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ABSTRACT

An Interactive, Heuristic Program for Learning
Transformational Grammars

by
Sheldon Klein and Michael A. Kuppin

An interactive system for learning transformational grammars of natural
languages has been programmed in ALGOL and is operational on a B5500 time-
sharing system. The program is part of an "automated linguistic fieldworker"
system intended to duplicate the functions of a human linguist in working with a
live informant.

Using a battery of analytic heuristics, the program derives grammars contain-
ing context-free phrase structure rules and transformations via interaction with an
informant who, minimally, is expected to be bilingual in English and the language
under analysis. The informant must input sentences in the subject language,
indicating spaces between morphological units, and may be required to answer
questions about the validity of the program's test productions.

A skilled linguist may choose to use the program as a partner in fieldwork. He
may inspect the grammar at any time and guide the analysis by inserting or deleting

rules of his choice.






An Interactive, Heuristic Program for Learning
Transformational Grammar

by
Sheldon Klein and Michael A. Kuppin

1. Introduction
1.1 Purpose

David G. Hays in his introductory textbook on computational linguistics
makes the following distinction among degrees of computer participation in linguistic
research (11):

"The lowest level uses the computer merely as a compiler of data; programs
to make concordances or maintain dictionaries are effective, but merely
clearical, aids. The middle degree is computer testing of information gained
in other ways, as when a machine-translation program and table of translation
equivalences is tried out on new text. The highest degree is reached when the
computer program actually embodies the linguist's analytic ideas; a device that
could be parachuted into a jungle to learn an unknown language without super-
vision would be participating in linguistic research to the highest degree."”

It is toward this highest degree of participation that our research is directed.

The program described in this paper is part of AUTOLING, an automated lin-
guistic fieldworker intended to duplicate the functions of a human fieldworker in
learning a grammar through interaction with a live human informant. The goals for
the total system include integration of the analysis of phonology and morphology. In

this paper, however, we report on the component that learns context-free grammar

rules and transformations.

£
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1.2 Methodological Significance

An algorithmic discovery procedure is one that guarantees success; an
heuristic discovery procedure is one that may work but provides no a priori guarantee
of success. The validation of algorithmic discovery procedures should be deductive
in nature. Heuristic methods can only find their validation empirically, through
real world testing.

Many linguists, including Chomsky and Lamb, feel that their theoretical models
are independent of grammar discovery procedures, particularly because the existence
of such procedures is open to serious question. A strong empiricist (logical postivist,
operationalist, etc.) might argue that linguistic theories have no meaning unless the
means of discovering the required grammars can be formulated. Archetypical of the
situation is the contrast between Chomsky's embrace of the rationalism of Liebniz
and Descartes as a means of defending empirically untestable hypotheses (1) and
Charles Hockett's renunciation of all linguistic theory since Bloomfield (12), coupled
with a labelling of Chomsky as a "neo-medieval philosopher" (13).

While numerous linguists have given informal and semi-formal directions for
writing grammars, such directions have not led to any satisfactory formal or empirical
demonstrations of the efficacy of their methods. Creation of a system like AUTOLING,
containing a formal statement of discovery method that is subject to rapid, direct,
empirical verification, establishes an intermediate theoretical battleground where
rationalist and empiricist may find common criteria for the validation of theoretical

models.
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1.3 Brief History of Automated Grammar Discovery Research

The history of discovery procedures in language analysis is as old as the
history of linguistic fieldwork. However, one of the earliest attempts at providing
formal methods based on distributional criteria was made by Zellig Harris, 1946
(9) and 1951 (10). Rulon Wells was also a pioneer in this methodology, 1947 (24).
Both men suggested analytic techniques for deriving grammars that can be viewed as
phrase-structure in nature. The 1946 paper of Harris also marked the introduction
of linguistic transformations into modern linguistic theory.

Solomonoff suggested the use of a computer for deriving phrase-structure gram-
mar from texts in 1959 (22). His analytic methods were anticipated by Harris, although
not as concisely. Paul Garvin suggested the use of heuristics in the choice of dis-
tributional tests on text data in 1961 (5). In 1964, E. Mark Gold indicated that a
discovery algorithm for learning context-free grammar might be possible if informant
interaction were used (8). Garvin has discussed the use of heuristics in automated
informant fieldwork, 1965 (6), and has worked on an interactive morphological analysis
program, 1967-1970 (7). J. A. Feldman, 1967 (2), 1969 (3), and J. F. Horning, 1969
(14), are among others who have discussed various methods for grammar inference.

There are a number of programs in existence involving some form of language
learning. K. C. Knowlton, 1962 (18), and Mc Conlogue and Simmons, 1965 (19), pro-
duced programs that enable a parser to learn correct parses. These programs required
the informant to supply corrective information in either a phrase-structure or dependency
notation. L. Uhr, 1965 (23), and L. Siklossy, 1968 (21), produced programs that learn
finite state grammars and involve some morphological analysis. Feldman, et. al.,

1969 (4), produced a program that learns context-free grammars,
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Descriptions of work on AUTOLING appeared in 1967 (15,16) and 1968 (17),
and described unconnected programs for learning morphology, context-free grammars

and mono- and bilingual transformations.

1.4 Division of Labor between Man and Machine

Minimally, the human informant is assumed to be bilingual in English and the
language under analysis. He must also be able to input sentences on a teletype in
the subject language in a consistent transcription with spaces left between morpho-
logical units. (Eventually, a program to analyze morphological units will be added,
eliminating this requirement.)

The informant is also required to answer 'YES' or 'NO' questions, posited by

the program, of the form:

CAN YOU SAY: «

where « is a test sentence generated by the program from its tentative grammar of
the language. The program may also ask the informant to supply corrections for illegal
sentences (i.e., for test productions that he has previously rejected) if he can think
of any corrections.

In practice, the informant may be a skilled linguist. He may choose to guide
the form of the grammar under analysis by a careful choice of input sentences (it is
at his option to inspect the embryonic grammar at any time). Also, he may, whenever
he wishes, use special system commands to insert or delete rules of his choice,
setting the mold for an application that would use AUTOLING as a partner in the

analysis of the language.
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The program, by referring to a number of analytic heuristics, continually
posits new rules and revises old ones to account for new informant input sentences.
When rules are coined or modified, their implications are tested by offering the in-
formant sample productions derived from the modified rules in the posited grammar.
As the informant accepts or rejects these test sentences, the grammar is modified
accordingly.

The program also attempts to parse each new sentence input by the informant,
a successful parse indicating the adequacy of the grammar for that sentence., If the
(multi-path) parser cannot find any complete parse, the partially completed analyses
(top nodes) are used as data for the rule coining heuristics. Test sentences that are
rejected by the informant serve as a control on future rule construction, in that the
program will not coin rules that permit an illegal sentence to parse. In some cases,
the program asks the informant for a correction of the rejected sentence and uses the
response to posit and test a new transformation. Valid sentences that are supplied or
approved by the informant serve as a control on the coining of new transformations,
for the testing mechanism avoids the construction of transformations that block the

production of sentences known to be legal.

1.5 Form of the Grammar

Because current transformational grammar theory is in a rapid state of change,
we felt it advisable to build a model that was not restricted to the requirements of any
particular theoretical variant. As a result, the system coins rules with very few re-
strictions as to form. Because of this paucity of restrictions, the context free (CF)

rules essentially describe a surface structure. The transformations can be of almost
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any form that operates on a tree, and they provide for a variety of phenomena, in-
cluding insertion, deletion and permutation. Specialized testing of particular theoretical
models requires the addition of special restrictions to the rule coining processes (see
section 4).

In one sense the kind of grammar produced is a function of the informant. In
the absence of a morphological analysis component, he may rewrite his inputs mor-
phemically or chose to distinguish allomorphs. In the latter case, the system will
learn rules governing their distribution, doing the work of the missing component. If
the informant transcribes phonologically conditioned allomorphs as separate units,
the system will coin rules describing their distribution without reference to phonolog-
ical conditioning. Minimally, the informant should make morphs with identical
spellings but different meanings appear to the program as being different; otherwise,
they will be treated as identities.

Much also depends on the extent to which the informant is willing to accept
semantically nonsensical but grammatically correct test sentences. If he rejects such
sentences, the program will, of necessity, learn a radically more complicated gram-

mar that must account for aspects of the real world in its rules.

1.6 Aspects of the System Implementation

The program is operational on a Burroughs B5500 time-sharing system and is
programmed in Burroughs Extended ALGOL. The program itself involves major use of
list-processing techniques coupled with intensive data packing in partial words.

Space is provided for a maximum of 1022 conflated CF rules (i.e., sets of rules with
identical left~hand sides) and 3072 morphemes. The program requires approximately
30K words, at four instructions per word, and the arrays approximately 15K. When
executed on the B5500 time-sharing system at the University of Wisconsin, anaverage,

time~shared core allotment of 18K is required.
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During the course of language analysis, the program saves the entire state
of the system at frequent intervals. Accordingly, it is possible to restart the analysis
from an earlier point, if the informant makes an error, or to break off analysis until
a later time. With this feature analysis of literally thousands of languages can be
conducted at the same time, shifting from one to another as desired, and limited only

by the available disk storage space.

2. The AUTOLING System

2.1 Quverview
The overall flow of AUTOLING is shown in figure 1. The dashed lines append
important subblocks which arise from deep within another block.
(insert figure 1 here)
The major subsystems assumed in figure 1 are:

a) The Multi-Path Parger, which yields all complete parses or sets of

partial parses.
b) The Generator, which expands a CF rule into a terminal P-marker whose
syntactic validity the informant must specify.

c) The Context-Free Inference Heuristics, which attempt to infer changes or

additions to the CF grammar to account for a new utterance.

d) The Default Context-Free Heuristic, which will always coin a new CF rule

to account for a new utterance.

e) The Substitution Heuristics, which attempt to substitute the name of a

rule into another rule or transformation.
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f) The Class~Splitting Heuristic, which splits a morpheme class, as re-

quired, into two or more subclasses.

g) The Context-Free Cleanup Heuristics, which remove redundancies and

extraneous rules from the CF component.

h) The Transformation Learning Heuristic, which attempts to coin a trans—

formation from an illegal sentence and a correction.

i) The Transformation Combining Heuristic, which attempts to combine

two transformations into a single transformation.
j)  The Recycle procedure, which discards the current grammar and rebuilds
a new one from the existing set of legal utterances.

An important aspect of AUTOLING, hinted at in figure 1, is the manner inwhich
the illegal utterances are used to prevent the coining of bad rules. Basically, all
the heuristics of AUTOLING attempt to induce rules or transformations with the
widest possible generality. After any rule is changed, a sentence is generated and
presented to the informant. If the informant accepts the sentence, the change and the
generalities it implies are assumed correct. If the sentence is rejected, the change
is discarded and a less general change may be proposed or not, depending on the
particular heuristic. As the testing of the implications of a change is only partial,
errors in the grammar will inevitably occur. One corrective measure is to coin a
transformation. Before this is done, however, several less drastic remedies are
usually tried. First, the changes made in the rule are withdrawn and an attempt is
made to reparse the illegal (or illegals) which were generated in testing the change.
If they no longer parse, the error is corrected. If they continue to parse, earlier

changes, if any, are thrown out and the illegals retested. If illegals still parse,
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it is then necessary to coin a transformation. Further protection is provided by
attempting to parse all known illegals whenever a change is made and before querying
the informant.

As it is possible to coin CF rules and transformations which will permit
illegal sentences to be generated, so is it possible to coin a transformation which
blocks the generation of a known, legal sentence (called a "hlocked" legal). This
case arises whenever a transformation rewrites the P-marker of a legal sentence
in such a manner as to yield a different terminal string. This problem is prevented
by parsing and applying transformations to each legal sentence during the trans-
formation coining process, thereby blocking the coining of any such transformations.
The creation of such a bad transformation can also arise indirectly by a change to
a CF rule. This situation is tested for periodically and, if found, leads to a rule

recycle.

2.2 Multi-Path Parser

The parser is fully multi-path and bottom-to-top. It computes all possible com-
plete parses of a string or, if there are none, will compute all possible partial parses.
The highest level nodes of each partial parse (called "top nodes') are used by the CF
heuristics in infering changes to the grammar, but only those strings of top nodes
whose length is the same as that of the shortest string found are retained. In some

cases levels of top nodes beneath the highest level will be used by the heuristics.

2.3 Generator
The generator is a rule testing heuristic, invoked whenever a change is at-
tempted in the existing CF grammar or a new transformation is coined. Given a CF

rule or a set of nodes derived from a newly coined transformation, it constructs a
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P-marker containing this rule or set of nodes, expanded to terminal elements and
dominated by a sentence rule. Expansion is primarily random but may be directed in
the vicinity of the given rule or set of nodes. Transformations are then applied to
the P-marker to yield a final form. If this form is unknown, the informant must pass
on its syntactical validity. If it is a known illegal or a "blocked" legal sentence,
the test has failed. If it is a known legal sentence, another sentence is generated,

unless all possible sentences have already been examined.

2.4 Context-Free Inference Heuristics

2.4.1 Form of the Context-Free Grammar

The CF grammar consists of:
a) A set of terminal elements, Ti’ which are morphemes.
bh) A set of non-terminal elements, Si‘

c) A set of non~sentence rules, Ay of either one of two forms:

1) The morpheme class rule

?‘k.: —Sk~»T£
1

or

A i T8 8y

i
where SE is itself a morpheme class rule.

2) The general form

}‘ki: S, — By By-e By

where ﬁi is either a terminal, T

B, or a non-terminal, SB . In

1 1

general AUTOLING does not create any rules of this type with terminal

and non-terminal elements intermixed.
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d) A set of sentence rules, Af‘, of the form:

*
. % e
?\ki. Sy Bl BZ...ﬁ

n
where Bi is terminal or non-terminal. All non-sentence rules must be
dominated by one or more sentence rules. A sentence rule may validly

dominate another sentence rule.

Any rule (except a morpheme class rule) may be recursive.

2.4.2 Inference of New and Revised Rules

For each new utterance the CF inference heuristics first propose and then
make and test changes and/or additions to the CF grammar. Fach proposed change
is based on the comparison of a string of top nodes against an existing rule in the

grammar. Two major divisions are made, dependent on whether the match frame
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yields a single or multiple mismatches. Further subdivision and classification is
based on the type of mismatch(es) which occurs and permits a ranking of proposed
changes by order of desirability. After establishing such a ranking over all strings
of top nodes and rules, the highest ranked set of proposed changes is made to the
grammar and tested by selective generation (see figure 2). If this test fails . the old
grammar is restored and the next highest ranked changes are tried, etc. Should all
sets of proposed changes fail, the default CF heuristic is invoked.

(insert figure 2 here)

The comparison of a string of top nodes with the right-hand side (RHS) of an
existing rule results in a pattern of matched and mismatched elements. Only two
such patterns are felt to infer a logical sequence of changes and/or additions to the
CF grammar. By order of ranking (desirability) these are (see figure 3):

a) A single pair of mismatched strings and at least one pair of matched strings.

b) An alternating pattern of matched and mismatched pairs of strings, where

all mismatched strings are of length one and both full strings are of the
same length.
The basic heuristic is to coin for each mismatch two new rules whose RHS's are the
mismatches and to change the rule on which the frame test was made to reflect these
new rules (see figure 3).
(insert figure 3 here)
There are, however, several variations of this scheme, classified according to mis-

match types as follows:
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Set n = number of
strings of top nodes

v

Set 1 = 1

¢

Make frame test between ith string of
top nodes and all existing rules E——

&

Compute desirability factor for ith top
nodes and place frame on an ordered list

v
CIS if_n?> yes N Set

i=1+4+1

no

Take topmost (best) frame off list and
compute changes to CF grammar it
implies

Make these changes to rules and
cgenerate test senternces

l Delete topmost]

____(yes frame from list
- Does informant accept all sentencesé T

1o

failure

EXIT
with

no
CWas frame a multiple mismatch cas%—v{ Restore old grammar

¢yes a

Read a correction and
coin a transformation

Was a transformation no
coined successfully 7/

yes

EXIT

with success

FIGURE 2: Flowchart of Context~Free Inference Heuristics




Rule:

Topnodes:

Changed rule:

New rules:

(a) The

Rule:

Topnodes:

Changed rule:

New rules:

11b
85—*82 MAN 8684
S2 MAN S7 S3 89
85 -— SZ MAN SX
Sx‘* Sb S4
SX~»S7 S3 89
single mismatch case
%8 — | € .
S11 %3 S7 HIT 6 BIG ‘34
THE S7 SIT 6 BIG 89
%S c
Sll S3 S7 Sx 96 BIG Sy
—S3~>THE

-S_ - HIT | SIT
X
8,8, | s

9

(b) The multiple mismatch case

1. S. must be a morpheme class marker.

3
2, If S4 and S
be

9

-5 —35
4

S

FIGURE 3

4 9 °

Klein and Kuppin

are both morpheme class markers, the new rule will

Examples for the Context-Free Inference Heuristic
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a) A single morpheme vs. a single morpheme class marker. Coin a single
new rule which adds the morpheme to the morpheme class (see figure 3b).
Change the matched rule, if required.

b) A single element vs. a single element (except case (a)). Make the normal
changes, but if the elements are either both morphemes or both morpheme
class markers, mark the new rules as morpheme classes also (see figure
3b). The case of a morpheme vs. a non-morpheme class marker is not
allowed.

¢) An overlapping mismatch of non-terminals of the form

S ...8 vs. S ...5_ S ...S

[0 & (64 o (23 a
1 n 1 n 1 n

Coin the new left-recursive rules

S. —-S S ...8
bd X @ o
1 n

and substitute Sx into the matched rule. If the testing of these changes
fail, try again as case (d).
d) A mismatch of two strings of non-terminals (except case (c)). Make the
normal changes (see figure 3a).
Note that two specific possibilities are not allowed: adding a morpheme to a non-
morpheme class and coining a rule with terminals and non-terminals intermixed on the

RHS.
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2.4.3 Detection of Redundancies and Comments

Several types of redundancies and loops are checked for and avoided when
coining new rules. These redundancies arise only in cases (a) and (b) above, and
are as follows:

a) For the mismatches S_vs. S_ (or S_ vs. T_ ), the rules

X v X z
S —-S or S —S (orS — T ) already exist. Add no new rules but
X y 1 b4 X b4
substitute the existing rule name in the matched rule.
b) For the mismatches « vs. B, there already exist rules Sx — o and
SX — B . Add no new rules but substitute Sx in the matched rule.

¢) In the case of multiple mismatches, duplicates may occur. For example,

in the frame

PABRC
PWIA B|J|C |2

the mismatch 'Z' vs. '"W' occurs twice. In such cases only one set of
new rules is coined.

d) A loop will arise if rules such as

are coined. This is detected and prevented.
As noted earlier a single mismatch frame is ranked higher than a multiple mis-
match case. There is one exception. In such a case as the frame

C z
C z

B
B

Y
‘U

AlX!
AW;
rather than coining rules from 'XBY' and 'WBU', it is preferable fo treat this as the

double mismatch 'X' vs. '"W' and 'Y' vs. 'U"'.
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In the case of a multiple mismatch, there is a strong possibility that a context-
sensitive pattern is present. Accordingly, if such a frame fails, the coining of a

transformation is attempted before proceeding to the next ranked frame.

2.5 Default Context-Free Heuristic

This heuristic is applied when the CF inference heuristics all fail or when none
apply. The basic default heuristic coins a new rule whose RHS is composed of a
string of top nodes (see figure 4). Each string of top nodes is proposed as a rule in
turn until one succeeds or all fail. If all fail, each string of top nodes is again
proposed as a rule and an attempt is made to coin a corrective transformation, until
a transformation is successfully coined or all attempts have failed. If all else fails,
a new rule is coined whose RHS is the original utterance (morpheme string).

(insert figure 4 here)

A special case is that in which the string of top nodes of of length one, implying
that the rule corresponding to the top node would yield a successful parse if it were
a sentence rule. The heuristic thus attempts to make this rule into a sentence rule,
and, if successful, all other rules with the same name are also proposed as sentence

rules. As usual, each top node is tried in turn until one succeeds or all fail.

2.6 Substitution Heuristics

These heuristics are invoked whenever an existing rule is changed or a new
rule is added. The RHS, A, of the changed (new) rule is compared against the RHS
of each CF rule in the grammar. If the matched RHS contains the string A, in whole
or in part, an attempt is made to substitute the name of the changed (new) rule for the

matching part. There are three cases:
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strings of top nodes

Is n = 1 and are yes
topnodes all morphemes ?
4 no
Set 1 = 1 ]
@ >
yes / Are top nodes of no

\length one ?

4

Make rule corresponding to ith Coin a new rule with RHS
top node a sentence rule and consisting of ith top nodes
generate a test sentence and generate a test sentence
Does informant no no Does informant
accept sentence?}ﬁ“ Restore old grammar Q—_—‘Caccept sentence ?)
l yes ¥ yes
‘ Seti=1+1 s ]

Try to make all other rules Apply substitution heuristics
of same name sentence rules * yes

' C Is i<n? )—@

$ No W
EXIT Sot ic 1 ] l EXIT/

.3

A

Coin a rule from ith top nodes

Read a correction and coin a transformation

'

(Was a transformation coined successfully ?j

yes

¥ No

Restore old grammar

v

lSeti: i+l

!
yes (Is i_<_n?>
Lno

@ N Coin a new rule with RHS consisting
of original morpheme string
S

l EXIT |

FIGURE 4: Flowchart of Default Context-Free Heuristic
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a) Only part of the RHS is matched by A (see figure 5a). Proceed normally.
b) The RHS is identical to A (see figure 5b). This implies that the two
classes of rules to which the RHS and A belong each have a rule with a
common RHS. An attempt is made to merge these two classes into one.
¢) Both sides of the changed (new) rule and the matched rule are identical.
The changed (new) rule is discarded as redundant.
The substitution heuristic is then reapplied in turn to any rule which was itself
changed during the substitution process.

(insert figure 5 here)

Substitution is also applied to each transformation in the grammar. The RHS,
/\, of the changed (new) rule is compared against the LHS of each transformafion.
If the LHS contains the string A\ in part. (but not wholely), the RHS of the trans-
formation is checked to see that all occurrences of the string /A on the LHS occur
in toto on the RHS one or more times. If this condition is met, the substitution is
made. For example (see 2.9.1 for a description of the format of transformations),
for the transformation

123223
ABCD —- ABCZBC
1234

and the rule
S _—~BC,
X
a substitution would yield the new transformation

12 2 2
AS D — A S, 7Sy

1 2 3






Changed rule:

Matched rule:

New rule:

(a)

Changed rule:
Matched rule:

Other rules:

New rules:

(b)

Note: All occurrences of S

15a

85—>S6 Sg

% e g
S21 Szg S, THE S7

69

*5 T S2 S

2 THE S7

5

Normal substitution

--S7 - MAN
—Slz——— MAN

-S7 — BOY
—Slz--> RAM

%G
816 THE S7 S1

9
Slz—- MAN
812» BOY
Slz——> RAM

*S .
S16 THE S12 S19

Class union

7

formation are replaced by S12 .

Examples for the Substitution Heuristics

FIGURE 5

Klein and Kuppin

on the RHS of a CF rule or trans-
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If the transformation were of the form
123 7Z 2
ABCD—-ABCZB
1 2 3 4

no substitution would take place as the partial string 'B' occurs on the RHS.

2.7 Class—-Splitting Heuristics

Whenever a new morpheme is added to an existing morpheme class by the CF
inference heuristics, all other occurrences of this class in the grammar are tested
with the new morpheme. If the morpheme belongs in the class in some cases and is
not permitted in other cases, the morpheme class is split and the occurrences of the

(insert figure 6 here)
class adjusted accordingly (see figure 6). When a new morpheme is added to a class
which is already split, the morpheme may actually belong at a different level then
that at which it was introduced. In such cases the correct level at which to enter

the new morpheme is determined.

2.8 Context~Free Cleanup Heuristics

Extraneous, redundant, and duplicate CF rules can arise from the normal
actions of the CF and substitution heuristics. Duplicate rules are usually detected
and eliminated by the substitution heuristic. It should not be possible for two
identical rules to exist except during intermediate stages of rule coining.

There are two main cases in which redundant and extraneous rules arise and
are resolved:

a) There is a rule Sx — Sy, but no other occurrences of Sy on the RHS of

any rule. All rules named Sy are renamed Sx'
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New morpheme: -S2 — WATER
01d rules: -S, — TREE |LAND
Sy — THE S, Sq (WATER okay)
‘"‘821 — A 82 814 87 (WATER not permitted)
New rules: -5, — 95
X 2
-5 — WATER
X
-5, - TREE | LAND
819 — THE SX 89
¥8yp TR 8y 814 Sy
FIGURE 6

Example for the Class-Splitting Heuristic
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b) There is only a single rule named Sx’ of the form Sx - Sy. Change all
references to SX to S
In both cases the redundant rule is then discarded and transformational references
are revised.

2.9 Transformation Learning Heuristic

2.9.1 Form of the Transformations

The following format for transformations has been adopted:

a) All transformations are mandatory and ordered.

by Lach transformation in turn is applied repeatly until it no longer applies
then the next transformation is applied, etc. In order to prevent infinite
application loops (since it is not possible to restrict the form of trans-
formation coined to achieve this end), a count is made of the number of
times a transformation may initially apply to a P-marker. Using this
count as a heuristic control the transformation is reapplied to the P-marker
until the possibility of a loop is indicated. An extended count prevents more
subtle loops from arising by arbitrarily terminating the application process
after a maximum number of applications, dependent of the number of nodes

in the P-marker.

c) The LHS of a transformation specifies a labelled string of nodes which must
be logically adjacent in the P-marker. The RHS specifies the resolution of
each and every LHS-node, plus any insertions. Each LHS-node may be
replaced by a labelled LHS-node (including itself) or by a terminal or

non-terminal element, or may be deleted. Labelled LHS-nodes (including
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duplicates) and terminal or non-terminal elements may be inserted before
or after any LHS-node. Insertions are attached to the highest common

point between the nodes at which the insertion is made.

d) 1If any replacement or insertion is a non-terminal element, it is expanded
randomly to a terminal string, as the P-marker must always be terminal.
A transformation may apply to either a partial or a complete sentence. Figure 7 shows
an example of a transformation and its application to a P-marker,

(insert figure 7 here)

2.9.2 Overview of Transformational Learning

An attempt is made to coin a transformation when an irresolvable inconsistency
in the CF grammar is detected or when there is a strong possibility that a context-
sensitive pattern is present. A transformation is coined that transforms the P-marker
of an illegal sentence into the P-marker for a corrected version of the illegal. In
the coining process extensive testing is done in order to develop the most general
possible transformation that will resolve the inconsistency or context-sensitive
pattern.

The transformational coining process can be divided into four basic steps
(see figure 8):

a) Compute and rank all possible allignments between the illegal and

corrected strings. Retain only the best allignment or, if there is

more than one "best" allignment, retain all of them.
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51 % 327 4%kS5S

s

Transtormation: mPAPR=SRm*APYZPLkR
1L 23465 12 3 4 5
Original P-marker: S

P/V\ R/B\q
| /\

f

30
>
e

4 Ranuuie =
Ri——tg

Decomposed P-marker:

® 6 ®
(////‘T\B zli ﬁ

Hee

<
AN

3
P
LTEA
J

:>m

Transformed P-marker:

W N

N | N
|

A P
N
a m 2z k J

Capital letters represent non-terminal elements and small letters
represent terminal elements.

An asterisk (¥*) indicates a deleted node.

The numbers beneath the RHS correspond to LHS-nodes on a one-to-one
basis. Unnumbered elements are insertions. The upper numbers and
nodes on the RHS indicate what the insertion or replacement is to be.
An upper number, i, indicates that the ith node on the LHS is to re-
place the node (or be inserted) on the RHS.

Because 'Z' is a non-terminal, it is expanded in the transformed
P-marker.

PIGURE 7: Example of Transformation Application.
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b) Using the best allignment, construct a P-marker for the correction
by transferring structure from the illegal P-marker. If no transformation
can be coined from this allignment, repeat the process on the next allign-
ment, if any.

c¢) Temporarily delete any extraneous context from the ends of the illegal and
correction strings. If an attempt to coin a transformation with the deleted
context fails, restore it a piece at a time until a successful transformation
is coined, or all fail.

d) Each node of the illegal P-marker is raised selectively and tested by
generation. If the generation fails or if the transformation blocks the
coining of a known legal, the node is lowered back to its former
level. In this manner the most genral possible transformation is coined.

e) If all else fails, a transformation is coined whoso LHS is the illegal

morpheme siring and whose RHS is the corrected morpheme string.

(insert figure 8 here)

2.9.3 Ranking the Allignments and Assignment of Structure

An algorithm has been developed which efficiently computes and ranks all
possible allignments. The ranking is based on the number and length of matched
(alligned) pieces and on the centering. Additional weight is given to allignments
which preserve higher level structure. In figure 9 three of the better allignments for
an illegal/correction pair are shown.

(insert figure 9 here)
(a) and (b) are ranked markedly higher than (c) because both preserve higher level

structure whereas (c) does not. (a) is preferable to (b) because it is better centered.,
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rection

Compute all possible allignments
betweenillegal sentence and cor-

Rank each allignment and save best

[ or all of highest rank

allignments saved

Lset i =1

[Set n = number of]

{

( Using the ith allignment, transfer structure of
alligned pieces from illegal to correction

pieces and transfer structure

Compute interrelations of unalligned

extraneous end pieces

Mark and temporarily delete]

and generate test sentence

[Coin transformation at level ]

Revert to no (Does informant accept sentence ?
level & .
¢ vyes
Raise level by 1
¥

T'TCITTIRE K

! Try to raise each node in turn to current level

¥
@id any raisings succeed ?)_Les -

Undelete one
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Y
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Illegal:

Correction:

Tllegal:

Correction:

Illegal:

Correction:

Illegal:

Correction;

FIGURE 9:

a

(a)

c

Ranked 1st

a =«

da cC d

(b) Ranked 2nd

(c¢) Ranked 3rd

Klein and Kuppin
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Examples of Transformational Allignment
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Given an allignment a P-marker must be constructed for the correction. Structure
above alligned pieces of the illegal is transferred in toto to the correction. To assign
structure to the unalligned pieces an interrelation map is drawn. This map cor-
relates each unalligned node in the correction with a node in the illegal, except for
newly inserted terminal or non-terminal elements. Each unalligned element of the
correction is associated with the first occurrence of that element in the illegal.

Figure 10 shows the interrelation maps and complete P-markers for the examples in
figures 9a and 9b.

(insert figure 10 here)
The interrelation map governs the transferrence of structure to the correction and
further distributes operations performed on the illegal over the correction. Thus in
figure 10a any operation on the first 'a' of the illegal will also be performed on the

first and third 'a' of the correction.

2.9.4 Deletion of Extraneous Context

Extraneous context is defined as any alligned pieces on the ends of the
illegal/correction pair that do not govern the context of the transformation. In figure
10 the right-end string 'BA' is such an extraneous piece and would be deleted on the
first attempt to coin a transformation. This heuristic also takes into consideration
the structure over the end pieces, in that it deletes (on each end) only those nodes
up to, but not including, the first node which is not dominated by a higher level
node of length two or more. For example, for the case

F W Vv
AN A A\

T
M |L
T L

g

Z QCDETF
P QCDETF

R X
R X
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‘RX' and '"CDEF' would be deleted, but not 'Y' or 'LQ'. When an attempt to coin a
transformation fails, any deleted end pieces are restored, each restoration cycle
restoring one piece on each end. Thus for the above example 'RX' and 'CD' would

be restored on the first cycle and 'EF' on the second.

2.9.5 Coining and Testing a Transformation

With the interrelation map, the corresponding P-markers, and the set of
temporarily deleted end pieces, a transformation can finally be coined. The most
general transformation would be that coined from the highest nodes of the P-markers,
but this is not the most probable, as it imposes the fewest context-sensitive
restrictions. Rather, the first attempt is made on a less general form, which will
then be generalized in stages until the least restrictive possible transformation is
obtained.

As a first attempt the transformation consisting of all level 1 nodes is coined,
where the morpheme string is at level 0 (see figure 10). Nodes which do not rewrite
to level 1 are retained at level 0. For the example in figure 10a raising all nodes to

level 1 would yield the transformation

1 4
ABAC => AC
123 4

i =
[sC Rl ve I AV
w o

where the end piece, 'BA', is deleted. This transformation is tested by pretending
that the RHS of the transformation, plus all deleted end pieces, is a rule and then
generating under it. Generation is completely random under the deleted end pieces,
but under the rest, the specific rules involved in the structure are excluded from the
first level of generation. Thus the rules A —a, B—b, C — c will not be used in the

above example (unless they are unique).
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if the level 1 transformation fails, all nodes are dropped to level 0. In
either case, the following generalization cycle is applied to each node in turn at
each level until all applications at a single level fail:
a) Given a level, i, raise each node in turn, serially from left to right, up
to level W if it is already at level -1, If the level WL node dominates

more than one node, these lower nodes are absorbed.

b) Parse all legals and see if any are blocked from being generated.
If so, restore the node to level L-1.
c) Do a test generation on the corresponding transformation. If the test
fails, restore the node to level p-1.
d) After all nodes have been tried at level u: if any node has been raised to
level W, repeat this process at level L+ 1; otherwise, quit.
All raising and lowering of nodes is done on the LHS and is transferred to the RHS
through the interrelation map. When interrelations are lost by raising a LHS-node

too high, the last level achieved on the RHS is retained. For example in figure 10a

the transformation

w

S
S

~ o
% %

Q

1
WAC=> Wr
12 3 1

3
(O]

would be coined in the most general case that all nodes are raised to their highest
level. The first 'a' of the illegal controls the first 'a' of the cotrection, but the
first correction 'a' cannot be raised above an 'S' node, even when the illegal 'a' is
raised to a 'W"'.

Certain other criteria must be met in coining a transformation:

a) Neither side may contain only a single node.

b) The two sides must not be identical.
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These conditions are checked before testing the transformation on the informant. If
any condition applies, the raised node is lowered and testing proceeds as usual.

As a last restore a transformation is coined from the two morpheme strings.

2.10 Transformation Combining Heuristic

This heuristic is invoked whenever an existing transformation is changed or
a new transformation is added. The RHS, I', of the changed (new) transformation
is compared against the RHS of every other transformation. If I" and the matched
RHS are of the same length and both contain identical rewrite descriptors, a table
is made of all mismatched pairs of nodes. The rewrite descriptors are the numbers
above and below the RHS of the transformations. These must be identical for a
match to be accepted. Given the table of RHS mismatches, the LHS's of the two
transformations are compared. For each LHS mismatch pair there must be one or
more identical RHS pairs (unless neither member of the LHS pair appears on the
RHS) and to each RHS pair there must correspond at least one LHS pair. If such
sets of mismatches exist, a set of CF rules is proposed in the same manner as for
the CF inference heuristics (see 2.4.2) and the changes are made to the two
matched transformations and tested. If the tests succeed, the earliest (lowest
numbered) transformation is discarded and the other matched transformation is
retained, as changed. Otherwise, the combining fails and the original transformations
are restored. In the example in Figure 11 the three RHS pairs are (X,Q), (Y,R), and
(Y,R). Furthermore, the rewrite descriptors of Ty and Tj are identical. The LHS
pairs are (X,Q), (Y,R), and (B,D). The first two LHS pairs account for all three

RHS pairs. The pair (B,D) is permitted as it does not occur on the RHS.

(insert figure 11 here)
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Figure 11
2 1 * 3 C 3
Tﬂz A X Y B — X A Y C Y
' L2 3% 4 1 2 3 4
2 1 * 3 (¢ 3
T.: A°Q R D — QA * R C R
J 1 2 3 4
LHS mismatch pairs:
N . (S rasnem sy
2 1 ; 3 C 3
X A * Y C Y
1 2 3 4
2 1 * 3 C 3
Q A e R C R
1 2 3] 4 |
RHS mismatch pairs:
A X Y B
1 2 3 4

1

Alql| R| D
2| 3

Proposed combined transformation and new CF rules:

2 1 * 3 ¢ 3
T.: A S, Sg S, -~ S, B * Sg C S
L L 1 2 3" 4

Se — X|Q

Sﬁ — YlR

s B|D
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2.11 Recycle

Even by coining a transformation it is not always possible to repair inconsist-
encies in the grammar. Normally this situation arises as follows: at some point a
transformation is coined to resolve an inconsistency. Later, another, related in-
consistency is introduced, but the transformation which will correct this new in-
consistency also nullifies or reverses the effect of the earlier transformation.
The result is a deadlock. In such a case, or whenever a transformatioq cannot be
coined because the informant can give no correction or an irresolvable "blocked"
legal is encountered, a rule recycle takes place. First, the entire grammar is dis-
carded and AUTOLING is basically reinitialized, except that thelists of known
utterances are retained. Then the known, legal utterances are fed back through
AUTOLING as if the informant had typed them in. Because the illegal utterances or
the "blocked" legal which caused the recycle are present throughout the reprocessing,
the inconsistency which led to the recycle is prevented from reoccurring. The

recycle is a costly and therefore always a last-resort undertaking.
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3. Examples and Discussion

Full histories of the analysis of natural language problems by AUTOLING are

too lengthy for presentation in this paper. The analysis of some artificial languages

are offered in sections 3.1, 3.2, 3.3, 3.4, and 3.5. Segments of the analyses of

subsets of Lnglish are offered in section 3. 6 and 3. 7.

3.1 aA'g"

A complete interactive dialogue, plus final grammar, for At anl

1: A Be

2: A A B Be

3+ ANA A DB B Be

CAN YOU SAY:

.lJ: AAARAARBBBBEB
YES«

4: “*IYPEe

*383 = A S3 B

*GS3 = A B

A4 NAAAAARAAARAABBBBBBIBBBB «
~-PARSED OK-

The response "PARSED OK" to input 4 indicates that the grammar can account for this
sentence.
3.2 A" "

A complete interactive dialogue, plus intermediate and final grammars, for

At g™ ™.

Lines terminated with a left-arrow (<) are informant input (numbering is supplied
by the program).
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¢ NB B Ce

CAN YOU SAY:

.1l: A BB BR BB B C
YES+

A: *TYPEe
*S1 = N 83 C

-52 := Bb
-52 =B
53 1= 53 82
S5 1= 82

4 NN D C Ce
CAN YOU SAY:
e NAAMNMABRBR BB CCCCBBBC

NO¢

e FTYPEe

-52 1= BB
~-82 = B
§3 1= 83 32
5% 1= 8§82

*S4 = A 84 C
54 1= 83

5t NAAAAAABBBBCCCCCCCe
- PARSED OK--

G: AN AD BB C C Ce
~PARSED OK-

To derive this grammar it was necessary to provide 'B' with the companion
'BB', because the CF inference heuristics, under certain conditions, block the deri-
vation of rules containing both terminal and non-terminal elements on the RHS (see

section 2.4.2). TFor an alternate method of handling this restriction see section

3. 6‘
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3.3 Well-Formed Arithmetic Expressions

An abbreviated interactive dialogue (with queries to the informant and his
replies excluded), plus final grammar, for some well-formed arithmetic expres-

sions:
l: A PLUS Be
2: A DIV Be
3: B PLUS Re
4: A MULT Be
5: A MIN Be
6: LP A PLUS B RPe
7: A MIN LP B MULT B RPe
8: LP A PLUS LP A MULT B RP MIN B RP¢
9: A PLUS B MIN Ae

10: A PLUS B PLUS A MULT B DIV A«

11: “TYPEe

-52 = MIN

-82 := MULT

-82 := DIV

-S52 := PLUS

-83 := B

-83 = A

%38 := S8 82 S8
S8 := S3

*S8 := LP S8 RP

l'LP' and 'RP' stand for '(* and "Y' , respectively.
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3.4 Complex Agreement Example

Tegal sentences in the following language require agreement among occurrences
of X, Y, and Z, and also among occurrences of A, B, and C. Thus X AXA and
YBYDR are legal, but not XAXB or YAXB. Sentence types %81 and *S3 were
introduced as a rapid means of combining X, Y,and Z and A, B, and C in the

same classes.

1l1: *TYPL
¥Sl = F F 82
-§2 <= Z
~G2 =Y
-52 := X
*S3 1= G G 54
~54 := D
-84 =:= C
~-54 = L
-S54 1= A
*S6 .= 86 S6
S6 := SZ S84
1 2 1 2
T2: &2 54 82 4 = £2 84 82 S4 (1)
1 2 3 4 1 2 3 4
1 2 3 2
THh: 82 sS4 52 &8 = §2 84 52 54 (1)
1 2 3 4 1 2 3 4
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3.5 Complex Agreement Example

This language is similar to that of 3.4 except that sentences such as X A, X B,
and Y A are also legal. As a result, agreement can be handled with a single trans-
formation because of the existence of a higher level PS unit not present in the
language of 3.5. Recursion is introduced into the language, and the final grammar re-

flects an updating of both the phrase structure rules and the agreement transformation.

9: *TYPI FULL<«

*Sl = F F §2

-52 1= 7

~82 = Y

~-82 := X

*S3 = G G S4

-84 := C

-84 := B

-84 = A

*S5 := 82 S4

*¥G6 := S5 S5

1 1
Tl: S5 85 =: 55 85 (1)

1 2 1 2

9: X A X A+
~PARSED OK-

10: X A X A X A«
CAN YOU SAY:

e YAYAYAYDA
YES+

CAN YOU SAY:

2 Ycycycyce
YES+

CAN YOQOU SAY:

.3: YRB Y E

YES<«

-LEGALS PARSED-
*EMMAZ.2 SAVED*®

11: *TYPE FULL~<«

*¥*G51 := F F S§2
-52 = 2
~82 = Y

-82 := X

*G3 = G G 854
-84 := C

-84 .= B

~S4 := A

*G5 := G52 G4

*¥G7 := §7 857

87 := G5

1
Tl: 8§87 85 =: &7 & (1)

1 2 1 2
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3.6 Morphological Agreement Problem in English

A special mode introduced by the label "###ENTER MORPHS###' permits the
direct inputting of morphs or other strings without subsequent application of the usual
phrase structure heuristics. An as yet to be created morphological analyzer will make
use of this mode. Its primary function in the following example is to permit the phrase
structure heuristics to apply to morphs having no other members in their class. The
introduction of elements in the morph mode provides them with a class name, thereby
avoiding the heuristic application restrictions mentioned at the end of section 2. 4,2,

In this example, the plural morphs have been treated as separate units. A
preliminary morphological analysis might have combined 'S' and 'ES' into a higher
level unit on the basis of phonological conditioning, and perhaps added 'EN' on other
grounds. The following example indicates the program's ability to derive a grammar
for this type of data without such pre-analysis, Note in particular the way transfor-

mations are combined during the course of analysis.
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I. A Full Learning Seguence

$4ENTLR MORPHS###

1: EN«
2: S«
3: S5G+
4: ES+

5: *SWITCH«
###ENTER SENTENCES###

5: THE CAT+«
6: THE DOG«
7: THE FOX<+
&: THE EBUSH«

9: THE OX«
~-LEGALS PARSED-
*L,SUN1.1 SAVED*

10: THE CAT S«
CAN YOU S5AY:
.1l: THE BUSH S
NO+

CORRECTION:

.2: THE BUSH ES+
CAN YOU SAY:
.3: THE DOG ES
NO<«

CORRECTION:

.4: THE DOG S«
CAN YOU SAY:
.5¢ THE OX &
NO~+

CORRECTION:

.6: THE OX EN«
CAN YOU GAY:
.72 THE FOX ES
YES+

CAN YOU GSAY:
.8: THE DOG EWN
NO+

CAN YOU SAY:
.9: THE FOX EN
NO+«

CORRECTION FOR CY& .8:
.10: THE DOG S«

Klein and Kuppin



1l: *TYPE I"ULL-«
~-51 := EN

~53 = EG

*535 := THE &
-86 := 0OX

~56 = RUSKI
-56 ;= FOX
-56 := DOG
-56 := CAT
*59 = G835 8510
-510 := E5
-310 ::= &
*S12 .= 85 8§81

T1l: THE BUSH S510

1 2

T2: THE DOG S10

1 2 3

T3: THE OX &£10
1 2 3

T4: THE DOG 21
1 2 3

11: 7HE CAT S«
—-PARSED OK-~-

12: THE DOOK S«

GIVEN ILLEGAL:
THRE FOX EN
CORRLECTION:

.1: THE FOX ES«

CAN YOU SAY:
.2: THE CAT ES&
MO«
CORRECTION:

.3 THL CAT S+

CAN YOU SAY:

.4: THE CAT EN

NO«
CORRECTION.
.5: THIC CAT S
CAN YOU SAY:

.5: THE BOCK EN

NO«

30

ES

THE BUSH ES (1)

3

S

THE DOG & (1)

1 2
1 2

1 2

1 2
1 2 EN
THE OX EII
1 2 3
1 2 S5
THE DOG S
1 2 3

3

(1)

(1)
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l3; *TYPF FULIM,
-51 = IN
~83 = 5G
*S5 = THF 856
~56 .= §16
-56 := OX
-56 = DOG
-86 := CAT
*¥S9 ;= 55 S17
-810 = ES8
-S810 = S
*515 := THE BCOK S$10
~816 .= RUSH
-516 = FOX
~-817 := S1¢
~-517 := 81
1 2 UN
T3: THE OX 8§17 =:. Tuir OX EM
1 2 3 1 2 3
1 2 8
T4: THE DCG S17 =: THE DOG S
1 2 3 1 2 3
1 2 ES
711l: THE S$16 S17 =: THE S16 LS
1 2 3 1 2 3
1 s
712: €5 817 =: £5 5 (1)
1 2 12
13: TUE RAT S«
CAN YCU SAY:
.1: THE RAT ES
NO«+
CORRLCTION:
.2: THE BAT S«
CAN YOU SAY:
.3: THE RAT
YIS«
14: *TYPE. FULL
~51 1= LN
-53 := 56
*S5 = THE S20
-510 := LS
~510 := §
*¥*G15 := THL ROOK S10
~216 := BUSE
-516 .= FOX
-817 := £10
-517 := Sl
*¥G1¢ = &5 §17
-520 := CAT

(1)

(1)

Klein and Kuppin
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~820 := 0¥
-S20 = £14
-320 = DOG
-G20 := RAT
1 2 EN
T3: THE O¥X 817 =: THE 0OX EM (1)
1 2 3 1 2 3
1l 2 S
T1l1l: THE 816 517 =: THE 3516 ES (1)
1 2 3 1 2 3
1l g
Tlo: &5 S17 =: &5 & (1)
i 2 12




Klein and Kuppin
33

3,7 Intermediate Grammars of English Before and After Recycle

The grammar in 3.7.1 existed just before a recycle. After a reanalysis that
included additional machine generated queries of the informant, the grammar of 3.7.2
was produced.

3.7.1 Before Recycle

*TYPE FULL<

*¥S1 := 85 S§13
-§2 := NEED
~-82 := TAKE
-G2 := WANT
~-52 = SEE
*¥*G3 := NOW &1
-S54 <= GIRL
-S54 := CAT
-84 := BOOK
-85 := YOU
-85 .= 1
*G6 := S]1 NOW
*57 := S5 HNEED ED S15 54
*595 ;= TOIIORROW S5 S17 513
*510 := 55 WILL S13 TOMORROW
*S1l := S5 SHALL 813
*¥*G512 := $5 §2 TO S13
*513 := S516 815 S4
-8l4 := SG
~81l4 := ED
-515 := A
~815 := THE
S16 := 82
S1l6 := S15 sS4 £2 Sl14 e
-517 := SHALL
-517 = WILL
*G518 := YOU SHALL TAKE THE CAT TOMORROW
*¥G23 := 8§30 S$14 S15 S4
*526 := 55 TOOK 515 S4
*G527 := 8§30 814 S15 G4
-528 := SHE
~8528 := HE
S30 := 8§28 82
8§30 := 85 Sleé

1 * TOOK 4 5

Tl: S5 TAKE S14 S15 sS4 55 * TOOK S15 s4 (1)

it

1 2 3 4 3 12 3 4 5
1 2 * 4 5

T2: I NEED SG THE BOOK =: I NEED * THE BOOK (1)
1 2 3 4 5 1 2 3 4 5

1 * TOOK 4 5
T3: HE TAKE ED A CAT =: HE * TOOK A CAT (1)
1 2 34 5 12 3 4 5
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3,7.2 After Recycle
8: *TYPE FULI~
*8] = 522 §6 ED 54 821
*G2 = £22 TOCK &$4 521
~54 = THEL
-84 := A
-85 ;= BOOK
-85 := CAT
~856 := WANT
-56 := NFED
*67 := §10 €8 sS4 821
~-68 := TAKE
-88 := 56
~38 = SEE
*GQ = HOW 87
~-810 := YOU
~6510 = I
*511 := 57 NOW
-~81l2 = HI
-S512 := SHE
~-512 =:= 8§10
$14 = 54 85
514 := §12
*$15 := TOLORROW S12 523 $19
*516 1= &14 S23 £19 TOMORROW
*Q17 := 522 $23 S1¢9
#3818 := S1C 8¢ TO SEE $36
*G10 := S8 S36
*S20 := §45 88 &G £36
-821 = &5
~-521 := GIRL
S22 1= 54 §21
22 = 8l4
~-823 ;= SHALL
-822 = WILL
~-834 == lik
-834 := HER
S36 := 514
8§36 = 53
§36 = 522
S45 = &4 S&
545 := $22
1 2 *
2: 810 S6 G =: S10 86 * (O
1 2 3 1 2 3
1 2 3
3: HE 88 8G 8l2 = LE 8€ 8G
i 2 3 4 1 2 3
1 2z
4; 84 85 88 SG 512 =: S84 85
1 2 3 4 5 1 2
1
5: $10 86 TO SEE Gl2 = 510
1 2 3 & 5 1
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(1)
4 HER
SG EER (1)
4 5
3 4 HER
TO SEE HER (1)
3 4 5
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4, Discussion of Methodology and Future Plans

At least the first author of this paper is a logical positivist. Chomsky c¢laims
that logical positivism died many years ago [1], and has introduced the rationalism
of Liebnitz and Descartes as an alternative scientific methodology. The logical
positivist or even simple empiricist view assumes that there are only two sources
of knowledge, observation and deduction. The rationalist view adds a third source,
the acceptability of any idea that is clearly and distinctly formulated and seems true,
even though it is empirically unverifiable and not to be derived by deduction. The
logical postivist argues that a hypothesis for which no test can be formulated is
'meaningless'. Should a test be possible but not yet carried out, the status of the

hypothesis is 'indeterminate.' After successful completion of a test one can then call
it 'true' or 'false', but with the proviso that the truth or falsehood of the hypothesis
is no more significant than the operations used in carrying out the test.

From the logical positivist point of view, any models that equally account for
observed phenomena and yield the same predictions are equally valid, even if their
internal structures differ radically. E. F. Moore has proven that two finite state
automata can be input-output equivalent and yet have no isomorphisms in their internal
structure [20]. He suggests that an engineer should build the cheaper one -- the
equivalent of Occam's Razor.

It also follows that, given a model that accounts for all observed phenomena and
yields perfect predictions, one is not entitled to believe that the internal structure of
that model has any real correspondence with the structure of the real world phenomena

it models. However one may, for convenience think in terms of the internal model

structure for the personal comfort of an explanation, and, so long as one obtains valid
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predictions, the problem of isomorphism can be ignored,

What this means for linguistics is that the distinction between descriptive ade-
quacy and explanatory adequacy disappears. The notion of explanatory adequacy, if
adhered to, rises to the level of philosophy and poetry, and arguments for grammars
made in its name have a methodological status equivalent to literary criticism. The
distinction between models of competence and models of performance also disappears.
From a logical positivist point of view their are only models of competence and the
observation that some models may yield better and more accurate predictions about
the real linguistic behavior of people than others. The point is that if one cannot claim
internal isomorphism between a performance model and observed reality, the competence-
performance distinction is vacuous.

Consider an improved version of AUTOLING that incorporates in its grammars
phonological, morphological and semantic data. From the logical positivist point of
view, if the grammars are accurate from descriptive point of view, then the program
can be viewed as a satisfactory automated fieldworker, and, at the same time it can
be viewed as an adequate model Of. human language learning.

However, the first author of this paper has no axe to grind; he appreciates
literary criticism, poetry and philosophy and is very fond of transformations and
transformational theories —so much so that he would like to provide the current field
of transformational theory with a relatively sound empirical basis. One means of
attaining this is through demonstrating the existence of workable methods for obtaining
grammars. (The logical positivist mutters that if one has a theory whose basic units
have no empirical verifiability one is in trouble.) Another tack is to build automated

learning models that produce exactly the kinds of grammars that various transformational
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theorists like and write. One then has powerful analytic tools for viewing the
assumptions and logical consistency of otherwise untestable models.

Future plans for the AUTOLING system include, most immediately, the addition
of a morphological learning component and, eventually, a phonology learning com-
ponent., To build a morphological analyzer that accurately accounts for the semantics
of the segmented units, the incorporation of some system of universal semantics
seems a logical necessity. We plan to add a model using universal semantic features;
én essential part of the analytic heuristics will then involve the determination of the
distinctive semantic features for a given language.

The current syntactic learning program, with its lack of restrictions, does not
produce a deep structure that would satisfy most transformational theorists. A grammer
with deep structure plus transformations could be obtained rather easily if a human
linguist first entered a base component for a language into the grammar by hand, and
then set the program to randomly generating outputs from that grammar, asking for
valig:iity checks and corrections. The program would then learn transformations to
take the human-supplied deep structure into surface stlructure.l

For the program to learn a deep structure base component satisfying to many
transformationalists, the incorporation of a highly structured universal semantic
system appears to be a logical necessity, The first author can think of no other way
of providing the program with the necessary constraints on the formulation of the phrase
structure component. This requirement is analytic, and reflects what seem to be inter-

nally derived logical necessities of recent transformational models rather than any

lA user might prime the program with a good grammar for a core subset of a
language and use the system to learn the rest of the grammar adding on to a basic
framework that pleases the human fieldworker. The authors, of course, are interested
in modelling theories rather than in applications, but are happy to provide spin-off
tools for humans.
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inate properties of human beings.

Actually, the first author, a logical postivist, has come to 'believe’ that
people acquire some kind of semantic distinctive features in their internal models
during the course of language learning. The evidence is somewhat empirical, and
is based on problems of testing the classification of new morphological units that
are added to a grammar-in-construction, It is not possible to perform exhaustive
tests of all newly formulated rules because of time constraints; the required amount
of exhaustive testing grows by some factorial function of the number of rules. The
current version of AUTOLING does much judicious spot-checking, but is often led
into lengthy recycles because of bad rules that slip past the tests. One doubts
that humans, in their language learning, reformulate their grammars as drastically
and as often as AUTOLING. One suspects that exhaustive testing of new lexical
items is avoided through powerful heuristics that make syntactic inferences on the
basis of semantic criteria. A future version of AUTOLING will incorporate such

heuristics,
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