
such that

wlf: (s, s+6)N[0,8]] <e,

wl[f: (s -6,8)N[0,8]]<e.
Set

I,=(s~-06,st9) n[o,s].
Then the open intervals IS cover [0,S]. Hence [0,S] is covered by a finite
number of the IS , say by

Isi = (si-—ﬁi, si+5i) Nfo,s], 1<i<m.

Clearly, it may be assumed that IS (& IS iff i =j , and that S, < Siyl®
i j

Then IS and IS overlap, and there exist si such that
i i+l
' N -
sp €(s;48;%0) TSy = Op4qr S
d = = = = <qH <L
Setting n = 2m , ao o, an S, aZi-—l si , 1<i<m, and

a, =s!, i<i< m-l, itfollows that that (C.13) and (C.14) hold.
Sufficiency: Assume that at the point se [0,S] f has a discontinuity
which is not of the first kind, that is, either.

Case (i): s €[0,3) and f(s + 0) does not exist,

or
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Case (ii): s € (0,8] and f(s - 0) does not exist .

Consider case (i). Then there is an el> 0 and a 61 >0 such that

w [f: (s, s~I~c’3)]_>_e;l for all 6 ¢ (0, 51). (C.16)

Now suppose that (C.13) holds. Then thereisa 6 ¢ (0, 6,) such that

L

(s,s46) C(a ai) for some i . But then, noting (C.16), (C.14) does not hold

i-1'
for €= € - That is, in case (i), (C.13) and (C.14) cannot hold for all ¢ .
In similar fashion it can be shown that, in case (ii), (C.13) and (C.14)

also cannot hold for all ¢ . Sufficiency has therefore been proved.

Theorem C.4.

& is not separable.
Proof: Assume that I is separable. Then (Dunford and Schwartz [26 , p. 21])
there exists a denumerable sequence {fi} . fi e &J , such that for any f ¢ o )
and any ¢ >0 there is an fn for which
I - fnll < e, (C.17)
Let Ii be the set of points of discontinuity of fi and J = U]i . From
Theorem C.2 we know that Ii is denumerable so that ] is denumerable., Since

(0,8) is not denumerable, there is an s ¢ (0,S) such that s £ J. Set

0, 0<t<s,
1
= - ., t=
0 . s,
1, s<tLS.

Since s is a point of continuity of fi for all i, it follows that

le-£ 1 > >, forall i, (C.18)

Comparing (C.17) and (C.18) we see that we have reached a contradiction.
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Theorem C,5

2 is densein %,

Proof: See Hahn [41, p.55].
Let fe . Choose e >0 . Itfollows from Theorem C.3 that there

exist ai such that (C.13) and (C.14) hold., Hence, there exist ci such

that
£(s) - ;1< e, sela_j,a

C [= <. <
) S (a, 1 7 a,) ’ 1 1 n I}

(c¢. + Ci+l)/2’ s=a ., 1<i<n-l,

f(0) , s=a,

£(S) , s=an.

Then f ¢ §. Clearly,
l£(s) - £ (s)] < e, se(a, .a.
i-1 71

while it follows from (C.2) that
#(s) - £ (s))< e, s=a , 0<i<n.

Thus, ||f - f* [ <e . Consequently, & 1is densein o
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