Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

STATISTICAL INVESTIGATION OF THREE
STORAGE ALLOCATION ALGORITHMS

P. W, Purdom, S. M. Stigler
& Tat-Ong Cheam

Technical Report #98

August 1970

STATISTICAL INVESTIGATION OF THREE STORAGE
ALLOCATION ALGORITHMS

1. Introduction

In many applications it is necessary to allocate memory in consecutive
blocks of varying size. To this end, a number of dynamic storage allocation
algorithms have been devised, many of which are described by Knuth [1]. The
purpose of this paper is to compare the behavior of three of the better of these
algorithms, based on measurements of both their efficiency (in utilization of
memory space) and speed.

The three algorithms considered are the buddy system, the first fit method,
and the segregated storage method. The buddy system, first published by
K. Knowlton [2], allocates available space only in blocks which are a power
of two times some basic size. It is discussed in Knuth [1], and has been partly
analyzed by Purdom and Stigler [3] who found that the buddy system preforms
well from the point of view of speed, but that it can be somewhat inefficient
with respect to space utilization when subjected to random requests (see R. L.
Graham and L. M. Robson [4] for a discussion of how well the buddy system
performs when users are trying to cause trouble for the storage allocater). The
first fit method resulted from combining the techniques of several researchers.
Knuth [1] gives a discussion of the method, its historical development, and

some analyses of its performance. Very little, however, of a theoretical nature

is known about its performance. The first fit method keeps a list of all avail-
able space from which it fills requests with the firs;c. encountered block of
sufficient size. As we see later, this algorithm uses space efficiently, but
for some distributions of requests it can do poorly with respect to speed. The
third storage allocation algorithm, which we call "segregated storage", has not
been previously published, and will be described in the next section. It com-
bines some of the basic ideas of the buddy system and the first fit\ method.

As shall be shown in section 4, segregated storage is generally more efficient

in space usage (under the conditions tested) than either of the other algorithms,

and is much faster than the first fit method under conditions of heavy load.

2. The Segregated Storage Allocation Algorithm

By combining some of the basic ideas of the buddy system and the first
fit algorithm one can obtain a fast storage allocation algorithm which does not
have the buddy system's disadvantage of being somewhat wasteful of space when
requests are for sizes that are not powers of two. In the combined system k lists
of available space are kept. The ith list will have all available blocks whose

size is greater than a,

1 and less than or equal to a,, where a is zero and
i i

ak is the total amount of space to be allocated. The remaining ai's can be chosen

in any way so long as ai > ai-—l for 0 < i< k. One possibility is to let al =1
and aLi = Zai_l. This choice of a's was made for the version tested in section 4.

When a block of size b is requested, the first block from list i +1 is taken

where i is chosen so that a,>b>a, ;. If list i +1 is empty, then list i + 2

is used; if list i + 2 is also empty, then list 1 + 3 is used; etc., If all the
lists from i to k are empty, then one searches list i for a block which is
large enough. If there is still no space, of course, the request cannot be met
(unless one is willing to repack memory). Once the block to be used is found,
b cells are used to meet the original request and the remaining cells are put
on the appropriate available space list (when only a small number of cells
remain, it may be better to give the requester all of the cells in the block).
When a block of storage is freed, it is combined with its neighbors (as is done
in the first fit method) and put on the appropriate available space list,

The values of the ai will have a major effect on how fast the algorithm
runs, For any particular application of the algorithm one should investigate

what values work best, the choice being based on the request distribution size.

3. Method of Investigation

Simulation programs were constructed to gather statistics on the operation
of each of the three methods. Whenever the simulation requested memory space,
the program counted the number of list elements that were searched before either
finding a block for the item or deciding that there was no room available. When
there was no room available to accommodate the request, it was rejected and no
further action was taken on that request (except to count the number of requests
rejected.)

In the simulation, requests arrived as a Poisson process with rate A\ ,

the size of blocks requested was selected (independently) according to a geometric

distribution with mean size c , and the length of time the block of memory was
required was distributed according to an exponential distribution with parameter
one (independently of arrival time and size.) These distributions are similar in
shape to many such distributions measured on actual systems. (See Bryan [5]

and Batson et al [6].) These distributions were chosen to give a general indication
of the relative merits of the three algorithms; investigators interested in more
precise results for particular systems would, of course, need to perform further
studies.

Tables 1, 2, 3, give the mean space utilization (ratio of total number of
requests to requests accepted) and mean speed (mean number of searches required
to accept or reject requests) for the three algorithms, based on runs of 1600
accepted requests., Multiple and longer runs were performed at various values of
the parameters in order to investigate the accuracy of the simulations. The results
of these runs are given in Table 4.

In many applications one is interested in how these storage allocation
schemes behave when those requests which cannot be served immediately are
queued and then served as soon as space is available. The figures presented
here can serve as a rough guide to how a queued system would perform in those
cases where the load on the system is light (i.e. when the corresponding non-
queued system does not reject many requests), but they are not very useful for
predicting the behavior of a heavily loaded queued system. Comparisons be-
tween queued and non-queued systems are made particularly difficult by the fact

that the average size block rejected by the non-queued systems is much larger

(up to about twice as large) as the size of the blocks accepted.

4, Discussion of Results

Inspection of Tables 1, 2, 3 reveal that as far as utilization of memory
space is concerned, the segregated storage and first fit methods exhibit almost
identical performance, with segregated storage storage perhaps slightly more
efficient. The buddy system, however, rejects up to about 15% more requests
under conditions of heavy loading.

The comparisons of the running time of the algorithms, as measured by the
mean number of searches per request, reveal that the buddy system ran faster
than the first fit method except for some runs with light loading and some runs
with large mean block size (where both methods were fast.) The buddy system
was much faster than the first fit method for the important cases of heavy loading
caused by many small blocks.

The running time of the segregated storage method will of course depend
critically on choice of list sizes (the ai's of section 2.) Tor the case considered
here, where a:i = Zi—-l , the buddy system was always faster than the segregated
storage method, although the speeds were about the same except for runs with
light loading, The segregated system can be made to run much faster under light
loading by choosing a smaller set of ai's, (i.e., where the individual ai's are further
apart) because for light loading most of the time is taken by searching over empty

lists,

For applications where the loading rate changes slowly, it probably would
be worthwhile to modify the segregated storage method so that the algorithm
would change the ai's as the load changes. If the ai‘s are kept in a table,
they may be changed quickly. Just associate the ith old list of storage with

that new aj which satisfies (aj) new > (ai) old > (aj_l) new'

5. Tables

Tables 1, 2, and 3 give the ratio of the total number of requests received
to the total number of requests filled, and the mean number of searches per re-
quest (in parentheses), for the three algorithms based on runs of 1600 filled re-
quests., Table 1 gives the statistics for memory of total size 256 cells, mean
rate of requests ()\) ranging from 2 to 96, and mean size of blocks requested
(c) ranging from 2 to 64. Table 2 gives the statistics for memory of fotal size
128 cells, A ranging from 3 to 50, and c¢ ranging from 2 to 45, Table 3
gives the statistics for memory of total size 512 cells, A ranging from 6 to
104, and ¢ ranging from 3 to 85. Inall cases, the first of the three pairs of
numbers gives the results for the segregated storage method, the second pair
refers to the first fit method, and the third pair refers to the buddy system.

Table 4 gives the results of multiple and longer runs for X and ¢ equal to
(1,256), (16,16), (24,16), and (64,4). In each case the table gives means of the
data collected over three runs together with one standard deviation bounds at

various stages in the run, from 400 requests filled to 4800 requests filled. In

each case the results are given for both the ratio of requests received to requests
filled and the mean number of searches (in parentheses.,) As in tables 1, 2, and
3, the three sets of numbers refer to the segregated storage method, the first

fit method, and the buddy system, respectively.

References

Knuth, Donald E., The Art of Computer Programming, Vol. 1,
Addison-Wesley, Reading, Mass. (1968), pp. 435-45]1,

Knowlton, Kenneth C., "A Fast Storage Allocator" Communications

of the ACM 8 (1965), pp. 623-625.

Purdom, Paul W., Jr. and Stigler, Stephen M., "Statistical Properties

of the Buddy System," Journal of the A.C.M., 17 (1970), pp. 683-697.

Graham, R. L. and Robson L. M., to be published.

Bryan, G. E., "Joss: 20,000 Hours at a Console - a Statistical

Summary," AFIPS Conference Proceedings, Vol. 31, 1967, Fall Joint
Computer Conference.

Batson, Alan, Lu, Shy-Mingand, Wood, David C., "Measurements of Seg-

ment Size" Communications of the ACM 13 (1970), pp. 155-159.

~
e
o
o
[=}
ot
™~
o
N
=]
o~
e
[
[\
A
=]
N
o

ot

1.01 12,08 1.05 12,87 1,07 i2.397 .12 42,41 2,22 20 2,20
1,00 1.18: 1.03 11,29 1,06 (1.36 1.10 1,37 .46 23 47
1.03 (2.1% 1.07 12,13 1,17 02,23 1.18 (2,24 12,17 13
1.00 2.6°% 1.01 2,39 1.042.38: 3.10 12,28 1,13 42,27 S2LiE 37
1 1,00 (1.2%: 1,02 t1, 41 1,03 (1.4 1.10 41,75 1,15 (1,71 11,50 4
1.0311.8% 1.05 (1.81: 1.08 (1.8% 1.21 (1.94 1.27 (1.9 (1,56 3
1.082 {2.2% 1.04 (2,31 1.10 {2.z2"y 1.14 {2.18 1.29 i2.100
1.02 (1.55 1.04 (1.70% 1.06 (1.81) 1.18 (2.1 1.22 (2,17
1.05 11,69 1.11 1,71 1.16 (1.76i 1.28 11,85 1.37 (1.8
1.02 (2.14) 1.05 (2,103 1,09 (2.0 1.13 (2.1
1.01 (1.47) 1.04 (1,78 1.10 (2.0 1.13 (2.27)
1.03 (1,57 1.08 (1.65) 1.18 (1,791 1,24 (1,80
1.01 {2.00) 1.03 {1.94) 1,09 41.9% 1.13 (1,95 1.19 (2.0
1.01 {1.54) 1.02 (1.74H 1.08 (2,17 1.15 (2.60) 1.20 {2.70
1,02 {1.49 1,05 {1.563 .16 (LT3 1.24 (1.8 1,28 {1.84)

1.01 {1.80) 1.0
1,02 (1.83) 1.0
1.03 {1.4T) 1.0

4 (1,88 1,10 (1.96) 1.19 (2,000 1.26 (2.06)
5 (2.06) 1.10 (2.53) 1.21 (3.17) 1.29 {3.35)
7{1.55) 1,14 (1,66} 1.26 (1.78) 1.43 (1.94)

Mean Rate of Requests ()}

1.01 (1.78) 1.03 {1.6% 1,09 (1.87) 1.19 (1.93) 1.28 (2.10)
1.01 (1.85) 1.03 (2.04) 1.08 (2.60) 1.18 (3. 45) 1.31 (4.10)
1.04 (1.44) 1.09 (1.54) 1.15 (1.63) 1.26 (1.81) 1.38 (1,92
1.00 (1.63) 1.03 (1.65) 1.06 (1,74 14 (1,94 1.25 (2,100
1,00 (1,65 1.05 {2.55) 1.09 (3,04) 113 (3,17 1.28 (4.8
1,02 ¢1.3%) 1.07 (1.49) 1.12 {1,600 1.20 {1.7%) 1.34 (1.87)
1.01 {1.5T 1.06 (1.79) 1,15 (1,94 1.18(1.99; 1,32 (2.22)
1.03 (2,34 1,07 (2.861 1.15 (3.9T) 1.19 (4.35) 1.31 (4.8
1.03 (1.34 1.09 (1.50) 1,23 (1.82) 1,32 (1.9% 1.51 (2.13)
1,00 (1.53) 1.04 (1,67 1.14 (1.94) 1.16 (2.00) 1.30 (2.22)
1.00 (1.65) 1.02 (2.9 1.14 {4.8) 1.22 (5.4 1.32 45.9
1.01 (1.24) 1.10 (1,54 1.20 (1.79) 1,30 {1.9% 1.41 (2.08)
1.00 (1.70) 1.00 (1.50) 1.06 (1.72) 1.18 (2.02} 1.28 {2.30)
1.00 {1.33) 1.02 (2.5) 1.09 {4.0) 1.22 (5.9 1.31 (6.7)
1.00 (1.22) 1.02 {1.31) 1.17 (1.73) 1.28 {1.9%) 1.45 {2.24)
1,00 (1,72} 1.02 (1,59} 1.13(1.98) 1,29 (2.4 1,40 (2.5
1.00 {1.44) 1.02 (2.8 1.13 (5.3 1.31 (7.5) 1,41 (8.1)
1.00 {1.19) 1.08 (1.52) 1.17 {1.76} 1.36 (2.14) 1.54 (2.38
1.00 (1.70) 1.03 (1.63) 1,18 (2.18) 1.27 (2.30)
1,00 (1.ad) 1,07 {4.1) 1.23 (6.7%) 1.34 (7.8
1.00(1.18 1.10 (1.58) 1.28 (2.05) 1.42 (2.24)
1.00 {1.72) 1,10 (2,05} 1,25 (2,44 1,35 {Z.60)
1.00 {1.58: 1.09 (5.3) 1.29 (8.3) 1.40 (9.4
1,00 1,18 1.14 (1.7h 1.35 (2,200 1.53 (2,45}
1.00 (1.69: 1.09 {1.92s 1,26 (2,45
1,00 (1,69 1.10 (5,3 1.30 (8.4
1.00 (1.17» 1,18 (1,84 1.4242.37
1.00 (1,70 1.17 12,26
1,00 (1,74 1,18 (7063
1,00 11.20: 1.24 (2,00,
1.00 t1,7%: 1,27 12,64
1.00 12,00 1.26 18,5
1.00 1. 22: T.26 12,14
Table 1: Space utilization and (speed: for memor: S
of total size 256 cells for the segregated storage and

first fit methods and the buddy system, respectively.

Mean Rate of Requests (\)

Mean Size of Blocks Requested (c)

2 3 4 7 11 17 45
1.01 (2.95) 1.05 (2.52) 1.52 (1.99)
3 1,01 (1.30) 1.06 (1.40) 1.51 (1.70)
1,04 (1.92) 1.15 (2.01) 1,68 (1.90)
1,01 (2.34) 1.10 (2.05) 1.25 (2.16)
7 1.01 (1,43) 1.10 (2.02) 1.26 (2.37)
1.04 (1,56) 1.16 (1.72) 1.35 (1.82)
1.0C (1,91) 1.08 (1.83) 1.26 (2.05)
14 1.00 (1,50) 1.10 (2.63) 1.27 (3.23)
1.01 (1.35) 1.16 (1.66) 1.39 (1.89)
1.02 (1.64) 1.07 (1.76) 1.29 (2.15)
28 1.02 (2.05) 1.08 (3.12) 1.33 (4.95)
1.05 (1.34) 1.13 {1.58) 1,43 (2.04)
1.01 (1.49) 1.16 (2.14) 1.35 (2.43)
50 1,02 (2.39) 1.20 (4.80) 1.31 (5.82)
1,04 (1.28) 1.20 (1.79) 1.38 (2.14)

Table 2:

Space utilization and (speed) for memory
of total size 128 cells for the segregated storage and
first fit methods and the buddy system, respectively.

()

Mean Rate of Requests

Mean Size of Blocks Requested (c)

3 6 9 14 23 34 85
1,00 (2.50) 1.02 (2,26) 1.31 (2.08)
6 1.00 (1.38) 1.02 (1.50) 1.35 (2.46)
1.01 (1.71) 1.06 (1.72) 1.43 (1.90)
1,00 (1.81) 1.07 (1.82) 1.18 (2.03)
14 1.00 (1.59) 1.06 (2.17) 1.18 (3.29)
1,01 (1.40) 1.11 (1.63) 1.31 (1.85)
1.00 (1.53) 1.06 (1,.76) 1.21 (2.13)
28 1.01 (2.07) 1,05 (3.02) 1,20 (4.87)
1.00 (1.29) 1.12 (1.58) 1.37 (2.06)
1,00 {1.47) 1.11 (2.05} 1,30 (2.52)
56 1.01 (2.39) 1.09 (5.77) 1.28 (9.00)
1.03 (1.33) 1.15 (1.71) 1.44 (2.32)
1,00 {1.72) 1,15 (2.44) 1.38 (2.98)
104 1.00 (2.21) 1.16 (9.89) 1,34 (13.58)
1.00 (1.23) 1.23 (2.10) 1.44 (2.57)
Table 3: Space utilization and (speed) for memory

of total size 512 cells for the segregated storage and
first fit methods and the buddy system, respectively.

21°Z

¥6°1

(10° +0L°1) 10° +
(I0Y+%1°1) ¥0°

20° +82°1

(#0° + 18°1)

S¥°1

I
t

20° +P1°1

(60* + ¢9°1)
(60° F 51°9)

(10" ¥+ €0°2) 10°
(P1° + 12°6) 10° +¥€°1

N

(60° ¥ L¥°¢) 10° + 61°1

{(20° ¥+ 86°1)

10° F60°1

008"

FLYP 1) P00 + ¥6°1

(20" +

10° + 61

vl

(10° # 12°2) 10° +

(10° ¥ GL°1) 00° + 60°1

(¢0° +18°1)20° +82"°1

(80° + 05°¢)
(zo°® ¥ 86°1)

20° +21°¢

(10° + 69 °1)

(Z0O° T$0°2) 20° * ¥%°1

10" +%1°1
00° +60°1

(#0° ¥ 59°1)

76°1
Yo" +¥6°1

(10° F$1°1) $O° +
(€0° #L¥°1)

10° +02°1

10° +61°1

£e°l
Fel

(F1° F61°G6) 10° +
(20 + 22°2)

(60° ¥ g0°9)

000%

10° +

(¢0° +GL°T) T0° +60°1

F21°¢

20° +

(10" ¥ 0L°T)

(Zo* ¥+ 18°1) 10° + LZ°1

+PP°1

20° +

(€0° ¥€0°2)

20° +P1°1

(50° +99°1)

26°1

F

(10° ¥+ %1°1) €0

+ 02°1

00° +

$0° ¥ $G°¢)
(10° ¥86°1) 00° +

(

(61° + 12°9) 10° +$€°1

FPI°T
10° +60°1

00" +

1° ¥50°9)

(90° + 6L°1)

¥/

002t

(Z0° 8% °1) €0° + 26°1

61°1

(10° + 12°2) 10° T ¢¢°1

number

{(Z0O°* F0L°1) G0° ¥ 21°2

2°1
12°1

N |

(Zo*® ¥ 18°1) 10" +

(20° ¥ 10°2) €0° + 2% °1

(90°* ¥ 1L9°1) 20° + %1
(61° F%1°9)
(60° F 6L°1)

(10° F€1°1) 20° +26°1
(20° F8%°1)20° +26°1

{80° ¥ 65°€) 20° +
(¢0* ¥ 00°2)

(LI° ¥ 61°G) 10° T ¥%E€°1
(€0° F 12°2) 20° +

+60°1
60°1

10° +

00%¢

+02°1

10° +

€e’l

10° +

of
[\
o o
- O
N
4 4
L] L]
o O
U W
-
2 o
~ =
[O]
o
o L]
OO
[N ST]
et
< .
[A S\
-]
S
L] L]
oo
[
-
o L]
o0 O
- b
= -
° (-]
OO
[NV e o]
ot ot
o o
oW
N
I+ 14
o L]
oo
W
~ o,
o []
O N
[N
+ I+
L3 L]
O N
W oo
bt et
o -]
bt
U O
4 I
o (]
OO
DN b
-
Q e
ON
NRN
+ i+
e o
OO
o NV
St

requests
)

o

o

o

ot N b
o o o
No) [aadiiN]
] N o
1+ I+
° e o
) oo
w =3 >
- - =
L) e &
o ~
o0 o
-+ ok
o s ©
o oo
o N
ot bl et
° o e
™ N
o 0o =
i+ 4+ 4+
o e O
o oo
e - N
™ -%
° o o
o 0o n
— N O
I+ 4+ 1+
o o
o o -
] N
et ot et
° e o
w W
w [T
I+ +
® @ ©°
o) o o
o DY
N N O
o L
™ o ™
W] —
I+ H
o e o
o O
w O
= r=
— it
o e o
o -
O U O
I+ I+ +
@ e @&
) oo
ot [
- -,
° e o
o) - O
o =T
= + i+
o o o
o o
s i

filled

(Z0° * 6% °1) $0° T 06°1 0091

01°1 (20° F¥72z2°2) 10°F¢¢°1 (10°F10°2) 10° +02°1

(€0° ¥98°1) 10" +

{(20° F69°1) 11° +61°¢

(80° F20°2) L0 F¢F°T (20" ¥ 18°1) 10" +L2°1
(21° +85°¢)

(Lg* ¥ 11°9)

(60° F €L°1) €0° F91°1
($€° ¥ 62°G) 10° +

88°1

+

(10° F €1°1) 90°

+ 12°1

20" +

+¢e°l

€0° +

01°1

0021

{¢0° ¥ 6%°1) 90" +88°1

81°1

(10" ¥ 00°2) 20° +

(¢o° ¥ 12°2) 20° + ¢¢°1

(LO® ¥ €6°T) 10" F 0T°1T

T (£0° F69°1) L0° +¢€1°C

(€0° ¥ €8°1) €0° + 8¢

(81" ¥ ¥L°€)

+ 17 °1

80° +

(60° * 66°1)
(86" + 60°G) ¥0° *

S1°1

(80° F €L°1) €0° +

(10° ¥ €1°1) 20° F06°1

(zo* ¥ 16°1) 20° +

12°1

}.~

20°

€e°1

(Z€E° F98°%) 10° ¥ 60°1

008

06°1

(€0° ¥20°2)20° +61°1

(10° FL1°2) 20" +2¢°1

60°1

I+

G6°1) 10°

+

(90°

(P0° + 69°1) L0 +91°2

G0° + 62°1

(60° + 18°T)

91° + L6°T) T1° + 6€°1
2P FLL°W) PO v 1€°1

{
{
\

(I1I°F08°T)%0° + 91°1

(18° ¥ €2°%) 20° +

(10° ¥+ €1°1) €0° + 68°1

(0P ° + 6G°¢) €0° + 12°1
(#0° * L0°2) €0°

I

L0°1

00¥

06°1) €0° + 68°1

(20° +

61°1

(90 +22°2) ¢0° + 1¢°1

(€1°F21°2)20° +80°1

=X

= 92Is-2AR °]

9672

=X

2Z1s 8AR °9]

91

=X

9] 92IS~-9A®R °H7

=X

= ©ZIS-9AR °F9

4

¥ oldeL

suny 19HuoT pue o[dTIINIA JO S1[NSdY 9yl

